Medical image analysis based on deep learning approach
Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning...
Saved in:
Published in | Multimedia tools and applications Vol. 80; no. 16; pp. 24365 - 24398 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning are essential for understanding medical image analysis in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges as a fast-growing research field. DLA has been widely used in medical imaging to detect the presence or absence of the disease. This paper presents the development of artificial neural networks, comprehensive analysis of DLA, which delivers promising medical imaging applications. Most of the DLA implementations concentrate on the X-ray images, computerized tomography, mammography images, and digital histopathology images. It provides a systematic review of the articles for classification, detection, and segmentation of medical images based on DLA. This review guides the researchers to think of appropriate changes in medical image analysis based on DLA. |
---|---|
AbstractList | Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning are essential for understanding medical image analysis in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges as a fast-growing research field. DLA has been widely used in medical imaging to detect the presence or absence of the disease. This paper presents the development of artificial neural networks, comprehensive analysis of DLA, which delivers promising medical imaging applications. Most of the DLA implementations concentrate on the X-ray images, computerized tomography, mammography images, and digital histopathology images. It provides a systematic review of the articles for classification, detection, and segmentation of medical images based on DLA. This review guides the researchers to think of appropriate changes in medical image analysis based on DLA. Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning are essential for understanding medical image analysis in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges as a fast-growing research field. DLA has been widely used in medical imaging to detect the presence or absence of the disease. This paper presents the development of artificial neural networks, comprehensive analysis of DLA, which delivers promising medical imaging applications. Most of the DLA implementations concentrate on the X-ray images, computerized tomography, mammography images, and digital histopathology images. It provides a systematic review of the articles for classification, detection, and segmentation of medical images based on DLA. This review guides the researchers to think of appropriate changes in medical image analysis based on DLA.Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and treatment evaluation of various medical conditions. Basicsof the principles and implementations of artificial neural networks and deep learning are essential for understanding medical image analysis in computer vision. Deep Learning Approach (DLA) in medical image analysis emerges as a fast-growing research field. DLA has been widely used in medical imaging to detect the presence or absence of the disease. This paper presents the development of artificial neural networks, comprehensive analysis of DLA, which delivers promising medical imaging applications. Most of the DLA implementations concentrate on the X-ray images, computerized tomography, mammography images, and digital histopathology images. It provides a systematic review of the articles for classification, detection, and segmentation of medical images based on DLA. This review guides the researchers to think of appropriate changes in medical image analysis based on DLA. |
Author | Puttagunta, Muralikrishna Ravi, S. |
Author_xml | – sequence: 1 givenname: Muralikrishna surname: Puttagunta fullname: Puttagunta, Muralikrishna organization: Department of Computer Science, School of Engineering and Technology, Pondicherry University – sequence: 2 givenname: S. orcidid: 0000-0001-7267-9233 surname: Ravi fullname: Ravi, S. email: sravicite@gmail.com organization: Department of Computer Science, School of Engineering and Technology, Pondicherry University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33841033$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URB_wB1igSGzYBGZiJ3Y2SKjiJRWxgbU1dca3rnLtYOci9d_jy215dNHVWJrvHB3PORVHMUUW4jnCawTQbwoiqK6FDlsEDbpVj8QJ9lq2Wnd4VN_SQKt7wGNxWso1AA59p56IYymNQpDyRAxfeAqO5iZsacMNRZpvSijNJRWemhSbiXlpZqYcQ9w0tCw5kbt6Kh57mgs_u51n4vuH99_OP7UXXz9-Pn930bpewdpODjsjNXk0WunBedLjgEw8eQTXa--Y_EiI6EZm70nq-icnRxqcGv0oz8Tbg--yu9zy5DiumWa75Bo339hEwf6_ieHKbtJPa6CTfa-qwatbg5x-7LisdhuK43mmyGlXbNcjmtEY2Vf05T30Ou1yPcieUkaaERRU6sW_if5EuTtpBcwBcDmVktlbF1ZaQ9oHDLNFsPv27KE9W9uzv9uz-7DdPemd-4MieRCVCscN57-xH1D9Aobnq8c |
CitedBy_id | crossref_primary_10_1038_s41598_023_37868_6 crossref_primary_10_3390_electronics13204042 crossref_primary_10_1016_j_engappai_2022_105034 crossref_primary_10_1007_s11042_023_15176_5 crossref_primary_10_1007_s00261_025_04891_2 crossref_primary_10_1007_s11042_023_16013_5 crossref_primary_10_1007_s12145_024_01331_5 crossref_primary_10_1088_1361_6501_ad3181 crossref_primary_10_1155_2023_3801485 crossref_primary_10_1007_s44326_024_00022_1 crossref_primary_10_1016_j_inffus_2025_103041 crossref_primary_10_1016_j_heliyon_2024_e41137 crossref_primary_10_1016_j_bspc_2024_106847 crossref_primary_10_32628_CSEIT251112124 crossref_primary_10_3390_jimaging7100206 crossref_primary_10_3390_s23094184 crossref_primary_10_1016_j_ibmed_2025_100227 crossref_primary_10_1109_LSP_2024_3449852 crossref_primary_10_1007_s11042_023_17740_5 crossref_primary_10_1049_ipr2_12740 crossref_primary_10_3390_s25051492 crossref_primary_10_1007_s44196_025_00761_3 crossref_primary_10_1063_5_0151244 crossref_primary_10_1016_j_rineng_2025_104143 crossref_primary_10_1007_s11042_022_13844_6 crossref_primary_10_1016_j_ymeth_2023_09_010 crossref_primary_10_1007_s11042_023_16826_4 crossref_primary_10_1109_MPOT_2023_3284207 crossref_primary_10_3390_app142210427 crossref_primary_10_1007_s00784_023_04992_6 crossref_primary_10_1007_s10142_023_01064_6 crossref_primary_10_1016_j_rico_2025_100538 crossref_primary_10_1155_2022_4822235 crossref_primary_10_3389_fninf_2021_667375 crossref_primary_10_32604_cmc_2022_020431 crossref_primary_10_1007_s11042_023_14702_9 crossref_primary_10_54105_ijainn_C1050_042322 crossref_primary_10_1016_j_clinimag_2022_11_003 crossref_primary_10_1016_j_ultrasmedbio_2024_11_004 crossref_primary_10_56532_mjsat_v2i3_64 crossref_primary_10_1016_j_prp_2023_154996 crossref_primary_10_1186_s13677_024_00597_w crossref_primary_10_1080_23311886_2024_2343195 crossref_primary_10_3390_jpm13091338 crossref_primary_10_1016_j_displa_2025_102968 crossref_primary_10_1080_02664763_2023_2279012 crossref_primary_10_1089_big_2024_0071 crossref_primary_10_3390_radiation2030018 crossref_primary_10_1016_j_procs_2022_08_008 crossref_primary_10_1016_j_aej_2025_02_037 crossref_primary_10_1016_j_knosys_2024_111981 crossref_primary_10_1155_2022_2456550 crossref_primary_10_1016_j_paerosci_2022_100849 crossref_primary_10_1007_s10554_025_03327_8 crossref_primary_10_1016_j_artmed_2024_102830 crossref_primary_10_3389_fcomp_2024_1404494 crossref_primary_10_4093_jkd_2022_23_4_238 crossref_primary_10_1007_s11042_023_17791_8 crossref_primary_10_1007_s43538_025_00394_2 crossref_primary_10_4254_wjh_v13_i12_2039 crossref_primary_10_1097_SCS_0000000000009856 crossref_primary_10_1007_s11042_023_17406_2 crossref_primary_10_1016_j_bspc_2023_104866 crossref_primary_10_3389_fphy_2024_1445204 crossref_primary_10_1007_s11042_022_14183_2 crossref_primary_10_4012_dmj_2023_253 crossref_primary_10_3389_fonc_2023_1189370 crossref_primary_10_48175_IJARSCT_7076 crossref_primary_10_57159_gadl_jcmm_3_3_240126 crossref_primary_10_1109_MPRV_2021_3135686 crossref_primary_10_1016_j_cpsurg_2024_101625 crossref_primary_10_1007_s00521_023_08337_y crossref_primary_10_1051_e3sconf_202561902013 crossref_primary_10_1053_j_jvca_2024_01_034 crossref_primary_10_1038_s41598_024_69119_7 crossref_primary_10_1016_j_ejrad_2023_111047 crossref_primary_10_18231_j_ijpp_2021_018 crossref_primary_10_1186_s40537_024_01028_y crossref_primary_10_31590_ejosat_1136855 crossref_primary_10_1007_s11517_024_03202_z crossref_primary_10_3233_THC_248004 crossref_primary_10_3389_frai_2023_1232640 crossref_primary_10_1080_13682199_2023_2172525 crossref_primary_10_1186_s12880_024_01238_z crossref_primary_10_1186_s13677_024_00600_4 crossref_primary_10_1186_s13071_024_06215_7 crossref_primary_10_1016_j_csbj_2023_01_043 crossref_primary_10_3390_app13105958 crossref_primary_10_1109_TCE_2024_3377922 crossref_primary_10_3389_fneur_2023_1294723 crossref_primary_10_1109_ACCESS_2024_3460077 crossref_primary_10_3390_jimaging10070168 crossref_primary_10_1109_ACCESS_2024_3461324 crossref_primary_10_5114_pjr_2024_134817 crossref_primary_10_1016_j_jocs_2024_102324 crossref_primary_10_3390_diagnostics13050981 crossref_primary_10_1007_s11517_022_02662_5 crossref_primary_10_1016_j_imu_2024_101448 crossref_primary_10_3390_cancers16172988 crossref_primary_10_1007_s11042_023_17965_4 crossref_primary_10_1007_s00530_024_01349_1 crossref_primary_10_1007_s11042_022_14277_x crossref_primary_10_1109_JBHI_2024_3385504 crossref_primary_10_3233_IDA_237430 crossref_primary_10_1007_s40042_024_01007_9 crossref_primary_10_1111_cid_70000 crossref_primary_10_1186_s12903_024_03973_9 crossref_primary_10_3390_cancers16223740 crossref_primary_10_1007_s43465_024_01130_6 crossref_primary_10_1155_2021_9951035 crossref_primary_10_1109_ACCESS_2024_3402262 crossref_primary_10_1109_JBHI_2024_3393625 crossref_primary_10_3390_s23125726 crossref_primary_10_1007_s11042_024_20069_2 crossref_primary_10_1136_bmjopen_2021_059833 crossref_primary_10_3390_diagnostics14040390 crossref_primary_10_1016_j_ipha_2024_02_009 crossref_primary_10_1111_coin_70011 crossref_primary_10_37391_ijeer_110245 crossref_primary_10_1016_j_ijcce_2021_12_002 crossref_primary_10_1109_ACCESS_2022_3182399 crossref_primary_10_3389_fmed_2022_773041 crossref_primary_10_1007_s11042_023_17458_4 crossref_primary_10_3390_rs14163892 |
Cites_doi | 10.1109/JBHI.2018.2879449 10.1007/978-3-319-26532-2_6 10.1109/ISBI.2019.8759457 10.1109/ICASSP.2018.8462671 10.1117/1.jmi.6.3.031405 10.1109/LSC.2018.8572113 10.1109/JBHI.2018.2878945 10.1109/ACCESS.2019.2918800 10.1371/journal.pmed.1002686 10.1016/j.ebiom.2019.05.040 10.1016/j.media.2016.11.004 10.1016/j.gie.2020.04.039 10.1145/2647868.2654889 10.1016/j.media.2017.07.005 10.1148/radiol.2018181371 10.3389/fnins.2019.00422 10.1117/12.2081576 10.1002/jmri.26534 10.1109/TMI.2016.2553401 10.1109/BIBM.2017.8217738 10.1016/j.ymeth.2019.04.008 10.1038/s41598-020-62148-y 10.1016/j.cmpb.2018.01.011 10.2196/14464 10.1109/TIP.2020.2968250 10.1109/TMI.2015.2481436 10.3390/SYM12040651 10.1109/TMI.2018.2845918 10.1101/2020.04.22.20074948 10.1155/2016/6215085 10.1109/TMM.2018.2839523 10.1007/978-3-319-24574-4_28 10.1007/s13748-019-00203-0 10.1109/ACCESS.2020.2971257 10.1109/trpms.2020.3014786 10.1038/s41591-018-0177-5 10.1038/nmeth.3707 10.1109/jbhi.2019.2942774 10.1109/ISBI.2015.7163869 10.1037/h0042519 10.1155/2019/2717454 10.5555/2976456.2976476 10.1155/2018/8196906 10.1016/j.media.2019.01.013 10.1109/TMI.2019.2899364 10.1007/s11684-019-0726-4 10.1109/tvcg.2020.3023636 10.1162/neco.1997.9.8.1735 10.1088/0031-9155/58/13/R97 10.1016/j.media.2018.07.004 10.1109/TMI.2016.2536809 10.1109/42.538937 10.11318/mii.34.109 10.1148/radiol.2018180547 10.1007/s00521-018-3924-0 10.1007/s40120-019-00153-8 10.1007/s13246-020-00865-4 10.3322/caac.21551 10.1038/s41592-018-0261-2 10.24926/548719.007 10.1109/72.279181 10.1007/BF00344251 10.1109/CVPR.2018.00949 10.1109/tmi.2019.2945514 10.1007/s10489-020-01714-3 10.1145/2983402.2983406 10.1007/978-3-030-32606-7_2 10.1109/CVPR.2015.7298854 10.1109/IACS.2018.8355444 10.1113/jphysiol.1962.sp006837 10.1007/978-1-4684-1716-6_25 10.1007/s11042-019-07984-5 10.1145/3065386 10.1038/s41598-019-46718-3 10.1109/tcyb.2019.2935141 10.1109/TNNLS.2017.2766168 10.1109/TMI.2019.2933656 10.1259/bjr.20180028 10.1109/ICCV.2015.123 10.1109/ACCESS.2019.2962862 10.1109/ACCESS.2020.2972859 10.1109/TMI.2017.2655486 10.1016/j.neunet.2014.09.003 10.1109/TMI.2016.2528162 10.3389/fmed.2019.00185 10.1109/tfuzz.2020.2966163 10.1109/ACCESS.2020.2994762 10.1016/S0361-9230(99)00182-3 10.1109/CVPR.2016.90 10.1038/s41598-018-21215-1 10.1111/exsy.12224 10.1016/0025-5564(78)90058-5 10.1109/TIP.2017.2670143 10.1016/j.neucom.2019.04.028 10.1109/TFUZZ.2019.2952831 10.1109/TPAMI.2015.2389824 10.1007/s11042-016-4219-z 10.1016/S0019-9958(70)90409-2 10.1016/j.jece.2020.104262 10.1016/j.media.2019.101552 10.1016/j.gie.2019.04.245 10.1016/j.ymeth.2020.07.003 10.1148/radiol.2018180694 10.4249/scholarpedia.3516 10.1016/j.cmpb.2019.06.005 10.1109/TNNLS.2019.2892409 10.1109/42.476112 10.1016/j.ejmp.2020.07.028 10.21037/jmai.2019.01.01 10.1109/CVPR.2015.7298594 10.1109/TMI.2016.2606380 10.1109/TMI.2018.2879369 10.1186/s12859-018-2055-z 10.1109/TIP.2019.2934350 10.2174/1573405614666181102152434 10.5946/ce.2020.054 10.1007/BF02478259 10.1016/j.compbiomed.2020.103792 10.1109/ACCESS.2018.2885997 10.1145/2733373.2807412 10.5555/3008751.3008817 10.1109/TMI.2019.2891305 10.1109/TBME.2018.2814538 10.1117/12.2216198 10.1038/s41598-019-48995-4 10.1148/ryai.2019180096 10.1109/JBHI.2017.2767063 10.1109/5.58337 10.1109/tii.2020.2972918 10.1016/j.neucom.2016.12.038 10.1109/tcsvt.2020.3023080 10.1016/0025-5564(74)90031-5 10.1109/TMI.2015.2458702 10.1007/978-1-4899-7502-7_31-1 10.1101/2020.03.30.20047456 10.1162/neco.1989.1.4.541 10.3390/diagnostics10060358 10.1109/ACCESS.2019.2944676 10.1109/RBME.2009.2034865 10.1016/j.compbiomed.2017.08.001 10.1016/j.patcog.2013.05.025 10.1155/2019/6051939 10.3389/fmed.2019.00264 10.1109/51.59207 10.1007/978-981-10-6680-1_12 10.1038/srep26286 10.1101/2020.05.04.20090423 10.1109/RBME.2018.2885714 10.1093/cid/ciy967 10.1007/978-3-642-15825-4_10 10.1038/323533a0 10.1038/s41598-019-40041-7 10.1109/72.286917 10.1162/neco.2006.18.7.1527 10.1007/s11277-018-5702-9 10.1117/1.jmi.3.3.034501 10.1109/ITA.2010.5454138 10.1109/JBHI.2018.2850040 10.1038/s41598-018-22437-z 10.1038/s41598-020-76550-z 10.3390/jcm8091310 10.1109/CVPR.2017.243 10.1109/TIP.2018.2801119 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. Copyright Springer Nature B.V. Jul 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. – notice: Copyright Springer Nature B.V. Jul 2021 |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11042-021-10707-4 |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed ABI/INFORM Global (Corporate) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 24398 |
ExternalDocumentID | PMC8023554 33841033 10_1007_s11042_021_10707_4 |
Genre | Journal Article |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM -4Z -59 -5G -BR -EM 3V. ADINQ GQ6 GROUPED_ABI_INFORM_COMPLETE M0N NPM Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-dc12837af187476cfa7961eaedf10c57fceaf9a111c9eeffa37110c39a6c49f93 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 17:19:12 EDT 2025 Mon Jul 21 10:55:52 EDT 2025 Fri Jul 25 20:56:19 EDT 2025 Wed Feb 19 02:26:30 EST 2025 Thu Apr 24 23:12:51 EDT 2025 Tue Jul 01 05:10:56 EDT 2025 Thu Apr 10 07:12:22 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Keywords | Deep learning Medical images Segmentation Convolutional neural networks Detection Classification |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-dc12837af187476cfa7961eaedf10c57fceaf9a111c9eeffa37110c39a6c49f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7267-9233 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8023554 |
PMID | 33841033 |
PQID | 2548389040 |
PQPubID | 54626 |
PageCount | 34 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8023554 proquest_miscellaneous_2511898835 proquest_journals_2548389040 pubmed_primary_33841033 crossref_citationtrail_10_1007_s11042_021_10707_4 crossref_primary_10_1007_s11042_021_10707_4 springer_journals_10_1007_s11042_021_10707_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2021 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 10707_CR186 L Shen (10707_CR139) 2019; 9 10707_CR100 A Shah (10707_CR137) 2016; 21–24 10707_CR103 S Zhang (10707_CR187) 2020; 8 Y Li (10707_CR77) 2019; 166 A Rodríguez-Ruiz (10707_CR125) 2019; 290 10707_CR63 10707_CR64 S Rajaraman (10707_CR119) 2020; 8 10707_CR108 R Hooda (10707_CR53) 2019; 78 10707_CR66 10707_CR61 G Ma (10707_CR92) 2020; 26 JC Souza (10707_CR148) 2019; 177 A Masood (10707_CR95) 2020; 3203 A Waheed (10707_CR160) 2020; 8 X Zhang (10707_CR188) 2017; 2017-Janua AJ Reader (10707_CR123) 2020; 7311 D Ribli (10707_CR124) 2018; 8 10707_CR69 S Xu (10707_CR181) 2019; 7 10707_CR190 UK Lopes (10707_CR91) 2017; 89 AAA Setio (10707_CR136) 2016; 35 DH Hubel (10707_CR55) 1962; 160 Y Bengio (10707_CR9) 2006 O Ronneberger (10707_CR126) 2015; 9351 Z Li (10707_CR76) 2019; 350 J Wu (10707_CR174) 2017; 34 N Dimitriou (10707_CR30) 2019; 6 C Chen (10707_CR17) 2018; 20 BQ Huynh (10707_CR56) 2016; 3 10707_CR50 JY He (10707_CR46) 2018; 27 B Sahiner (10707_CR131) 1996; 15 M Valkonen (10707_CR154) 2020; 39 KK Jani (10707_CR60) 2019; 15 H Lin (10707_CR83) 2019; 38 RC Eberhart (10707_CR33) 1990; 9 A Serag (10707_CR135) 2019; 6 S Tabibu (10707_CR152) 2019; 9 X Wang (10707_CR167) 2019; PP 10707_CR180 10707_CR183 A Fischer (10707_CR36) 2014; 47 G Litjens (10707_CR85) 2016; 6 N Wu (10707_CR176) 2019; 39 Q Liang (10707_CR81) 2019; 23 10707_CR165 F Yi (10707_CR184) 2018; 19 V Nair (10707_CR104) 2010; 33 C Chen (10707_CR21) 2020; 29 DS Chen (10707_CR16) 1994; 5 C Chen (10707_CR18) 2017; 26 SLJLMFMCSMSC Lo (10707_CR89) 1995; 14 W Du (10707_CR31) 2019; 7 Y LeCun (10707_CR70) 1998 RL Siegel (10707_CR142) 2019; 69 D Scherer (10707_CR133) 2010; 6354 LNCS P Vincent (10707_CR159) 2010; 11 CD Lehman (10707_CR72) 2019; 290 WA Little (10707_CR86) 1974; 19 C Chen (10707_CR20) 2020; 29 H Chougrad (10707_CR23) 2018; 157 10707_CR171 10707_CR172 10707_CR173 T Poggio (10707_CR116) 2013; 8 10707_CR153 A Pezeshk (10707_CR114) 2018; PP S Sabour (10707_CR129) 2017; 2017-Decem 10707_CR157 S Candemir (10707_CR14) 2018 10707_CR158 T Falk (10707_CR34) 2019; 16 F Liao (10707_CR82) 2019; 30 M Minsky (10707_CR98) 1969 Q Zhao (10707_CR189) 2018; 2018 10707_CR74 B Münzer (10707_CR101) 2018; 77 10707_CR73 P Fonseca (10707_CR37) 2015; 9414 10707_CR78 H Greenspan (10707_CR44) 2016; 35 CS Perone (10707_CR113) 2019; 2 Y Song (10707_CR147) 2017; 36 P Bizopoulos (10707_CR11) 2019; 12 10707_CR163 10707_CR3 10707_CR4 10707_CR143 10707_CR5 10707_CR6 JW Wei (10707_CR169) 2019; 9 10707_CR1 10707_CR2 F Xing (10707_CR179) 2016; 35 S Wang (10707_CR164) 2019; 13 10707_CR7 WS Mcculloch (10707_CR97) 1943; 5 G Klambauer (10707_CR67) 2017; 2017 10707_CR28 J Ma (10707_CR93) 2020; 14 J Wang (10707_CR161) 2017; 36 10707_CR29 10707_CR25 S Bauer (10707_CR8) 2013; 58 MA Mazurowski (10707_CR96) 2019; 49 10707_CR150 MN Gurcan (10707_CR45) 2009; 2 C Li (10707_CR80) 2019; 53 10707_CR90 DE Rumelhart (10707_CR128) 1986; 323 WA Little (10707_CR87) 1978; 39 G Huang (10707_CR54) 2017; 2017 YR Van Eycke (10707_CR156) 2018; 49 K Fukushima (10707_CR38) 1980; 36 Y LeCun (10707_CR71) 1989; 1 H Qu (10707_CR118) 2019 P Rajpurkar (10707_CR121) 2018; 15 W Ouyang (10707_CR109) 2015; 07–12 S Hochreiter (10707_CR52) 1997; 9 10707_CR99 C Dugas (10707_CR32) 2000 W Liu (10707_CR88) 2017; 234 10707_CR12 S Pang (10707_CR111) 2020; 8 10707_CR13 K Nakagawa (10707_CR105) 2019; 90 Y Qiang (10707_CR117) 2017; 34 A Shatnawi (10707_CR138) 2018; 2018-Janua N Wu (10707_CR177) 2018; 2018-April F Xing (10707_CR178) 2018; 29 10707_CR15 N Coudray (10707_CR27) 2018; 24 A Krizhevsky (10707_CR68) 2012 TH Song (10707_CR146) 2019; 23 C Szegedy (10707_CR151) 2015 HJ Yoon (10707_CR185) 2019; 8 IJ Goodfellow (10707_CR43) 2014; 3 HC Shin (10707_CR141) 2016; 35 S Soffer (10707_CR145) 2020; 92 A Murphy (10707_CR102) 2018; 91 10707_CR140 C Kang (10707_CR62) 2020; 6706 A Ng (10707_CR106) 2011; 72 10707_CR122 Y Wang (10707_CR166) 2019; 44 H Wu (10707_CR175) 2015; 9489 Y Bengio (10707_CR10) 1994; 5 T Wang (10707_CR168) 2020; 76 K He (10707_CR49) 2016; 2016 GE Hinton (10707_CR51) 2006; 18 10707_CR41 D Nie (10707_CR107) 2018; 65 10707_CR42 EJ Hwang (10707_CR58) 2019; 69 X Li (10707_CR75) 2018; 37 DA Clevert (10707_CR24) 2016 S Hwang (10707_CR57) 2016; 9785 M Gadermayr (10707_CR39) 2019; 38 J Xu (10707_CR182) 2016; 35 G Litjens (10707_CR84) 2017; 42 10707_CR47 GV Ionescu (10707_CR59) 2019; 6 J Choi (10707_CR22) 2020; 53 M Sun (10707_CR149) 2019; 7 K He (10707_CR48) 2015; 37 10707_CR130 AAA Valliani (10707_CR155) 2019; 8 SH Wang (10707_CR162) 2020; 32 PJ Werbos (10707_CR170) 1990; 78 S Rajaraman (10707_CR120) 2020; 10 SJS Gardezi (10707_CR40) 2019; 21 T Ozturk (10707_CR110) 2020; 121 CT Sari (10707_CR132) 2019; 38 10707_CR115 R Pascanu (10707_CR112) 2013; 2013 S Soffer (10707_CR144) 2019; 290 EK Kim (10707_CR65) 2018; 8 AL Maas (10707_CR94) 2013 L Li (10707_CR79) 2019; 2020 EF Conant (10707_CR26) 2019; 1 J Schmidhuber (10707_CR134) 2015; 61 10707_CR35 H Chen (10707_CR19) 2017; 36 F Rosenblatt (10707_CR127) 1958; 65 |
References_xml | – volume: PP start-page: 1 issue: c year: 2018 ident: 10707_CR114 publication-title: IEEE J Biomed Heal Inf doi: 10.1109/JBHI.2018.2879449 – volume: 9489 start-page: 46 year: 2015 ident: 10707_CR175 publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) doi: 10.1007/978-3-319-26532-2_6 – start-page: 900 volume-title: 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) year: 2019 ident: 10707_CR118 doi: 10.1109/ISBI.2019.8759457 – volume: 2018-April start-page: 6682 year: 2018 ident: 10707_CR177 publication-title: ICASSP, IEEE Int Conf Acoust Speech Signal Process - Proc doi: 10.1109/ICASSP.2018.8462671 – volume: 6 start-page: 1 issue: 03 year: 2019 ident: 10707_CR59 publication-title: J Med Imaging doi: 10.1117/1.jmi.6.3.031405 – start-page: 109 volume-title: 2018 IEEE Life Sciences Conference (LSC) year: 2018 ident: 10707_CR14 doi: 10.1109/LSC.2018.8572113 – volume: 23 start-page: 1469 issue: 4 year: 2019 ident: 10707_CR146 publication-title: IEEE J Biomed Heal Inf doi: 10.1109/JBHI.2018.2878945 – volume: 7 start-page: 75530 year: 2019 ident: 10707_CR149 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918800 – volume: 15 start-page: 1 issue: 11 year: 2018 ident: 10707_CR121 publication-title: PLoS Med doi: 10.1371/journal.pmed.1002686 – volume: 44 start-page: 162 year: 2019 ident: 10707_CR166 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.05.040 – ident: 10707_CR25 – ident: 10707_CR1 – volume: 36 start-page: 135 year: 2017 ident: 10707_CR19 publication-title: Med Image Anal doi: 10.1016/j.media.2016.11.004 – volume: 92 start-page: 831 issue: 4 year: 2020 ident: 10707_CR145 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2020.04.039 – ident: 10707_CR61 doi: 10.1145/2647868.2654889 – volume: 42 start-page: 60 issue: 1995 year: 2017 ident: 10707_CR84 publication-title: Med Image Anal doi: 10.1016/j.media.2017.07.005 – volume: 290 start-page: 1 issue: 3 year: 2019 ident: 10707_CR125 publication-title: Radiology doi: 10.1148/radiol.2018181371 – ident: 10707_CR180 – volume: 13 start-page: 1 issue: MAY year: 2019 ident: 10707_CR164 publication-title: Front Neurosci doi: 10.3389/fnins.2019.00422 – volume: 9414 start-page: 941428 issue: c year: 2015 ident: 10707_CR37 publication-title: Med Imaging 2015 Comput Diagnosis doi: 10.1117/12.2081576 – volume: 49 start-page: 939 issue: 4 year: 2019 ident: 10707_CR96 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.26534 – volume: 35 start-page: 1153 issue: 5 year: 2016 ident: 10707_CR44 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2553401 – volume: 2017-Janua start-page: 700 issue: Cc year: 2017 ident: 10707_CR188 publication-title: Proc - 2017 IEEE Int Conf Bioinforma Biomed BIBM 2017 doi: 10.1109/BIBM.2017.8217738 – volume: 166 start-page: 4 year: 2019 ident: 10707_CR77 publication-title: Methods doi: 10.1016/j.ymeth.2019.04.008 – ident: 10707_CR103 doi: 10.1038/s41598-020-62148-y – volume: 157 start-page: 19 year: 2018 ident: 10707_CR23 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2018.01.011 – volume: 21 start-page: 1 issue: 7 year: 2019 ident: 10707_CR40 publication-title: J Med Internet Res doi: 10.2196/14464 – volume: 29 start-page: 4296 year: 2020 ident: 10707_CR21 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.2968250 – volume: 35 start-page: 550 issue: 2 year: 2016 ident: 10707_CR179 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2481436 – ident: 10707_CR90 doi: 10.3390/SYM12040651 – volume: 37 start-page: 2663 issue: 12 year: 2018 ident: 10707_CR75 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2845918 – ident: 10707_CR35 doi: 10.1101/2020.04.22.20074948 – ident: 10707_CR74 doi: 10.1155/2016/6215085 – volume: 20 start-page: 3324 issue: 12 year: 2018 ident: 10707_CR17 publication-title: IEEE Trans Multimed doi: 10.1109/TMM.2018.2839523 – volume: 9351 start-page: 234 year: 2015 ident: 10707_CR126 publication-title: Lect Notes Comput Sci (including Subser Lect. Notes Artif Intell Lect Notes Bioinformatics) doi: 10.1007/978-3-319-24574-4_28 – ident: 10707_CR29 doi: 10.1007/s13748-019-00203-0 – volume: 8 start-page: 27318 year: 2020 ident: 10707_CR119 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2971257 – volume: 7311 start-page: 1 issue: 1 year: 2020 ident: 10707_CR123 publication-title: IEEE Trans Radiat Plasma Med Sci doi: 10.1109/trpms.2020.3014786 – volume: 24 start-page: 1559 issue: 10 year: 2018 ident: 10707_CR27 publication-title: Nat Med doi: 10.1038/s41591-018-0177-5 – ident: 10707_CR42 doi: 10.1038/nmeth.3707 – ident: 10707_CR4 – volume-title: The 30th International Conference on Machine Learning year: 2013 ident: 10707_CR94 – start-page: 1 volume-title: 4th International Conference on Learning Representations, ICLR 2016 year: 2016 ident: 10707_CR24 – ident: 10707_CR5 doi: 10.1109/jbhi.2019.2942774 – ident: 10707_CR157 doi: 10.1109/ISBI.2015.7163869 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10707_CR127 publication-title: Psychol Rev doi: 10.1037/h0042519 – ident: 10707_CR13 doi: 10.1155/2019/2717454 – ident: 10707_CR115 – start-page: 153 volume-title: The 19th International Conference on Neural Information Processing Systems(NIPS’06) year: 2006 ident: 10707_CR9 doi: 10.5555/2976456.2976476 – ident: 10707_CR163 – volume: 2018 start-page: 1 year: 2018 ident: 10707_CR189 publication-title: Wirel Commun Mob Comput doi: 10.1155/2018/8196906 – volume: 53 start-page: 165 year: 2019 ident: 10707_CR80 publication-title: Med Image Anal doi: 10.1016/j.media.2019.01.013 – volume: 38 start-page: 2293 issue: 10 year: 2019 ident: 10707_CR39 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2899364 – volume: 14 start-page: 450 issue: 4 year: 2020 ident: 10707_CR93 publication-title: Front Med doi: 10.1007/s11684-019-0726-4 – volume: 26 start-page: 3535 year: 2020 ident: 10707_CR92 publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/tvcg.2020.3023636 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10707_CR52 publication-title: Neural Comput doi: 10.1162/neco.1997.9.8.1735 – volume: 58 start-page: 1 issue: 13 year: 2013 ident: 10707_CR8 publication-title: Phys Med Biol doi: 10.1088/0031-9155/58/13/R97 – volume: 49 start-page: 35 year: 2018 ident: 10707_CR156 publication-title: Med Image Anal doi: 10.1016/j.media.2018.07.004 – volume: 2017 start-page: 972 issue: Decem year: 2017 ident: 10707_CR67 publication-title: Adv Neural Inf Process Syst – volume: 35 start-page: 1160 issue: 5 year: 2016 ident: 10707_CR136 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2536809 – volume: 15 start-page: 598 issue: 5 year: 1996 ident: 10707_CR131 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.538937 – volume: 34 start-page: 109 issue: 2 year: 2017 ident: 10707_CR174 publication-title: Med Imaging Inf Sci doi: 10.11318/mii.34.109 – volume: 290 start-page: 590 issue: 3 year: 2019 ident: 10707_CR144 publication-title: Radiology doi: 10.1148/radiol.2018180547 – volume: 32 start-page: 665 issue: 3 year: 2020 ident: 10707_CR162 publication-title: Neural Comput & Applic doi: 10.1007/s00521-018-3924-0 – volume: 8 start-page: 351 issue: 2 year: 2019 ident: 10707_CR155 publication-title: Neurol Ther doi: 10.1007/s40120-019-00153-8 – ident: 10707_CR3 doi: 10.1007/s13246-020-00865-4 – volume: 69 start-page: 7 issue: 1 year: 2019 ident: 10707_CR142 publication-title: CA Cancer J Clin doi: 10.3322/caac.21551 – volume: 16 start-page: 67 issue: 1 year: 2019 ident: 10707_CR34 publication-title: Nat Methods doi: 10.1038/s41592-018-0261-2 – ident: 10707_CR190 doi: 10.24926/548719.007 – volume: 5 start-page: 157 issue: 2 year: 1994 ident: 10707_CR10 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.279181 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10707_CR38 publication-title: Biol Cybern doi: 10.1007/BF00344251 – ident: 10707_CR130 doi: 10.1109/CVPR.2018.00949 – volume: 39 start-page: 1 year: 2019 ident: 10707_CR176 publication-title: IEEE Trans Med Imaging doi: 10.1109/tmi.2019.2945514 – volume: 2020 start-page: 1 year: 2019 ident: 10707_CR79 publication-title: Radiology doi: 10.1007/s10489-020-01714-3 – volume: 21–24 start-page: 59 issue: Sept year: 2016 ident: 10707_CR137 publication-title: ACM Int Conf Proceeding Ser doi: 10.1145/2983402.2983406 – ident: 10707_CR73 doi: 10.1007/978-3-030-32606-7_2 – volume: 07–12 start-page: 2403 issue: June year: 2015 ident: 10707_CR109 publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit doi: 10.1109/CVPR.2015.7298854 – volume: 2018-Janua start-page: 72 year: 2018 ident: 10707_CR138 publication-title: 2018 9th Int Conf Inf Commun Syst ICICS 2018 doi: 10.1109/IACS.2018.8355444 – volume: 160 start-page: 106 issue: 1 year: 1962 ident: 10707_CR55 publication-title: J Physiol doi: 10.1113/jphysiol.1962.sp006837 – ident: 10707_CR172 doi: 10.1007/978-1-4684-1716-6_25 – volume: 78 start-page: 31515 issue: 22 year: 2019 ident: 10707_CR53 publication-title: Multimed Tools Appl doi: 10.1007/s11042-019-07984-5 – start-page: 1097 volume-title: The 25th International Conference on Neural Information Processing Systems year: 2012 ident: 10707_CR68 doi: 10.1145/3065386 – ident: 10707_CR143 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10707_CR152 publication-title: Sci Rep doi: 10.1038/s41598-019-46718-3 – volume: PP start-page: 1 year: 2019 ident: 10707_CR167 publication-title: IEEE Trans Cybern doi: 10.1109/tcyb.2019.2935141 – volume: 29 start-page: 4550 issue: 10 year: 2018 ident: 10707_CR178 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2017.2766168 – volume: 39 start-page: 534 issue: 2 year: 2020 ident: 10707_CR154 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2933656 – ident: 10707_CR6 – volume: 91 start-page: 1 issue: 1090 year: 2018 ident: 10707_CR102 publication-title: Br J Radiol doi: 10.1259/bjr.20180028 – ident: 10707_CR47 doi: 10.1109/ICCV.2015.123 – volume: 8 start-page: 4799 year: 2020 ident: 10707_CR111 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2962862 – volume: 8 start-page: 29857 year: 2020 ident: 10707_CR187 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2972859 – volume: 36 start-page: 1172 issue: 5 year: 2017 ident: 10707_CR161 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2017.2655486 – volume: 11 start-page: 3371 year: 2010 ident: 10707_CR159 publication-title: J Mach Learn Res – volume: 61 start-page: 85 year: 2015 ident: 10707_CR134 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 10707_CR141 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – volume: 6 start-page: 1 issue: October year: 2019 ident: 10707_CR135 publication-title: Front Med doi: 10.3389/fmed.2019.00185 – ident: 10707_CR171 – volume: 6706 start-page: 1 issue: c year: 2020 ident: 10707_CR62 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/tfuzz.2020.2966163 – volume: 8 start-page: 91916 year: 2020 ident: 10707_CR160 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2994762 – ident: 10707_CR100 doi: 10.1016/S0361-9230(99)00182-3 – volume: 2016 start-page: 770 issue: Decem year: 2016 ident: 10707_CR49 publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit doi: 10.1109/CVPR.2016.90 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10707_CR65 publication-title: Sci Rep doi: 10.1038/s41598-018-21215-1 – volume: 34 start-page: 1 issue: 6 year: 2017 ident: 10707_CR117 publication-title: Expert Syst doi: 10.1111/exsy.12224 – volume: 39 start-page: 281 issue: 3–4 year: 1978 ident: 10707_CR87 publication-title: Math Biosci doi: 10.1016/0025-5564(78)90058-5 – volume: 26 start-page: 3156 issue: 7 year: 2017 ident: 10707_CR18 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2670143 – volume: 350 start-page: 53 issue: May year: 2019 ident: 10707_CR76 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.04.028 – ident: 10707_CR15 doi: 10.1109/TFUZZ.2019.2952831 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 10707_CR48 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – volume: 77 start-page: 1323 issue: 1 year: 2018 ident: 10707_CR101 publication-title: Multimed Tools Appl doi: 10.1007/s11042-016-4219-z – start-page: 20 volume-title: Perceptrons: an introduction to computational geometry year: 1969 ident: 10707_CR98 doi: 10.1016/S0019-9958(70)90409-2 – start-page: 255 volume-title: The handbook of brain theory and neural networks year: 1998 ident: 10707_CR70 – ident: 10707_CR64 doi: 10.1016/j.jece.2020.104262 – ident: 10707_CR183 doi: 10.1016/j.media.2019.101552 – ident: 10707_CR41 – volume: 90 start-page: 407 issue: 3 year: 2019 ident: 10707_CR105 publication-title: Gastrointest Endosc doi: 10.1016/j.gie.2019.04.245 – ident: 10707_CR28 doi: 10.1016/j.ymeth.2020.07.003 – volume: 290 start-page: 52 issue: 1 year: 2019 ident: 10707_CR72 publication-title: Radiology doi: 10.1148/radiol.2018180694 – volume: 8 start-page: 3516 issue: 4 year: 2013 ident: 10707_CR116 publication-title: Scholarpedia doi: 10.4249/scholarpedia.3516 – volume: 177 start-page: 285 year: 2019 ident: 10707_CR148 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2019.06.005 – volume: 30 start-page: 3484 issue: 11 year: 2019 ident: 10707_CR82 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2892409 – volume: 14 start-page: 711 issue: 4 year: 1995 ident: 10707_CR89 publication-title: IEEE Trans Med Imaging doi: 10.1109/42.476112 – volume: 33 start-page: 807 issue: 5 year: 2010 ident: 10707_CR104 publication-title: Proc 27th Int Conf Mach Learn (ICML-10), 807–814 – volume: 76 start-page: 294 issue: March year: 2020 ident: 10707_CR168 publication-title: Phys Medica doi: 10.1016/j.ejmp.2020.07.028 – volume: 2 start-page: 1 year: 2019 ident: 10707_CR113 publication-title: J Med Artif Intell doi: 10.21037/jmai.2019.01.01 – start-page: 1 volume-title: The IEEE conference on Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: 10707_CR151 doi: 10.1109/CVPR.2015.7298594 – volume: 36 start-page: 288 issue: 1 year: 2017 ident: 10707_CR147 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2606380 – volume: 38 start-page: 1139 issue: 5 year: 2019 ident: 10707_CR132 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2018.2879369 – volume: 19 start-page: 1 issue: 1 year: 2018 ident: 10707_CR184 publication-title: BMC Bioinform doi: 10.1186/s12859-018-2055-z – volume: 29 start-page: 1090 year: 2020 ident: 10707_CR20 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2019.2934350 – volume: 15 start-page: 622 issue: 7 year: 2019 ident: 10707_CR60 publication-title: Curr Med Imaging Rev doi: 10.2174/1573405614666181102152434 – volume: 53 start-page: 117 issue: 2 year: 2020 ident: 10707_CR22 publication-title: Clin Endosc doi: 10.5946/ce.2020.054 – volume: 5 start-page: 115 year: 1943 ident: 10707_CR97 publication-title: Bull Math Biophys doi: 10.1007/BF02478259 – volume: 121 start-page: 103792 issue: April year: 2020 ident: 10707_CR110 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103792 – volume: 7 start-page: 4466 issue: c year: 2019 ident: 10707_CR181 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2885997 – ident: 10707_CR158 doi: 10.1145/2733373.2807412 – start-page: 451 volume-title: 13th International Conference on Neural Information Processing Systems (NIPS’00) year: 2000 ident: 10707_CR32 doi: 10.5555/3008751.3008817 – volume: 38 start-page: 1948 issue: 8 year: 2019 ident: 10707_CR83 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2891305 – volume: 65 start-page: 2720 issue: 12 year: 2018 ident: 10707_CR107 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2018.2814538 – ident: 10707_CR173 – volume: 9785 start-page: 97852W year: 2016 ident: 10707_CR57 publication-title: Med Imaging 2016 Comput Diagnosis doi: 10.1117/12.2216198 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10707_CR139 publication-title: Sci Rep doi: 10.1038/s41598-019-48995-4 – ident: 10707_CR12 – volume: 1 start-page: e180096 issue: 4 year: 2019 ident: 10707_CR26 publication-title: Radiol Artif Intell doi: 10.1148/ryai.2019180096 – ident: 10707_CR140 doi: 10.1109/JBHI.2017.2767063 – volume: 78 start-page: 1550 issue: 10 year: 1990 ident: 10707_CR170 publication-title: Proc IEEE doi: 10.1109/5.58337 – volume: 3203 start-page: 1 issue: c year: 2020 ident: 10707_CR95 publication-title: IEEE Trans Ind Inf doi: 10.1109/tii.2020.2972918 – volume: 234 start-page: 11 issue: November 2016 year: 2017 ident: 10707_CR88 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – ident: 10707_CR186 – ident: 10707_CR78 doi: 10.1109/tcsvt.2020.3023080 – volume: 19 start-page: 101 issue: 1–2 year: 1974 ident: 10707_CR86 publication-title: Math Biosci doi: 10.1016/0025-5564(74)90031-5 – volume: 35 start-page: 119 issue: 1 year: 2016 ident: 10707_CR182 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2015.2458702 – volume: 2013 start-page: 2347 issue: PART 3 year: 2013 ident: 10707_CR112 publication-title: 30th Int Conf Mach Learn ICML – ident: 10707_CR50 doi: 10.1007/978-1-4899-7502-7_31-1 – ident: 10707_CR2 doi: 10.1101/2020.03.30.20047456 – volume: 1 start-page: 541 issue: 4 year: 1989 ident: 10707_CR71 publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – volume: 10 start-page: 1 issue: 6 year: 2020 ident: 10707_CR120 publication-title: Diagnostics doi: 10.3390/diagnostics10060358 – volume: 7 start-page: 142053 year: 2019 ident: 10707_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2944676 – volume: 2 start-page: 147 year: 2009 ident: 10707_CR45 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2009.2034865 – volume: 89 start-page: 135 issue: August year: 2017 ident: 10707_CR91 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.08.001 – ident: 10707_CR153 – volume: 47 start-page: 25 issue: 1 year: 2014 ident: 10707_CR36 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2013.05.025 – ident: 10707_CR108 doi: 10.1155/2019/6051939 – ident: 10707_CR69 – volume: 2017-Decem start-page: 3857 issue: Nips year: 2017 ident: 10707_CR129 publication-title: Adv Neural Inf Process Syst – volume: 6 start-page: 1 issue: November year: 2019 ident: 10707_CR30 publication-title: Front Med doi: 10.3389/fmed.2019.00264 – volume: 9 start-page: 15 issue: 3 year: 1990 ident: 10707_CR33 publication-title: IEEE Eng Med Biol Mag doi: 10.1109/51.59207 – ident: 10707_CR63 doi: 10.1007/978-981-10-6680-1_12 – volume: 72 start-page: 1 year: 2011 ident: 10707_CR106 publication-title: CS294A Lect. Notes – volume: 6 start-page: 1 issue: January year: 2016 ident: 10707_CR85 publication-title: Sci Rep doi: 10.1038/srep26286 – ident: 10707_CR7 doi: 10.1101/2020.05.04.20090423 – volume: 12 start-page: 168 issue: c year: 2019 ident: 10707_CR11 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2018.2885714 – volume: 69 start-page: 739 issue: 5 year: 2019 ident: 10707_CR58 publication-title: Clin Infect Dis doi: 10.1093/cid/ciy967 – ident: 10707_CR122 – volume: 6354 LNCS start-page: 92 issue: PART 3 year: 2010 ident: 10707_CR133 publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics) doi: 10.1007/978-3-642-15825-4_10 – volume: 323 start-page: 533 issue: 9 year: 1986 ident: 10707_CR128 publication-title: Nature doi: 10.1038/323533a0 – volume: 9 start-page: 1 issue: 1 year: 2019 ident: 10707_CR169 publication-title: Sci Rep doi: 10.1038/s41598-019-40041-7 – volume: 5 start-page: 467 issue: 3 year: 1994 ident: 10707_CR16 publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.286917 – volume: 18 start-page: 1527 year: 2006 ident: 10707_CR51 publication-title: Neural Comput doi: 10.1162/neco.2006.18.7.1527 – volume: 3 start-page: 2672 issue: January year: 2014 ident: 10707_CR43 publication-title: Adv Neural Inf Process Syst – ident: 10707_CR99 doi: 10.1007/s11277-018-5702-9 – volume: 3 start-page: 034501 issue: 3 year: 2016 ident: 10707_CR56 publication-title: J Med Imaging doi: 10.1117/1.jmi.3.3.034501 – ident: 10707_CR150 doi: 10.1109/ITA.2010.5454138 – ident: 10707_CR66 – volume: 23 start-page: 1205 issue: 3 year: 2019 ident: 10707_CR81 publication-title: IEEE J Biomed Heal Inf doi: 10.1109/JBHI.2018.2850040 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10707_CR124 publication-title: Sci Rep doi: 10.1038/s41598-018-22437-z – ident: 10707_CR165 doi: 10.1038/s41598-020-76550-z – volume: 8 start-page: 1310 issue: 9 year: 2019 ident: 10707_CR185 publication-title: J Clin Med doi: 10.3390/jcm8091310 – volume: 2017 start-page: 2261 issue: Janua year: 2017 ident: 10707_CR54 publication-title: Proc - 30th IEEE Conf Comput Vis Pattern Recognition, CVPR 2017 doi: 10.1109/CVPR.2017.243 – volume: 27 start-page: 2379 issue: 5 year: 2018 ident: 10707_CR46 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2018.2801119 |
SSID | ssj0016524 |
Score | 2.631845 |
Snippet | Medical imaging plays a significant role in different clinical applications such as medical procedures used for early detection, monitoring, diagnosis, and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 24365 |
SubjectTerms | Artificial neural networks Computed tomography Computer Communication Networks Computer Science Computer vision Data Structures and Information Theory Deep learning Digital imaging Image analysis Image classification Image segmentation Machine learning Medical imaging Medical research Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODA-1EYKEjcIFLTpOlyRAg0IcGJSbtVIQ9Agm6C8f9xurRjvCSuTfqy45dsfwY4sVxwZ4SlFn0iKlCAqLKZork3RgrrnLchULy5lf2BuB7mw9gU9tZUuzcpyVpTz5rdWGglCSUFLGDUULEISznG7qGQa5Cdt7kDmcdRtr2Uoj1ksVXm52fMm6NvPub3Uskv-dLaDF2tw2r0H8n5lOEbsOCqTVhrZjOQKKqbsPIJaHALZMzHkKcX1B9ERyQSEmyYJaOKILnGJE6QeCAN0Pg2DK4u7y76NE5MoAY9rwm1hgU0G-3DpL1CGq8LJZnTznqWmrzwxmmvNOo3o5ANXvMCKWK40tII5RXfgU41qtweEMVdkYme8FnmhE75fRqQ76zlqZMSryXAGsKVJsKJh6kWz-UMCDkQu0RilzWxS5HAaXvPeAqm8efubsOPMgrWW4nxbA99LFQ9CRy3yygSIc-hKzd6D3swalI99C0T2J2yr30dRuSCpZwnUMwxtt0Q4LbnV6qnxxp2O0DlofOVwFlzBGaf9ftf7P9v-wEsZ-F41gXBXehMXt_dIbo9k_uj-pR_AJbl-Ds priority: 102 providerName: Springer Nature |
Title | Medical image analysis based on deep learning approach |
URI | https://link.springer.com/article/10.1007/s11042-021-10707-4 https://www.ncbi.nlm.nih.gov/pubmed/33841033 https://www.proquest.com/docview/2548389040 https://www.proquest.com/docview/2511898835 https://pubmed.ncbi.nlm.nih.gov/PMC8023554 |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7Qs8ABswAqMy0t7AIoldJ35CLWo3baKaEJXGU-T5Y5sEaWHd_89d6qSUiT1Fih0luTvfh-_8O4AjJ6TwVjru0CfiEhcQ1y7XfBisVdJ5HxwFil9m6mQuTy-GF3HD7TaWVbY6sVHUbmFpj_wjBjIlGleUuU_LX5y6RlF2NbbQ2IU-quCy7EF_PJmdf-3yCGoY29qWKUfbmMVjM-vDcxkdTaEShYwwb7jcNk33_M37ZZP_5E4bkzR9Bk-iL8lGa-bvwY6v9-Fp26eBxWW7D4__Ah18DirmZtjNT9QlzERUEkb2zLFFzZB0Sxa7SVyxFnT8Bcynk2-fT3jsnsAtemEr7mxGyDYmUNe9QtlgCq0yb7wLWWqHRbDeBG1Q11mNLAlGFEgRK7RRVuqgxUvo1YvavwKmhS9yWcqQ516aVFymhILnnEi9UngvgawlXGUjtDh1uPhRbUCRidgVErtqiF3JBN53zyzXwBoPzj5s-VHFRXZbbUQigXfdMC4PynmY2i_uaA5GULpEPzOBgzX7utdhdC6zVIgEii3GdhMIent7pL65biC4CTYPHbEEPrQisPms___F64f_4g08ykkcm2LgQ-itft_5t-jyrC4HsFtOjwfQH03H4xldj7-fTQZR2nF0no_-APc1AcQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4QFteoaUYCU5gkcReJz5UCAHLlj5OrdRbcP1oK0F2oVtV_VP9jZ1JnCxLRW-9xo5iz4xnxpmZbwDeOCGFt9Jxhz4Rl3iAuHa55oNgrZLO--Doori7p0YH8vvh4HABrrpaGEqr7HRio6jd2NI_8g94kSnRuKLMfZz85tQ1iqKrXQuNViy2_eUFXtnONre-IH_f5vnw6_7nEY9dBbhF72TKnc0I8cUE6kZXKBtMoVXmjXchS-2gCNaboA3qAKtxqcGIAk2kFdooK3Ug8CVU-UtSoCWnyvThtz5qoQaxiW6ZcrTEWSzSaUv1MiqEoYSIjBB2uJw3hDe825tJmv9EahsDOFyGh9FzZZ9aUVuBBV-vwqOuKwSLSmIVHvwFcfgYVIwEsdNfqLmYiRgojKynY-OaIaMmLPauOGYdxPkTOLgTqj6FxXpc--fAtPBFLksZ8txLk4qjlDD3nBOpVwqfJZB1hKtsBDKnfho_qxkEMxG7QmJXDbErmcC7_p1JC-Nx6-z1jh9VPNJn1UwAE3jdD-NhpAiLqf34nObgfU2X6NUm8KxlX_85IUqZpUIkUMwxtp9AQN_zI_XpSQP4TSB96PYl8L4Tgdmy_r-LF7fv4hXcG-3v7lQ7W3vba3A_J9Fs0pDXYXH659y_RGdrerTRSDiDH3d9pK4BKkM6Gw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ-QIzH64Ad-FVDXRJ90Q9vd23YfiFHhAqIXYiThrS77oSTaO-QI8V_zr2Om3fY8ibzx2t2m7XxPZ_Y3AC-ckMJb6bjDmIhLVCCuXa75MFirpPM-OEoUP43VzoH8cDg8XII_3VkYaqvsbGJjqN3E0j_yDUxkSnSuKHMbIbZF7G-N3kxPOE2QokprN06jFZE9__sc07fTzd0t5PXLPB9tf3m_w-OEAW4xUplxZzNCfzGBJtMVygZTaJV5413IUjssgvUmaIP2wGp87WBEge7SCm2UlToQEBOa_-WCsqIBLL_bHu9_7msYahhH6pYpR7-cxSM77cG9jI7FUHtERng7XC66xUux7uWWzX_qto07HN2F2zGOZW9bwbsHS75egTvdjAgWTcYK3PoL8PA-qFgXYsc_0Y4xExFRGPlSxyY1Q7ZNWZxk8Y11gOcP4OBa6PoQBvWk9o-BaeGLXJYy5LmXJhVHKSHwOSdSrxReSyDrCFfZCGtO0zV-VHNAZiJ2hcSuGmJXMoFX_T3TFtTjyt3rHT-qqOCn1VwcE3jeL6NqUr3F1H5yRnswe9MlxrgJPGrZ1z9OiFJmqRAJFAuM7TcQ7PfiSn38vYH_Jsg-DAITeN2JwPy1_v8Vq1d_xTO4gepUfdwd763BzZwks-lJXofB7NeZf4KR1-zoaRRxBl-vW6suACtpP60 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Medical+image+analysis+based+on+deep+learning+approach&rft.jtitle=Multimedia+tools+and+applications&rft.au=Puttagunta%2C+Muralikrishna&rft.au=Ravi%2C+S&rft.date=2021-07-01&rft.issn=1380-7501&rft.volume=80&rft.issue=16&rft.spage=24365&rft_id=info:doi/10.1007%2Fs11042-021-10707-4&rft_id=info%3Apmid%2F33841033&rft.externalDocID=33841033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |