Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction

Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 23; no. 1; pp. 120 - 20
Main Authors Su, Peng, Vijay-Shanker, K.
Format Journal Article
LanguageEnglish
Published London BioMed Central 04.04.2022
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/s12859-022-04642-w

Cover

Abstract Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning. Results The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets. Conclusions The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.
AbstractList Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning.BACKGROUNDRecently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning.The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets.RESULTSThe experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets.The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.CONCLUSIONSThe extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.
Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning. Results The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets. Conclusions The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.
Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning. The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets. The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.
Abstract Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning. Results The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets. Conclusions The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.
Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature. Since the adaptation to the biomedical domain, the transformer-based BERT models have produced leading results on many biomedical natural language processing tasks. In this work, we will explore the approaches to improve the BERT model for relation extraction tasks in both the pre-training and fine-tuning stages of its applications. In the pre-training stage, we add another level of BERT adaptation on sub-domain data to bridge the gap between domain knowledge and task-specific knowledge. Also, we propose methods to incorporate the ignored knowledge in the last layer of BERT to improve its fine-tuning. Results The experiment results demonstrate that our approaches for pre-training and fine-tuning can improve the BERT model performance. After combining the two proposed techniques, our approach outperforms the original BERT models with averaged F1 score improvement of 2.1% on relation extraction tasks. Moreover, our approach achieves state-of-the-art performance on three relation extraction benchmark datasets. Conclusions The extra pre-training step on sub-domain data can help the BERT model generalization on specific tasks, and our proposed fine-tuning mechanism could utilize the knowledge in the last layer of BERT to boost the model performance. Furthermore, the combination of these two approaches further improves the performance of BERT model on the relation extraction tasks.
ArticleNumber 120
Author Su, Peng
Vijay-Shanker, K.
Author_xml – sequence: 1
  givenname: Peng
  surname: Su
  fullname: Su, Peng
  email: psu@udel.edu
  organization: Department of Computer and Information Science, Biomedical Text Mining Lab, University of Delaware
– sequence: 2
  givenname: K.
  surname: Vijay-Shanker
  fullname: Vijay-Shanker, K.
  organization: Department of Computer and Information Science, Biomedical Text Mining Lab, University of Delaware
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35379166$$D View this record in MEDLINE/PubMed
BookMark eNp9kklv1DAYhi1URBf4AxxQJC5cAt6XCxJUBUaqhITK2XK8pB5l7MFJpvDv8UxaaHvoyfbn9330bafgKOXkAXiN4HuEJP8wIiyZaiHGLaSc4vbmGThBVKAWI8iO7t2Pwek4riFEQkL2AhwTRoRCnJ-AYZV2fpxib6aYU5NDEzfbkncx9c107Ztt8e1UTEz7gEmuCTHVyHx4V_Xnix9XzSY7PzQhl6aLeeNdtGZoih8Wpv9dAXZ_fQmeBzOM_tXteQZ-frm4Ov_WXn7_ujr_dNlaRuHUOkcp4lgahpyVBBMSGAuco8CI7Jzx1NAuGCkDhEEoRqjnDNmOCdWF0AlyBlYL12Wz1tsSN6b80dlEfQjk0mtTpmgHr61jVDEIJWOeKkmNg52hgpDOcGwJr6yPC2s7d7U061OtZngAffiT4rXu805LJSQlsgLe3QJK_jXXXutNHK0fBpN8nkeNORUYYaZwlb59JF3nuaTaqqpiSNVMhaqqN_cz-pfK3VCrQC4CW_I4Fh-0jdNhFvtJDhpBvd8fveyPrvujD_ujb6oVP7Le0Z80kcU0VnHqffmf9hOuvzNe2Yw
CitedBy_id crossref_primary_10_1016_j_jmb_2023_168121
crossref_primary_10_1186_s12967_023_04011_y
crossref_primary_10_1016_j_jbi_2024_104621
crossref_primary_10_3390_app122010199
crossref_primary_10_1016_j_ipm_2023_103560
crossref_primary_10_1038_s41392_024_01895_0
crossref_primary_10_1007_s10389_023_01921_5
crossref_primary_10_3390_sym15020398
crossref_primary_10_1002_cpt_3053
crossref_primary_10_1007_s10462_024_11042_4
crossref_primary_10_1093_database_baae094
crossref_primary_10_12720_jait_15_6_723_734
crossref_primary_10_4239_wjd_v16_i3_98408
crossref_primary_10_1021_acs_jproteome_4c00535
crossref_primary_10_3390_electronics13132431
crossref_primary_10_3390_app131910814
crossref_primary_10_1186_s12859_024_05951_y
Cites_doi 10.1101/2021.05.24.445464
10.1186/gb-2008-9-s2-s4
10.1016/j.jbi.2018.08.005
10.1093/bioinformatics/btz682
10.1007/11550907_126
10.1145/3458754
10.1109/ACCESS.2019.2927253
10.1108/eb046814
10.18653/v1/N18-1202
10.18653/v1/N18-3011
10.18653/v1/2020.acl-main.740
10.1162/neco.1997.9.8.1735
10.18653/v1/P19-1452
10.1016/j.artmed.2004.07.016
10.1038/sdata.2016.35
10.18653/v1/D19-1410
10.1075/term.14.1.05sie
10.1093/nar/gkt441
10.1017/S1351324901002807
10.1109/BIBM49941.2020.9313160
10.21437/Eurospeech.2001-520
10.1016/j.jbi.2013.07.011
10.3115/1218955.1219009
10.18653/v1/W19-5006
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: 2022. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7X7
7XB
88E
8AL
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1186/s12859-022-04642-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals (ND)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 20
ExternalDocumentID oai_doaj_org_article_cd549500855e4984ad0ba4733ba62c36
PMC8978438
35379166
10_1186_s12859_022_04642_w
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: U01 GM125267
GroupedDBID ---
0R~
23N
2WC
53G
5VS
6J9
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKPC
AASML
ABDBF
ABUWG
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADUKV
AEAQA
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHBYD
AHMBA
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
ARAPS
AZQEC
BAPOH
BAWUL
BBNVY
BCNDV
BENPR
BFQNJ
BGLVJ
BHPHI
BMC
BPHCQ
BVXVI
C6C
CCPQU
CS3
DIK
DU5
DWQXO
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EMB
EMK
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IAO
ICD
IHR
INH
INR
ISR
ITC
K6V
K7-
KQ8
LK8
M1P
M48
M7P
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
P62
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RBZ
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
UKHRP
W2D
WOQ
WOW
XH6
XSB
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7SC
7XB
8AL
8FD
8FK
FR3
JQ2
K9.
L7M
L~C
L~D
M0N
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-dd441628a51dc83233f55f661f538bdae4a4bfa88f00f79534e651cb579bffb73
IEDL.DBID M48
ISSN 1471-2105
IngestDate Wed Aug 27 00:55:51 EDT 2025
Thu Aug 21 13:33:16 EDT 2025
Thu Sep 04 23:22:41 EDT 2025
Fri Jul 25 10:37:52 EDT 2025
Mon Jul 21 05:46:05 EDT 2025
Tue Jul 01 03:38:34 EDT 2025
Thu Apr 24 23:10:17 EDT 2025
Sat Sep 06 07:27:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning
Text mining
BERT
Transformer
Biomedical relation extraction
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-dd441628a51dc83233f55f661f538bdae4a4bfa88f00f79534e651cb579bffb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1186/s12859-022-04642-w
PMID 35379166
PQID 2651949579
PQPubID 44065
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_cd549500855e4984ad0ba4733ba62c36
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8978438
proquest_miscellaneous_2647212592
proquest_journals_2651949579
pubmed_primary_35379166
crossref_citationtrail_10_1186_s12859_022_04642_w
crossref_primary_10_1186_s12859_022_04642_w
springer_journals_10_1186_s12859_022_04642_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-04
PublicationDateYYYYMMDD 2022-04-04
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-04
  day: 04
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle BMC bioinformatics
PublicationTitleAbbrev BMC Bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2022
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References A Radford (4642_CR15) 2019; 1
4642_CR28
4642_CR29
4642_CR26
4642_CR27
4642_CR24
4642_CR25
L Hirschman (4642_CR6) 2001; 7
M Herrero-Zazo (4642_CR2) 2013; 46
P Su (4642_CR11) 2019; 626226
4642_CR5
4642_CR3
F Van Harmelen (4642_CR4) 2008
4642_CR22
4642_CR23
4642_CR20
R Bunescu (4642_CR30) 2005; 33
J Lee (4642_CR17) 2020; 36
4642_CR8
C-H Wei (4642_CR33) 2013; 41
4642_CR7
4642_CR19
4642_CR18
H Zhang (4642_CR10) 2019; 7
4642_CR37
4642_CR16
4642_CR13
4642_CR35
4642_CR14
4642_CR36
S Hochreiter (4642_CR34) 1997; 9
M Krallinger (4642_CR1) 2008; 9
SK Sahu (4642_CR9) 2018; 86
4642_CR12
AE Johnson (4642_CR21) 2016; 3
4642_CR31
MF Porter (4642_CR32) 1980; 14
References_xml – ident: 4642_CR26
  doi: 10.1101/2021.05.24.445464
– volume: 9
  start-page: 4
  issue: 2
  year: 2008
  ident: 4642_CR1
  publication-title: Genome Biol
  doi: 10.1186/gb-2008-9-s2-s4
– volume: 86
  start-page: 15
  year: 2018
  ident: 4642_CR9
  publication-title: J Biomed Inform
  doi: 10.1016/j.jbi.2018.08.005
– volume: 36
  start-page: 1234
  issue: 4
  year: 2020
  ident: 4642_CR17
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz682
– ident: 4642_CR35
  doi: 10.1007/11550907_126
– volume: 626226
  start-page: 626226
  year: 2019
  ident: 4642_CR11
  publication-title: BioRxiv
– ident: 4642_CR16
– ident: 4642_CR20
  doi: 10.1145/3458754
– volume: 7
  start-page: 89354
  year: 2019
  ident: 4642_CR10
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927253
– ident: 4642_CR31
– volume: 14
  start-page: 130
  issue: 3
  year: 1980
  ident: 4642_CR32
  publication-title: Program
  doi: 10.1108/eb046814
– ident: 4642_CR14
– ident: 4642_CR12
– ident: 4642_CR13
  doi: 10.18653/v1/N18-1202
– ident: 4642_CR19
– ident: 4642_CR3
– volume: 1
  start-page: 9
  issue: 8
  year: 2019
  ident: 4642_CR15
  publication-title: OpenAI Blog
– ident: 4642_CR28
– ident: 4642_CR22
  doi: 10.18653/v1/N18-3011
– ident: 4642_CR23
  doi: 10.18653/v1/2020.acl-main.740
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 4642_CR34
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– ident: 4642_CR24
– ident: 4642_CR27
  doi: 10.18653/v1/P19-1452
– ident: 4642_CR36
– volume-title: Handbook of knowledge representation
  year: 2008
  ident: 4642_CR4
– volume: 33
  start-page: 139
  issue: 2
  year: 2005
  ident: 4642_CR30
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2004.07.016
– volume: 3
  start-page: 160035
  year: 2016
  ident: 4642_CR21
  publication-title: Sci Data
  doi: 10.1038/sdata.2016.35
– ident: 4642_CR25
  doi: 10.18653/v1/D19-1410
– ident: 4642_CR8
  doi: 10.1075/term.14.1.05sie
– volume: 41
  start-page: 518
  issue: W1
  year: 2013
  ident: 4642_CR33
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt441
– volume: 7
  start-page: 275
  issue: 4
  year: 2001
  ident: 4642_CR6
  publication-title: Nat Lang Eng
  doi: 10.1017/S1351324901002807
– ident: 4642_CR37
  doi: 10.1109/BIBM49941.2020.9313160
– ident: 4642_CR5
  doi: 10.21437/Eurospeech.2001-520
– ident: 4642_CR29
– volume: 46
  start-page: 914
  issue: 5
  year: 2013
  ident: 4642_CR2
  publication-title: J Biomed inform
  doi: 10.1016/j.jbi.2013.07.011
– ident: 4642_CR7
  doi: 10.3115/1218955.1219009
– ident: 4642_CR18
  doi: 10.18653/v1/W19-5006
SSID ssj0017805
Score 2.514629
Snippet Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical...
Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical literature....
Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of biomedical...
Abstract Background Recently, automatically extracting biomedical relations has been a significant subject in biomedical research due to the rapid growth of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 120
SubjectTerms Adaptation
Algorithms
BERT
Bioinformatics
Biomedical and Life Sciences
Biomedical relation extraction
Biomedical Research - methods
Classification
Computational Biology/Bioinformatics
Computer Appl. in Life Sciences
Data Mining - methods
Datasets
Deep learning
Domains
Drug interactions
Electric Power Supplies
Experiments
Knowledge
Language
Life Sciences
Medical research
Microarrays
Natural language
Natural Language Processing
Performance enhancement
Proteins
Semantics
Text mining
Training
Transformer
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals (ND)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFH-IUOiltNW2U21JwZsGM5NkJnOsRRGhHkTBW8gnFWS2rLtI_3tfkpmtW_txKexldrJL8j4mvzfv5fcA9rroMeqygWKMLKiwLaPGOEOVi6hwBLRNTsV8PW9Pr8TZtbx-1Oor1YQVeuAiuEPnMYKRuZwqiF4J45k1ouPcmrZxPJNts55NwdSYP0hM_dMRGdUe3tWJp42myvWUymvo_do2lNn6fwcxn1ZK_pIuzbvQyUt4McJH8rlM-xVshOE1PCsNJX9swe0j2ozZQGaR3EwvDQgiPZJqPqamEMQMnkQEmXSxzNc4-uj44pLk5jgEwSwpZ_OTGsl8LJoj-DCfl8MQ23B1cnz55ZSO_RSoQ1y2oN4j9mkbZWTtHXoy51HKiBt0xKee9SYII2w0SkXGYtdLLkIra2dl19sYbcffwOYwG8I7IC4wlL3nPrZMhBBstCza0LgeQ0hT8wrqSbzajWTjaXm3OgcdqtVFJRpVorNK9H0F-6vffC9UG38dfZS0thqZaLLzF2g8ejQe_S_jqWB30rkeffdON7joXqT0ZQWfVrfR61IqxQxhtkxjBIbOGDo2FbwtJrKaCZe8Q9CNf96tGc_aVNfvDDffMrO3wphecFXBwWRmP6f1Z1G8_x-i2IHnTfEP_OzC5mK-DB8Qby3sx-xaD_zgJ0A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwEB5BERIX1LKmCzISN7CaxI7jd0IU9VEhwQG1Um-WV6hUJeUtqvj3HTtOymOplEsSJ7Jnsb_xjGcA3rTBodVlPEUbmVNuREm1tppKG5DhCGjr5Ir58lWcnPHP58153nBb5rDKcU5ME7XrbdwjP6wFYg0enUrvr37SWDUqeldzCY378KDClSbKuZx_mrwIMV__eFBGisNlFbO10Ri_Hh16Nb3eWIxSzv5_Ac2_4yX_cJqmtWi-DY8ziCQfBq7vwD3fPYGHQ1nJX0_h8rfkGX1H-kAuxq0DgniPxMiPsTQE0Z0jAaEmXa3TPbY-Ov52SlKJHIKQlgwn9CMzySKHzhGc0hfDkYhncDY_Pv14QnNVBWoRna2oc4iARC11UzmL-sxYaJqAy3TAuc847bnmJmgpQ1mGdtYw7pH01iDlTQimZc9hq-s7_xKI9aVlwjEXRMm99yaYMhhf2xkakrpiBVQjeZXNKcfj8C5VMj2kUANLFLJEJZao6wLeTt9cDQk37mx9FLk2tYzJstODfvFdZd1T1qER3KSIPM9nkmtXGs1bxowWNQ6ggP2R5ypr8FLdylsBr6fXqHvRoaI7369jG44GNBqQdQEvBhGZesIa1iL0xp-3G8Kz0dXNN93Fj5TfW6Jlz5ks4N0oZrfd-j8pdu8exR48qgfJx2sftlaLtT9APLUyr5LS3ABaQh-K
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bSx0xEB6sUuhLsfa2aksKfWtDdzeXzT6qKFKoD6LgW8iVCrKnHM9B-u-dZC961AqFfdnNZEkymc03O5MvAF-b6NHrsoGij8wpt7KkxjhDlYuocAS0dQ7F_DqRx-f854W4GGhy0l6Y-_H7Sskf11ViWKMp5zwF4Wp68wI2RMVkDszKgylikLj5x00xT9ZbWXgyP_9ToPJxbuSDAGled4424fUAGMler-E3sBa6LXjZHyH59y1c3SPKmHVkFsnl-JuAILYjKctjPAaCmM6TiLCSLpb5HqX3D0_PSD4OhyB8Jf1u_KQ4Mh_S5Ah-vuf99od3cH50eHZwTIcTFKhDJLag3iPakbUyovIObZexKETEJTnid856E7jhNhqlYlnGphWMBykqZ0XT2hhtw97DejfrwkcgLpSOSc98lCUPIdhoy2hD7Vp0Gk3FCqjG4dVuoBdP3bvS2c1QUvcq0agSnVWibwr4NtX505NrPCu9n7Q2SSZi7PwA54se7Ew7jw6vyNl3gbeKG19awxvGrJE1dqCA3VHnerDWa11jp1ueApYFfJmK0c5S8MR0YbZMMhydZXQW6wI-9FNkagkTrEGYjS9vVibPSlNXS7rL35nLW6EXz5kq4Ps4ze6a9e-h2P4_8R14VfeWgNcurC_my_AJsdTCfs5GdAsNaxjY
  priority: 102
  providerName: Springer Nature
Title Investigation of improving the pre-training and fine-tuning of BERT model for biomedical relation extraction
URI https://link.springer.com/article/10.1186/s12859-022-04642-w
https://www.ncbi.nlm.nih.gov/pubmed/35379166
https://www.proquest.com/docview/2651949579
https://www.proquest.com/docview/2647212592
https://pubmed.ncbi.nlm.nih.gov/PMC8978438
https://doaj.org/article/cd549500855e4984ad0ba4733ba62c36
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wUZfxr7nrgsa7G3T5liybD-MsYRkZdAySgN5E5IsbYVgb25C2_9-J9lOly0dGINtGSTdnfX7-U53AG8yVyLr0pYiR-aUaxFTpYyiuXEocAS0SXDFnJyK4xn_Ok_nO9CXO-om8HIrtfP1pGbN4v31r5tPaPAfg8Hn4sPl0Gdhoz4u3TvqEnq1C_u4MglPxk74rVfB5-_vN85sfe8A7rOUZQiZxMY6FdL5b8Og_4ZS_uVPDcvU9CE86PAl-dwqxCPYsdVjuNdWnLx5Aos_8mrUFakduej_KhCEgsQHhfRVI4iqSuIQhdLlKlxj69Hk7JyE6jkE0S5pN-97OZOmi6oj-LVv2t0ST2E2nZyPj2lXcIEaBG5LWpYIjkSSq3RYGjR1xlyaOlzBHX4WdaksV1w7lecujl1WpIxbkQ6NTrNCO6cz9gz2qrqyL4AYGxsmSlY6EXNrrXY6dtompkCOqYYsgmE_vdJ02cj98BYysJJcyFY6EqUjg3TkVQRv1-_8bHNx_Lf1yEtt3dLn0Q436ua77MxSmhL5cRqC9Swvcq7KWCueMaaVSHAAERz1Mpe9bsoEB11w79-M4PX6MZql97WoytYr34Yjt0ZumUTwvFWRdU96FYsg21Ceja5uPqkufoTU3zmSfs7yCN71anbbrbun4vDOLryEg6TVfzyOYG_ZrOwrRFlLPYDdbJ7hOZ9-GcD-aHL67QyvxmI8CP8tBsG0fgNTdCgD
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIkRfEDeBAkaCJ7Ca2M6xDwhRaLWlxwPaSvtmfEKlKmn30Kp_it_I2Em2LEffKuUliRMfM2N_4xnPALwuvUWtSzuKOrKgQhcpVcooWhmPBEdAy6Ip5vCoGB6LL-N8vAY_-7Mwwa2ynxPjRG0bE_bIt1iBWEMEo9KHs3MaskYF62qfQqNli313sUCVbfp-7zPS9w1juzujT0PaZRWgBtHJjFqLCKBglcoza5CfOfd57nGZ8ij72ionlNBeVZVPU18Oci4cVm001qy91yXH_96AmyLsjKP8lOOlgpeF_AD9wZyq2JpmITocDf7ywYDI6GJl8Ys5Av4FbP_2z_zDSBvXvt27cKcDreRjy2X3YM3V9-FWm8by4gGc_haso6lJ48lJv1VBEF-S4GnSp6IgqrbEI7Sls3m8x9LbO19HJKbkIQihSRsRIDAPmXSuegSXkEl7BOMhHF_LeD-C9bqp3RMgxqWGF5ZbX6TCOae9Tr12zAxQcVUZTyDrh1eaLsR56N6pjKpOVciWJBJJIiNJ5CKBt8tvztoAH1eW3g5UW5YMwbnjg2byXXayLo1FpTuPHoBODCqhbKqVKDnXqmDYgQQ2e5rLbsaYykv-TuDV8jXKejDgqNo181BGoMKOCitL4HHLIsuW8JyXCPXx5-UK86w0dfVNffIjxhOvBmUleJXAu57NLpv1_6F4enUvXsLt4ejwQB7sHe0_gw3WSgFem7A-m8zdc8RyM_0iChCBb9ctsb8Aw7JcoQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9UwFD_oRPFF_LY6NYJvGtY2ado-urnL_BoiG-wt5HMORjvuehn-954kbd3VKQh9aXNakp6c5nd6zvkF4HXtLXpd2lH0kTnlWuRUKaNoYzwqHAFtGUMxX_bF3iH_eFQdXarij9nuU0gy1TQElqZu2DqzPpl4I7bOi8C7RkMmegjNlfTiOtzgYekL4VqxM8cRAmP_VCpz5X1ry1Fk7b8Kav6ZMflb2DSuRou7cGeEkeRd0vs9uOa6-3AzbSz54wGcXqLP6DvSe3Iy_TwgiPhIyP2YNocgqrPEI9ikwyqeo_T27rcDEjfJIQhqSarRD-okyzF5juBHfZmKIh7C4WL3YGePjvsqUIP4bKDWIgYSZaOqwhq0aMZ8VXlcqD1-_bRVjiuuvWoan-e-bivGnagKo6u61d7rmj2Cja7v3BMgxuWGCcusFzl3zmmvc69daVp0JVXBMiim1yvNSDoehncqo_PRCJlUIlElMqpEXmTwZr7nLFFu_FN6O2htlgx02fFCvzyWo_VJY9ENrmJOnuNtw5XNteI1Y1qJEgeQweakczna8LkscdAtD2HMDF7NzWh9IaSiOtevggxHFxpdyDKDx2mKzD1hFasRfOPD67XJs9bV9Zbu5Htk-G7Qt-esyeDtNM1-devvr-Lp_4m_hFtf3y_k5w_7n57B7TIZBR6bsDEsV-45gq1Bv4j29BM0MCQM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+improving+the+pre-training+and+fine-tuning+of+BERT+model+for+biomedical+relation+extraction&rft.jtitle=BMC+bioinformatics&rft.au=Su%2C+Peng&rft.au=Vijay-Shanker%2C+K&rft.date=2022-04-04&rft.eissn=1471-2105&rft.volume=23&rft.issue=1&rft.spage=120&rft_id=info:doi/10.1186%2Fs12859-022-04642-w&rft_id=info%3Apmid%2F35379166&rft.externalDocID=35379166
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon