Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression

Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) trigg...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 18; no. 9; pp. 2228 - 2242
Main Authors Kondo, Ayano, Yamamoto, Shogo, Nakaki, Ryo, Shimamura, Teppei, Hamakubo, Takao, Sakai, Juro, Kodama, Tatsuhiko, Yoshida, Tetsuo, Aburatani, Hiroyuki, Osawa, Tsuyoshi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.02.2017
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. [Display omitted] •Cellular responses to low pH were different from hypoxia and nutrient starvation•Extracellular acidic pH activates SREBP2 as a transcriptional regulator•SREBP2 increases cholesterol biosynthetic genes under low pH•pH-regulated SREBP2 target genes (e.g., ACSS2) affect tumor growth and malignancy Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients.
AbstractList Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. [Display omitted] •Cellular responses to low pH were different from hypoxia and nutrient starvation•Extracellular acidic pH activates SREBP2 as a transcriptional regulator•SREBP2 increases cholesterol biosynthetic genes under low pH•pH-regulated SREBP2 target genes (e.g., ACSS2) affect tumor growth and malignancy Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients.
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification.
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic extracellular pH in cancer progression is not studied as extensively as that of hypoxia. Here, we show that extracellular acidic pH (pH 6.8) triggered activation of sterol regulatory element-binding protein 2 (SREBP2) by stimulating nuclear translocation and promoter binding to its targets, along with intracellular acidification. Interestingly, inhibition of SREBP2, but not SREBP1, suppressed the upregulation of low pH-induced cholesterol biosynthesis-related genes. Moreover, acyl-CoA synthetase short-chain family member 2 (ACSS2), a direct SREBP2 target, provided a growth advantage to cancer cells under acidic pH. Furthermore, acidic pH-responsive SREBP2 target genes were associated with reduced overall survival of cancer patients. Thus, our findings show that SREBP2 is a key transcriptional regulator of metabolic genes and progression of cancer cells, partly in response to extracellular acidification. : Kondo et al. find that extracellular acidic pH induces different cellular responses than hypoxia and nutrient starvation. SREBP2 is a key transcriptional regulator of cholesterol biosynthetic genes and ACSS2 in response to extracellular acidification. SREBP2 target genes increase tumor growth in low pH and correlate with decreased survival in patients. Keywords: epigenetics, extracellular low pH, sterol regulatory element-binding protein 2, acyl-CoA synthetase short-chain family member 2, cancer metabolism, tumor microenvironment, nutrient starvation, hypoxia, lacate
Author Shimamura, Teppei
Sakai, Juro
Yamamoto, Shogo
Kodama, Tatsuhiko
Yoshida, Tetsuo
Kondo, Ayano
Osawa, Tsuyoshi
Hamakubo, Takao
Aburatani, Hiroyuki
Nakaki, Ryo
Author_xml – sequence: 1
  givenname: Ayano
  surname: Kondo
  fullname: Kondo, Ayano
  organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 2
  givenname: Shogo
  surname: Yamamoto
  fullname: Yamamoto, Shogo
  organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 3
  givenname: Ryo
  surname: Nakaki
  fullname: Nakaki, Ryo
  organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 4
  givenname: Teppei
  surname: Shimamura
  fullname: Shimamura, Teppei
  organization: Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
– sequence: 5
  givenname: Takao
  surname: Hamakubo
  fullname: Hamakubo, Takao
  organization: Department of Quantitative Biology and Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 6
  givenname: Juro
  surname: Sakai
  fullname: Sakai, Juro
  organization: Division of Metabolic Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 7
  givenname: Tatsuhiko
  surname: Kodama
  fullname: Kodama, Tatsuhiko
  organization: Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 8
  givenname: Tetsuo
  surname: Yoshida
  fullname: Yoshida, Tetsuo
  organization: Translational Research Unit, Kyowa Hakko Kirin Co., Ltd. 1188 Shimotogari, Nagaizumi-cho, Sunto-gun, Shizuoka 441-8731, Japan
– sequence: 9
  givenname: Hiroyuki
  surname: Aburatani
  fullname: Aburatani, Hiroyuki
  email: haburata-tky@umin.ac.jp
  organization: Division of Genome Science, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
– sequence: 10
  givenname: Tsuyoshi
  surname: Osawa
  fullname: Osawa, Tsuyoshi
  email: osawa@lsbm.org
  organization: The Translational Systems Biology and Medicine Initiative (TSBMI), Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28249167$$D View this record in MEDLINE/PubMed
BookMark eNqFUcFu1DAQjVARLaV_gJCPXBLGjhMnHJBKtdBKlUCwd8uxZxevEnuxnYr-PQ5pEeIAc_GM9d4b-73nxYnzDoviJYWKAm3fHCqNY8BjxYCKClgF0D4pzhijtKSMi5M_-tPiIsYD5GqB0p4_K05Zx3hPW3FWuM2PFFQWG-dRBXKprbGaHK9zl-ydShhJ-obka8LgR_IF9xmWfLgnmxEndKl8b52xbk8-B5_QOsJI8ssw5ZFs58mHZdoHjNF696J4ulNjxIuH87zYfthsr67L208fb64ub0vdcEil0QOF3DX9TkGdP4E164dWGA6tQuwBODZDq5XRPD8eazAIqHtqetUorM-Lm1XWeHWQx2AnFe6lV1b-uvBhL1VIVo8ohaDNwJHWyHN1YtgpahoUimefsVu0Xq9ax-C_zxiTnGxcDFMO_Rwl7UQtGBPQZeirB-g8TGh-L360OwPergAdfIwBd1LbpFI2JodgR0lBLvHKg1zjlUu8EpjM2WUy_4v8qP8f2ruVhtnvO4tBRm3RaTQ2oE7ZEftvgZ-SHMEl
CitedBy_id crossref_primary_10_3389_fonc_2023_1258442
crossref_primary_10_34175_jno202004001
crossref_primary_10_1126_sciimmunol_adi4191
crossref_primary_10_1242_dmm_050814
crossref_primary_10_1016_j_trecan_2019_09_007
crossref_primary_10_1152_ajplung_00544_2018
crossref_primary_10_3390_cancers12102760
crossref_primary_10_1038_nrc_2017_77
crossref_primary_10_1111_cas_15722
crossref_primary_10_1097_MCO_0000000000000381
crossref_primary_10_1146_annurev_physiol_021119_034627
crossref_primary_10_1038_s41598_021_00184_y
crossref_primary_10_3390_ijms20153694
crossref_primary_10_1016_j_actbio_2018_07_021
crossref_primary_10_1002_prp2_454
crossref_primary_10_3390_cimb45120609
crossref_primary_10_1038_s41467_024_54435_3
crossref_primary_10_3390_metabo11010028
crossref_primary_10_1007_s10555_023_10119_w
crossref_primary_10_1016_j_semcancer_2023_03_001
crossref_primary_10_1038_s41467_025_57583_2
crossref_primary_10_1246_bcsj_20180353
crossref_primary_10_1007_s43032_023_01364_z
crossref_primary_10_3389_fphys_2020_580171
crossref_primary_10_1053_j_gastro_2022_06_058
crossref_primary_10_1016_j_apsb_2021_06_009
crossref_primary_10_1007_s10863_018_9742_3
crossref_primary_10_1038_s41556_024_01372_4
crossref_primary_10_1016_j_jprot_2021_104436
crossref_primary_10_1016_j_jcis_2022_12_019
crossref_primary_10_1016_j_stem_2023_11_011
crossref_primary_10_1038_s41467_019_10194_0
crossref_primary_10_1016_j_phymed_2024_155874
crossref_primary_10_1186_s12964_024_01762_z
crossref_primary_10_1016_j_molcel_2017_10_019
crossref_primary_10_1016_j_drudis_2018_05_016
crossref_primary_10_1038_s41419_020_03336_6
crossref_primary_10_3390_cancers15092572
crossref_primary_10_1002_jcb_27196
crossref_primary_10_1016_j_it_2024_09_013
crossref_primary_10_1002_cac2_12247
crossref_primary_10_1021_acsnano_0c09996
crossref_primary_10_1371_journal_pbio_3002367
crossref_primary_10_1016_j_celrep_2020_107613
crossref_primary_10_15252_embj_2023114032
crossref_primary_10_62347_UJVP4361
crossref_primary_10_3389_fpsyt_2023_1156524
crossref_primary_10_32948_ajo_2021_08_14
crossref_primary_10_1016_j_phrs_2025_107706
crossref_primary_10_1007_s10354_018_0626_2
crossref_primary_10_1038_s41568_022_00543_5
crossref_primary_10_1016_j_bbamcr_2019_01_016
crossref_primary_10_1111_cas_15699
crossref_primary_10_1016_j_carbpol_2019_115061
crossref_primary_10_1016_j_yexcr_2018_05_026
crossref_primary_10_1093_pnasnexus_pgad306
crossref_primary_10_1007_s10555_021_10005_3
crossref_primary_10_1016_j_bbadis_2018_10_026
crossref_primary_10_1158_0008_5472_CAN_21_2934
crossref_primary_10_3390_cells9112352
crossref_primary_10_1158_0008_5472_CAN_21_0914
crossref_primary_10_1016_j_bbcan_2023_188942
crossref_primary_10_3389_fimmu_2022_1057546
crossref_primary_10_1016_j_ccell_2021_05_015
crossref_primary_10_1002_jbt_23733
crossref_primary_10_1016_j_biopha_2025_117851
crossref_primary_10_1038_s42003_022_03065_w
crossref_primary_10_3390_cancers15072144
crossref_primary_10_1016_j_celrep_2021_109455
crossref_primary_10_1016_j_biochi_2018_10_022
crossref_primary_10_3389_fonc_2021_777273
crossref_primary_10_3390_pharmaceutics15092216
crossref_primary_10_3389_fonc_2019_00159
crossref_primary_10_1007_s00401_017_1771_1
crossref_primary_10_1089_ars_2023_0340
crossref_primary_10_1016_j_cpcardiol_2023_102081
crossref_primary_10_3390_cancers13225810
crossref_primary_10_1016_j_bbrc_2021_07_072
crossref_primary_10_1186_s12915_021_01112_2
crossref_primary_10_1016_j_bbagrm_2019_06_004
crossref_primary_10_1016_j_celrep_2024_113796
crossref_primary_10_1038_s41416_018_0162_2
crossref_primary_10_1016_j_intimp_2024_112319
crossref_primary_10_1038_s41598_018_31822_7
crossref_primary_10_1002_med_21765
crossref_primary_10_1007_s10555_019_09786_5
crossref_primary_10_3389_fmmed_2022_1044585
crossref_primary_10_1038_s41598_020_78867_1
crossref_primary_10_1186_s13046_024_03060_5
crossref_primary_10_3389_fimmu_2023_1121864
crossref_primary_10_1016_j_bbadis_2018_04_019
crossref_primary_10_3390_cancers13184696
crossref_primary_10_1016_j_ejphar_2022_175087
crossref_primary_10_1101_gad_329771_119
crossref_primary_10_1016_j_isci_2024_110608
crossref_primary_10_1093_nar_gkab157
crossref_primary_10_1016_j_devcel_2021_04_013
crossref_primary_10_1016_j_devcel_2022_02_004
crossref_primary_10_1016_j_drup_2021_100787
crossref_primary_10_1177_1535370218760283
crossref_primary_10_3390_ijms21197315
crossref_primary_10_1007_s12272_023_01473_y
crossref_primary_10_1038_s41467_019_14262_3
crossref_primary_10_1016_j_bcp_2023_115907
crossref_primary_10_1186_s13045_023_01498_2
crossref_primary_10_1007_s11010_024_05121_x
crossref_primary_10_3390_cancers12040898
crossref_primary_10_1002_mco2_27
crossref_primary_10_1016_j_celrep_2019_08_087
crossref_primary_10_1073_pnas_2319055121
crossref_primary_10_1016_j_bbagen_2023_130330
crossref_primary_10_3389_fonc_2023_1034205
crossref_primary_10_1039_D2CS00722C
crossref_primary_10_1080_10409238_2018_1556578
crossref_primary_10_1038_s12276_023_01079_w
crossref_primary_10_1038_s42003_019_0522_3
crossref_primary_10_1039_D2CB00172A
crossref_primary_10_1016_j_devcel_2020_08_009
crossref_primary_10_1016_j_it_2023_08_008
crossref_primary_10_3389_fonc_2020_01510
crossref_primary_10_1016_j_bcp_2025_116802
crossref_primary_10_3389_fcell_2021_739392
crossref_primary_10_1186_s13104_024_06900_x
crossref_primary_10_1007_s10585_019_09990_1
crossref_primary_10_3390_cells9122598
crossref_primary_10_3390_cells9040989
crossref_primary_10_1111_jcmm_17288
crossref_primary_10_1016_j_it_2021_11_007
crossref_primary_10_1016_j_tranon_2019_10_001
crossref_primary_10_2147_BTT_S365490
crossref_primary_10_1016_j_cell_2019_09_035
crossref_primary_10_1038_s42255_020_0174_0
crossref_primary_10_1111_nan_12774
Cites_doi 10.1016/j.ccell.2014.12.002
10.1074/jbc.C000145200
10.1074/jbc.M103848200
10.1172/JCI1411
10.1158/0008-5472.CAN-12-3231
10.1016/S0092-8674(00)81304-5
10.1016/j.cell.2014.11.020
10.1172/JCI2961
10.1158/0008-5472.CAN-07-5575
10.1016/j.cell.2014.11.025
10.1038/nm.3587
10.1016/S0092-8674(00)80213-5
10.1074/jbc.M208915200
10.1371/journal.pone.0116515
10.1038/nrc2981
10.1038/343425a0
10.1038/leu.2013.336
10.1038/nrc3110
10.1016/j.biocel.2007.05.002
10.1038/bjc.1994.360
10.1172/JCI0215593
10.1016/j.molcel.2012.10.025
10.1016/j.cell.2015.08.016
10.1074/jbc.M108347200
10.1016/j.molcel.2015.10.025
10.1038/nrc1751
10.1002/j.1460-2075.1996.tb00438.x
10.1016/S0092-8674(02)00872-3
10.1016/j.cmet.2016.07.003
10.1038/nrc1478
10.1016/j.cmet.2008.07.007
10.1073/pnas.1108462109
10.3389/fphys.2013.00370
10.1158/0008-5472.CAN-08-2394
10.1038/nrc1187
10.1126/science.1160809
10.1038/nrc2222
10.1093/jnci/djm135
10.1074/jbc.272.22.14459
10.1016/j.cell.2008.08.021
ContentType Journal Article
Copyright 2017 The Author(s)
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2017 The Author(s)
– notice: Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2017.02.006
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 2242
ExternalDocumentID oai_doaj_org_article_7715b4e13e444487bfa1d5e7a4016e8e
28249167
10_1016_j_celrep_2017_02_006
S2211124717301717
Genre Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-dcb1054059fa03124e329b67d406aee9004e5b6cadc4acee30de0ec91d9a5ae3
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:12:37 EDT 2025
Thu Jul 10 17:16:01 EDT 2025
Thu Apr 03 06:57:03 EDT 2025
Thu Apr 24 23:13:03 EDT 2025
Tue Jul 01 03:07:37 EDT 2025
Wed May 17 00:03:04 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords cancer metabolism
hypoxia
extracellular low pH
lacate
nutrient starvation
sterol regulatory element-binding protein 2
tumor microenvironment
acyl-CoA synthetase short-chain family member 2
epigenetics
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-dcb1054059fa03124e329b67d406aee9004e5b6cadc4acee30de0ec91d9a5ae3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124717301717
PMID 28249167
PQID 1873722708
PQPubID 23479
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_7715b4e13e444487bfa1d5e7a4016e8e
proquest_miscellaneous_1873722708
pubmed_primary_28249167
crossref_citationtrail_10_1016_j_celrep_2017_02_006
crossref_primary_10_1016_j_celrep_2017_02_006
elsevier_sciencedirect_doi_10_1016_j_celrep_2017_02_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-02-28
PublicationDateYYYYMMDD 2017-02-28
PublicationDate_xml – month: 02
  year: 2017
  text: 2017-02-28
  day: 28
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2017
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Haferlach, Nagata, Grossmann, Okuno, Bacher, Nagae, Schnittger, Sanada, Kon, Alpermann (bib14) 2014; 28
Vander Heiden, Cantley, Thompson (bib36) 2009; 324
Wang, Zelenski, Yang, Sakai, Brown, Goldstein (bib37) 1996; 15
Gatenby, Gillies (bib11) 2004; 4
Hsu, Sabatini (bib17) 2008; 134
Colgan, Tang, Werstuck, Austin (bib6) 2007; 39
Osawa, Muramatsu, Wang, Tsuchida, Kodama, Minami, Shibuya (bib25) 2011; 108
Srivastava, Barber, Jacobson (bib33) 2007; 22
Cairns, Harris, Mak (bib2) 2011; 11
Comerford, Huang, Du, Wang, Cai, Witkiewicz, Walters, Tantawy, Fu, Manning (bib7) 2014; 159
Porstmann, Santos, Griffiths, Cully, Wu, Leevers, Griffiths, Chung, Schulze (bib27) 2008; 8
Xu, Nagati, Xie, Li, Walters, Moon, Gerard, Huang, Comerford, Hammer (bib42) 2014; 20
Robey, Baggett, Kirkpatrick, Roe, Dosescu, Sloane, Hashim, Morse, Raghunand, Gatenby (bib28) 2009; 69
Trédan, Galmarini, Patel, Tannock (bib35) 2007; 99
Damaghi, Wojtkowiak, Gillies (bib9) 2013; 4
Webb, Chimenti, Jacobson, Barber (bib38) 2011; 11
Horton, Goldstein, Brown (bib16) 2002; 109
Sakai, Duncan, Rawson, Hua, Brown, Goldstein (bib29) 1996; 85
Chen, Xu, Nagati, Hogg, Das, Gerard, Garcia (bib5) 2015; 10
Brown, Goldstein (bib1) 1997; 89
Corbet, Pinto, Martherus, Santiago de Jesus, Polet, Feron (bib8) 2016; 24
Goldstein, Brown (bib13) 1990; 343
Schug, Peck, Jones, Zhang, Grosskurth, Alam, Goodwin, Smethurst, Mason, Blyth (bib30) 2015; 27
Tafani, Cohn, Karpinich, Rothman, Russo, Farber (bib34) 2002; 277
Kim, Sarraf, Wright, Yao, Mueller, Solanes, Lowell, Spiegelman (bib19) 1998; 101
Mashimo, Pichumani, Vemireddy, Hatanpaa, Singh, Sirasanagandla, Nannepaga, Piccirillo, Kovacs, Foong (bib21) 2014; 159
Demierre, Higgins, Gruber, Hawk, Lippman (bib10) 2005; 5
Menendez, Lupu (bib24) 2007; 7
Horton, Shimomura, Brown, Hammer, Goldstein, Shimano (bib15) 1998; 101
Xu, Fukumura, Jain (bib41) 2002; 277
Luo, Tannock (bib20) 1994; 70
Osawa, Tsuchida, Muramatsu, Shimamura, Wang, Suehiro, Kanki, Wada, Yuasa, Aburatani (bib26) 2013; 73
Xu, Fidler (bib40) 2000; 60
Gerweck, Seetharaman (bib12) 1996; 56
McBrian, Behbahan, Ferrari, Su, Huang, Li, Hong, Christofk, Vogelauer, Seligson (bib23) 2013; 49
Silva, Yunes, Gillies, Gatenby (bib32) 2009; 69
Ikeda, Yamamoto, Okamura, Fujino, Takahashi, Takeuchi, Osborne, Yamamoto, Ito, Sakai (bib18) 2001; 276
Chang, Qiu, O’Sullivan, Buck, Noguchi, Curtis, Chen, Gindin, Gubin, van der Windt (bib3) 2015; 162
Matsumura, Nakaki, Inagaki, Yoshida, Kano, Kimura, Tanaka, Tsutsumi, Nakao, Doi (bib22) 2015; 60
Yang, Espenshade, Wright, Yabe, Gong, Aebersold, Goldstein, Brown (bib43) 2002; 110
Whyte, Kirschmeier, Hockenberry, Nunez-Oliva, James, Catino, Bishop, Pai (bib39) 1997; 272
Semenza (bib31) 2003; 3
Chen, Sun, Pradines, Favre, Adnane, Sebti (bib4) 2000; 275
Mashimo (10.1016/j.celrep.2017.02.006_bib21) 2014; 159
Horton (10.1016/j.celrep.2017.02.006_bib15) 1998; 101
Menendez (10.1016/j.celrep.2017.02.006_bib24) 2007; 7
Srivastava (10.1016/j.celrep.2017.02.006_bib33) 2007; 22
Damaghi (10.1016/j.celrep.2017.02.006_bib9) 2013; 4
Wang (10.1016/j.celrep.2017.02.006_bib37) 1996; 15
Kim (10.1016/j.celrep.2017.02.006_bib19) 1998; 101
Chen (10.1016/j.celrep.2017.02.006_bib5) 2015; 10
Cairns (10.1016/j.celrep.2017.02.006_bib2) 2011; 11
Porstmann (10.1016/j.celrep.2017.02.006_bib27) 2008; 8
Haferlach (10.1016/j.celrep.2017.02.006_bib14) 2014; 28
Chang (10.1016/j.celrep.2017.02.006_bib3) 2015; 162
Whyte (10.1016/j.celrep.2017.02.006_bib39) 1997; 272
Robey (10.1016/j.celrep.2017.02.006_bib28) 2009; 69
Yang (10.1016/j.celrep.2017.02.006_bib43) 2002; 110
Xu (10.1016/j.celrep.2017.02.006_bib42) 2014; 20
Vander Heiden (10.1016/j.celrep.2017.02.006_bib36) 2009; 324
Corbet (10.1016/j.celrep.2017.02.006_bib8) 2016; 24
Schug (10.1016/j.celrep.2017.02.006_bib30) 2015; 27
Goldstein (10.1016/j.celrep.2017.02.006_bib13) 1990; 343
Gatenby (10.1016/j.celrep.2017.02.006_bib11) 2004; 4
Xu (10.1016/j.celrep.2017.02.006_bib41) 2002; 277
Ikeda (10.1016/j.celrep.2017.02.006_bib18) 2001; 276
Comerford (10.1016/j.celrep.2017.02.006_bib7) 2014; 159
Semenza (10.1016/j.celrep.2017.02.006_bib31) 2003; 3
McBrian (10.1016/j.celrep.2017.02.006_bib23) 2013; 49
Trédan (10.1016/j.celrep.2017.02.006_bib35) 2007; 99
Horton (10.1016/j.celrep.2017.02.006_bib16) 2002; 109
Brown (10.1016/j.celrep.2017.02.006_bib1) 1997; 89
Sakai (10.1016/j.celrep.2017.02.006_bib29) 1996; 85
Osawa (10.1016/j.celrep.2017.02.006_bib26) 2013; 73
Colgan (10.1016/j.celrep.2017.02.006_bib6) 2007; 39
Luo (10.1016/j.celrep.2017.02.006_bib20) 1994; 70
Matsumura (10.1016/j.celrep.2017.02.006_bib22) 2015; 60
Silva (10.1016/j.celrep.2017.02.006_bib32) 2009; 69
Hsu (10.1016/j.celrep.2017.02.006_bib17) 2008; 134
Tafani (10.1016/j.celrep.2017.02.006_bib34) 2002; 277
Webb (10.1016/j.celrep.2017.02.006_bib38) 2011; 11
Chen (10.1016/j.celrep.2017.02.006_bib4) 2000; 275
Gerweck (10.1016/j.celrep.2017.02.006_bib12) 1996; 56
Osawa (10.1016/j.celrep.2017.02.006_bib25) 2011; 108
Xu (10.1016/j.celrep.2017.02.006_bib40) 2000; 60
Demierre (10.1016/j.celrep.2017.02.006_bib10) 2005; 5
References_xml – volume: 24
  start-page: 311
  year: 2016
  end-page: 323
  ident: bib8
  article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation
  publication-title: Cell Metab.
– volume: 159
  start-page: 1603
  year: 2014
  end-page: 1614
  ident: bib21
  article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
  publication-title: Cell
– volume: 89
  start-page: 331
  year: 1997
  end-page: 340
  ident: bib1
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
– volume: 277
  start-page: 49569
  year: 2002
  end-page: 49576
  ident: bib34
  article-title: Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha
  publication-title: J. Biol. Chem.
– volume: 39
  start-page: 1843
  year: 2007
  end-page: 1851
  ident: bib6
  article-title: Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2
  publication-title: Int. J. Biochem. Cell Biol.
– volume: 69
  start-page: 2260
  year: 2009
  end-page: 2268
  ident: bib28
  article-title: Bicarbonate increases tumor pH and inhibits spontaneous metastases
  publication-title: Cancer Res.
– volume: 109
  start-page: 1125
  year: 2002
  end-page: 1131
  ident: bib16
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
– volume: 22
  start-page: 30
  year: 2007
  end-page: 39
  ident: bib33
  article-title: Intracellular pH sensors: design principles and functional significance
  publication-title: Physiology (Bethesda)
– volume: 276
  start-page: 34259
  year: 2001
  end-page: 34269
  ident: bib18
  article-title: Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1
  publication-title: J. Biol. Chem.
– volume: 108
  start-page: 20725
  year: 2011
  end-page: 20729
  ident: bib25
  article-title: Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 277
  start-page: 11368
  year: 2002
  end-page: 11374
  ident: bib41
  article-title: Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF
  publication-title: J. Biol. Chem.
– volume: 272
  start-page: 14459
  year: 1997
  end-page: 14464
  ident: bib39
  article-title: K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors
  publication-title: J. Biol. Chem.
– volume: 162
  start-page: 1229
  year: 2015
  end-page: 1241
  ident: bib3
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
– volume: 4
  start-page: 370
  year: 2013
  ident: bib9
  article-title: pH sensing and regulation in cancer
  publication-title: Front. Physiol.
– volume: 8
  start-page: 224
  year: 2008
  end-page: 236
  ident: bib27
  article-title: SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
  publication-title: Cell Metab.
– volume: 324
  start-page: 1029
  year: 2009
  end-page: 1033
  ident: bib36
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
– volume: 20
  start-page: 1018
  year: 2014
  end-page: 1026
  ident: bib42
  article-title: An acetate switch regulates stress erythropoiesis
  publication-title: Nat. Med.
– volume: 275
  start-page: 17974
  year: 2000
  end-page: 17978
  ident: bib4
  article-title: Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice
  publication-title: J. Biol. Chem.
– volume: 56
  start-page: 1194
  year: 1996
  end-page: 1198
  ident: bib12
  article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer
  publication-title: Cancer Res.
– volume: 27
  start-page: 57
  year: 2015
  end-page: 71
  ident: bib30
  article-title: Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
  publication-title: Cancer Cell
– volume: 60
  start-page: 4610
  year: 2000
  end-page: 4616
  ident: bib40
  article-title: Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells
  publication-title: Cancer Res.
– volume: 5
  start-page: 930
  year: 2005
  end-page: 942
  ident: bib10
  article-title: Statins and cancer prevention
  publication-title: Nat. Rev. Cancer
– volume: 159
  start-page: 1591
  year: 2014
  end-page: 1602
  ident: bib7
  article-title: Acetate dependence of tumors
  publication-title: Cell
– volume: 110
  start-page: 489
  year: 2002
  end-page: 500
  ident: bib43
  article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
  publication-title: Cell
– volume: 4
  start-page: 891
  year: 2004
  end-page: 899
  ident: bib11
  article-title: Why do cancers have high aerobic glycolysis?
  publication-title: Nat. Rev. Cancer
– volume: 101
  start-page: 1
  year: 1998
  end-page: 9
  ident: bib19
  article-title: Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
  publication-title: J. Clin. Invest.
– volume: 7
  start-page: 763
  year: 2007
  end-page: 777
  ident: bib24
  article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
  publication-title: Nat. Rev. Cancer
– volume: 3
  start-page: 721
  year: 2003
  end-page: 732
  ident: bib31
  article-title: Targeting HIF-1 for cancer therapy
  publication-title: Nat. Rev. Cancer
– volume: 10
  start-page: e0116515
  year: 2015
  ident: bib5
  article-title: The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment
  publication-title: PLoS ONE
– volume: 60
  start-page: 584
  year: 2015
  end-page: 596
  ident: bib22
  article-title: H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation
  publication-title: Mol. Cell
– volume: 11
  start-page: 671
  year: 2011
  end-page: 677
  ident: bib38
  article-title: Dysregulated pH: a perfect storm for cancer progression
  publication-title: Nat. Rev. Cancer
– volume: 99
  start-page: 1441
  year: 2007
  end-page: 1454
  ident: bib35
  article-title: Drug resistance and the solid tumor microenvironment
  publication-title: J. Natl. Cancer Inst.
– volume: 15
  start-page: 1012
  year: 1996
  end-page: 1020
  ident: bib37
  article-title: Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis
  publication-title: EMBO J.
– volume: 134
  start-page: 703
  year: 2008
  end-page: 707
  ident: bib17
  article-title: Cancer cell metabolism: Warburg and beyond
  publication-title: Cell
– volume: 343
  start-page: 425
  year: 1990
  end-page: 430
  ident: bib13
  article-title: Regulation of the mevalonate pathway
  publication-title: Nature
– volume: 69
  start-page: 2677
  year: 2009
  end-page: 2684
  ident: bib32
  article-title: The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion
  publication-title: Cancer Res.
– volume: 101
  start-page: 2331
  year: 1998
  end-page: 2339
  ident: bib15
  article-title: Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2
  publication-title: J. Clin. Invest.
– volume: 28
  start-page: 241
  year: 2014
  end-page: 247
  ident: bib14
  article-title: Landscape of genetic lesions in 944 patients with myelodysplastic syndromes
  publication-title: Leukemia
– volume: 70
  start-page: 617
  year: 1994
  end-page: 624
  ident: bib20
  article-title: Inhibition of the regulation of intracellular pH: potential of 5-(N,N-hexamethylene) amiloride in tumour-selective therapy
  publication-title: Br. J. Cancer
– volume: 85
  start-page: 1037
  year: 1996
  end-page: 1046
  ident: bib29
  article-title: Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment
  publication-title: Cell
– volume: 11
  start-page: 85
  year: 2011
  end-page: 95
  ident: bib2
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Cancer
– volume: 49
  start-page: 310
  year: 2013
  end-page: 321
  ident: bib23
  article-title: Histone acetylation regulates intracellular pH
  publication-title: Mol. Cell
– volume: 73
  start-page: 3019
  year: 2013
  end-page: 3028
  ident: bib26
  article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages
  publication-title: Cancer Res.
– volume: 27
  start-page: 57
  year: 2015
  ident: 10.1016/j.celrep.2017.02.006_bib30
  article-title: Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.12.002
– volume: 275
  start-page: 17974
  year: 2000
  ident: 10.1016/j.celrep.2017.02.006_bib4
  article-title: Both farnesylated and geranylgeranylated RhoB inhibit malignant transformation and suppress human tumor growth in nude mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C000145200
– volume: 276
  start-page: 34259
  year: 2001
  ident: 10.1016/j.celrep.2017.02.006_bib18
  article-title: Transcriptional regulation of the murine acetyl-CoA synthetase 1 gene through multiple clustered binding sites for sterol regulatory element-binding proteins and a single neighboring site for Sp1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M103848200
– volume: 101
  start-page: 1
  year: 1998
  ident: 10.1016/j.celrep.2017.02.006_bib19
  article-title: Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI1411
– volume: 73
  start-page: 3019
  year: 2013
  ident: 10.1016/j.celrep.2017.02.006_bib26
  article-title: Inhibition of histone demethylase JMJD1A improves anti-angiogenic therapy and reduces tumor-associated macrophages
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-12-3231
– volume: 85
  start-page: 1037
  year: 1996
  ident: 10.1016/j.celrep.2017.02.006_bib29
  article-title: Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)81304-5
– volume: 159
  start-page: 1591
  year: 2014
  ident: 10.1016/j.celrep.2017.02.006_bib7
  article-title: Acetate dependence of tumors
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.020
– volume: 56
  start-page: 1194
  year: 1996
  ident: 10.1016/j.celrep.2017.02.006_bib12
  article-title: Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer
  publication-title: Cancer Res.
– volume: 101
  start-page: 2331
  year: 1998
  ident: 10.1016/j.celrep.2017.02.006_bib15
  article-title: Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI2961
– volume: 69
  start-page: 2260
  year: 2009
  ident: 10.1016/j.celrep.2017.02.006_bib28
  article-title: Bicarbonate increases tumor pH and inhibits spontaneous metastases
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-5575
– volume: 159
  start-page: 1603
  year: 2014
  ident: 10.1016/j.celrep.2017.02.006_bib21
  article-title: Acetate is a bioenergetic substrate for human glioblastoma and brain metastases
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.025
– volume: 20
  start-page: 1018
  year: 2014
  ident: 10.1016/j.celrep.2017.02.006_bib42
  article-title: An acetate switch regulates stress erythropoiesis
  publication-title: Nat. Med.
  doi: 10.1038/nm.3587
– volume: 89
  start-page: 331
  year: 1997
  ident: 10.1016/j.celrep.2017.02.006_bib1
  article-title: The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80213-5
– volume: 277
  start-page: 49569
  year: 2002
  ident: 10.1016/j.celrep.2017.02.006_bib34
  article-title: Regulation of intracellular pH mediates Bax activation in HeLa cells treated with staurosporine or tumor necrosis factor-alpha
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M208915200
– volume: 10
  start-page: e0116515
  year: 2015
  ident: 10.1016/j.celrep.2017.02.006_bib5
  article-title: The acetate/ACSS2 switch regulates HIF-2 stress signaling in the tumor cell microenvironment
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0116515
– volume: 11
  start-page: 85
  year: 2011
  ident: 10.1016/j.celrep.2017.02.006_bib2
  article-title: Regulation of cancer cell metabolism
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2981
– volume: 343
  start-page: 425
  year: 1990
  ident: 10.1016/j.celrep.2017.02.006_bib13
  article-title: Regulation of the mevalonate pathway
  publication-title: Nature
  doi: 10.1038/343425a0
– volume: 28
  start-page: 241
  year: 2014
  ident: 10.1016/j.celrep.2017.02.006_bib14
  article-title: Landscape of genetic lesions in 944 patients with myelodysplastic syndromes
  publication-title: Leukemia
  doi: 10.1038/leu.2013.336
– volume: 11
  start-page: 671
  year: 2011
  ident: 10.1016/j.celrep.2017.02.006_bib38
  article-title: Dysregulated pH: a perfect storm for cancer progression
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3110
– volume: 39
  start-page: 1843
  year: 2007
  ident: 10.1016/j.celrep.2017.02.006_bib6
  article-title: Endoplasmic reticulum stress causes the activation of sterol regulatory element binding protein-2
  publication-title: Int. J. Biochem. Cell Biol.
  doi: 10.1016/j.biocel.2007.05.002
– volume: 70
  start-page: 617
  year: 1994
  ident: 10.1016/j.celrep.2017.02.006_bib20
  article-title: Inhibition of the regulation of intracellular pH: potential of 5-(N,N-hexamethylene) amiloride in tumour-selective therapy
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.1994.360
– volume: 109
  start-page: 1125
  year: 2002
  ident: 10.1016/j.celrep.2017.02.006_bib16
  article-title: SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI0215593
– volume: 49
  start-page: 310
  year: 2013
  ident: 10.1016/j.celrep.2017.02.006_bib23
  article-title: Histone acetylation regulates intracellular pH
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.10.025
– volume: 162
  start-page: 1229
  year: 2015
  ident: 10.1016/j.celrep.2017.02.006_bib3
  article-title: Metabolic competition in the tumor microenvironment is a driver of cancer progression
  publication-title: Cell
  doi: 10.1016/j.cell.2015.08.016
– volume: 277
  start-page: 11368
  year: 2002
  ident: 10.1016/j.celrep.2017.02.006_bib41
  article-title: Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway: mechanism of low pH-induced VEGF
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M108347200
– volume: 60
  start-page: 584
  year: 2015
  ident: 10.1016/j.celrep.2017.02.006_bib22
  article-title: H3K4/H3K9me3 bivalent chromatin domains targeted by lineage-specific DNA methylation pauses adipocyte differentiation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.025
– volume: 5
  start-page: 930
  year: 2005
  ident: 10.1016/j.celrep.2017.02.006_bib10
  article-title: Statins and cancer prevention
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1751
– volume: 15
  start-page: 1012
  year: 1996
  ident: 10.1016/j.celrep.2017.02.006_bib37
  article-title: Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1996.tb00438.x
– volume: 110
  start-page: 489
  year: 2002
  ident: 10.1016/j.celrep.2017.02.006_bib43
  article-title: Crucial step in cholesterol homeostasis: sterols promote binding of SCAP to INSIG-1, a membrane protein that facilitates retention of SREBPs in ER
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00872-3
– volume: 24
  start-page: 311
  year: 2016
  ident: 10.1016/j.celrep.2017.02.006_bib8
  article-title: Acidosis drives the reprogramming of fatty acid metabolism in cancer cells through changes in mitochondrial and histone acetylation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.07.003
– volume: 4
  start-page: 891
  year: 2004
  ident: 10.1016/j.celrep.2017.02.006_bib11
  article-title: Why do cancers have high aerobic glycolysis?
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1478
– volume: 8
  start-page: 224
  year: 2008
  ident: 10.1016/j.celrep.2017.02.006_bib27
  article-title: SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2008.07.007
– volume: 108
  start-page: 20725
  year: 2011
  ident: 10.1016/j.celrep.2017.02.006_bib25
  article-title: Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1108462109
– volume: 4
  start-page: 370
  year: 2013
  ident: 10.1016/j.celrep.2017.02.006_bib9
  article-title: pH sensing and regulation in cancer
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2013.00370
– volume: 69
  start-page: 2677
  year: 2009
  ident: 10.1016/j.celrep.2017.02.006_bib32
  article-title: The potential role of systemic buffers in reducing intratumoral extracellular pH and acid-mediated invasion
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-2394
– volume: 22
  start-page: 30
  year: 2007
  ident: 10.1016/j.celrep.2017.02.006_bib33
  article-title: Intracellular pH sensors: design principles and functional significance
  publication-title: Physiology (Bethesda)
– volume: 3
  start-page: 721
  year: 2003
  ident: 10.1016/j.celrep.2017.02.006_bib31
  article-title: Targeting HIF-1 for cancer therapy
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc1187
– volume: 324
  start-page: 1029
  year: 2009
  ident: 10.1016/j.celrep.2017.02.006_bib36
  article-title: Understanding the Warburg effect: the metabolic requirements of cell proliferation
  publication-title: Science
  doi: 10.1126/science.1160809
– volume: 7
  start-page: 763
  year: 2007
  ident: 10.1016/j.celrep.2017.02.006_bib24
  article-title: Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2222
– volume: 99
  start-page: 1441
  year: 2007
  ident: 10.1016/j.celrep.2017.02.006_bib35
  article-title: Drug resistance and the solid tumor microenvironment
  publication-title: J. Natl. Cancer Inst.
  doi: 10.1093/jnci/djm135
– volume: 60
  start-page: 4610
  year: 2000
  ident: 10.1016/j.celrep.2017.02.006_bib40
  article-title: Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells
  publication-title: Cancer Res.
– volume: 272
  start-page: 14459
  year: 1997
  ident: 10.1016/j.celrep.2017.02.006_bib39
  article-title: K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.22.14459
– volume: 134
  start-page: 703
  year: 2008
  ident: 10.1016/j.celrep.2017.02.006_bib17
  article-title: Cancer cell metabolism: Warburg and beyond
  publication-title: Cell
  doi: 10.1016/j.cell.2008.08.021
SSID ssj0000601194
Score 2.5209944
Snippet Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic...
Conditions of the tumor microenvironment, such as hypoxia and nutrient starvation, play critical roles in cancer progression. However, the role of acidic...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2228
SubjectTerms Acetate-CoA Ligase - metabolism
acyl-CoA synthetase short-chain family member 2
Animals
cancer metabolism
Cell Line, Tumor
Cell Nucleus - metabolism
Cell Proliferation - physiology
Cholesterol - metabolism
Disease Progression
epigenetics
extracellular low pH
HeLa Cells
Humans
Hydrogen-Ion Concentration
hypoxia
lacate
Mice
Mice, SCID
Neoplasms - metabolism
Neoplasms - pathology
nutrient starvation
Promoter Regions, Genetic - physiology
Protein Transport - physiology
Sterol Regulatory Element Binding Protein 2 - metabolism
sterol regulatory element-binding protein 2
tumor microenvironment
Up-Regulation - physiology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_nbPH0TwtdikSdM-3skei6CIrnBvIU2mUlnbo9cF7793JmmXuwfZF_vUlrQdMpPOl3byfYy9ly0A5K3JNIQiSphlDgqVmapwug0liLhQ-POXcvNDfbrUl7ekvqgmLNEDp477YIzQjQJRgMKtMk3rRNBgHE4MSqiA3r6Y825NptI7mLjM6JeylFSzJZVZ1s3F4i4PuxGIrlKYRNlZ3slLkb7_Tnr6F_yMaejiEXs440d-lux-zO5B_4TdT4qSN09Zv_4zjY6-xlN5KT_zXeg8v9rgXtQxg2uOiI9_x94cdvxbEqIfxhu-TmXk2XkXl7nwr8Tf0PVc8mmgA_Qo8O3-9zDS0c9UPds_Y9uL9fbjJpslFTKP0GzKgm9EBGl163A4SwWFrJvSBMzrDqDGIQO6Kb0LXqGxUOQBcvC1CLXT6MTn7KQfenjJuC4CIFrMG0GQrHRV7kKuWuV0U5Ou1YoVS39aP9ONk-rFzi51Zb9s8oIlL9hcWvTCimWHq64S3caR9ufkqkNbIsuOJzCE7BxC9lgIrZhZHG1n3JHwBN6qO_L4d0tcWByW5F3Xw7C_tqIi_R9p8mrFXqSAORiJs1yFqNyc_g_jX7EHZFBaZf-anUzjHt4gTpqat3FI_AUGDA5P
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9wwEBVpSqGXkn5vkxYVenWxZdmyDyUkZcNSSCntBnITsjQOLls79Xoh--87I9lbAg2B-mQZ2RJ6Gs-TPZrH2AdRA0BcqygDl3oJs8hAKiNVpCarXQ6J3yh8_jVfXMgvl9nlHps0W8cBXP9zaUd6Uhf96uPN7-0xGvynv7FaFlY9UPbJRIUMnPkD9hB9kyJNg_OR8Id3M-U4o1_NQlAsl5Bq2k93x4Nu-Suf1v-W27qLlnr3dHbAnoy8kp-EifCU7UH7jD0KSpPb56yd3wy9oa_0FHbKT2zjGsuvF3jm9c1gzZEJ8h84yt2Kfw8C9V2_5fMQXh6dNn77C_9GeR2algs-dFRApIEvN7-6nkpXIaq2fcGWZ_Pl50U0Si1EFinbEDlbJZ68lbVBMxcSUlFWuXLo7w1AiaYEWZVb46zEzkIaO4jBlokrTYbgvmT7bdfCa8az1AGyyLhKiKrlpoiNi2UtTVaVpHc1Y-k0ntqOachJDWOlp3iznzqgoAkFHQuNKMxYtLvrOqThuKf-KUG1q0tJtP2Frr_So01qpZKskpCkIPEoVFWbxGWgDK45cyhgxtQEtB75SOAZ-KjmnubfT_NCo7kSuqaFbrPWSUG6QELFxYy9ChNm10lc_Upk6-rNf7d7yB5TKWy5P2L7Q7-Bt0iahuqdt4M_bF0USQ
  priority: 102
  providerName: Scholars Portal
Title Extracellular Acidic pH Activates the Sterol Regulatory Element-Binding Protein 2 to Promote Tumor Progression
URI https://dx.doi.org/10.1016/j.celrep.2017.02.006
https://www.ncbi.nlm.nih.gov/pubmed/28249167
https://www.proquest.com/docview/1873722708
https://doaj.org/article/7715b4e13e444487bfa1d5e7a4016e8e
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjL2O9lP4oKexWxbNmyH5uSEgodZc0gb0K2zsUjs4PrwPrf706yA3kYheYhREa2hU7SfVLuvo-x73ENAFGtRQou8RJmwkKihM4Tm9YuA-kThW9-ZKtf6nqTbk7Y5ZQLQ2GV49of1nS_Wo9X5mNvzndNM7-Lce-C3on-RibSF8ooT1Tuk_g2i8M5C_GNSK-HSPUF3TBl0Pkwrwq2PRBxpdSBvDM78lCeyP_IUf0PiHqHdPWavRqRJL8IjX3DTqB9y14EbcnHd6xd_h16S-fyFGjKL6rGNRXfrfCXVzSDB47Yj99hv3Zb_jNI0nf9I1-GgHKxaHzCC78lJoem5TEfOiqgbYGv93-6nkr3IY62fc_WV8v15UqM4gqiQpA2CFeV0sO1orY4sWMFSVyUmXbo4S1AgZMH0jKrrKsUNhaSyEEEVSFdYVM05wd22nYtfGI8TRwgboxKSeAss3lkXaRqZdOyIIWrGUum_jTVSDxO-hdbM0WY_TbBCoasYKLYoBVmTBzu2gXijSfqL8hUh7pEm-0vdP29GceN0VqmpQKZgMJPrsvaSpeCtrjLzCCHGdOToc3RKMRHNU-8_nwaFwYnKFnXttDtH4zMSQko1lE-Yx_DgDk0Eve7CvG5_vzs935hL6kUkuy_stOh38M3hElDeeaPF878bMDvG5X_A3HBEY4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRQguiDflaSQ4Ro3zcnLgsIWuWvYhxBapN8uJJ1VQSaq0FfRv8QuZsZNKPaCVkLanJk0dxzOZ-SaZmY-x90EJAH4pvRhMaCnMPA1h5Mk01HFpEhC2UPjiMpl8j77M4_kR-9PXwlBaZWf7nU231rrbM-xWc7iqquFVgLELeid6jUxNX2SXWXkGu18Yt60_Tj-jkD8Ewel49mniddQCXoEQZeOZIhcWrGSlRrUOIgiDLE-kQf-mATJUHYjzpNCmiDT6kdA34EORCZPpGC8Gh73FbiP4kGQMpvPR_rkO9TcRln-R5ufRBPuKPZtWVsCyBWqUKaRrFpoceERLHHDgGP8FfK0DPH3A7nfIlZ-4xXnIjqB-xO44LsvdY1aPf29aTe8BKLGVnxSVqQq-muA3y6AGa45Yk1-hHJsl_wYL4g1r2h0fuwR2b1TZAhv-lTpHVDUP-KahDdQl4LPtz6alrYXL262fsNlNrPhTdlw3NTxnPA4NIE71c0FgMNGpr40flZGO84wYtQYs7NdTFV2jc-LbWKo-o-2HclJQJAXlBwqlMGDe_l8r1-jjmuNHJKr9sdSm2-5o2oXq9FRJKeI8AhFChJ9U5qUWJgapMapNIIUBk72g1YHW41DVNad_1-uFQoNA0tU1NNu1EikxDwXSTwfsmVOY_SQxvo4wHpAv_vu8b9ndyeziXJ1PL89esnv0iyvwf8WON-0WXiNE2-Rv7D3Bmbrhe_AvFq1N5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extracellular+Acidic+pH+Activates+the+Sterol+Regulatory+Element-Binding+Protein+2+to+Promote+Tumor+Progression&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Kondo%2C+Ayano&rft.au=Yamamoto%2C+Shogo&rft.au=Nakaki%2C+Ryo&rft.au=Shimamura%2C+Teppei&rft.date=2017-02-28&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=18&rft.issue=9&rft.spage=2228&rft.epage=2242&rft_id=info:doi/10.1016%2Fj.celrep.2017.02.006&rft.externalDocID=S2211124717301717
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon