Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy

Purpose Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radioth...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of radiation oncology, biology, physics Vol. 81; no. 1; pp. 270 - 276
Main Authors Berbeco, Ross I., Ph.D, Ngwa, Wilfred, Ph.D, Makrigiorgos, G. Mike, Ph.D
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.09.2011
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Methods and Materials Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo–generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). Results At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20–340% dose increase) are calculated. Conclusions In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk.
AbstractList PURPOSETumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation.METHODS AND MATERIALSEndothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only).RESULTSAt 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated.CONCLUSIONSIn contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk.
Purpose: Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Methods and Materials: Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). Results: At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated. Conclusions: In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk.
Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated. In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk.
Author Berbeco, Ross I., Ph.D
Makrigiorgos, G. Mike, Ph.D
Ngwa, Wilfred, Ph.D
Author_xml – sequence: 1
  fullname: Berbeco, Ross I., Ph.D
– sequence: 2
  fullname: Ngwa, Wilfred, Ph.D
– sequence: 3
  fullname: Makrigiorgos, G. Mike, Ph.D
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24444637$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21163591$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/21587711$$D View this record in Osti.gov
BookMark eNqFkt-OEyEUhydmjdtdfQNjSIzxairM__HCxK11Namr0Wr2jpzCmZYuAxVotb6QrymzrZp4IzcE8nF-HD7OkhNjDSbJQ0bHjLLq2Xqs1s4uNuOM3m6NaZbdSUasqds0L8vrk2RE84qmeYRPkzPv15RSxuriXnKaMVblZctGyc-ZFaDVD5TklfVIpmYFRmCPJpBgyXzbW0cutLWSfEHvUUdC2rBCrUCTCWrtyU4BeYdL2FkdYInkOnWw9wSMJHNwSwyx-KXVklyBsRtwQQmN_jm5wm_kgw0xaqjVxaDp94DOxMUFQk8-glRDlIPN_n5ytwPt8cFxPk8-v57OJ2_S2fvLt5OXs1SUBQ2plIumZFJ2LRN1IdqqoS1AIbJOlnVZMKAgoWkXbJEVNGMogHXZIqMgsOryvM7Pk8eHutYHxb1QAcVKWGNQBJ6xsqlrxiL19EBtnP26RR94r7yIjwEG7dbzpmFF1dZVFcniQApnvXfY8Y1TPbg9Z5QPHvmaHzzyweOwGz3GY4-OAdtFj_LPod_iIvDkCICPAjsXrSn_lyviqG77eXHgMD7aTqEbesJoWCo3tCSt-t9N_i0gtDIqZt7gHv3abgdhnjPuM075p-HPDV-OUZoXRbzBL6b51hA
CODEN IOBPD3
CitedBy_id crossref_primary_10_1016_j_jddst_2019_101189
crossref_primary_10_3390_pharmaceutics14102090
crossref_primary_10_1021_acsami_5b09274
crossref_primary_10_1371_journal_pone_0181103
crossref_primary_10_1016_j_ijrobp_2015_09_032
crossref_primary_10_1038_srep01751
crossref_primary_10_1016_j_bios_2023_115753
crossref_primary_10_1007_s40846_015_0081_0
crossref_primary_10_1016_j_jqsrt_2014_10_015
crossref_primary_10_1021_jp509471m
crossref_primary_10_1118_1_3671905
crossref_primary_10_1002_mp_14576
crossref_primary_10_1088_0031_9155_58_3_451
crossref_primary_10_1016_j_radphyschem_2020_108790
crossref_primary_10_1080_02656736_2017_1317845
crossref_primary_10_1118_1_4859335
crossref_primary_10_1007_s12094_013_1003_7
crossref_primary_10_1016_j_bbagen_2023_130318
crossref_primary_10_1016_j_nano_2014_06_004
crossref_primary_10_1088_1361_6560_ab103a
crossref_primary_10_2174_0115672018180695230925113521
crossref_primary_10_1016_j_ijrobp_2014_10_001
crossref_primary_10_1002_adtp_201800050
crossref_primary_10_1016_j_ejmp_2020_09_022
crossref_primary_10_1088_1361_6560_ab9159
crossref_primary_10_1016_j_addr_2015_12_012
crossref_primary_10_1016_j_rpor_2020_05_003
crossref_primary_10_1118_1_4929975
crossref_primary_10_1021_jp306543q
crossref_primary_10_1259_bjr_20150210
crossref_primary_10_1088_0031_9155_60_24_9203
crossref_primary_10_2217_nnm_14_55
crossref_primary_10_1016_j_radonc_2017_07_007
crossref_primary_10_1016_j_apradiso_2021_109638
crossref_primary_10_1371_journal_pone_0093888
crossref_primary_10_1039_C9AN00792J
crossref_primary_10_1667_RR3001_1
crossref_primary_10_3390_app11114900
crossref_primary_10_1021_acs_nanolett_5b03073
crossref_primary_10_1097_MD_0000000000015311
crossref_primary_10_1002_mp_12061
crossref_primary_10_1016_j_jddst_2023_104586
crossref_primary_10_1016_j_radphyschem_2021_109925
crossref_primary_10_1088_1361_6560_62_1_43
crossref_primary_10_3390_nano9121791
crossref_primary_10_2217_fvl_2015_0010
crossref_primary_10_1007_s11356_015_4139_x
crossref_primary_10_1007_s13246_012_0143_3
crossref_primary_10_1039_C7TB01054K
crossref_primary_10_1088_1361_6560_aa8e12
crossref_primary_10_1088_1361_6560_ac37fc
crossref_primary_10_1371_journal_pone_0236245
crossref_primary_10_1016_j_ejmp_2014_11_004
crossref_primary_10_1088_0031_9155_60_18_7035
crossref_primary_10_2217_nnm_2017_0344
crossref_primary_10_1259_bjr_20150200
crossref_primary_10_1016_j_ultrasmedbio_2019_09_019
crossref_primary_10_1088_1361_6560_aa99ce
crossref_primary_10_1093_jrr_rru084
crossref_primary_10_1016_j_nano_2014_12_016
crossref_primary_10_1118_1_4773885
crossref_primary_10_2174_0929867324666171003113540
crossref_primary_10_1118_1_4791671
crossref_primary_10_1002_adma_201806381
crossref_primary_10_4236_jbnb_2015_63019
crossref_primary_10_1016_j_nimb_2018_05_033
crossref_primary_10_1088_1361_6560_61_24_8839
crossref_primary_10_1002_adhm_201701460
crossref_primary_10_7785_tcrt_2012_500265
crossref_primary_10_1016_j_semradonc_2016_06_002
crossref_primary_10_1016_j_ejmp_2015_07_138
crossref_primary_10_1371_journal_pone_0109389
crossref_primary_10_1177_15330338231189593
crossref_primary_10_1016_j_pharma_2014_04_006
crossref_primary_10_1016_j_semcancer_2021_11_008
crossref_primary_10_1186_s12645_015_0012_3
crossref_primary_10_1118_1_4934370
crossref_primary_10_1038_s41598_019_50538_w
crossref_primary_10_3857_roj_2016_01788
crossref_primary_10_1118_1_4938410
crossref_primary_10_1080_09553002_2017_1231944
crossref_primary_10_1002_smll_201302303
crossref_primary_10_3390_cryst11020171
crossref_primary_10_1088_0031_9155_58_22_7961
crossref_primary_10_3390_ijms21072480
crossref_primary_10_1039_C7MH00451F
crossref_primary_10_1002_advs_202105957
Cites_doi 10.1088/0031-9155/55/16/S06
10.3748/wjg.v10.i21.3171
10.1038/28412
10.1158/1078-0432.CCR-07-1958
10.1021/nl900031y
10.1016/S0360-3016(02)03794-X
10.1126/science.1082504
10.1016/j.colsurfb.2006.01.006
10.1088/0031-9155/51/7/019
10.1016/j.copbio.2007.10.007
10.1073/pnas.0803728105
10.1016/j.addr.2004.02.014
10.1002/cncr.20299
10.2307/3572707
10.1038/sj.bjc.6690337
10.1080/10623320802228583
10.1016/j.colsurfb.2008.06.022
10.1007/s13233-009-0134-8
10.1088/0031-9155/49/18/N03
10.1016/j.tibtech.2008.06.007
10.1016/j.biomaterials.2009.11.047
10.1016/0005-2736(87)90435-4
10.1038/35025220
10.1002/ijc.2910510322
10.1001/jama.264.5.592
10.1177/153303460700600504
10.1118/1.596656
10.1007/s002590100518
10.1158/0008-5472.CAN-07-0895
10.1118/1.3431999
10.1038/35102167
10.1016/S0168-3659(99)00248-5
10.1088/0031-9155/47/14/305
10.1093/oxfordjournals.rpd.a006824
10.1016/j.addr.2009.11.002
10.1158/0008-5472.CAN-04-4552
10.1088/0031-9155/54/16/004
10.1088/0031-9155/50/15/N01
ContentType Journal Article
Copyright Elsevier Inc.
2011 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2011 Elsevier Inc. All rights reserved.
Copyright_xml – notice: Elsevier Inc.
– notice: 2011 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2011 Elsevier Inc. All rights reserved.
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
OTOTI
DOI 10.1016/j.ijrobp.2010.10.022
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-355X
EndPage 276
ExternalDocumentID 21587711
10_1016_j_ijrobp_2010_10_022
21163591
24444637
S0360301610034437
1_s2_0_S0360301610034437
Genre Journal Article
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1P~
1RT
1~5
29J
4.4
457
4G.
53G
5RE
5VS
7-5
AAEDT
AAEDW
AALRI
AAQFI
AAQQT
AAQXK
AAWTL
AAXUO
ABEFU
ABJNI
ABLJU
ABNEU
ABOCM
ABUDA
ACGFS
ACIUM
ADBBV
ADMUD
ADPAM
ADVLN
AENEX
AEVXI
AFCTW
AFFNX
AFJKZ
AFRHN
AFTJW
AGRDE
AHHHB
AITUG
AJUYK
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BELOY
DU5
EBS
EFJIC
EJD
F5P
FDB
FEDTE
FGOYB
FIRID
G-2
GBLVA
HED
HMK
HMO
HVGLF
HX~
HZ~
IHE
J1W
KOM
LX3
M41
MO0
NQ-
O9-
OC~
OO-
R2-
RIG
RNS
ROL
RPZ
SAE
SDG
SEL
SES
SEW
SSZ
UDS
UV1
X7M
XH2
XPP
Z5R
ZGI
~S-
AAIAV
AGZHU
AHPSJ
ALXNB
ZA5
08R
AAUGY
ABPTK
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
OTOTI
ID FETCH-LOGICAL-c540t-ddb851ddf91c74c96809aa4c2fd57541a0ada89b1b24021eca1f2b20ace6f3373
ISSN 0360-3016
IngestDate Fri May 19 00:34:18 EDT 2023
Fri Aug 16 09:48:36 EDT 2024
Thu Sep 26 17:08:17 EDT 2024
Sat Sep 28 07:55:24 EDT 2024
Sun Oct 22 16:07:22 EDT 2023
Fri Feb 23 02:26:51 EST 2024
Tue Oct 15 22:52:42 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoparticles
SBRT
Anti-angiogenesis
Gold
Endothelial cell
Nanoparticle
Radiotherapy
Electrontherapy
Angiogenesis
Radiation dose
Treatment
Blood vessel
Radiation effect
Tumor
Circulatory system
Dosimetry
Language English
License CC BY 4.0
Copyright © 2011 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c540t-ddb851ddf91c74c96809aa4c2fd57541a0ada89b1b24021eca1f2b20ace6f3373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21163591
PQID 881469766
PQPubID 23479
PageCount 7
ParticipantIDs osti_scitechconnect_21587711
proquest_miscellaneous_881469766
crossref_primary_10_1016_j_ijrobp_2010_10_022
pubmed_primary_21163591
pascalfrancis_primary_24444637
elsevier_sciencedirect_doi_10_1016_j_ijrobp_2010_10_022
elsevier_clinicalkeyesjournals_1_s2_0_S0360301610034437
PublicationCentury 2000
PublicationDate 2011-09-01
PublicationDateYYYYMMDD 2011-09-01
PublicationDate_xml – month: 09
  year: 2011
  text: 2011-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle International journal of radiation oncology, biology, physics
PublicationTitleAlternate Int J Radiat Oncol Biol Phys
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ryschich, Schmidt, Maksan (bib33) 2004; 10
Obrien, Gillies, Schwartz (bib42) 1991; 18
Diagaradjane, Orenstein-Cardona, Colon-Casasnovas (bib22) 2008; 14
Cho (bib10) 2005; 50
Gao, Huang (bib19) 1987; 897
Dabbas, Kaushik, Dandamudi (bib2) 2008; 15
Zhu, Palmer, Makrigiorgos (bib41) 2010; 37
Kennel, Boll, Stabin (bib39) 1999; 80
Hainfeld, Slatkin, Smilowitz (bib1) 2004; 49
Reya, Morrison, Clarke (bib12) 2001; 414
Nijsen, Rook, Brandt (bib38) 2001; 28
Liu, Verhaegen (bib30) 2002; 99
Cole (bib35) 1969; 38
Perrault, Walkey, Jennings (bib6) 2009; 9
Rich (bib11) 2007; 67
Makrigiorgos, Adelstein, Kassis (bib34) 1989; 30
Siemann, Chaplin, Horsman (bib15) 2004; 100
Murphy, Majeti, Barnes (bib7) 2008; 105
Li, Huh, Lee (bib3) 2010; 18
Roeske, Nunez, Hoggarth (bib8) 2007; 6
Garcia-Barros, Paris, Cordon-Cardo (bib16) 2003; 300
Makrigiorgos, Ito, Baranowska-Kortylewicz (bib23) 1990; 31
National Institute of Standards and Technology database. Available from: URL
Veiseh, Gunn, Zhang (bib5) 2010; 62
di Tomaso, Capen, Haskell (bib26) 2005; 65
Kojima, Hirano, Yuba (bib18) 2008; 66
Van den Heuvel, Locquet, Nuyts (bib31) 2010; 55
Boerman, Sharkey, Blumenthal (bib17) 1992; 51
Ailles, Weissman (bib13) 2007; 18
Cho, Jones, Krishnan (bib9) 2009; 54
Maeda, Wu, Sawa (bib28) 2000; 65
Brown, Giaccia (bib36) 1998; 58
Park, Oh, Mun (bib20) 2006; 48
Akabani, McLendon, Bigner (bib40) 2002; 54
.
Carmeliet, Jain (bib37) 2000; 407
Robar, Riccio, Martin (bib44) 2002; 47
Mauceri, Hanna, Beckett (bib14) 1998; 394
Pirollo, Chang (bib4) 2008; 26
Brannon-Peppas, Blanchette (bib29) 2004; 56
Makrigiorgos, Adelstein, Kassis (bib24) 1990; 264
Dvorak, Nagy, Dvorak (bib27) 1988; 133
Vassiliev, Titt, Ponisch (bib43) 2006; 51
Yu, Lu, Xie (bib21) 2010; 31
Limaye, Vadas (bib25) 2006
Liu (10.1016/j.ijrobp.2010.10.022_bib30) 2002; 99
Cole (10.1016/j.ijrobp.2010.10.022_bib35) 1969; 38
Reya (10.1016/j.ijrobp.2010.10.022_bib12) 2001; 414
Kojima (10.1016/j.ijrobp.2010.10.022_bib18) 2008; 66
di Tomaso (10.1016/j.ijrobp.2010.10.022_bib26) 2005; 65
Veiseh (10.1016/j.ijrobp.2010.10.022_bib5) 2010; 62
Makrigiorgos (10.1016/j.ijrobp.2010.10.022_bib34) 1989; 30
Kennel (10.1016/j.ijrobp.2010.10.022_bib39) 1999; 80
Yu (10.1016/j.ijrobp.2010.10.022_bib21) 2010; 31
10.1016/j.ijrobp.2010.10.022_bib32
Brown (10.1016/j.ijrobp.2010.10.022_bib36) 1998; 58
Pirollo (10.1016/j.ijrobp.2010.10.022_bib4) 2008; 26
Boerman (10.1016/j.ijrobp.2010.10.022_bib17) 1992; 51
Murphy (10.1016/j.ijrobp.2010.10.022_bib7) 2008; 105
Park (10.1016/j.ijrobp.2010.10.022_bib20) 2006; 48
Dvorak (10.1016/j.ijrobp.2010.10.022_bib27) 1988; 133
Dabbas (10.1016/j.ijrobp.2010.10.022_bib2) 2008; 15
Cho (10.1016/j.ijrobp.2010.10.022_bib10) 2005; 50
Garcia-Barros (10.1016/j.ijrobp.2010.10.022_bib16) 2003; 300
Nijsen (10.1016/j.ijrobp.2010.10.022_bib38) 2001; 28
Zhu (10.1016/j.ijrobp.2010.10.022_bib41) 2010; 37
Li (10.1016/j.ijrobp.2010.10.022_bib3) 2010; 18
Robar (10.1016/j.ijrobp.2010.10.022_bib44) 2002; 47
Ailles (10.1016/j.ijrobp.2010.10.022_bib13) 2007; 18
Gao (10.1016/j.ijrobp.2010.10.022_bib19) 1987; 897
Brannon-Peppas (10.1016/j.ijrobp.2010.10.022_bib29) 2004; 56
Siemann (10.1016/j.ijrobp.2010.10.022_bib15) 2004; 100
Limaye (10.1016/j.ijrobp.2010.10.022_bib25) 2006
Van den Heuvel (10.1016/j.ijrobp.2010.10.022_bib31) 2010; 55
Perrault (10.1016/j.ijrobp.2010.10.022_bib6) 2009; 9
Mauceri (10.1016/j.ijrobp.2010.10.022_bib14) 1998; 394
Makrigiorgos (10.1016/j.ijrobp.2010.10.022_bib24) 1990; 264
Cho (10.1016/j.ijrobp.2010.10.022_bib9) 2009; 54
Makrigiorgos (10.1016/j.ijrobp.2010.10.022_bib23) 1990; 31
Maeda (10.1016/j.ijrobp.2010.10.022_bib28) 2000; 65
Ryschich (10.1016/j.ijrobp.2010.10.022_bib33) 2004; 10
Akabani (10.1016/j.ijrobp.2010.10.022_bib40) 2002; 54
Rich (10.1016/j.ijrobp.2010.10.022_bib11) 2007; 67
Vassiliev (10.1016/j.ijrobp.2010.10.022_bib43) 2006; 51
Roeske (10.1016/j.ijrobp.2010.10.022_bib8) 2007; 6
Carmeliet (10.1016/j.ijrobp.2010.10.022_bib37) 2000; 407
Obrien (10.1016/j.ijrobp.2010.10.022_bib42) 1991; 18
Diagaradjane (10.1016/j.ijrobp.2010.10.022_bib22) 2008; 14
Hainfeld (10.1016/j.ijrobp.2010.10.022_bib1) 2004; 49
References_xml – volume: 48
  start-page: 112
  year: 2006
  end-page: 118
  ident: bib20
  article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities
  publication-title: Colloids Surf B Biointerfaces
  contributor:
    fullname: Mun
– volume: 14
  start-page: 731
  year: 2008
  end-page: 741
  ident: bib22
  article-title: Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe
  publication-title: Clin Cancer Res
  contributor:
    fullname: Colon-Casasnovas
– volume: 6
  start-page: 395
  year: 2007
  end-page: 401
  ident: bib8
  article-title: Characterization of the theorectical radiation dose enhancement from nanoparticles
  publication-title: Technol Cancer Res Treat
  contributor:
    fullname: Hoggarth
– volume: 66
  start-page: 246
  year: 2008
  end-page: 252
  ident: bib18
  article-title: Preparation and characterization of complexes of liposomes with gold nanoparticles
  publication-title: Colloids Surf B Biointerfaces
  contributor:
    fullname: Yuba
– volume: 80
  start-page: 175
  year: 1999
  end-page: 184
  ident: bib39
  article-title: Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi
  publication-title: Br J Cancer
  contributor:
    fullname: Stabin
– volume: 264
  start-page: 592
  year: 1990
  end-page: 595
  ident: bib24
  article-title: Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates
  publication-title: JAMA
  contributor:
    fullname: Kassis
– volume: 30
  start-page: 1856
  year: 1989
  end-page: 1864
  ident: bib34
  article-title: Limitations of conventional internal dosimetry at the cellular-level
  publication-title: J Nucl Med
  contributor:
    fullname: Kassis
– volume: 15
  start-page: 189
  year: 2008
  end-page: 201
  ident: bib2
  article-title: Importance of the liposomal cationic lipid content and type in tumor vascular targeting: Physicochemical characterization and in vitro studies using human primary and transformed endothelial cells
  publication-title: Endothelium
  contributor:
    fullname: Dandamudi
– volume: 394
  start-page: 287
  year: 1998
  end-page: 291
  ident: bib14
  article-title: Combined effects of angiostatin and ionizing radiation in antitumour therapy
  publication-title: Nature
  contributor:
    fullname: Beckett
– volume: 28
  start-page: 743
  year: 2001
  end-page: 749
  ident: bib38
  article-title: Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: A biodistribution study
  publication-title: Eur J Nucl Med
  contributor:
    fullname: Brandt
– volume: 414
  start-page: 105
  year: 2001
  end-page: 111
  ident: bib12
  article-title: Stem cells, cancer, and cancer stem cells
  publication-title: Nature
  contributor:
    fullname: Clarke
– volume: 26
  start-page: 552
  year: 2008
  end-page: 558
  ident: bib4
  article-title: Does a targeting ligand influence nanoparticle tumor localization or uptake?
  publication-title: Trends Biotechnol
  contributor:
    fullname: Chang
– start-page: 1
  year: 2006
  end-page: 10
  ident: bib25
  article-title: The vascular endothelium: Structure and function
  publication-title: Mechanisms of vascular disease: A textbook for vascular surgeons
  contributor:
    fullname: Vadas
– volume: 65
  start-page: 5740
  year: 2005
  end-page: 5749
  ident: bib26
  article-title: Mosaic tumor vessels: Cellular basis and ultrastructure of focal regions lacking endothelial cell markers
  publication-title: Cancer Res
  contributor:
    fullname: Haskell
– volume: 54
  start-page: 1259
  year: 2002
  end-page: 1275
  ident: bib40
  article-title: Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: Theoretical analysis
  publication-title: Int J Radiat Oncol Biol Phys
  contributor:
    fullname: Bigner
– volume: 55
  start-page: 4509
  year: 2010
  end-page: 4520
  ident: bib31
  article-title: Beam energy considerations for gold nano-particle enhanced radiation treatment
  publication-title: Phys Med Biol
  contributor:
    fullname: Nuyts
– volume: 31
  start-page: 1358
  year: 1990
  end-page: 1363
  ident: bib23
  article-title: Inhomogeneous deposition of radiopharmaceuticals at the cellular level: Experimental evidence and dosimetric implications
  publication-title: J Nucl Med
  contributor:
    fullname: Baranowska-Kortylewicz
– volume: 65
  start-page: 271
  year: 2000
  end-page: 284
  ident: bib28
  article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review
  publication-title: J Controll Release
  contributor:
    fullname: Sawa
– volume: 18
  start-page: 153
  year: 2010
  end-page: 161
  ident: bib3
  article-title: Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery
  publication-title: Macromol Res
  contributor:
    fullname: Lee
– volume: 62
  start-page: 284
  year: 2010
  end-page: 304
  ident: bib5
  article-title: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging
  publication-title: Adv Drug Deliv Rev
  contributor:
    fullname: Zhang
– volume: 300
  start-page: 1155
  year: 2003
  end-page: 1159
  ident: bib16
  article-title: Tumor response to radiotherapy regulated by endothelial cell apoptosis
  publication-title: Science
  contributor:
    fullname: Cordon-Cardo
– volume: 54
  start-page: 4889
  year: 2009
  end-page: 4905
  ident: bib9
  article-title: The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources
  publication-title: Phys Med Biol
  contributor:
    fullname: Krishnan
– volume: 407
  start-page: 249
  year: 2000
  end-page: 257
  ident: bib37
  article-title: Angiogenesis in cancer and other diseases
  publication-title: Nature
  contributor:
    fullname: Jain
– volume: 9
  start-page: 1909
  year: 2009
  end-page: 1915
  ident: bib6
  article-title: Mediating tumor targeting efficiency of nanoparticles through design
  publication-title: Nano Lett
  contributor:
    fullname: Jennings
– volume: 31
  start-page: 2278
  year: 2010
  end-page: 2292
  ident: bib21
  article-title: Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature
  publication-title: Biomaterials
  contributor:
    fullname: Xie
– volume: 100
  start-page: 2491
  year: 2004
  end-page: 2499
  ident: bib15
  article-title: Vascular-targeting therapies for treatment of malignant disease
  publication-title: Cancer
  contributor:
    fullname: Horsman
– volume: 99
  start-page: 425
  year: 2002
  end-page: 427
  ident: bib30
  article-title: An investigation of energy spectrum and lineal energy variations in mega-voltage photon beams used for radiotherapy
  publication-title: Radiat Prot Dosimetry
  contributor:
    fullname: Verhaegen
– volume: 58
  start-page: 1408
  year: 1998
  end-page: 1416
  ident: bib36
  article-title: The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy
  publication-title: Cancer Res
  contributor:
    fullname: Giaccia
– volume: 67
  start-page: 8980
  year: 2007
  end-page: 8984
  ident: bib11
  article-title: Cancer stem cells in radiation resistance
  publication-title: Cancer Res
  contributor:
    fullname: Rich
– volume: 18
  start-page: 519
  year: 1991
  end-page: 521
  ident: bib42
  article-title: Radiosurgery with unflattened 6-Mv photon beams
  publication-title: Med Phys
  contributor:
    fullname: Schwartz
– volume: 897
  start-page: 377
  year: 1987
  end-page: 383
  ident: bib19
  article-title: Solid core liposomes with encapsulated colloidal gold particles
  publication-title: Biochim Biophys Acta
  contributor:
    fullname: Huang
– volume: 56
  start-page: 1649
  year: 2004
  end-page: 1659
  ident: bib29
  article-title: Nanoparticle and targeted systems for cancer therapy
  publication-title: Adv Drug Deliv Rev
  contributor:
    fullname: Blanchette
– volume: 37
  start-page: 2974
  year: 2010
  end-page: 2984
  ident: bib41
  article-title: Solid-tumor radionuclide therapy dosimetry: New paradigms in view of tumor microenvironment and angiogenesis
  publication-title: Med Phys
  contributor:
    fullname: Makrigiorgos
– volume: 50
  start-page: N163
  year: 2005
  end-page: N173
  ident: bib10
  article-title: Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study
  publication-title: Phys Med Biol
  contributor:
    fullname: Cho
– volume: 10
  start-page: 3171
  year: 2004
  end-page: 3174
  ident: bib33
  article-title: Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental hepatocellular and pancreatic cancer
  publication-title: World J Gastroenterol
  contributor:
    fullname: Maksan
– volume: 47
  start-page: 2433
  year: 2002
  end-page: 2449
  ident: bib44
  article-title: Tumour dose enhancement using modified megavoltage photon beams and contrast media
  publication-title: Phys Med Biol
  contributor:
    fullname: Martin
– volume: 51
  start-page: 1907
  year: 2006
  end-page: 1917
  ident: bib43
  article-title: Dosimetric properties of photon beams from a flattening filter free clinical accelerator
  publication-title: Phys Med Biol
  contributor:
    fullname: Ponisch
– volume: 105
  start-page: 9343
  year: 2008
  end-page: 9348
  ident: bib7
  article-title: Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis
  publication-title: Proc Natl Acad Sci U.S.A
  contributor:
    fullname: Barnes
– volume: 49
  start-page: N309
  year: 2004
  end-page: N315
  ident: bib1
  article-title: The use of gold nanoparticles to enhance radiotherapy in mice
  publication-title: Phys Med Biol
  contributor:
    fullname: Smilowitz
– volume: 133
  start-page: 95
  year: 1988
  end-page: 109
  ident: bib27
  article-title: Identification and characterization of the blood-vessels of solid tumors that are leaky to circulating macromolecules
  publication-title: Am J Pathol
  contributor:
    fullname: Dvorak
– volume: 51
  start-page: 470
  year: 1992
  end-page: 475
  ident: bib17
  article-title: The presence of a concomitant bulky tumor can decrease the uptake and therapeutic efficacy of radiolabeled antibodies in small tumors
  publication-title: Int J Cancer
  contributor:
    fullname: Blumenthal
– volume: 38
  start-page: 7
  year: 1969
  end-page: 33
  ident: bib35
  article-title: Absorption of 20-Ev to 50000-Ev electron beams in air and plastic
  publication-title: Radiat Res
  contributor:
    fullname: Cole
– volume: 18
  start-page: 460
  year: 2007
  end-page: 466
  ident: bib13
  article-title: Cancer stem cells in solid tumors
  publication-title: Curr Opin Biotechnol
  contributor:
    fullname: Weissman
– volume: 55
  start-page: 4509
  year: 2010
  ident: 10.1016/j.ijrobp.2010.10.022_bib31
  article-title: Beam energy considerations for gold nano-particle enhanced radiation treatment
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/16/S06
  contributor:
    fullname: Van den Heuvel
– volume: 10
  start-page: 3171
  year: 2004
  ident: 10.1016/j.ijrobp.2010.10.022_bib33
  article-title: Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental hepatocellular and pancreatic cancer
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v10.i21.3171
  contributor:
    fullname: Ryschich
– volume: 394
  start-page: 287
  year: 1998
  ident: 10.1016/j.ijrobp.2010.10.022_bib14
  article-title: Combined effects of angiostatin and ionizing radiation in antitumour therapy
  publication-title: Nature
  doi: 10.1038/28412
  contributor:
    fullname: Mauceri
– volume: 14
  start-page: 731
  year: 2008
  ident: 10.1016/j.ijrobp.2010.10.022_bib22
  article-title: Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-07-1958
  contributor:
    fullname: Diagaradjane
– volume: 58
  start-page: 1408
  year: 1998
  ident: 10.1016/j.ijrobp.2010.10.022_bib36
  article-title: The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy
  publication-title: Cancer Res
  contributor:
    fullname: Brown
– volume: 9
  start-page: 1909
  year: 2009
  ident: 10.1016/j.ijrobp.2010.10.022_bib6
  article-title: Mediating tumor targeting efficiency of nanoparticles through design
  publication-title: Nano Lett
  doi: 10.1021/nl900031y
  contributor:
    fullname: Perrault
– volume: 31
  start-page: 1358
  year: 1990
  ident: 10.1016/j.ijrobp.2010.10.022_bib23
  article-title: Inhomogeneous deposition of radiopharmaceuticals at the cellular level: Experimental evidence and dosimetric implications
  publication-title: J Nucl Med
  contributor:
    fullname: Makrigiorgos
– volume: 54
  start-page: 1259
  year: 2002
  ident: 10.1016/j.ijrobp.2010.10.022_bib40
  article-title: Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: Theoretical analysis
  publication-title: Int J Radiat Oncol Biol Phys
  doi: 10.1016/S0360-3016(02)03794-X
  contributor:
    fullname: Akabani
– volume: 300
  start-page: 1155
  year: 2003
  ident: 10.1016/j.ijrobp.2010.10.022_bib16
  article-title: Tumor response to radiotherapy regulated by endothelial cell apoptosis
  publication-title: Science
  doi: 10.1126/science.1082504
  contributor:
    fullname: Garcia-Barros
– volume: 48
  start-page: 112
  year: 2006
  ident: 10.1016/j.ijrobp.2010.10.022_bib20
  article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2006.01.006
  contributor:
    fullname: Park
– volume: 51
  start-page: 1907
  year: 2006
  ident: 10.1016/j.ijrobp.2010.10.022_bib43
  article-title: Dosimetric properties of photon beams from a flattening filter free clinical accelerator
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/51/7/019
  contributor:
    fullname: Vassiliev
– volume: 18
  start-page: 460
  year: 2007
  ident: 10.1016/j.ijrobp.2010.10.022_bib13
  article-title: Cancer stem cells in solid tumors
  publication-title: Curr Opin Biotechnol
  doi: 10.1016/j.copbio.2007.10.007
  contributor:
    fullname: Ailles
– volume: 105
  start-page: 9343
  year: 2008
  ident: 10.1016/j.ijrobp.2010.10.022_bib7
  article-title: Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis
  publication-title: Proc Natl Acad Sci U.S.A
  doi: 10.1073/pnas.0803728105
  contributor:
    fullname: Murphy
– volume: 56
  start-page: 1649
  year: 2004
  ident: 10.1016/j.ijrobp.2010.10.022_bib29
  article-title: Nanoparticle and targeted systems for cancer therapy
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2004.02.014
  contributor:
    fullname: Brannon-Peppas
– volume: 100
  start-page: 2491
  year: 2004
  ident: 10.1016/j.ijrobp.2010.10.022_bib15
  article-title: Vascular-targeting therapies for treatment of malignant disease
  publication-title: Cancer
  doi: 10.1002/cncr.20299
  contributor:
    fullname: Siemann
– volume: 38
  start-page: 7
  year: 1969
  ident: 10.1016/j.ijrobp.2010.10.022_bib35
  article-title: Absorption of 20-Ev to 50000-Ev electron beams in air and plastic
  publication-title: Radiat Res
  doi: 10.2307/3572707
  contributor:
    fullname: Cole
– volume: 80
  start-page: 175
  year: 1999
  ident: 10.1016/j.ijrobp.2010.10.022_bib39
  article-title: Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi
  publication-title: Br J Cancer
  doi: 10.1038/sj.bjc.6690337
  contributor:
    fullname: Kennel
– volume: 15
  start-page: 189
  year: 2008
  ident: 10.1016/j.ijrobp.2010.10.022_bib2
  article-title: Importance of the liposomal cationic lipid content and type in tumor vascular targeting: Physicochemical characterization and in vitro studies using human primary and transformed endothelial cells
  publication-title: Endothelium
  doi: 10.1080/10623320802228583
  contributor:
    fullname: Dabbas
– volume: 30
  start-page: 1856
  year: 1989
  ident: 10.1016/j.ijrobp.2010.10.022_bib34
  article-title: Limitations of conventional internal dosimetry at the cellular-level
  publication-title: J Nucl Med
  contributor:
    fullname: Makrigiorgos
– volume: 66
  start-page: 246
  year: 2008
  ident: 10.1016/j.ijrobp.2010.10.022_bib18
  article-title: Preparation and characterization of complexes of liposomes with gold nanoparticles
  publication-title: Colloids Surf B Biointerfaces
  doi: 10.1016/j.colsurfb.2008.06.022
  contributor:
    fullname: Kojima
– volume: 18
  start-page: 153
  year: 2010
  ident: 10.1016/j.ijrobp.2010.10.022_bib3
  article-title: Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery
  publication-title: Macromol Res
  doi: 10.1007/s13233-009-0134-8
  contributor:
    fullname: Li
– volume: 49
  start-page: N309
  year: 2004
  ident: 10.1016/j.ijrobp.2010.10.022_bib1
  article-title: The use of gold nanoparticles to enhance radiotherapy in mice
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/49/18/N03
  contributor:
    fullname: Hainfeld
– volume: 26
  start-page: 552
  year: 2008
  ident: 10.1016/j.ijrobp.2010.10.022_bib4
  article-title: Does a targeting ligand influence nanoparticle tumor localization or uptake?
  publication-title: Trends Biotechnol
  doi: 10.1016/j.tibtech.2008.06.007
  contributor:
    fullname: Pirollo
– volume: 31
  start-page: 2278
  year: 2010
  ident: 10.1016/j.ijrobp.2010.10.022_bib21
  article-title: Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.047
  contributor:
    fullname: Yu
– volume: 897
  start-page: 377
  year: 1987
  ident: 10.1016/j.ijrobp.2010.10.022_bib19
  article-title: Solid core liposomes with encapsulated colloidal gold particles
  publication-title: Biochim Biophys Acta
  doi: 10.1016/0005-2736(87)90435-4
  contributor:
    fullname: Gao
– volume: 407
  start-page: 249
  year: 2000
  ident: 10.1016/j.ijrobp.2010.10.022_bib37
  article-title: Angiogenesis in cancer and other diseases
  publication-title: Nature
  doi: 10.1038/35025220
  contributor:
    fullname: Carmeliet
– volume: 51
  start-page: 470
  year: 1992
  ident: 10.1016/j.ijrobp.2010.10.022_bib17
  article-title: The presence of a concomitant bulky tumor can decrease the uptake and therapeutic efficacy of radiolabeled antibodies in small tumors
  publication-title: Int J Cancer
  doi: 10.1002/ijc.2910510322
  contributor:
    fullname: Boerman
– volume: 264
  start-page: 592
  year: 1990
  ident: 10.1016/j.ijrobp.2010.10.022_bib24
  article-title: Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates
  publication-title: JAMA
  doi: 10.1001/jama.264.5.592
  contributor:
    fullname: Makrigiorgos
– volume: 6
  start-page: 395
  year: 2007
  ident: 10.1016/j.ijrobp.2010.10.022_bib8
  article-title: Characterization of the theorectical radiation dose enhancement from nanoparticles
  publication-title: Technol Cancer Res Treat
  doi: 10.1177/153303460700600504
  contributor:
    fullname: Roeske
– volume: 18
  start-page: 519
  year: 1991
  ident: 10.1016/j.ijrobp.2010.10.022_bib42
  article-title: Radiosurgery with unflattened 6-Mv photon beams
  publication-title: Med Phys
  doi: 10.1118/1.596656
  contributor:
    fullname: Obrien
– volume: 28
  start-page: 743
  year: 2001
  ident: 10.1016/j.ijrobp.2010.10.022_bib38
  article-title: Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: A biodistribution study
  publication-title: Eur J Nucl Med
  doi: 10.1007/s002590100518
  contributor:
    fullname: Nijsen
– volume: 67
  start-page: 8980
  year: 2007
  ident: 10.1016/j.ijrobp.2010.10.022_bib11
  article-title: Cancer stem cells in radiation resistance
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-07-0895
  contributor:
    fullname: Rich
– volume: 37
  start-page: 2974
  year: 2010
  ident: 10.1016/j.ijrobp.2010.10.022_bib41
  article-title: Solid-tumor radionuclide therapy dosimetry: New paradigms in view of tumor microenvironment and angiogenesis
  publication-title: Med Phys
  doi: 10.1118/1.3431999
  contributor:
    fullname: Zhu
– volume: 414
  start-page: 105
  year: 2001
  ident: 10.1016/j.ijrobp.2010.10.022_bib12
  article-title: Stem cells, cancer, and cancer stem cells
  publication-title: Nature
  doi: 10.1038/35102167
  contributor:
    fullname: Reya
– volume: 65
  start-page: 271
  year: 2000
  ident: 10.1016/j.ijrobp.2010.10.022_bib28
  article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review
  publication-title: J Controll Release
  doi: 10.1016/S0168-3659(99)00248-5
  contributor:
    fullname: Maeda
– volume: 47
  start-page: 2433
  year: 2002
  ident: 10.1016/j.ijrobp.2010.10.022_bib44
  article-title: Tumour dose enhancement using modified megavoltage photon beams and contrast media
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/47/14/305
  contributor:
    fullname: Robar
– volume: 99
  start-page: 425
  year: 2002
  ident: 10.1016/j.ijrobp.2010.10.022_bib30
  article-title: An investigation of energy spectrum and lineal energy variations in mega-voltage photon beams used for radiotherapy
  publication-title: Radiat Prot Dosimetry
  doi: 10.1093/oxfordjournals.rpd.a006824
  contributor:
    fullname: Liu
– volume: 62
  start-page: 284
  year: 2010
  ident: 10.1016/j.ijrobp.2010.10.022_bib5
  article-title: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging
  publication-title: Adv Drug Deliv Rev
  doi: 10.1016/j.addr.2009.11.002
  contributor:
    fullname: Veiseh
– volume: 65
  start-page: 5740
  year: 2005
  ident: 10.1016/j.ijrobp.2010.10.022_bib26
  article-title: Mosaic tumor vessels: Cellular basis and ultrastructure of focal regions lacking endothelial cell markers
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-04-4552
  contributor:
    fullname: di Tomaso
– volume: 54
  start-page: 4889
  year: 2009
  ident: 10.1016/j.ijrobp.2010.10.022_bib9
  article-title: The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/54/16/004
  contributor:
    fullname: Cho
– start-page: 1
  year: 2006
  ident: 10.1016/j.ijrobp.2010.10.022_bib25
  article-title: The vascular endothelium: Structure and function
  contributor:
    fullname: Limaye
– ident: 10.1016/j.ijrobp.2010.10.022_bib32
– volume: 133
  start-page: 95
  year: 1988
  ident: 10.1016/j.ijrobp.2010.10.022_bib27
  article-title: Identification and characterization of the blood-vessels of solid tumors that are leaky to circulating macromolecules
  publication-title: Am J Pathol
  contributor:
    fullname: Dvorak
– volume: 50
  start-page: N163
  year: 2005
  ident: 10.1016/j.ijrobp.2010.10.022_bib10
  article-title: Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/15/N01
  contributor:
    fullname: Cho
SSID ssj0001174
Score 2.4240441
Snippet Purpose Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles...
Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs)...
PURPOSETumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles...
Purpose: Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles...
SourceID osti
proquest
crossref
pubmed
pascalfrancis
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 270
SubjectTerms Algorithms
ANGIOGENESIS
ANIMAL TISSUES
Anti-angiogenesis
Biological and medical sciences
BIOLOGICAL EFFECTS
BIOLOGICAL RADIATION EFFECTS
BLOOD VESSELS
BODY
CALCULATION METHODS
CARDIOVASCULAR SYSTEM
DISEASES
DOSES
DOSIMETRY
ELECTROMAGNETIC RADIATION
ELEMENTS
Endothelial Cells - radiation effects
ENDOTHELIUM
Endothelium, Vascular - cytology
ENERGY RANGE
GOLD
Gold - therapeutic use
HAZARDS
Hematology, Oncology and Palliative Medicine
INJURIES
IONIZING RADIATIONS
IRRADIATION
KEV RANGE
KEV RANGE 10-100
Medical sciences
MEDICINE
Metal Nanoparticles - therapeutic use
METALS
Microcirculation - radiation effects
MICRODOSIMETRY
MICROSTRUCTURE
MONTE CARLO METHOD
Nanoparticles
NANOSTRUCTURES
NEOPLASMS
Neoplasms - blood supply
Neoplasms - radiotherapy
NUCLEAR MEDICINE
ORGANS
Particle Accelerators
Photons - therapeutic use
RADIATION DOSES
RADIATION EFFECTS
RADIATION INJURIES
Radiation therapy and radiosensitizing agent
RADIATIONS
RADIOLOGY
RADIOLOGY AND NUCLEAR MEDICINE
RADIOTHERAPY
Radiotherapy - methods
Radiotherapy Dosage
SBRT
SPECTRA
THERAPY
TRANSITION ELEMENTS
Treatment with physical agents
Treatment. General aspects
Tumors
X RADIATION
X-RAY SPECTRA
Title Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy
URI https://www.clinicalkey.es/playcontent/1-s2.0-S0360301610034437
https://dx.doi.org/10.1016/j.ijrobp.2010.10.022
https://www.ncbi.nlm.nih.gov/pubmed/21163591
https://search.proquest.com/docview/881469766
https://www.osti.gov/biblio/21587711
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMetskmIF8RvCmPyA29Rqjp1koa3bZQNRhEaG-zNcmyndOuaqU1B7B_iT-Pf4C6O05QxYLxUVbS4a-8T--78vTMhz3nSVz2uA1-HuM0Ygi0kePl-GEulQm2ioNyKGb6L9o74m-PwuNX60VAtLYq0oy5-W1fyP1aFa2BXrJK9hmXrQeECvAf7witYGF7_ycZvcSEaX4DP-BJl54PpZ7Rhub2PJ7oszvKZt43KdO8jtgifwF9orLiaYJp8x0wmc-_LWHpDM5IwSxUo3zn2Z_Kb7dt8WIrEYfDdfKJxGob4uiGjQ2Xk-7xAtZEtgvQGVUdpb9vIM-9A6nFV3rWydbyag2x0rphhmwTrwE5VXUSTLutpbBZmmdcHIiB4tvpwmK9fd-rM9uhr6RPDlJe5o0jLrPspHgOWz0ZWW7jb8YbjU9NMfGAmN3GJD1fwBUtI15Zqusm8zy5BW83M9nySapEP7KEzl9YPm8o46YxPZnl6bpV_KP6ztdOr7bp_WUZrcaPTzZ0IO4rAUeCSgFFukPUAZkSYite39g8-7ddOA6sahrvv5Ko8Syni5f_mKi9qLYeFAfW9cg4AZvZslquDp9KJOrxDblfRD92yGN0lLTO9R24OK33HffK9Jpoi0bRBNC1yWhJNS6KpJZo2iKYl0RSIpg2iqSWaAtHUEU2RaLpC9AsKPNOaZwo8U8czRZ5pk-cH5OjV4HBnz6-OEvEVhCSFr3UKoYXWWcJUzFUS9buJlFwFmYZ4hTPZlVr2k5SluNvIjJIsC9KgK5WJsl4v7j0ka9N8ah4TmsDcZgIulY4U15FJteplnCkeZjIyMW8T35lGnNuOMeJPSLRJ7OwnXDU0rN9mXj2Ac8HEPBBd8QHhQDZY2aezFzfvrPxl6wcLwPkvn7mBoOBd2CpaoaYObgP3vx_HjLXJ5gpA9feAWIDzCD-ZOqIELEe4xyinJl_MRR-3FCDEidrkkSVteTOD2C9M2JNr_kBPya3l479B1orZwjyDSKBIN6un6CeDWxB4
link.rule.ids 230,315,783,787,888,27936,27937
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Dose+Enhancement+to+Tumor+Blood+Vessel+Endothelial+Cells+via+Megavoltage+X-rays+and+Targeted+Gold+Nanoparticles%3A+New+Potential+for+External+Beam+Radiotherapy&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Berbeco%2C+Ross+I.&rft.au=Ngwa%2C+Wilfred&rft.au=Makrigiorgos%2C+G.+Mike&rft.date=2011-09-01&rft.issn=0360-3016&rft.volume=81&rft.issue=1&rft.spage=270&rft.epage=276&rft_id=info:doi/10.1016%2Fj.ijrobp.2010.10.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrobp_2010_10_022
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301611X00093%2Fcov150h.gif