Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) trigg...
Saved in:
Published in | Cell reports (Cambridge) Vol. 18; no. 9; pp. 2228 - 2242 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.02.2017
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.
[Display omitted]
•Cellular responses to low pH were different from hypoxia and nutrient starvation•Extracellular acidic pH activates SREBP2 as a transcriptional regulator•SREBP2 increases cholesterol biosynthetic genes under low pH•pH-regulated SREBP2 target genes (e.g., ACSS2) affect tumor growth and malignancy
Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients. |
---|---|
AbstractList | Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.
[Display omitted]
•Cellular responses to low pH were different from hypoxia and nutrient starvation•Extracellular acidic pH activates SREBP2 as a transcriptional regulator•SREBP2 increases cholesterol biosynthetic genes under low pH•pH-regulated SREBP2 target genes (e.g., ACSS2) affect tumor growth and malignancy
Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients. Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. : Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients. Keywords: epigenetics, extracellular low pH, sterol regulatory element-binding protein 2, acyl-CoA synthetase short-chain family member 2, cancer metabolism, tumor microenvironment, nutrient starvation, hypoxia, lacate |
Author | Shimamura, Teppei Sakai, Juro Yamamoto, Shogo Kodama, Tatsuhiko Yoshida, Tetsuo Kondo, Ayano Osawa, Tsuyoshi Hamakubo, Takao Aburatani, Hiroyuki Nakaki, Ryo |
Author_xml | – sequence: 1 givenname: Ayano surname: Kondo fullname: Kondo, Ayano organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 2 givenname: Shogo surname: Yamamoto fullname: Yamamoto, Shogo organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 3 givenname: Ryo surname: Nakaki fullname: Nakaki, Ryo organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 4 givenname: Teppei surname: Shimamura fullname: Shimamura, Teppei organization: Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan – sequence: 5 givenname: Takao surname: Hamakubo fullname: Hamakubo, Takao organization: Department of Quantitative Biology and Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 6 givenname: Juro surname: Sakai fullname: Sakai, Juro organization: Division of Metabolic Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 7 givenname: Tatsuhiko surname: Kodama fullname: Kodama, Tatsuhiko organization: Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 8 givenname: Tetsuo surname: Yoshida fullname: Yoshida, Tetsuo organization: Translational Research Unit, Kyowa Hakko Kirin Co., Ltd. 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 441-8731, Japan – sequence: 9 givenname: Hiroyuki surname: Aburatani fullname: Aburatani, Hiroyuki email: haburata-tky@umin.ac.jp organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan – sequence: 10 givenname: Tsuyoshi surname: Osawa fullname: Osawa, Tsuyoshi email: osawa@lsbm.org organization: The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28249167$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcFu1DAQjVARLaV_gJCPXBLGjhMnHJBKtdBKlUCwd8uxZxevEnuxnYr-PQ5pEeIAc_GM9d4b-73nxYnzDoviJYWKAm3fHCqNY8BjxYCKClgF0D4pzhijtKSMi5M_-tPiIsYD5GqB0p4_K05Zx3hPW3FWuM2PFFQWG-dRBXKprbGaHK9zl-ydShhJ-obka8LgR_IF9xmWfLgnmxEndKl8b52xbk8-B5_QOsJI8ssw5ZFs58mHZdoHjNF696J4ulNjxIuH87zYfthsr67L208fb64ub0vdcEil0QOF3DX9TkGdP4E164dWGA6tQuwBODZDq5XRPD8eazAIqHtqetUorM-Lm1XWeHWQx2AnFe6lV1b-uvBhL1VIVo8ohaDNwJHWyHN1YtgpahoUimefsVu0Xq9ax-C_zxiTnGxcDFMO_Rwl7UQtGBPQZeirB-g8TGh-L360OwPergAdfIwBd1LbpFI2JodgR0lBLvHKg1zjlUu8EpjM2WUy_4v8qP8f2ruVhtnvO4tBRm3RaTQ2oE7ZEftvgZ-SHMEl |
CitedBy_id | crossref_primary_10_3389_fonc_2023_1258442 crossref_primary_10_34175_jno202004001 crossref_primary_10_1126_sciimmunol_adi4191 crossref_primary_10_1242_dmm_050814 crossref_primary_10_1016_j_trecan_2019_09_007 crossref_primary_10_1152_ajplung_00544_2018 crossref_primary_10_3390_cancers12102760 crossref_primary_10_1038_nrc_2017_77 crossref_primary_10_1111_cas_15722 crossref_primary_10_1097_MCO_0000000000000381 crossref_primary_10_1146_annurev_physiol_021119_034627 crossref_primary_10_1038_s41598_021_00184_y crossref_primary_10_3390_ijms20153694 crossref_primary_10_1016_j_actbio_2018_07_021 crossref_primary_10_1002_prp2_454 crossref_primary_10_3390_cimb45120609 crossref_primary_10_1038_s41467_024_54435_3 crossref_primary_10_3390_metabo11010028 crossref_primary_10_1007_s10555_023_10119_w crossref_primary_10_1016_j_semcancer_2023_03_001 crossref_primary_10_1038_s41467_025_57583_2 crossref_primary_10_1246_bcsj_20180353 crossref_primary_10_1007_s43032_023_01364_z crossref_primary_10_3389_fphys_2020_580171 crossref_primary_10_1053_j_gastro_2022_06_058 crossref_primary_10_1016_j_apsb_2021_06_009 crossref_primary_10_1007_s10863_018_9742_3 crossref_primary_10_1038_s41556_024_01372_4 crossref_primary_10_1016_j_jprot_2021_104436 crossref_primary_10_1016_j_jcis_2022_12_019 crossref_primary_10_1016_j_stem_2023_11_011 crossref_primary_10_1038_s41467_019_10194_0 crossref_primary_10_1016_j_phymed_2024_155874 crossref_primary_10_1186_s12964_024_01762_z crossref_primary_10_1016_j_molcel_2017_10_019 crossref_primary_10_1016_j_drudis_2018_05_016 crossref_primary_10_1038_s41419_020_03336_6 crossref_primary_10_3390_cancers15092572 crossref_primary_10_1002_jcb_27196 crossref_primary_10_1016_j_it_2024_09_013 crossref_primary_10_1002_cac2_12247 crossref_primary_10_1021_acsnano_0c09996 crossref_primary_10_1371_journal_pbio_3002367 crossref_primary_10_1016_j_celrep_2020_107613 crossref_primary_10_15252_embj_2023114032 crossref_primary_10_62347_UJVP4361 crossref_primary_10_3389_fpsyt_2023_1156524 crossref_primary_10_32948_ajo_2021_08_14 crossref_primary_10_1016_j_phrs_2025_107706 crossref_primary_10_1007_s10354_018_0626_2 crossref_primary_10_1038_s41568_022_00543_5 crossref_primary_10_1016_j_bbamcr_2019_01_016 crossref_primary_10_1111_cas_15699 crossref_primary_10_1016_j_carbpol_2019_115061 crossref_primary_10_1016_j_yexcr_2018_05_026 crossref_primary_10_1093_pnasnexus_pgad306 crossref_primary_10_1007_s10555_021_10005_3 crossref_primary_10_1016_j_bbadis_2018_10_026 crossref_primary_10_1158_0008_5472_CAN_21_2934 crossref_primary_10_3390_cells9112352 crossref_primary_10_1158_0008_5472_CAN_21_0914 crossref_primary_10_1016_j_bbcan_2023_188942 crossref_primary_10_3389_fimmu_2022_1057546 crossref_primary_10_1016_j_ccell_2021_05_015 crossref_primary_10_1002_jbt_23733 crossref_primary_10_1016_j_biopha_2025_117851 crossref_primary_10_1038_s42003_022_03065_w crossref_primary_10_3390_cancers15072144 crossref_primary_10_1016_j_celrep_2021_109455 crossref_primary_10_1016_j_biochi_2018_10_022 crossref_primary_10_3389_fonc_2021_777273 crossref_primary_10_3390_pharmaceutics15092216 crossref_primary_10_3389_fonc_2019_00159 crossref_primary_10_1007_s00401_017_1771_1 crossref_primary_10_1089_ars_2023_0340 crossref_primary_10_1016_j_cpcardiol_2023_102081 crossref_primary_10_3390_cancers13225810 crossref_primary_10_1016_j_bbrc_2021_07_072 crossref_primary_10_1186_s12915_021_01112_2 crossref_primary_10_1016_j_bbagrm_2019_06_004 crossref_primary_10_1016_j_celrep_2024_113796 crossref_primary_10_1038_s41416_018_0162_2 crossref_primary_10_1016_j_intimp_2024_112319 crossref_primary_10_1038_s41598_018_31822_7 crossref_primary_10_1002_med_21765 crossref_primary_10_1007_s10555_019_09786_5 crossref_primary_10_3389_fmmed_2022_1044585 crossref_primary_10_1038_s41598_020_78867_1 crossref_primary_10_1186_s13046_024_03060_5 crossref_primary_10_3389_fimmu_2023_1121864 crossref_primary_10_1016_j_bbadis_2018_04_019 crossref_primary_10_3390_cancers13184696 crossref_primary_10_1016_j_ejphar_2022_175087 crossref_primary_10_1101_gad_329771_119 crossref_primary_10_1016_j_isci_2024_110608 crossref_primary_10_1093_nar_gkab157 crossref_primary_10_1016_j_devcel_2021_04_013 crossref_primary_10_1016_j_devcel_2022_02_004 crossref_primary_10_1016_j_drup_2021_100787 crossref_primary_10_1177_1535370218760283 crossref_primary_10_3390_ijms21197315 crossref_primary_10_1007_s12272_023_01473_y crossref_primary_10_1038_s41467_019_14262_3 crossref_primary_10_1016_j_bcp_2023_115907 crossref_primary_10_1186_s13045_023_01498_2 crossref_primary_10_1007_s11010_024_05121_x crossref_primary_10_3390_cancers12040898 crossref_primary_10_1002_mco2_27 crossref_primary_10_1016_j_celrep_2019_08_087 crossref_primary_10_1073_pnas_2319055121 crossref_primary_10_1016_j_bbagen_2023_130330 crossref_primary_10_3389_fonc_2023_1034205 crossref_primary_10_1039_D2CS00722C crossref_primary_10_1080_10409238_2018_1556578 crossref_primary_10_1038_s12276_023_01079_w crossref_primary_10_1038_s42003_019_0522_3 crossref_primary_10_1039_D2CB00172A crossref_primary_10_1016_j_devcel_2020_08_009 crossref_primary_10_1016_j_it_2023_08_008 crossref_primary_10_3389_fonc_2020_01510 crossref_primary_10_1016_j_bcp_2025_116802 crossref_primary_10_3389_fcell_2021_739392 crossref_primary_10_1186_s13104_024_06900_x crossref_primary_10_1007_s10585_019_09990_1 crossref_primary_10_3390_cells9122598 crossref_primary_10_3390_cells9040989 crossref_primary_10_1111_jcmm_17288 crossref_primary_10_1016_j_it_2021_11_007 crossref_primary_10_1016_j_tranon_2019_10_001 crossref_primary_10_2147_BTT_S365490 crossref_primary_10_1016_j_cell_2019_09_035 crossref_primary_10_1038_s42255_020_0174_0 crossref_primary_10_1111_nan_12774 |
Cites_doi | 10.1016/j.ccell.2014.12.002 10.1074/jbc.C000145200 10.1074/jbc.M103848200 10.1172/JCI1411 10.1158/0008-5472.CAN-12-3231 10.1016/S0092-8674(00)81304-5 10.1016/j.cell.2014.11.020 10.1172/JCI2961 10.1158/0008-5472.CAN-07-5575 10.1016/j.cell.2014.11.025 10.1038/nm.3587 10.1016/S0092-8674(00)80213-5 10.1074/jbc.M208915200 10.1371/journal.pone.0116515 10.1038/nrc2981 10.1038/343425a0 10.1038/leu.2013.336 10.1038/nrc3110 10.1016/j.biocel.2007.05.002 10.1038/bjc.1994.360 10.1172/JCI0215593 10.1016/j.molcel.2012.10.025 10.1016/j.cell.2015.08.016 10.1074/jbc.M108347200 10.1016/j.molcel.2015.10.025 10.1038/nrc1751 10.1002/j.1460-2075.1996.tb00438.x 10.1016/S0092-8674(02)00872-3 10.1016/j.cmet.2016.07.003 10.1038/nrc1478 10.1016/j.cmet.2008.07.007 10.1073/pnas.1108462109 10.3389/fphys.2013.00370 10.1158/0008-5472.CAN-08-2394 10.1038/nrc1187 10.1126/science.1160809 10.1038/nrc2222 10.1093/jnci/djm135 10.1074/jbc.272.22.14459 10.1016/j.cell.2008.08.021 |
ContentType | Journal Article |
Copyright | 2017 The Author(s) Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 The Author(s) – notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2017.02.006 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 2242 |
ExternalDocumentID | oai_doaj_org_article_7715b4e13e444487bfa1d5e7a4016e8e 28249167 10_1016_j_celrep_2017_02_006 S2211124717301717 |
Genre | Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c540t-dcb1054059fa03124e329b67d406aee9004e5b6cadc4acee30de0ec91d9a5ae3 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:12:37 EDT 2025 Thu Jul 10 17:16:01 EDT 2025 Thu Apr 03 06:57:03 EDT 2025 Thu Apr 24 23:13:03 EDT 2025 Tue Jul 01 03:07:37 EDT 2025 Wed May 17 00:03:04 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | cancer metabolism hypoxia extracellular low pH lacate nutrient starvation sterol regulatory element-binding protein 2 tumor microenvironment acyl-CoA synthetase short-chain family member 2 epigenetics |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-dcb1054059fa03124e329b67d406aee9004e5b6cadc4acee30de0ec91d9a5ae3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124717301717 |
PMID | 28249167 |
PQID | 1873722708 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7715b4e13e444487bfa1d5e7a4016e8e proquest_miscellaneous_1873722708 pubmed_primary_28249167 crossref_citationtrail_10_1016_j_celrep_2017_02_006 crossref_primary_10_1016_j_celrep_2017_02_006 elsevier_sciencedirect_doi_10_1016_j_celrep_2017_02_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-02-28 |
PublicationDateYYYYMMDD | 2017-02-28 |
PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2017 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Haferlach, Nagata, Grossmann, Okuno, Bacher, Nagae, Schnittger, Sanada, Kon, Alpermann (bib14) 2014; 28 Vander Heiden, Cantley, Thompson (bib36) 2009; 324 Wang, Zelenski, Yang, Sakai, Brown, Goldstein (bib37) 1996; 15 Gatenby, Gillies (bib11) 2004; 4 Hsu, Sabatini (bib17) 2008; 134 Colgan, Tang, Werstuck, Austin (bib6) 2007; 39 Osawa, Muramatsu, Wang, Tsuchida, Kodama, Minami, Shibuya (bib25) 2011; 108 Srivastava, Barber, Jacobson (bib33) 2007; 22 Cairns, Harris, Mak (bib2) 2011; 11 Comerford, Huang, Du, Wang, Cai, Witkiewicz, Walters, Tantawy, Fu, Manning (bib7) 2014; 159 Porstmann, Santos, Griffiths, Cully, Wu, Leevers, Griffiths, Chung, Schulze (bib27) 2008; 8 Xu, Nagati, Xie, Li, Walters, Moon, Gerard, Huang, Comerford, Hammer (bib42) 2014; 20 Robey, Baggett, Kirkpatrick, Roe, Dosescu, Sloane, Hashim, Morse, Raghunand, Gatenby (bib28) 2009; 69 Trédan, Galmarini, Patel, Tannock (bib35) 2007; 99 Damaghi, Wojtkowiak, Gillies (bib9) 2013; 4 Webb, Chimenti, Jacobson, Barber (bib38) 2011; 11 Horton, Goldstein, Brown (bib16) 2002; 109 Sakai, Duncan, Rawson, Hua, Brown, Goldstein (bib29) 1996; 85 Chen, Xu, Nagati, Hogg, Das, Gerard, Garcia (bib5) 2015; 10 Brown, Goldstein (bib1) 1997; 89 Corbet, Pinto, Martherus, Santiago de Jesus, Polet, Feron (bib8) 2016; 24 Goldstein, Brown (bib13) 1990; 343 Schug, Peck, Jones, Zhang, Grosskurth, Alam, Goodwin, Smethurst, Mason, Blyth (bib30) 2015; 27 Tafani, Cohn, Karpinich, Rothman, Russo, Farber (bib34) 2002; 277 Kim, Sarraf, Wright, Yao, Mueller, Solanes, Lowell, Spiegelman (bib19) 1998; 101 Mashimo, Pichumani, Vemireddy, Hatanpaa, Singh, Sirasanagandla, Nannepaga, Piccirillo, Kovacs, Foong (bib21) 2014; 159 Demierre, Higgins, Gruber, Hawk, Lippman (bib10) 2005; 5 Menendez, Lupu (bib24) 2007; 7 Horton, Shimomura, Brown, Hammer, Goldstein, Shimano (bib15) 1998; 101 Xu, Fukumura, Jain (bib41) 2002; 277 Luo, Tannock (bib20) 1994; 70 Osawa, Tsuchida, Muramatsu, Shimamura, Wang, Suehiro, Kanki, Wada, Yuasa, Aburatani (bib26) 2013; 73 Xu, Fidler (bib40) 2000; 60 Gerweck, Seetharaman (bib12) 1996; 56 McBrian, Behbahan, Ferrari, Su, Huang, Li, Hong, Christofk, Vogelauer, Seligson (bib23) 2013; 49 Silva, Yunes, Gillies, Gatenby (bib32) 2009; 69 Ikeda, Yamamoto, Okamura, Fujino, Takahashi, Takeuchi, Osborne, Yamamoto, Ito, Sakai (bib18) 2001; 276 Chang, Qiu, O’Sullivan, Buck, Noguchi, Curtis, Chen, Gindin, Gubin, van der Windt (bib3) 2015; 162 Matsumura, Nakaki, Inagaki, Yoshida, Kano, Kimura, Tanaka, Tsutsumi, Nakao, Doi (bib22) 2015; 60 Yang, Espenshade, Wright, Yabe, Gong, Aebersold, Goldstein, Brown (bib43) 2002; 110 Whyte, Kirschmeier, Hockenberry, Nunez-Oliva, James, Catino, Bishop, Pai (bib39) 1997; 272 Semenza (bib31) 2003; 3 Chen, Sun, Pradines, Favre, Adnane, Sebti (bib4) 2000; 275 Mashimo (10.1016/j.celrep.2017.02.006_bib21) 2014; 159 Horton (10.1016/j.celrep.2017.02.006_bib15) 1998; 101 Menendez (10.1016/j.celrep.2017.02.006_bib24) 2007; 7 Srivastava (10.1016/j.celrep.2017.02.006_bib33) 2007; 22 Damaghi (10.1016/j.celrep.2017.02.006_bib9) 2013; 4 Wang (10.1016/j.celrep.2017.02.006_bib37) 1996; 15 Kim (10.1016/j.celrep.2017.02.006_bib19) 1998; 101 Chen (10.1016/j.celrep.2017.02.006_bib5) 2015; 10 Cairns (10.1016/j.celrep.2017.02.006_bib2) 2011; 11 Porstmann (10.1016/j.celrep.2017.02.006_bib27) 2008; 8 Haferlach (10.1016/j.celrep.2017.02.006_bib14) 2014; 28 Chang (10.1016/j.celrep.2017.02.006_bib3) 2015; 162 Whyte (10.1016/j.celrep.2017.02.006_bib39) 1997; 272 Robey (10.1016/j.celrep.2017.02.006_bib28) 2009; 69 Yang (10.1016/j.celrep.2017.02.006_bib43) 2002; 110 Xu (10.1016/j.celrep.2017.02.006_bib42) 2014; 20 Vander Heiden (10.1016/j.celrep.2017.02.006_bib36) 2009; 324 Corbet (10.1016/j.celrep.2017.02.006_bib8) 2016; 24 Schug (10.1016/j.celrep.2017.02.006_bib30) 2015; 27 Goldstein (10.1016/j.celrep.2017.02.006_bib13) 1990; 343 Gatenby (10.1016/j.celrep.2017.02.006_bib11) 2004; 4 Xu (10.1016/j.celrep.2017.02.006_bib41) 2002; 277 Ikeda (10.1016/j.celrep.2017.02.006_bib18) 2001; 276 Comerford (10.1016/j.celrep.2017.02.006_bib7) 2014; 159 Semenza (10.1016/j.celrep.2017.02.006_bib31) 2003; 3 McBrian (10.1016/j.celrep.2017.02.006_bib23) 2013; 49 Trédan (10.1016/j.celrep.2017.02.006_bib35) 2007; 99 Horton (10.1016/j.celrep.2017.02.006_bib16) 2002; 109 Brown (10.1016/j.celrep.2017.02.006_bib1) 1997; 89 Sakai (10.1016/j.celrep.2017.02.006_bib29) 1996; 85 Osawa (10.1016/j.celrep.2017.02.006_bib26) 2013; 73 Colgan (10.1016/j.celrep.2017.02.006_bib6) 2007; 39 Luo (10.1016/j.celrep.2017.02.006_bib20) 1994; 70 Matsumura (10.1016/j.celrep.2017.02.006_bib22) 2015; 60 Silva (10.1016/j.celrep.2017.02.006_bib32) 2009; 69 Hsu (10.1016/j.celrep.2017.02.006_bib17) 2008; 134 Tafani (10.1016/j.celrep.2017.02.006_bib34) 2002; 277 Webb (10.1016/j.celrep.2017.02.006_bib38) 2011; 11 Chen (10.1016/j.celrep.2017.02.006_bib4) 2000; 275 Gerweck (10.1016/j.celrep.2017.02.006_bib12) 1996; 56 Osawa (10.1016/j.celrep.2017.02.006_bib25) 2011; 108 Xu (10.1016/j.celrep.2017.02.006_bib40) 2000; 60 Demierre (10.1016/j.celrep.2017.02.006_bib10) 2005; 5 |
References_xml | – volume: 24 start-page: 311 year: 2016 end-page: 323 ident: bib8 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metab. – volume: 159 start-page: 1603 year: 2014 end-page: 1614 ident: bib21 article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases publication-title: Cell – volume: 89 start-page: 331 year: 1997 end-page: 340 ident: bib1 article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor publication-title: Cell – volume: 277 start-page: 49569 year: 2002 end-page: 49576 ident: bib34 article-title: Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha publication-title: J. Biol. Chem. – volume: 39 start-page: 1843 year: 2007 end-page: 1851 ident: bib6 article-title: Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2 publication-title: Int. J. Biochem. Cell Biol. – volume: 69 start-page: 2260 year: 2009 end-page: 2268 ident: bib28 article-title: Bicarbonate increases tumor pH and inhibits spontaneous metastases publication-title: Cancer Res. – volume: 109 start-page: 1125 year: 2002 end-page: 1131 ident: bib16 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. – volume: 22 start-page: 30 year: 2007 end-page: 39 ident: bib33 article-title: Intracellular pH sensors: design principles and functional significance publication-title: Physiology (Bethesda) – volume: 276 start-page: 34259 year: 2001 end-page: 34269 ident: bib18 article-title: Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1 publication-title: J. Biol. Chem. – volume: 108 start-page: 20725 year: 2011 end-page: 20729 ident: bib25 article-title: Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis publication-title: Proc. Natl. Acad. Sci. USA – volume: 277 start-page: 11368 year: 2002 end-page: 11374 ident: bib41 article-title: Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF publication-title: J. Biol. Chem. – volume: 272 start-page: 14459 year: 1997 end-page: 14464 ident: bib39 article-title: K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors publication-title: J. Biol. Chem. – volume: 162 start-page: 1229 year: 2015 end-page: 1241 ident: bib3 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell – volume: 4 start-page: 370 year: 2013 ident: bib9 article-title: pH sensing and regulation in cancer publication-title: Front. Physiol. – volume: 8 start-page: 224 year: 2008 end-page: 236 ident: bib27 article-title: SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth publication-title: Cell Metab. – volume: 324 start-page: 1029 year: 2009 end-page: 1033 ident: bib36 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science – volume: 20 start-page: 1018 year: 2014 end-page: 1026 ident: bib42 article-title: An acetate switch regulates stress erythropoiesis publication-title: Nat. Med. – volume: 275 start-page: 17974 year: 2000 end-page: 17978 ident: bib4 article-title: Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice publication-title: J. Biol. Chem. – volume: 56 start-page: 1194 year: 1996 end-page: 1198 ident: bib12 article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer publication-title: Cancer Res. – volume: 27 start-page: 57 year: 2015 end-page: 71 ident: bib30 article-title: Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress publication-title: Cancer Cell – volume: 60 start-page: 4610 year: 2000 end-page: 4616 ident: bib40 article-title: Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells publication-title: Cancer Res. – volume: 5 start-page: 930 year: 2005 end-page: 942 ident: bib10 article-title: Statins and cancer prevention publication-title: Nat. Rev. Cancer – volume: 159 start-page: 1591 year: 2014 end-page: 1602 ident: bib7 article-title: Acetate dependence of tumors publication-title: Cell – volume: 110 start-page: 489 year: 2002 end-page: 500 ident: bib43 article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER publication-title: Cell – volume: 4 start-page: 891 year: 2004 end-page: 899 ident: bib11 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nat. Rev. Cancer – volume: 101 start-page: 1 year: 1998 end-page: 9 ident: bib19 article-title: Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1 publication-title: J. Clin. Invest. – volume: 7 start-page: 763 year: 2007 end-page: 777 ident: bib24 article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis publication-title: Nat. Rev. Cancer – volume: 3 start-page: 721 year: 2003 end-page: 732 ident: bib31 article-title: Targeting HIF-1 for cancer therapy publication-title: Nat. Rev. Cancer – volume: 10 start-page: e0116515 year: 2015 ident: bib5 article-title: The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment publication-title: PLoS ONE – volume: 60 start-page: 584 year: 2015 end-page: 596 ident: bib22 article-title: H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation publication-title: Mol. Cell – volume: 11 start-page: 671 year: 2011 end-page: 677 ident: bib38 article-title: Dysregulated pH: a perfect storm for cancer progression publication-title: Nat. Rev. Cancer – volume: 99 start-page: 1441 year: 2007 end-page: 1454 ident: bib35 article-title: Drug resistance and the solid tumor microenvironment publication-title: J. Natl. Cancer Inst. – volume: 15 start-page: 1012 year: 1996 end-page: 1020 ident: bib37 article-title: Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis publication-title: EMBO J. – volume: 134 start-page: 703 year: 2008 end-page: 707 ident: bib17 article-title: Cancer cell metabolism: Warburg and beyond publication-title: Cell – volume: 343 start-page: 425 year: 1990 end-page: 430 ident: bib13 article-title: Regulation of the mevalonate pathway publication-title: Nature – volume: 69 start-page: 2677 year: 2009 end-page: 2684 ident: bib32 article-title: The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion publication-title: Cancer Res. – volume: 101 start-page: 2331 year: 1998 end-page: 2339 ident: bib15 article-title: Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2 publication-title: J. Clin. Invest. – volume: 28 start-page: 241 year: 2014 end-page: 247 ident: bib14 article-title: Landscape of genetic lesions in 944 patients with myelodysplastic syndromes publication-title: Leukemia – volume: 70 start-page: 617 year: 1994 end-page: 624 ident: bib20 article-title: Inhibition of the regulation of intracellular pH: potential of 5-(N,N-hexamethylene) amiloride in tumour-selective therapy publication-title: Br. J. Cancer – volume: 85 start-page: 1037 year: 1996 end-page: 1046 ident: bib29 article-title: Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment publication-title: Cell – volume: 11 start-page: 85 year: 2011 end-page: 95 ident: bib2 article-title: Regulation of cancer cell metabolism publication-title: Nat. Rev. Cancer – volume: 49 start-page: 310 year: 2013 end-page: 321 ident: bib23 article-title: Histone acetylation regulates intracellular pH publication-title: Mol. Cell – volume: 73 start-page: 3019 year: 2013 end-page: 3028 ident: bib26 article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages publication-title: Cancer Res. – volume: 27 start-page: 57 year: 2015 ident: 10.1016/j.celrep.2017.02.006_bib30 article-title: Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.12.002 – volume: 275 start-page: 17974 year: 2000 ident: 10.1016/j.celrep.2017.02.006_bib4 article-title: Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.C000145200 – volume: 276 start-page: 34259 year: 2001 ident: 10.1016/j.celrep.2017.02.006_bib18 article-title: Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M103848200 – volume: 101 start-page: 1 year: 1998 ident: 10.1016/j.celrep.2017.02.006_bib19 article-title: Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1 publication-title: J. Clin. Invest. doi: 10.1172/JCI1411 – volume: 73 start-page: 3019 year: 2013 ident: 10.1016/j.celrep.2017.02.006_bib26 article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-12-3231 – volume: 85 start-page: 1037 year: 1996 ident: 10.1016/j.celrep.2017.02.006_bib29 article-title: Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment publication-title: Cell doi: 10.1016/S0092-8674(00)81304-5 – volume: 159 start-page: 1591 year: 2014 ident: 10.1016/j.celrep.2017.02.006_bib7 article-title: Acetate dependence of tumors publication-title: Cell doi: 10.1016/j.cell.2014.11.020 – volume: 56 start-page: 1194 year: 1996 ident: 10.1016/j.celrep.2017.02.006_bib12 article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer publication-title: Cancer Res. – volume: 101 start-page: 2331 year: 1998 ident: 10.1016/j.celrep.2017.02.006_bib15 article-title: Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2 publication-title: J. Clin. Invest. doi: 10.1172/JCI2961 – volume: 69 start-page: 2260 year: 2009 ident: 10.1016/j.celrep.2017.02.006_bib28 article-title: Bicarbonate increases tumor pH and inhibits spontaneous metastases publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-5575 – volume: 159 start-page: 1603 year: 2014 ident: 10.1016/j.celrep.2017.02.006_bib21 article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases publication-title: Cell doi: 10.1016/j.cell.2014.11.025 – volume: 20 start-page: 1018 year: 2014 ident: 10.1016/j.celrep.2017.02.006_bib42 article-title: An acetate switch regulates stress erythropoiesis publication-title: Nat. Med. doi: 10.1038/nm.3587 – volume: 89 start-page: 331 year: 1997 ident: 10.1016/j.celrep.2017.02.006_bib1 article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor publication-title: Cell doi: 10.1016/S0092-8674(00)80213-5 – volume: 277 start-page: 49569 year: 2002 ident: 10.1016/j.celrep.2017.02.006_bib34 article-title: Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha publication-title: J. Biol. Chem. doi: 10.1074/jbc.M208915200 – volume: 10 start-page: e0116515 year: 2015 ident: 10.1016/j.celrep.2017.02.006_bib5 article-title: The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment publication-title: PLoS ONE doi: 10.1371/journal.pone.0116515 – volume: 11 start-page: 85 year: 2011 ident: 10.1016/j.celrep.2017.02.006_bib2 article-title: Regulation of cancer cell metabolism publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2981 – volume: 343 start-page: 425 year: 1990 ident: 10.1016/j.celrep.2017.02.006_bib13 article-title: Regulation of the mevalonate pathway publication-title: Nature doi: 10.1038/343425a0 – volume: 28 start-page: 241 year: 2014 ident: 10.1016/j.celrep.2017.02.006_bib14 article-title: Landscape of genetic lesions in 944 patients with myelodysplastic syndromes publication-title: Leukemia doi: 10.1038/leu.2013.336 – volume: 11 start-page: 671 year: 2011 ident: 10.1016/j.celrep.2017.02.006_bib38 article-title: Dysregulated pH: a perfect storm for cancer progression publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3110 – volume: 39 start-page: 1843 year: 2007 ident: 10.1016/j.celrep.2017.02.006_bib6 article-title: Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2 publication-title: Int. J. Biochem. Cell Biol. doi: 10.1016/j.biocel.2007.05.002 – volume: 70 start-page: 617 year: 1994 ident: 10.1016/j.celrep.2017.02.006_bib20 article-title: Inhibition of the regulation of intracellular pH: potential of 5-(N,N-hexamethylene) amiloride in tumour-selective therapy publication-title: Br. J. Cancer doi: 10.1038/bjc.1994.360 – volume: 109 start-page: 1125 year: 2002 ident: 10.1016/j.celrep.2017.02.006_bib16 article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver publication-title: J. Clin. Invest. doi: 10.1172/JCI0215593 – volume: 49 start-page: 310 year: 2013 ident: 10.1016/j.celrep.2017.02.006_bib23 article-title: Histone acetylation regulates intracellular pH publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.025 – volume: 162 start-page: 1229 year: 2015 ident: 10.1016/j.celrep.2017.02.006_bib3 article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression publication-title: Cell doi: 10.1016/j.cell.2015.08.016 – volume: 277 start-page: 11368 year: 2002 ident: 10.1016/j.celrep.2017.02.006_bib41 article-title: Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF publication-title: J. Biol. Chem. doi: 10.1074/jbc.M108347200 – volume: 60 start-page: 584 year: 2015 ident: 10.1016/j.celrep.2017.02.006_bib22 article-title: H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.025 – volume: 5 start-page: 930 year: 2005 ident: 10.1016/j.celrep.2017.02.006_bib10 article-title: Statins and cancer prevention publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1751 – volume: 15 start-page: 1012 year: 1996 ident: 10.1016/j.celrep.2017.02.006_bib37 article-title: Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00438.x – volume: 110 start-page: 489 year: 2002 ident: 10.1016/j.celrep.2017.02.006_bib43 article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER publication-title: Cell doi: 10.1016/S0092-8674(02)00872-3 – volume: 24 start-page: 311 year: 2016 ident: 10.1016/j.celrep.2017.02.006_bib8 article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.07.003 – volume: 4 start-page: 891 year: 2004 ident: 10.1016/j.celrep.2017.02.006_bib11 article-title: Why do cancers have high aerobic glycolysis? publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1478 – volume: 8 start-page: 224 year: 2008 ident: 10.1016/j.celrep.2017.02.006_bib27 article-title: SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth publication-title: Cell Metab. doi: 10.1016/j.cmet.2008.07.007 – volume: 108 start-page: 20725 year: 2011 ident: 10.1016/j.celrep.2017.02.006_bib25 article-title: Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1108462109 – volume: 4 start-page: 370 year: 2013 ident: 10.1016/j.celrep.2017.02.006_bib9 article-title: pH sensing and regulation in cancer publication-title: Front. Physiol. doi: 10.3389/fphys.2013.00370 – volume: 69 start-page: 2677 year: 2009 ident: 10.1016/j.celrep.2017.02.006_bib32 article-title: The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-2394 – volume: 22 start-page: 30 year: 2007 ident: 10.1016/j.celrep.2017.02.006_bib33 article-title: Intracellular pH sensors: design principles and functional significance publication-title: Physiology (Bethesda) – volume: 3 start-page: 721 year: 2003 ident: 10.1016/j.celrep.2017.02.006_bib31 article-title: Targeting HIF-1 for cancer therapy publication-title: Nat. Rev. Cancer doi: 10.1038/nrc1187 – volume: 324 start-page: 1029 year: 2009 ident: 10.1016/j.celrep.2017.02.006_bib36 article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation publication-title: Science doi: 10.1126/science.1160809 – volume: 7 start-page: 763 year: 2007 ident: 10.1016/j.celrep.2017.02.006_bib24 article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2222 – volume: 99 start-page: 1441 year: 2007 ident: 10.1016/j.celrep.2017.02.006_bib35 article-title: Drug resistance and the solid tumor microenvironment publication-title: J. Natl. Cancer Inst. doi: 10.1093/jnci/djm135 – volume: 60 start-page: 4610 year: 2000 ident: 10.1016/j.celrep.2017.02.006_bib40 article-title: Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells publication-title: Cancer Res. – volume: 272 start-page: 14459 year: 1997 ident: 10.1016/j.celrep.2017.02.006_bib39 article-title: K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.22.14459 – volume: 134 start-page: 703 year: 2008 ident: 10.1016/j.celrep.2017.02.006_bib17 article-title: Cancer cell metabolism: Warburg and beyond publication-title: Cell doi: 10.1016/j.cell.2008.08.021 |
SSID | ssj0000601194 |
Score | 2.5209944 |
Snippet | Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic... Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2228 |
SubjectTerms | Acetate-CoA Ligase - metabolism acyl-CoA synthetase short-chain family member 2 Animals cancer metabolism Cell Line, Tumor Cell Nucleus - metabolism Cell Proliferation - physiology Cholesterol - metabolism Disease Progression epigenetics extracellular low pH HeLa Cells Humans Hydrogen-Ion Concentration hypoxia lacate Mice Mice, SCID Neoplasms - metabolism Neoplasms - pathology nutrient starvation Promoter Regions, Genetic - physiology Protein Transport - physiology Sterol Regulatory Element Binding Protein 2 - metabolism sterol regulatory element-binding protein 2 tumor microenvironment Up-Regulation - physiology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_nbPH0TwtdikSdM-3skei6CIrnBvIU2mUlnbo9cF7793JmmXuwfZF_vUlrQdMpPOl3byfYy9ly0A5K3JNIQiSphlDgqVmapwug0liLhQ-POXcvNDfbrUl7ekvqgmLNEDp477YIzQjQJRgMKtMk3rRNBgHE4MSqiA3r6Y825NptI7mLjM6JeylFSzJZVZ1s3F4i4PuxGIrlKYRNlZ3slLkb7_Tnr6F_yMaejiEXs440d-lux-zO5B_4TdT4qSN09Zv_4zjY6-xlN5KT_zXeg8v9rgXtQxg2uOiI9_x94cdvxbEqIfxhu-TmXk2XkXl7nwr8Tf0PVc8mmgA_Qo8O3-9zDS0c9UPds_Y9uL9fbjJpslFTKP0GzKgm9EBGl163A4SwWFrJvSBMzrDqDGIQO6Kb0LXqGxUOQBcvC1CLXT6MTn7KQfenjJuC4CIFrMG0GQrHRV7kKuWuV0U5Ou1YoVS39aP9ONk-rFzi51Zb9s8oIlL9hcWvTCimWHq64S3caR9ufkqkNbIsuOJzCE7BxC9lgIrZhZHG1n3JHwBN6qO_L4d0tcWByW5F3Xw7C_tqIi_R9p8mrFXqSAORiJs1yFqNyc_g_jX7EHZFBaZf-anUzjHt4gTpqat3FI_AUGDA5P priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVpSqGXkn5vkxYVenWxZdmyDyUkZcNSSCntBnITsjQOLls79Xoh--87I9lbAg2B-mQZ2RJ6Gs-TPZrH2AdRA0BcqygDl3oJs8hAKiNVpCarXQ6J3yh8_jVfXMgvl9nlHps0W8cBXP9zaUd6Uhf96uPN7-0xGvynv7FaFlY9UPbJRIUMnPkD9hB9kyJNg_OR8Id3M-U4o1_NQlAsl5Bq2k93x4Nu-Suf1v-W27qLlnr3dHbAnoy8kp-EifCU7UH7jD0KSpPb56yd3wy9oa_0FHbKT2zjGsuvF3jm9c1gzZEJ8h84yt2Kfw8C9V2_5fMQXh6dNn77C_9GeR2algs-dFRApIEvN7-6nkpXIaq2fcGWZ_Pl50U0Si1EFinbEDlbJZ68lbVBMxcSUlFWuXLo7w1AiaYEWZVb46zEzkIaO4jBlokrTYbgvmT7bdfCa8az1AGyyLhKiKrlpoiNi2UtTVaVpHc1Y-k0ntqOachJDWOlp3iznzqgoAkFHQuNKMxYtLvrOqThuKf-KUG1q0tJtP2Frr_So01qpZKskpCkIPEoVFWbxGWgDK45cyhgxtQEtB75SOAZ-KjmnubfT_NCo7kSuqaFbrPWSUG6QELFxYy9ChNm10lc_Upk6-rNf7d7yB5TKWy5P2L7Q7-Bt0iahuqdt4M_bF0USQ priority: 102 providerName: Scholars Portal |
Title | Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression |
URI | https://dx.doi.org/10.1016/j.celrep.2017.02.006 https://www.ncbi.nlm.nih.gov/pubmed/28249167 https://www.proquest.com/docview/1873722708 https://doaj.org/article/7715b4e13e444487bfa1d5e7a4016e8e |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjL2O9lP4oKexWxbNmyH5uSEgodZc0gb0K2zsUjs4PrwPrf706yA3kYheYhREa2hU7SfVLuvo-x73ENAFGtRQou8RJmwkKihM4Tm9YuA-kThW9-ZKtf6nqTbk7Y5ZQLQ2GV49of1nS_Wo9X5mNvzndNM7-Lce-C3on-RibSF8ooT1Tuk_g2i8M5C_GNSK-HSPUF3TBl0Pkwrwq2PRBxpdSBvDM78lCeyP_IUf0PiHqHdPWavRqRJL8IjX3DTqB9y14EbcnHd6xd_h16S-fyFGjKL6rGNRXfrfCXVzSDB47Yj99hv3Zb_jNI0nf9I1-GgHKxaHzCC78lJoem5TEfOiqgbYGv93-6nkr3IY62fc_WV8v15UqM4gqiQpA2CFeV0sO1orY4sWMFSVyUmXbo4S1AgZMH0jKrrKsUNhaSyEEEVSFdYVM05wd22nYtfGI8TRwgboxKSeAss3lkXaRqZdOyIIWrGUum_jTVSDxO-hdbM0WY_TbBCoasYKLYoBVmTBzu2gXijSfqL8hUh7pEm-0vdP29GceN0VqmpQKZgMJPrsvaSpeCtrjLzCCHGdOToc3RKMRHNU-8_nwaFwYnKFnXttDtH4zMSQko1lE-Yx_DgDk0Eve7CvG5_vzs935hL6kUkuy_stOh38M3hElDeeaPF878bMDvG5X_A3HBEY4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiDflaSQ4Ro3zcnLgsIWuWvYhxBapN8uJJ1VQSaq0FfRv8QuZsZNKPaCVkLanJk0dxzOZ-SaZmY-x90EJAH4pvRhMaCnMPA1h5Mk01HFpEhC2UPjiMpl8j77M4_kR-9PXwlBaZWf7nU231rrbM-xWc7iqquFVgLELeid6jUxNX2SXWXkGu18Yt60_Tj-jkD8Ewel49mniddQCXoEQZeOZIhcWrGSlRrUOIgiDLE-kQf-mATJUHYjzpNCmiDT6kdA34EORCZPpGC8Gh73FbiP4kGQMpvPR_rkO9TcRln-R5ufRBPuKPZtWVsCyBWqUKaRrFpoceERLHHDgGP8FfK0DPH3A7nfIlZ-4xXnIjqB-xO44LsvdY1aPf29aTe8BKLGVnxSVqQq-muA3y6AGa45Yk1-hHJsl_wYL4g1r2h0fuwR2b1TZAhv-lTpHVDUP-KahDdQl4LPtz6alrYXL262fsNlNrPhTdlw3NTxnPA4NIE71c0FgMNGpr40flZGO84wYtQYs7NdTFV2jc-LbWKo-o-2HclJQJAXlBwqlMGDe_l8r1-jjmuNHJKr9sdSm2-5o2oXq9FRJKeI8AhFChJ9U5qUWJgapMapNIIUBk72g1YHW41DVNad_1-uFQoNA0tU1NNu1EikxDwXSTwfsmVOY_SQxvo4wHpAv_vu8b9ndyeziXJ1PL89esnv0iyvwf8WON-0WXiNE2-Rv7D3Bmbrhe_AvFq1N5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Acidic+pH+Activates+the+Sterol+Regulatory+Element-Binding+Protein+2+to+Promote+Tumor+Progression&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Kondo%2C+Ayano&rft.au=Yamamoto%2C+Shogo&rft.au=Nakaki%2C+Ryo&rft.au=Shimamura%2C+Teppei&rft.date=2017-02-28&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=18&rft.issue=9&rft.spage=2228&rft.epage=2242&rft_id=info:doi/10.1016%2Fj.celrep.2017.02.006&rft.externalDocID=S2211124717301717 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |