Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy
Purpose Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radioth...
Saved in:
Published in | International journal of radiation oncology, biology, physics Vol. 81; no. 1; pp. 270 - 276 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.09.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Methods and Materials Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo–generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). Results At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20–340% dose increase) are calculated. Conclusions In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk. |
---|---|
AbstractList | PURPOSETumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation.METHODS AND MATERIALSEndothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only).RESULTSAt 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated.CONCLUSIONSIn contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk. Purpose: Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Methods and Materials: Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). Results: At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated. Conclusions: In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk. Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs) delivered preferentially to the walls of tumor blood vessels produce low-energy, short-range photoelectrons during external beam radiotherapy, boosting dose to the tumor microvasculature. In this study dosimetry at the single-cell level is used to estimate the anticipated AuNP-mediated dose enhancement to tumor endothelial cells during 6-MV X-ray irradiation. Endothelial cells are modeled as thin slabs with 100-nm-diameter AuNPs attached within the blood vessel. The number of photoelectrons emitted per AuNP per gray of X-rays is computed at multiple points along the external beam central axis by use of a Monte Carlo-generated energy fluence spectrum. The energy deposited from AuNP emissions to the endothelium is calculated based on an analytic method incorporating the energy-loss formula of Cole. The endothelial dose enhancement factor (EDEF) is the ratio of the overall (externally plus internally generated) dose to endothelial cells in the presence of AuNPs to the dose without AuNPs (from the external beam only). At 20-cm depth, the EDEF is 1.7 (70% dose increase) for an intravascular AuNP concentration of 30 mg/g. Most of this dose enhancement arises from the low-energy (approximately 100 keV) portion of the linear accelerator X-ray spectrum. Furthermore, for AuNP concentrations ranging from 7 to 140 mg/g, EDEF values of 1.2 to 4.4 (20-340% dose increase) are calculated. In contrast to calculations assuming that AuNPs distributed homogeneously throughout the target volume (macrodosimetry), our cellular microdosimetry calculations predict a major dose enhancement to tumor microvasculature from conventional linear accelerator X-rays. This effect may enable the delivery of ablative therapeutic doses to these sensitive microstructures while maintaining established dose constraints for the organs at risk. |
Author | Berbeco, Ross I., Ph.D Makrigiorgos, G. Mike, Ph.D Ngwa, Wilfred, Ph.D |
Author_xml | – sequence: 1 fullname: Berbeco, Ross I., Ph.D – sequence: 2 fullname: Ngwa, Wilfred, Ph.D – sequence: 3 fullname: Makrigiorgos, G. Mike, Ph.D |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24444637$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21163591$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/21587711$$D View this record in Osti.gov |
BookMark | eNqFkt-OEyEUhydmjdtdfQNjSIzxairM__HCxK11Namr0Wr2jpzCmZYuAxVotb6QrymzrZp4IzcE8nF-HD7OkhNjDSbJQ0bHjLLq2Xqs1s4uNuOM3m6NaZbdSUasqds0L8vrk2RE84qmeYRPkzPv15RSxuriXnKaMVblZctGyc-ZFaDVD5TklfVIpmYFRmCPJpBgyXzbW0cutLWSfEHvUUdC2rBCrUCTCWrtyU4BeYdL2FkdYInkOnWw9wSMJHNwSwyx-KXVklyBsRtwQQmN_jm5wm_kgw0xaqjVxaDp94DOxMUFQk8-glRDlIPN_n5ytwPt8cFxPk8-v57OJ2_S2fvLt5OXs1SUBQ2plIumZFJ2LRN1IdqqoS1AIbJOlnVZMKAgoWkXbJEVNGMogHXZIqMgsOryvM7Pk8eHutYHxb1QAcVKWGNQBJ6xsqlrxiL19EBtnP26RR94r7yIjwEG7dbzpmFF1dZVFcniQApnvXfY8Y1TPbg9Z5QPHvmaHzzyweOwGz3GY4-OAdtFj_LPod_iIvDkCICPAjsXrSn_lyviqG77eXHgMD7aTqEbesJoWCo3tCSt-t9N_i0gtDIqZt7gHv3abgdhnjPuM075p-HPDV-OUZoXRbzBL6b51hA |
CODEN | IOBPD3 |
CitedBy_id | crossref_primary_10_1016_j_jddst_2019_101189 crossref_primary_10_3390_pharmaceutics14102090 crossref_primary_10_1021_acsami_5b09274 crossref_primary_10_1371_journal_pone_0181103 crossref_primary_10_1016_j_ijrobp_2015_09_032 crossref_primary_10_1038_srep01751 crossref_primary_10_1016_j_bios_2023_115753 crossref_primary_10_1007_s40846_015_0081_0 crossref_primary_10_1016_j_jqsrt_2014_10_015 crossref_primary_10_1021_jp509471m crossref_primary_10_1118_1_3671905 crossref_primary_10_1002_mp_14576 crossref_primary_10_1088_0031_9155_58_3_451 crossref_primary_10_1016_j_radphyschem_2020_108790 crossref_primary_10_1080_02656736_2017_1317845 crossref_primary_10_1118_1_4859335 crossref_primary_10_1007_s12094_013_1003_7 crossref_primary_10_1016_j_bbagen_2023_130318 crossref_primary_10_1016_j_nano_2014_06_004 crossref_primary_10_1088_1361_6560_ab103a crossref_primary_10_2174_0115672018180695230925113521 crossref_primary_10_1016_j_ijrobp_2014_10_001 crossref_primary_10_1002_adtp_201800050 crossref_primary_10_1016_j_ejmp_2020_09_022 crossref_primary_10_1088_1361_6560_ab9159 crossref_primary_10_1016_j_addr_2015_12_012 crossref_primary_10_1016_j_rpor_2020_05_003 crossref_primary_10_1118_1_4929975 crossref_primary_10_1021_jp306543q crossref_primary_10_1259_bjr_20150210 crossref_primary_10_1088_0031_9155_60_24_9203 crossref_primary_10_2217_nnm_14_55 crossref_primary_10_1016_j_radonc_2017_07_007 crossref_primary_10_1016_j_apradiso_2021_109638 crossref_primary_10_1371_journal_pone_0093888 crossref_primary_10_1039_C9AN00792J crossref_primary_10_1667_RR3001_1 crossref_primary_10_3390_app11114900 crossref_primary_10_1021_acs_nanolett_5b03073 crossref_primary_10_1097_MD_0000000000015311 crossref_primary_10_1002_mp_12061 crossref_primary_10_1016_j_jddst_2023_104586 crossref_primary_10_1016_j_radphyschem_2021_109925 crossref_primary_10_1088_1361_6560_62_1_43 crossref_primary_10_3390_nano9121791 crossref_primary_10_2217_fvl_2015_0010 crossref_primary_10_1007_s11356_015_4139_x crossref_primary_10_1007_s13246_012_0143_3 crossref_primary_10_1039_C7TB01054K crossref_primary_10_1088_1361_6560_aa8e12 crossref_primary_10_1088_1361_6560_ac37fc crossref_primary_10_1371_journal_pone_0236245 crossref_primary_10_1016_j_ejmp_2014_11_004 crossref_primary_10_1088_0031_9155_60_18_7035 crossref_primary_10_2217_nnm_2017_0344 crossref_primary_10_1259_bjr_20150200 crossref_primary_10_1016_j_ultrasmedbio_2019_09_019 crossref_primary_10_1088_1361_6560_aa99ce crossref_primary_10_1093_jrr_rru084 crossref_primary_10_1016_j_nano_2014_12_016 crossref_primary_10_1118_1_4773885 crossref_primary_10_2174_0929867324666171003113540 crossref_primary_10_1118_1_4791671 crossref_primary_10_1002_adma_201806381 crossref_primary_10_4236_jbnb_2015_63019 crossref_primary_10_1016_j_nimb_2018_05_033 crossref_primary_10_1088_1361_6560_61_24_8839 crossref_primary_10_1002_adhm_201701460 crossref_primary_10_7785_tcrt_2012_500265 crossref_primary_10_1016_j_semradonc_2016_06_002 crossref_primary_10_1016_j_ejmp_2015_07_138 crossref_primary_10_1371_journal_pone_0109389 crossref_primary_10_1177_15330338231189593 crossref_primary_10_1016_j_pharma_2014_04_006 crossref_primary_10_1016_j_semcancer_2021_11_008 crossref_primary_10_1186_s12645_015_0012_3 crossref_primary_10_1118_1_4934370 crossref_primary_10_1038_s41598_019_50538_w crossref_primary_10_3857_roj_2016_01788 crossref_primary_10_1118_1_4938410 crossref_primary_10_1080_09553002_2017_1231944 crossref_primary_10_1002_smll_201302303 crossref_primary_10_3390_cryst11020171 crossref_primary_10_1088_0031_9155_58_22_7961 crossref_primary_10_3390_ijms21072480 crossref_primary_10_1039_C7MH00451F crossref_primary_10_1002_advs_202105957 |
Cites_doi | 10.1088/0031-9155/55/16/S06 10.3748/wjg.v10.i21.3171 10.1038/28412 10.1158/1078-0432.CCR-07-1958 10.1021/nl900031y 10.1016/S0360-3016(02)03794-X 10.1126/science.1082504 10.1016/j.colsurfb.2006.01.006 10.1088/0031-9155/51/7/019 10.1016/j.copbio.2007.10.007 10.1073/pnas.0803728105 10.1016/j.addr.2004.02.014 10.1002/cncr.20299 10.2307/3572707 10.1038/sj.bjc.6690337 10.1080/10623320802228583 10.1016/j.colsurfb.2008.06.022 10.1007/s13233-009-0134-8 10.1088/0031-9155/49/18/N03 10.1016/j.tibtech.2008.06.007 10.1016/j.biomaterials.2009.11.047 10.1016/0005-2736(87)90435-4 10.1038/35025220 10.1002/ijc.2910510322 10.1001/jama.264.5.592 10.1177/153303460700600504 10.1118/1.596656 10.1007/s002590100518 10.1158/0008-5472.CAN-07-0895 10.1118/1.3431999 10.1038/35102167 10.1016/S0168-3659(99)00248-5 10.1088/0031-9155/47/14/305 10.1093/oxfordjournals.rpd.a006824 10.1016/j.addr.2009.11.002 10.1158/0008-5472.CAN-04-4552 10.1088/0031-9155/54/16/004 10.1088/0031-9155/50/15/N01 |
ContentType | Journal Article |
Copyright | Elsevier Inc. 2011 Elsevier Inc. 2015 INIST-CNRS Copyright © 2011 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: Elsevier Inc. – notice: 2011 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2011 Elsevier Inc. All rights reserved. |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 OTOTI |
DOI | 10.1016/j.ijrobp.2010.10.022 |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic OSTI.GOV |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1879-355X |
EndPage | 276 |
ExternalDocumentID | 21587711 10_1016_j_ijrobp_2010_10_022 21163591 24444637 S0360301610034437 1_s2_0_S0360301610034437 |
Genre | Journal Article |
GroupedDBID | --- --K .1- .55 .FO .GJ 0R~ 1B1 1P~ 1RT 1~5 29J 4.4 457 4G. 53G 5RE 5VS 7-5 AAEDT AAEDW AALRI AAQFI AAQQT AAQXK AAWTL AAXUO ABEFU ABJNI ABLJU ABNEU ABOCM ABUDA ACGFS ACIUM ADBBV ADMUD ADPAM ADVLN AENEX AEVXI AFCTW AFFNX AFJKZ AFRHN AFTJW AGRDE AHHHB AITUG AJUYK AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BELOY DU5 EBS EFJIC EJD F5P FDB FEDTE FGOYB FIRID G-2 GBLVA HED HMK HMO HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 NQ- O9- OC~ OO- R2- RIG RNS ROL RPZ SAE SDG SEL SES SEW SSZ UDS UV1 X7M XH2 XPP Z5R ZGI ~S- AAIAV AGZHU AHPSJ ALXNB ZA5 08R AAUGY ABPTK IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 OTOTI |
ID | FETCH-LOGICAL-c540t-ddb851ddf91c74c96809aa4c2fd57541a0ada89b1b24021eca1f2b20ace6f3373 |
ISSN | 0360-3016 |
IngestDate | Fri May 19 00:34:18 EDT 2023 Fri Aug 16 09:48:36 EDT 2024 Thu Sep 26 17:08:17 EDT 2024 Sat Sep 28 07:55:24 EDT 2024 Sun Oct 22 16:07:22 EDT 2023 Fri Feb 23 02:26:51 EST 2024 Tue Oct 15 22:52:42 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoparticles SBRT Anti-angiogenesis Gold Endothelial cell Nanoparticle Radiotherapy Electrontherapy Angiogenesis Radiation dose Treatment Blood vessel Radiation effect Tumor Circulatory system Dosimetry |
Language | English |
License | CC BY 4.0 Copyright © 2011 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c540t-ddb851ddf91c74c96809aa4c2fd57541a0ada89b1b24021eca1f2b20ace6f3373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21163591 |
PQID | 881469766 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | osti_scitechconnect_21587711 proquest_miscellaneous_881469766 crossref_primary_10_1016_j_ijrobp_2010_10_022 pubmed_primary_21163591 pascalfrancis_primary_24444637 elsevier_sciencedirect_doi_10_1016_j_ijrobp_2010_10_022 elsevier_clinicalkeyesjournals_1_s2_0_S0360301610034437 |
PublicationCentury | 2000 |
PublicationDate | 2011-09-01 |
PublicationDateYYYYMMDD | 2011-09-01 |
PublicationDate_xml | – month: 09 year: 2011 text: 2011-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | International journal of radiation oncology, biology, physics |
PublicationTitleAlternate | Int J Radiat Oncol Biol Phys |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Ryschich, Schmidt, Maksan (bib33) 2004; 10 Obrien, Gillies, Schwartz (bib42) 1991; 18 Diagaradjane, Orenstein-Cardona, Colon-Casasnovas (bib22) 2008; 14 Cho (bib10) 2005; 50 Gao, Huang (bib19) 1987; 897 Dabbas, Kaushik, Dandamudi (bib2) 2008; 15 Zhu, Palmer, Makrigiorgos (bib41) 2010; 37 Kennel, Boll, Stabin (bib39) 1999; 80 Hainfeld, Slatkin, Smilowitz (bib1) 2004; 49 Reya, Morrison, Clarke (bib12) 2001; 414 Nijsen, Rook, Brandt (bib38) 2001; 28 Liu, Verhaegen (bib30) 2002; 99 Cole (bib35) 1969; 38 Perrault, Walkey, Jennings (bib6) 2009; 9 Rich (bib11) 2007; 67 Makrigiorgos, Adelstein, Kassis (bib34) 1989; 30 Siemann, Chaplin, Horsman (bib15) 2004; 100 Murphy, Majeti, Barnes (bib7) 2008; 105 Li, Huh, Lee (bib3) 2010; 18 Roeske, Nunez, Hoggarth (bib8) 2007; 6 Garcia-Barros, Paris, Cordon-Cardo (bib16) 2003; 300 Makrigiorgos, Ito, Baranowska-Kortylewicz (bib23) 1990; 31 National Institute of Standards and Technology database. Available from: URL Veiseh, Gunn, Zhang (bib5) 2010; 62 di Tomaso, Capen, Haskell (bib26) 2005; 65 Kojima, Hirano, Yuba (bib18) 2008; 66 Van den Heuvel, Locquet, Nuyts (bib31) 2010; 55 Boerman, Sharkey, Blumenthal (bib17) 1992; 51 Ailles, Weissman (bib13) 2007; 18 Cho, Jones, Krishnan (bib9) 2009; 54 Maeda, Wu, Sawa (bib28) 2000; 65 Brown, Giaccia (bib36) 1998; 58 Park, Oh, Mun (bib20) 2006; 48 Akabani, McLendon, Bigner (bib40) 2002; 54 . Carmeliet, Jain (bib37) 2000; 407 Robar, Riccio, Martin (bib44) 2002; 47 Mauceri, Hanna, Beckett (bib14) 1998; 394 Pirollo, Chang (bib4) 2008; 26 Brannon-Peppas, Blanchette (bib29) 2004; 56 Makrigiorgos, Adelstein, Kassis (bib24) 1990; 264 Dvorak, Nagy, Dvorak (bib27) 1988; 133 Vassiliev, Titt, Ponisch (bib43) 2006; 51 Yu, Lu, Xie (bib21) 2010; 31 Limaye, Vadas (bib25) 2006 Liu (10.1016/j.ijrobp.2010.10.022_bib30) 2002; 99 Cole (10.1016/j.ijrobp.2010.10.022_bib35) 1969; 38 Reya (10.1016/j.ijrobp.2010.10.022_bib12) 2001; 414 Kojima (10.1016/j.ijrobp.2010.10.022_bib18) 2008; 66 di Tomaso (10.1016/j.ijrobp.2010.10.022_bib26) 2005; 65 Veiseh (10.1016/j.ijrobp.2010.10.022_bib5) 2010; 62 Makrigiorgos (10.1016/j.ijrobp.2010.10.022_bib34) 1989; 30 Kennel (10.1016/j.ijrobp.2010.10.022_bib39) 1999; 80 Yu (10.1016/j.ijrobp.2010.10.022_bib21) 2010; 31 10.1016/j.ijrobp.2010.10.022_bib32 Brown (10.1016/j.ijrobp.2010.10.022_bib36) 1998; 58 Pirollo (10.1016/j.ijrobp.2010.10.022_bib4) 2008; 26 Boerman (10.1016/j.ijrobp.2010.10.022_bib17) 1992; 51 Murphy (10.1016/j.ijrobp.2010.10.022_bib7) 2008; 105 Park (10.1016/j.ijrobp.2010.10.022_bib20) 2006; 48 Dvorak (10.1016/j.ijrobp.2010.10.022_bib27) 1988; 133 Dabbas (10.1016/j.ijrobp.2010.10.022_bib2) 2008; 15 Cho (10.1016/j.ijrobp.2010.10.022_bib10) 2005; 50 Garcia-Barros (10.1016/j.ijrobp.2010.10.022_bib16) 2003; 300 Nijsen (10.1016/j.ijrobp.2010.10.022_bib38) 2001; 28 Zhu (10.1016/j.ijrobp.2010.10.022_bib41) 2010; 37 Li (10.1016/j.ijrobp.2010.10.022_bib3) 2010; 18 Robar (10.1016/j.ijrobp.2010.10.022_bib44) 2002; 47 Ailles (10.1016/j.ijrobp.2010.10.022_bib13) 2007; 18 Gao (10.1016/j.ijrobp.2010.10.022_bib19) 1987; 897 Brannon-Peppas (10.1016/j.ijrobp.2010.10.022_bib29) 2004; 56 Siemann (10.1016/j.ijrobp.2010.10.022_bib15) 2004; 100 Limaye (10.1016/j.ijrobp.2010.10.022_bib25) 2006 Van den Heuvel (10.1016/j.ijrobp.2010.10.022_bib31) 2010; 55 Perrault (10.1016/j.ijrobp.2010.10.022_bib6) 2009; 9 Mauceri (10.1016/j.ijrobp.2010.10.022_bib14) 1998; 394 Makrigiorgos (10.1016/j.ijrobp.2010.10.022_bib24) 1990; 264 Cho (10.1016/j.ijrobp.2010.10.022_bib9) 2009; 54 Makrigiorgos (10.1016/j.ijrobp.2010.10.022_bib23) 1990; 31 Maeda (10.1016/j.ijrobp.2010.10.022_bib28) 2000; 65 Ryschich (10.1016/j.ijrobp.2010.10.022_bib33) 2004; 10 Akabani (10.1016/j.ijrobp.2010.10.022_bib40) 2002; 54 Rich (10.1016/j.ijrobp.2010.10.022_bib11) 2007; 67 Vassiliev (10.1016/j.ijrobp.2010.10.022_bib43) 2006; 51 Roeske (10.1016/j.ijrobp.2010.10.022_bib8) 2007; 6 Carmeliet (10.1016/j.ijrobp.2010.10.022_bib37) 2000; 407 Obrien (10.1016/j.ijrobp.2010.10.022_bib42) 1991; 18 Diagaradjane (10.1016/j.ijrobp.2010.10.022_bib22) 2008; 14 Hainfeld (10.1016/j.ijrobp.2010.10.022_bib1) 2004; 49 |
References_xml | – volume: 48 start-page: 112 year: 2006 end-page: 118 ident: bib20 article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities publication-title: Colloids Surf B Biointerfaces contributor: fullname: Mun – volume: 14 start-page: 731 year: 2008 end-page: 741 ident: bib22 article-title: Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe publication-title: Clin Cancer Res contributor: fullname: Colon-Casasnovas – volume: 6 start-page: 395 year: 2007 end-page: 401 ident: bib8 article-title: Characterization of the theorectical radiation dose enhancement from nanoparticles publication-title: Technol Cancer Res Treat contributor: fullname: Hoggarth – volume: 66 start-page: 246 year: 2008 end-page: 252 ident: bib18 article-title: Preparation and characterization of complexes of liposomes with gold nanoparticles publication-title: Colloids Surf B Biointerfaces contributor: fullname: Yuba – volume: 80 start-page: 175 year: 1999 end-page: 184 ident: bib39 article-title: Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi publication-title: Br J Cancer contributor: fullname: Stabin – volume: 264 start-page: 592 year: 1990 end-page: 595 ident: bib24 article-title: Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates publication-title: JAMA contributor: fullname: Kassis – volume: 30 start-page: 1856 year: 1989 end-page: 1864 ident: bib34 article-title: Limitations of conventional internal dosimetry at the cellular-level publication-title: J Nucl Med contributor: fullname: Kassis – volume: 15 start-page: 189 year: 2008 end-page: 201 ident: bib2 article-title: Importance of the liposomal cationic lipid content and type in tumor vascular targeting: Physicochemical characterization and in vitro studies using human primary and transformed endothelial cells publication-title: Endothelium contributor: fullname: Dandamudi – volume: 394 start-page: 287 year: 1998 end-page: 291 ident: bib14 article-title: Combined effects of angiostatin and ionizing radiation in antitumour therapy publication-title: Nature contributor: fullname: Beckett – volume: 28 start-page: 743 year: 2001 end-page: 749 ident: bib38 article-title: Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: A biodistribution study publication-title: Eur J Nucl Med contributor: fullname: Brandt – volume: 414 start-page: 105 year: 2001 end-page: 111 ident: bib12 article-title: Stem cells, cancer, and cancer stem cells publication-title: Nature contributor: fullname: Clarke – volume: 26 start-page: 552 year: 2008 end-page: 558 ident: bib4 article-title: Does a targeting ligand influence nanoparticle tumor localization or uptake? publication-title: Trends Biotechnol contributor: fullname: Chang – start-page: 1 year: 2006 end-page: 10 ident: bib25 article-title: The vascular endothelium: Structure and function publication-title: Mechanisms of vascular disease: A textbook for vascular surgeons contributor: fullname: Vadas – volume: 65 start-page: 5740 year: 2005 end-page: 5749 ident: bib26 article-title: Mosaic tumor vessels: Cellular basis and ultrastructure of focal regions lacking endothelial cell markers publication-title: Cancer Res contributor: fullname: Haskell – volume: 54 start-page: 1259 year: 2002 end-page: 1275 ident: bib40 article-title: Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: Theoretical analysis publication-title: Int J Radiat Oncol Biol Phys contributor: fullname: Bigner – volume: 55 start-page: 4509 year: 2010 end-page: 4520 ident: bib31 article-title: Beam energy considerations for gold nano-particle enhanced radiation treatment publication-title: Phys Med Biol contributor: fullname: Nuyts – volume: 31 start-page: 1358 year: 1990 end-page: 1363 ident: bib23 article-title: Inhomogeneous deposition of radiopharmaceuticals at the cellular level: Experimental evidence and dosimetric implications publication-title: J Nucl Med contributor: fullname: Baranowska-Kortylewicz – volume: 65 start-page: 271 year: 2000 end-page: 284 ident: bib28 article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review publication-title: J Controll Release contributor: fullname: Sawa – volume: 18 start-page: 153 year: 2010 end-page: 161 ident: bib3 article-title: Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery publication-title: Macromol Res contributor: fullname: Lee – volume: 62 start-page: 284 year: 2010 end-page: 304 ident: bib5 article-title: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging publication-title: Adv Drug Deliv Rev contributor: fullname: Zhang – volume: 300 start-page: 1155 year: 2003 end-page: 1159 ident: bib16 article-title: Tumor response to radiotherapy regulated by endothelial cell apoptosis publication-title: Science contributor: fullname: Cordon-Cardo – volume: 54 start-page: 4889 year: 2009 end-page: 4905 ident: bib9 article-title: The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources publication-title: Phys Med Biol contributor: fullname: Krishnan – volume: 407 start-page: 249 year: 2000 end-page: 257 ident: bib37 article-title: Angiogenesis in cancer and other diseases publication-title: Nature contributor: fullname: Jain – volume: 9 start-page: 1909 year: 2009 end-page: 1915 ident: bib6 article-title: Mediating tumor targeting efficiency of nanoparticles through design publication-title: Nano Lett contributor: fullname: Jennings – volume: 31 start-page: 2278 year: 2010 end-page: 2292 ident: bib21 article-title: Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature publication-title: Biomaterials contributor: fullname: Xie – volume: 100 start-page: 2491 year: 2004 end-page: 2499 ident: bib15 article-title: Vascular-targeting therapies for treatment of malignant disease publication-title: Cancer contributor: fullname: Horsman – volume: 99 start-page: 425 year: 2002 end-page: 427 ident: bib30 article-title: An investigation of energy spectrum and lineal energy variations in mega-voltage photon beams used for radiotherapy publication-title: Radiat Prot Dosimetry contributor: fullname: Verhaegen – volume: 58 start-page: 1408 year: 1998 end-page: 1416 ident: bib36 article-title: The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy publication-title: Cancer Res contributor: fullname: Giaccia – volume: 67 start-page: 8980 year: 2007 end-page: 8984 ident: bib11 article-title: Cancer stem cells in radiation resistance publication-title: Cancer Res contributor: fullname: Rich – volume: 18 start-page: 519 year: 1991 end-page: 521 ident: bib42 article-title: Radiosurgery with unflattened 6-Mv photon beams publication-title: Med Phys contributor: fullname: Schwartz – volume: 897 start-page: 377 year: 1987 end-page: 383 ident: bib19 article-title: Solid core liposomes with encapsulated colloidal gold particles publication-title: Biochim Biophys Acta contributor: fullname: Huang – volume: 56 start-page: 1649 year: 2004 end-page: 1659 ident: bib29 article-title: Nanoparticle and targeted systems for cancer therapy publication-title: Adv Drug Deliv Rev contributor: fullname: Blanchette – volume: 37 start-page: 2974 year: 2010 end-page: 2984 ident: bib41 article-title: Solid-tumor radionuclide therapy dosimetry: New paradigms in view of tumor microenvironment and angiogenesis publication-title: Med Phys contributor: fullname: Makrigiorgos – volume: 50 start-page: N163 year: 2005 end-page: N173 ident: bib10 article-title: Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study publication-title: Phys Med Biol contributor: fullname: Cho – volume: 10 start-page: 3171 year: 2004 end-page: 3174 ident: bib33 article-title: Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental hepatocellular and pancreatic cancer publication-title: World J Gastroenterol contributor: fullname: Maksan – volume: 47 start-page: 2433 year: 2002 end-page: 2449 ident: bib44 article-title: Tumour dose enhancement using modified megavoltage photon beams and contrast media publication-title: Phys Med Biol contributor: fullname: Martin – volume: 51 start-page: 1907 year: 2006 end-page: 1917 ident: bib43 article-title: Dosimetric properties of photon beams from a flattening filter free clinical accelerator publication-title: Phys Med Biol contributor: fullname: Ponisch – volume: 105 start-page: 9343 year: 2008 end-page: 9348 ident: bib7 article-title: Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis publication-title: Proc Natl Acad Sci U.S.A contributor: fullname: Barnes – volume: 49 start-page: N309 year: 2004 end-page: N315 ident: bib1 article-title: The use of gold nanoparticles to enhance radiotherapy in mice publication-title: Phys Med Biol contributor: fullname: Smilowitz – volume: 133 start-page: 95 year: 1988 end-page: 109 ident: bib27 article-title: Identification and characterization of the blood-vessels of solid tumors that are leaky to circulating macromolecules publication-title: Am J Pathol contributor: fullname: Dvorak – volume: 51 start-page: 470 year: 1992 end-page: 475 ident: bib17 article-title: The presence of a concomitant bulky tumor can decrease the uptake and therapeutic efficacy of radiolabeled antibodies in small tumors publication-title: Int J Cancer contributor: fullname: Blumenthal – volume: 38 start-page: 7 year: 1969 end-page: 33 ident: bib35 article-title: Absorption of 20-Ev to 50000-Ev electron beams in air and plastic publication-title: Radiat Res contributor: fullname: Cole – volume: 18 start-page: 460 year: 2007 end-page: 466 ident: bib13 article-title: Cancer stem cells in solid tumors publication-title: Curr Opin Biotechnol contributor: fullname: Weissman – volume: 55 start-page: 4509 year: 2010 ident: 10.1016/j.ijrobp.2010.10.022_bib31 article-title: Beam energy considerations for gold nano-particle enhanced radiation treatment publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/16/S06 contributor: fullname: Van den Heuvel – volume: 10 start-page: 3171 year: 2004 ident: 10.1016/j.ijrobp.2010.10.022_bib33 article-title: Expansion of endothelial surface by an increase of vessel diameter during tumor angiogenesis in experimental hepatocellular and pancreatic cancer publication-title: World J Gastroenterol doi: 10.3748/wjg.v10.i21.3171 contributor: fullname: Ryschich – volume: 394 start-page: 287 year: 1998 ident: 10.1016/j.ijrobp.2010.10.022_bib14 article-title: Combined effects of angiostatin and ionizing radiation in antitumour therapy publication-title: Nature doi: 10.1038/28412 contributor: fullname: Mauceri – volume: 14 start-page: 731 year: 2008 ident: 10.1016/j.ijrobp.2010.10.022_bib22 article-title: Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-07-1958 contributor: fullname: Diagaradjane – volume: 58 start-page: 1408 year: 1998 ident: 10.1016/j.ijrobp.2010.10.022_bib36 article-title: The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy publication-title: Cancer Res contributor: fullname: Brown – volume: 9 start-page: 1909 year: 2009 ident: 10.1016/j.ijrobp.2010.10.022_bib6 article-title: Mediating tumor targeting efficiency of nanoparticles through design publication-title: Nano Lett doi: 10.1021/nl900031y contributor: fullname: Perrault – volume: 31 start-page: 1358 year: 1990 ident: 10.1016/j.ijrobp.2010.10.022_bib23 article-title: Inhomogeneous deposition of radiopharmaceuticals at the cellular level: Experimental evidence and dosimetric implications publication-title: J Nucl Med contributor: fullname: Makrigiorgos – volume: 54 start-page: 1259 year: 2002 ident: 10.1016/j.ijrobp.2010.10.022_bib40 article-title: Vascular targeted endoradiotherapy of tumors using alpha-particle-emitting compounds: Theoretical analysis publication-title: Int J Radiat Oncol Biol Phys doi: 10.1016/S0360-3016(02)03794-X contributor: fullname: Akabani – volume: 300 start-page: 1155 year: 2003 ident: 10.1016/j.ijrobp.2010.10.022_bib16 article-title: Tumor response to radiotherapy regulated by endothelial cell apoptosis publication-title: Science doi: 10.1126/science.1082504 contributor: fullname: Garcia-Barros – volume: 48 start-page: 112 year: 2006 ident: 10.1016/j.ijrobp.2010.10.022_bib20 article-title: Loading of gold nanoparticles inside the DPPC bilayers of liposome and their effects on membrane fluidities publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2006.01.006 contributor: fullname: Park – volume: 51 start-page: 1907 year: 2006 ident: 10.1016/j.ijrobp.2010.10.022_bib43 article-title: Dosimetric properties of photon beams from a flattening filter free clinical accelerator publication-title: Phys Med Biol doi: 10.1088/0031-9155/51/7/019 contributor: fullname: Vassiliev – volume: 18 start-page: 460 year: 2007 ident: 10.1016/j.ijrobp.2010.10.022_bib13 article-title: Cancer stem cells in solid tumors publication-title: Curr Opin Biotechnol doi: 10.1016/j.copbio.2007.10.007 contributor: fullname: Ailles – volume: 105 start-page: 9343 year: 2008 ident: 10.1016/j.ijrobp.2010.10.022_bib7 article-title: Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis publication-title: Proc Natl Acad Sci U.S.A doi: 10.1073/pnas.0803728105 contributor: fullname: Murphy – volume: 56 start-page: 1649 year: 2004 ident: 10.1016/j.ijrobp.2010.10.022_bib29 article-title: Nanoparticle and targeted systems for cancer therapy publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2004.02.014 contributor: fullname: Brannon-Peppas – volume: 100 start-page: 2491 year: 2004 ident: 10.1016/j.ijrobp.2010.10.022_bib15 article-title: Vascular-targeting therapies for treatment of malignant disease publication-title: Cancer doi: 10.1002/cncr.20299 contributor: fullname: Siemann – volume: 38 start-page: 7 year: 1969 ident: 10.1016/j.ijrobp.2010.10.022_bib35 article-title: Absorption of 20-Ev to 50000-Ev electron beams in air and plastic publication-title: Radiat Res doi: 10.2307/3572707 contributor: fullname: Cole – volume: 80 start-page: 175 year: 1999 ident: 10.1016/j.ijrobp.2010.10.022_bib39 article-title: Radioimmunotherapy of micrometastases in lung with vascular targeted 213Bi publication-title: Br J Cancer doi: 10.1038/sj.bjc.6690337 contributor: fullname: Kennel – volume: 15 start-page: 189 year: 2008 ident: 10.1016/j.ijrobp.2010.10.022_bib2 article-title: Importance of the liposomal cationic lipid content and type in tumor vascular targeting: Physicochemical characterization and in vitro studies using human primary and transformed endothelial cells publication-title: Endothelium doi: 10.1080/10623320802228583 contributor: fullname: Dabbas – volume: 30 start-page: 1856 year: 1989 ident: 10.1016/j.ijrobp.2010.10.022_bib34 article-title: Limitations of conventional internal dosimetry at the cellular-level publication-title: J Nucl Med contributor: fullname: Makrigiorgos – volume: 66 start-page: 246 year: 2008 ident: 10.1016/j.ijrobp.2010.10.022_bib18 article-title: Preparation and characterization of complexes of liposomes with gold nanoparticles publication-title: Colloids Surf B Biointerfaces doi: 10.1016/j.colsurfb.2008.06.022 contributor: fullname: Kojima – volume: 18 start-page: 153 year: 2010 ident: 10.1016/j.ijrobp.2010.10.022_bib3 article-title: Design of a multifunctional heparin-based nanoparticle system for anticancer drug delivery publication-title: Macromol Res doi: 10.1007/s13233-009-0134-8 contributor: fullname: Li – volume: 49 start-page: N309 year: 2004 ident: 10.1016/j.ijrobp.2010.10.022_bib1 article-title: The use of gold nanoparticles to enhance radiotherapy in mice publication-title: Phys Med Biol doi: 10.1088/0031-9155/49/18/N03 contributor: fullname: Hainfeld – volume: 26 start-page: 552 year: 2008 ident: 10.1016/j.ijrobp.2010.10.022_bib4 article-title: Does a targeting ligand influence nanoparticle tumor localization or uptake? publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2008.06.007 contributor: fullname: Pirollo – volume: 31 start-page: 2278 year: 2010 ident: 10.1016/j.ijrobp.2010.10.022_bib21 article-title: Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.047 contributor: fullname: Yu – volume: 897 start-page: 377 year: 1987 ident: 10.1016/j.ijrobp.2010.10.022_bib19 article-title: Solid core liposomes with encapsulated colloidal gold particles publication-title: Biochim Biophys Acta doi: 10.1016/0005-2736(87)90435-4 contributor: fullname: Gao – volume: 407 start-page: 249 year: 2000 ident: 10.1016/j.ijrobp.2010.10.022_bib37 article-title: Angiogenesis in cancer and other diseases publication-title: Nature doi: 10.1038/35025220 contributor: fullname: Carmeliet – volume: 51 start-page: 470 year: 1992 ident: 10.1016/j.ijrobp.2010.10.022_bib17 article-title: The presence of a concomitant bulky tumor can decrease the uptake and therapeutic efficacy of radiolabeled antibodies in small tumors publication-title: Int J Cancer doi: 10.1002/ijc.2910510322 contributor: fullname: Boerman – volume: 264 start-page: 592 year: 1990 ident: 10.1016/j.ijrobp.2010.10.022_bib24 article-title: Cellular radiation dosimetry and its implications for estimation of radiation risks. Illustrative results with technetium 99m-labeled microspheres and macroaggregates publication-title: JAMA doi: 10.1001/jama.264.5.592 contributor: fullname: Makrigiorgos – volume: 6 start-page: 395 year: 2007 ident: 10.1016/j.ijrobp.2010.10.022_bib8 article-title: Characterization of the theorectical radiation dose enhancement from nanoparticles publication-title: Technol Cancer Res Treat doi: 10.1177/153303460700600504 contributor: fullname: Roeske – volume: 18 start-page: 519 year: 1991 ident: 10.1016/j.ijrobp.2010.10.022_bib42 article-title: Radiosurgery with unflattened 6-Mv photon beams publication-title: Med Phys doi: 10.1118/1.596656 contributor: fullname: Obrien – volume: 28 start-page: 743 year: 2001 ident: 10.1016/j.ijrobp.2010.10.022_bib38 article-title: Targeting of liver tumour in rats by selective delivery of holmium-166 loaded microspheres: A biodistribution study publication-title: Eur J Nucl Med doi: 10.1007/s002590100518 contributor: fullname: Nijsen – volume: 67 start-page: 8980 year: 2007 ident: 10.1016/j.ijrobp.2010.10.022_bib11 article-title: Cancer stem cells in radiation resistance publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-07-0895 contributor: fullname: Rich – volume: 37 start-page: 2974 year: 2010 ident: 10.1016/j.ijrobp.2010.10.022_bib41 article-title: Solid-tumor radionuclide therapy dosimetry: New paradigms in view of tumor microenvironment and angiogenesis publication-title: Med Phys doi: 10.1118/1.3431999 contributor: fullname: Zhu – volume: 414 start-page: 105 year: 2001 ident: 10.1016/j.ijrobp.2010.10.022_bib12 article-title: Stem cells, cancer, and cancer stem cells publication-title: Nature doi: 10.1038/35102167 contributor: fullname: Reya – volume: 65 start-page: 271 year: 2000 ident: 10.1016/j.ijrobp.2010.10.022_bib28 article-title: Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review publication-title: J Controll Release doi: 10.1016/S0168-3659(99)00248-5 contributor: fullname: Maeda – volume: 47 start-page: 2433 year: 2002 ident: 10.1016/j.ijrobp.2010.10.022_bib44 article-title: Tumour dose enhancement using modified megavoltage photon beams and contrast media publication-title: Phys Med Biol doi: 10.1088/0031-9155/47/14/305 contributor: fullname: Robar – volume: 99 start-page: 425 year: 2002 ident: 10.1016/j.ijrobp.2010.10.022_bib30 article-title: An investigation of energy spectrum and lineal energy variations in mega-voltage photon beams used for radiotherapy publication-title: Radiat Prot Dosimetry doi: 10.1093/oxfordjournals.rpd.a006824 contributor: fullname: Liu – volume: 62 start-page: 284 year: 2010 ident: 10.1016/j.ijrobp.2010.10.022_bib5 article-title: Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging publication-title: Adv Drug Deliv Rev doi: 10.1016/j.addr.2009.11.002 contributor: fullname: Veiseh – volume: 65 start-page: 5740 year: 2005 ident: 10.1016/j.ijrobp.2010.10.022_bib26 article-title: Mosaic tumor vessels: Cellular basis and ultrastructure of focal regions lacking endothelial cell markers publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-04-4552 contributor: fullname: di Tomaso – volume: 54 start-page: 4889 year: 2009 ident: 10.1016/j.ijrobp.2010.10.022_bib9 article-title: The dosimetric feasibility of gold nanoparticle-aided radiation therapy (GNRT) via brachytherapy using low-energy gamma-/x-ray sources publication-title: Phys Med Biol doi: 10.1088/0031-9155/54/16/004 contributor: fullname: Cho – start-page: 1 year: 2006 ident: 10.1016/j.ijrobp.2010.10.022_bib25 article-title: The vascular endothelium: Structure and function contributor: fullname: Limaye – ident: 10.1016/j.ijrobp.2010.10.022_bib32 – volume: 133 start-page: 95 year: 1988 ident: 10.1016/j.ijrobp.2010.10.022_bib27 article-title: Identification and characterization of the blood-vessels of solid tumors that are leaky to circulating macromolecules publication-title: Am J Pathol contributor: fullname: Dvorak – volume: 50 start-page: N163 year: 2005 ident: 10.1016/j.ijrobp.2010.10.022_bib10 article-title: Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: A preliminary Monte Carlo study publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/15/N01 contributor: fullname: Cho |
SSID | ssj0001174 |
Score | 2.4240441 |
Snippet | Purpose Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles... Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles (AuNPs)... PURPOSETumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles... Purpose: Tumor endothelial cell damage during radiation therapy may contribute significantly to tumor eradication and treatment efficacy. Gold nanoparticles... |
SourceID | osti proquest crossref pubmed pascalfrancis elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 270 |
SubjectTerms | Algorithms ANGIOGENESIS ANIMAL TISSUES Anti-angiogenesis Biological and medical sciences BIOLOGICAL EFFECTS BIOLOGICAL RADIATION EFFECTS BLOOD VESSELS BODY CALCULATION METHODS CARDIOVASCULAR SYSTEM DISEASES DOSES DOSIMETRY ELECTROMAGNETIC RADIATION ELEMENTS Endothelial Cells - radiation effects ENDOTHELIUM Endothelium, Vascular - cytology ENERGY RANGE GOLD Gold - therapeutic use HAZARDS Hematology, Oncology and Palliative Medicine INJURIES IONIZING RADIATIONS IRRADIATION KEV RANGE KEV RANGE 10-100 Medical sciences MEDICINE Metal Nanoparticles - therapeutic use METALS Microcirculation - radiation effects MICRODOSIMETRY MICROSTRUCTURE MONTE CARLO METHOD Nanoparticles NANOSTRUCTURES NEOPLASMS Neoplasms - blood supply Neoplasms - radiotherapy NUCLEAR MEDICINE ORGANS Particle Accelerators Photons - therapeutic use RADIATION DOSES RADIATION EFFECTS RADIATION INJURIES Radiation therapy and radiosensitizing agent RADIATIONS RADIOLOGY RADIOLOGY AND NUCLEAR MEDICINE RADIOTHERAPY Radiotherapy - methods Radiotherapy Dosage SBRT SPECTRA THERAPY TRANSITION ELEMENTS Treatment with physical agents Treatment. General aspects Tumors X RADIATION X-RAY SPECTRA |
Title | Localized Dose Enhancement to Tumor Blood Vessel Endothelial Cells via Megavoltage X-rays and Targeted Gold Nanoparticles: New Potential for External Beam Radiotherapy |
URI | https://www.clinicalkey.es/playcontent/1-s2.0-S0360301610034437 https://dx.doi.org/10.1016/j.ijrobp.2010.10.022 https://www.ncbi.nlm.nih.gov/pubmed/21163591 https://search.proquest.com/docview/881469766 https://www.osti.gov/biblio/21587711 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3fb9MwEMetskmIF8RvCmPyA29Rqjp1koa3bZQNRhEaG-zNcmyndOuaqU1B7B_iT-Pf4C6O05QxYLxUVbS4a-8T--78vTMhz3nSVz2uA1-HuM0Ygi0kePl-GEulQm2ioNyKGb6L9o74m-PwuNX60VAtLYq0oy5-W1fyP1aFa2BXrJK9hmXrQeECvAf7witYGF7_ycZvcSEaX4DP-BJl54PpZ7Rhub2PJ7oszvKZt43KdO8jtgifwF9orLiaYJp8x0wmc-_LWHpDM5IwSxUo3zn2Z_Kb7dt8WIrEYfDdfKJxGob4uiGjQ2Xk-7xAtZEtgvQGVUdpb9vIM-9A6nFV3rWydbyag2x0rphhmwTrwE5VXUSTLutpbBZmmdcHIiB4tvpwmK9fd-rM9uhr6RPDlJe5o0jLrPspHgOWz0ZWW7jb8YbjU9NMfGAmN3GJD1fwBUtI15Zqusm8zy5BW83M9nySapEP7KEzl9YPm8o46YxPZnl6bpV_KP6ztdOr7bp_WUZrcaPTzZ0IO4rAUeCSgFFukPUAZkSYite39g8-7ddOA6sahrvv5Ko8Syni5f_mKi9qLYeFAfW9cg4AZvZslquDp9KJOrxDblfRD92yGN0lLTO9R24OK33HffK9Jpoi0bRBNC1yWhJNS6KpJZo2iKYl0RSIpg2iqSWaAtHUEU2RaLpC9AsKPNOaZwo8U8czRZ5pk-cH5OjV4HBnz6-OEvEVhCSFr3UKoYXWWcJUzFUS9buJlFwFmYZ4hTPZlVr2k5SluNvIjJIsC9KgK5WJsl4v7j0ka9N8ah4TmsDcZgIulY4U15FJteplnCkeZjIyMW8T35lGnNuOMeJPSLRJ7OwnXDU0rN9mXj2Ac8HEPBBd8QHhQDZY2aezFzfvrPxl6wcLwPkvn7mBoOBd2CpaoaYObgP3vx_HjLXJ5gpA9feAWIDzCD-ZOqIELEe4xyinJl_MRR-3FCDEidrkkSVteTOD2C9M2JNr_kBPya3l479B1orZwjyDSKBIN6un6CeDWxB4 |
link.rule.ids | 230,315,783,787,888,27936,27937 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Localized+Dose+Enhancement+to+Tumor+Blood+Vessel+Endothelial+Cells+via+Megavoltage+X-rays+and+Targeted+Gold+Nanoparticles%3A+New+Potential+for+External+Beam+Radiotherapy&rft.jtitle=International+journal+of+radiation+oncology%2C+biology%2C+physics&rft.au=Berbeco%2C+Ross+I.&rft.au=Ngwa%2C+Wilfred&rft.au=Makrigiorgos%2C+G.+Mike&rft.date=2011-09-01&rft.issn=0360-3016&rft.volume=81&rft.issue=1&rft.spage=270&rft.epage=276&rft_id=info:doi/10.1016%2Fj.ijrobp.2010.10.022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrobp_2010_10_022 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F03603016%2FS0360301611X00093%2Fcov150h.gif |