Assembling covalent organic framework membranes with superior ion exchange capacity

Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (I...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 1020 - 9
Main Authors Wang, Xiaoyao, Shi, Benbing, Yang, Hao, Guan, Jingyuan, Liang, Xu, Fan, Chunyang, You, Xinda, Wang, Yanan, Zhang, Zhe, Wu, Hong, Cheng, Tao, Zhang, Runnan, Jiang, Zhongyi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.02.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g −1 , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm −1 , holding great promise in ion transport and ionic separation applications. Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity.
AbstractList Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g-1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm-1, holding great promise in ion transport and ionic separation applications.Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g-1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm-1, holding great promise in ion transport and ionic separation applications.
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g −1 , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm −1 , holding great promise in ion transport and ionic separation applications. Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity.
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g −1 , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm −1 , holding great promise in ion transport and ionic separation applications.
Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity.
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g−1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm−1, holding great promise in ion transport and ionic separation applications.Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity.
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm , holding great promise in ion transport and ionic separation applications.
ArticleNumber 1020
Author Jiang, Zhongyi
Yang, Hao
Zhang, Zhe
Wu, Hong
Wang, Yanan
Liang, Xu
You, Xinda
Guan, Jingyuan
Zhang, Runnan
Shi, Benbing
Wang, Xiaoyao
Cheng, Tao
Fan, Chunyang
Author_xml – sequence: 1
  givenname: Xiaoyao
  orcidid: 0000-0002-5745-0905
  surname: Wang
  fullname: Wang, Xiaoyao
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 2
  givenname: Benbing
  surname: Shi
  fullname: Shi, Benbing
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 3
  givenname: Hao
  orcidid: 0000-0002-8241-6231
  surname: Yang
  fullname: Yang, Hao
  organization: Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 4
  givenname: Jingyuan
  surname: Guan
  fullname: Guan, Jingyuan
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 5
  givenname: Xu
  surname: Liang
  fullname: Liang, Xu
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 6
  givenname: Chunyang
  surname: Fan
  fullname: Fan, Chunyang
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 7
  givenname: Xinda
  orcidid: 0000-0001-6584-6611
  surname: You
  fullname: You, Xinda
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 8
  givenname: Yanan
  surname: Wang
  fullname: Wang, Yanan
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
– sequence: 9
  givenname: Zhe
  surname: Zhang
  fullname: Zhang, Zhe
  organization: Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 10
  givenname: Hong
  orcidid: 0000-0001-6600-4459
  surname: Wu
  fullname: Wu, Hong
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University
– sequence: 11
  givenname: Tao
  surname: Cheng
  fullname: Cheng, Tao
  organization: Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University
– sequence: 12
  givenname: Runnan
  orcidid: 0000-0002-9312-3610
  surname: Zhang
  fullname: Zhang, Runnan
  email: runnan.zhang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Zhejiang Institute of Tianjin University
– sequence: 13
  givenname: Zhongyi
  orcidid: 0000-0002-0048-8849
  surname: Jiang
  fullname: Jiang, Zhongyi
  email: zhyjiang@tju.edu.cn
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Zhejiang Institute of Tianjin University, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35197451$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1UREvpH2CBIrFhE_ArjrNBqioelSqxANbWje3MeEjswc708e-5TFpou2g2iZxzPh2fe1-Sg5iiJ-Q1o-8ZFfpDkUyqtqac11wrKWr9jBxxKlnNWi4O7n0fkpNSNhQf0TEt5QtyKBrWtbJhR-T7aSl-6scQV5VNlzD6OFcpryAGWw0ZJn-V8q9qQk2G6Et1FeZ1VXZbn0PKVUix8td2DXHlKwtbsGG-eUWeDzAWf3L7PiY_P3_6cfa1vvj25fzs9KK2jaRz7VQrGObvGVVSO9dTNSguoBm85gzTq871g21h0NQ1tAc1gOIWlOKu89yJY3K-cF2CjdnmMEG-MQmC2R_gLQzkOdjRGwcIE85B5xvZgO-GtgdBWdtbzvAYWR8X1nbXT95ZrCHD-AD68E8Ma7NKl0Zrhe03CHh3C8jp986X2UyhWD-O2FraFcOV4JoxziVK3z6SbtIuR6xqr6JcdbRD1Zv7if5FuZsdCvQisDmVkv1gsHyYcSQYMIyGUfN3U8yyKQabNvtNMRqt_JH1jv6kSSymgmKcd_4f-wnXHwXy0ac
CitedBy_id crossref_primary_10_20517_cs_2023_61
crossref_primary_10_1002_ange_202414472
crossref_primary_10_1039_D2SM00451H
crossref_primary_10_1016_j_advmem_2024_100112
crossref_primary_10_1016_j_cej_2023_144856
crossref_primary_10_1002_adma_202208640
crossref_primary_10_1016_j_jpowsour_2024_235353
crossref_primary_10_1002_ange_202207369
crossref_primary_10_1016_j_advmem_2024_100111
crossref_primary_10_3390_bios13060636
crossref_primary_10_1007_s11426_022_1379_y
crossref_primary_10_1016_j_cej_2025_161631
crossref_primary_10_1002_anie_202214301
crossref_primary_10_1039_D4CC02873B
crossref_primary_10_1016_j_jhazmat_2023_130908
crossref_primary_10_1016_j_cej_2023_142304
crossref_primary_10_1002_adfm_202300386
crossref_primary_10_1021_acsnano_4c16480
crossref_primary_10_1002_smll_202500927
crossref_primary_10_1039_D5EE00494B
crossref_primary_10_1016_j_memsci_2024_122483
crossref_primary_10_1021_jacs_2c12186
crossref_primary_10_1016_j_cej_2024_153569
crossref_primary_10_1016_j_seppur_2024_127844
crossref_primary_10_1002_ange_202418394
crossref_primary_10_1021_acsestengg_4c00053
crossref_primary_10_1016_j_desal_2022_116202
crossref_primary_10_1002_ange_202214449
crossref_primary_10_1016_j_cej_2023_146611
crossref_primary_10_1002_smll_202302060
crossref_primary_10_1038_s41467_023_41555_5
crossref_primary_10_1039_D2TA08435J
crossref_primary_10_1021_acsnano_5c00165
crossref_primary_10_1016_j_memsci_2023_122103
crossref_primary_10_1016_j_memsci_2023_122347
crossref_primary_10_1016_j_cej_2022_141008
crossref_primary_10_1021_acsami_4c12069
crossref_primary_10_1021_acsanm_2c03346
crossref_primary_10_1021_acsnano_2c11339
crossref_primary_10_1016_j_memsci_2025_123914
crossref_primary_10_1002_adma_202413022
crossref_primary_10_1002_marc_202200678
crossref_primary_10_1039_D4NR03711A
crossref_primary_10_1007_s40242_022_2219_2
crossref_primary_10_1016_j_ijhydene_2024_12_498
crossref_primary_10_1016_j_xcrp_2023_101477
crossref_primary_10_1039_D2CP03044F
crossref_primary_10_1016_j_cej_2024_149339
crossref_primary_10_1186_s12951_023_02253_y
crossref_primary_10_1016_j_jpowsour_2023_233081
crossref_primary_10_1016_j_memsci_2022_120799
crossref_primary_10_1039_D4CC02480J
crossref_primary_10_1002_adfm_202306593
crossref_primary_10_1021_acs_nanolett_4c04326
crossref_primary_10_1016_j_memsci_2023_122120
crossref_primary_10_1002_ange_202214301
crossref_primary_10_1021_acsami_4c11422
crossref_primary_10_1007_s11426_022_1366_y
crossref_primary_10_1002_ange_202308921
crossref_primary_10_1002_eem2_12621
crossref_primary_10_1002_advs_202307165
crossref_primary_10_1002_smtd_202400063
crossref_primary_10_1021_acsnano_2c07813
crossref_primary_10_1016_j_cej_2022_140283
crossref_primary_10_1021_acsanm_3c05398
crossref_primary_10_1002_advs_202405539
crossref_primary_10_1021_jacs_3c07958
crossref_primary_10_1002_smll_202303131
crossref_primary_10_1002_anie_202423118
crossref_primary_10_1002_anie_202411535
crossref_primary_10_1016_j_dyepig_2024_112148
crossref_primary_10_1016_j_polymer_2025_128195
crossref_primary_10_1002_anie_202219084
crossref_primary_10_1021_acsapm_3c01939
crossref_primary_10_1002_smll_202402284
crossref_primary_10_1007_s40820_022_00968_5
crossref_primary_10_1002_adma_202405744
crossref_primary_10_1002_asia_202301076
crossref_primary_10_1016_j_cej_2025_161671
crossref_primary_10_1021_jacs_3c03198
crossref_primary_10_1126_sciadv_adp1450
crossref_primary_10_1002_anie_202308921
crossref_primary_10_1016_j_jcis_2023_05_133
crossref_primary_10_1021_jacs_3c10832
crossref_primary_10_1016_j_jcis_2022_08_183
crossref_primary_10_1021_acsanm_2c03218
crossref_primary_10_1007_s10118_023_3061_9
crossref_primary_10_1016_j_gee_2024_07_008
crossref_primary_10_1002_adfm_202312203
crossref_primary_10_1021_acssuschemeng_3c00674
crossref_primary_10_1002_smll_202304575
crossref_primary_10_3390_ijms26051957
crossref_primary_10_1016_j_jcis_2023_02_010
crossref_primary_10_1126_science_ade8092
crossref_primary_10_1016_j_cej_2024_150076
crossref_primary_10_1002_ejic_202400435
crossref_primary_10_1016_j_memsci_2023_121610
crossref_primary_10_1002_adfm_202418627
crossref_primary_10_1039_D3RA04855A
crossref_primary_10_1002_anie_202214449
crossref_primary_10_1021_acsnano_3c08028
crossref_primary_10_1002_anse_202300078
crossref_primary_10_1002_ange_202411535
crossref_primary_10_1002_anie_202300167
crossref_primary_10_1002_anie_202418394
crossref_primary_10_1002_advs_202415520
crossref_primary_10_1002_anie_202414472
crossref_primary_10_1021_acs_chemmater_4c00059
crossref_primary_10_1002_ange_202423118
crossref_primary_10_1021_acs_iecr_3c02384
crossref_primary_10_1002_smll_202207972
crossref_primary_10_3389_fenvs_2022_921841
crossref_primary_10_1021_acsaem_2c01908
crossref_primary_10_1002_anie_202207369
crossref_primary_10_1021_jacs_3c11542
crossref_primary_10_1002_ange_202219084
crossref_primary_10_1002_smll_202403684
crossref_primary_10_1021_jacs_3c10691
crossref_primary_10_1016_j_cej_2022_138446
crossref_primary_10_1016_j_memsci_2024_123153
crossref_primary_10_1039_D4TA04342A
crossref_primary_10_1016_j_ijhydene_2024_05_019
crossref_primary_10_3390_membranes13070677
crossref_primary_10_1002_ange_202300167
Cites_doi 10.1016/j.cej.2019.123240
10.1038/natrevmats.2016.68
10.1016/j.chempr.2017.12.011
10.1002/anie.201904291
10.1016/j.ccr.2021.213873
10.1002/anie.202102965
10.1021/jacs.0c11159
10.1002/anie.202100205
10.1021/jacs.7b06640
10.1021/jacs.7b13558
10.1002/anie.201913975
10.1002/adma.202005565
10.1002/anie.201811250
10.1039/C8CS00376A
10.1002/adma.201705479
10.1021/cr020715f
10.1002/adma.201603945
10.1002/advs.201900547
10.1021/ja308278w
10.1002/adfm.202009970
10.1039/C9TA05040J
10.1126/sciadv.abb1110
10.1021/jacs.8b10334
10.1039/C8TA04178D
10.1021/jacs.0c11122
10.1038/s41467-019-14056-7
10.1021/jacs.9b00543
10.1039/D0CS01347A
10.1038/s41467-019-10157-5
10.1021/acsami.6b06189
10.1002/adma.201001164
10.1002/anie.201411262
10.1002/adma.202001284
10.1002/anie.201804753
10.1021/ja00326a036
10.1039/C8CS00919H
10.1016/S0022-0728(00)00368-5
10.1002/anie.202105190
10.1021/acs.chemmater.5b04947
10.1021/ja4017842
10.1021/jacs.7b12292
10.1002/anie.202104106
10.1021/jacs.1c02090
10.1021/cr020711a
10.1016/j.memsci.2020.118727
10.1007/s11426-015-5494-7
10.1016/j.seppur.2020.117787
10.1002/jcc.22885
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-28643-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

Publicly Available Content Database
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ (Directory of Open Access Journals)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_da69d3dda9e545ae9f7ba3017bc21dda
PMC8866435
35197451
10_1038_s41467_022_28643_8
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22103054; U20B2024; 21903058; 22008172; 21838008
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Higher Education Institutions (Grant No. BK20190810) Jiangsu Province High-Level Talents (Grant No. JNHB-106).
– fundername: China Postdoctoral Science Foundation
  grantid: 2020TQ0226; 2021M692384
  funderid: https://doi.org/10.13039/501100002858
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22008172
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M692384
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: U20B2024
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21903058
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22103054
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21838008
– fundername: China Postdoctoral Science Foundation
  grantid: 2020TQ0226
– fundername: ;
– fundername: ;
  grantid: 2020TQ0226; 2021M692384
– fundername: ;
  grantid: 22103054; U20B2024; 21903058; 22008172; 21838008
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-d6731022b10648ddb06f623a5fe82104169dbfc7af80d50ba6fa62ca662d9e2d3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:52 EDT 2025
Thu Aug 21 17:42:48 EDT 2025
Fri Jul 11 16:26:02 EDT 2025
Wed Aug 13 02:51:43 EDT 2025
Wed Feb 19 02:25:47 EST 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 04:17:45 EDT 2025
Fri Feb 21 02:38:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d6731022b10648ddb06f623a5fe82104169dbfc7af80d50ba6fa62ca662d9e2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6584-6611
0000-0001-6600-4459
0000-0002-9312-3610
0000-0002-8241-6231
0000-0002-0048-8849
0000-0002-5745-0905
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28643-8
PMID 35197451
PQID 2632026909
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_da69d3dda9e545ae9f7ba3017bc21dda
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8866435
proquest_miscellaneous_2632811224
proquest_journals_2632026909
pubmed_primary_35197451
crossref_citationtrail_10_1038_s41467_022_28643_8
crossref_primary_10_1038_s41467_022_28643_8
springer_journals_10_1038_s41467_022_28643_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-23
PublicationDateYYYYMMDD 2022-02-23
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-23
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References He (CR4) 2020; 32
Chen (CR2) 2019; 59
Lu, Chen (CR50) 2012; 33
Liu (CR14) 2021; 60
Parr, Yang (CR41) 1984; 106
Zhang, Zhang, Zhao, Li, Ma (CR17) 2018; 6
Xiong (CR6) 2019; 6
Wang (CR11) 2021; 50
Kong (CR18) 2021; 60
Burke (CR27) 2020; 59
Sun (CR7) 2018; 30
Karak, Kumar, Pachfule, Banerjee (CR40) 2018; 140
Kreuer, Paddison, Spohr, Schuster (CR48) 2004; 104
Jeong (CR12) 2019; 141
Kandambeth (CR20) 2017; 29
Kandambeth, Dey, Banerjee (CR22) 2019; 141
Kandambeth (CR37) 2012; 134
Matsumoto (CR24) 2018; 4
Yang (CR35) 2019; 10
Hou (CR16) 2021; 31
Yuan (CR29) 2019; 48
CR42
Dey, Bhunia, Sasmal, Reddy, Banerjee (CR23) 2021; 143
Huang, Wang, Jiang (CR1) 2016; 1
Fan (CR25) 2021; 60
Cao, Ren, Chen, Lu (CR49) 2015; 58
Peng (CR38) 2016; 8
Dey (CR19) 2017; 139
Yin, Fang, Shi, Zhang, Wang (CR34) 2021; 618
Sasmal (CR21) 2018; 57
Huang, Chen, Krishna, Jiang (CR9) 2015; 54
Biswal (CR43) 2013; 135
Shen (CR33) 2019; 7
Li (CR44) 2020; 11
Banerjee, Dey, Kunjattu, A (CR36) 2019; 59
Hou (CR13) 2021; 60
Shao (CR32) 2018; 57
Eikerling, Kornyshev (CR46) 2001; 502
Cao (CR3) 2020; 32
Chen (CR30) 2021; 143
Liu (CR31) 2020; 6
Hickner, Ghassemi, Kim, Einsla, McGrath (CR47) 2004; 104
Chen (CR8) 2018; 140
Xiong (CR5) 2020; 384
Chen (CR39) 2021; 256
Zhang, Wang, Cheng, Chen, Zhang (CR10) 2021; 438
Wang (CR28) 2018; 48
Peckham, Holdcroft (CR45) 2010; 22
Chandra (CR15) 2016; 28
Fenton, Burke, Qian, Cruz, Dichtel (CR26) 2021; 143
Y Peng (28643_CR38) 2016; 8
C Yin (28643_CR34) 2021; 618
K Dey (28643_CR19) 2017; 139
P Shao (28643_CR32) 2018; 57
Y Kong (28643_CR18) 2021; 60
S Chen (28643_CR30) 2021; 143
S Yuan (28643_CR29) 2019; 48
J Shen (28643_CR33) 2019; 7
C Fan (28643_CR25) 2021; 60
S Chandra (28643_CR15) 2016; 28
T Lu (28643_CR50) 2012; 33
Q Sun (28643_CR7) 2018; 30
S Kandambeth (28643_CR20) 2017; 29
JL Fenton (28643_CR26) 2021; 143
S Karak (28643_CR40) 2018; 140
RG Parr (28643_CR41) 1984; 106
X He (28643_CR4) 2020; 32
Y Li (28643_CR44) 2020; 11
H Yang (28643_CR35) 2019; 10
J Cao (28643_CR49) 2015; 58
H Wang (28643_CR11) 2021; 50
28643_CR42
MA Hickner (28643_CR47) 2004; 104
J Liu (28643_CR31) 2020; 6
M Eikerling (28643_CR46) 2001; 502
DW Burke (28643_CR27) 2020; 59
N Huang (28643_CR9) 2015; 54
S Hou (28643_CR13) 2021; 60
L Liu (28643_CR14) 2021; 60
P Zhang (28643_CR10) 2021; 438
L Cao (28643_CR3) 2020; 32
R Banerjee (28643_CR36) 2019; 59
TJ Peckham (28643_CR45) 2010; 22
X Chen (28643_CR2) 2019; 59
K Jeong (28643_CR12) 2019; 141
W Zhang (28643_CR17) 2018; 6
K Dey (28643_CR23) 2021; 143
M Matsumoto (28643_CR24) 2018; 4
BP Biswal (28643_CR43) 2013; 135
H Chen (28643_CR8) 2018; 140
S Kandambeth (28643_CR22) 2019; 141
K-D Kreuer (28643_CR48) 2004; 104
XH Xiong (28643_CR6) 2019; 6
S Kandambeth (28643_CR37) 2012; 134
N Huang (28643_CR1) 2016; 1
HS Sasmal (28643_CR21) 2018; 57
H Wang (28643_CR28) 2018; 48
XH Xiong (28643_CR5) 2020; 384
T Chen (28643_CR39) 2021; 256
L Hou (28643_CR16) 2021; 31
References_xml – volume: 384
  start-page: 123240
  year: 2020
  ident: CR5
  article-title: Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123240
– volume: 1
  start-page: 16068
  year: 2016
  ident: CR1
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 4
  start-page: 308
  year: 2018
  end-page: 317
  ident: CR24
  article-title: Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.011
– volume: 59
  start-page: 5050
  year: 2019
  end-page: 5091
  ident: CR2
  article-title: Covalent organic frameworks: chemical approaches to designer structures and built-in functions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904291
– volume: 438
  start-page: 213873
  year: 2021
  ident: CR10
  article-title: Design and application of ionic covalent organic frameworks
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213873
– volume: 60
  start-page: 18051
  year: 2021
  end-page: 18058
  ident: CR25
  article-title: Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102965
– volume: 143
  start-page: 1466
  year: 2021
  end-page: 1473
  ident: CR26
  article-title: Polycrystalline covalent organic framework films act as adsorbents, not membranes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11159
– volume: 60
  start-page: 9925
  year: 2021
  end-page: 9930
  ident: CR13
  article-title: Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100205
– volume: 139
  start-page: 13083
  year: 2017
  end-page: 13091
  ident: CR19
  article-title: Selective molecular separation by interfacially crystallized covalent organic framework thin films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06640
– volume: 140
  start-page: 5138
  year: 2018
  end-page: 5145
  ident: CR40
  article-title: Porosity prediction through hydrogen bonding in covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13558
– ident: CR42
– volume: 59
  start-page: 5165
  year: 2020
  end-page: 5171
  ident: CR27
  article-title: Acid exfoliation of imine-linked covalent organic frameworks enables solution processing into crystalline thin films
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913975
– volume: 32
  start-page: 2005565
  year: 2020
  ident: CR3
  article-title: Weakly humidity-dependent proton-conducting COF membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005565
– volume: 57
  start-page: 16501
  year: 2018
  end-page: 16505
  ident: CR32
  article-title: Flexible films of covalent organic frameworks with ultralow dielectric constants under high humidity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811250
– volume: 48
  start-page: 488
  year: 2018
  end-page: 516
  ident: CR28
  article-title: Recent progress in covalent organic framework thin films: fabrications, applications and perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00376A
– volume: 30
  start-page: 1705479
  year: 2018
  ident: CR7
  article-title: Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705479
– volume: 104
  start-page: 4637
  year: 2004
  end-page: 4678
  ident: CR48
  article-title: Transport in proton conductors for fuel-cell applications:  simulations, elementary reactions, and phenomenology
  publication-title: Chem. Rev.
  doi: 10.1021/cr020715f
– volume: 29
  start-page: 1603945
  year: 2017
  ident: CR20
  article-title: Selective molecular sieving in self-standing porous covalent-organic-framework membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603945
– volume: 6
  start-page: 1900547
  year: 2019
  ident: CR6
  article-title: Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900547
– volume: 134
  start-page: 19524
  year: 2012
  end-page: 19527
  ident: CR37
  article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 31
  start-page: 2009970
  year: 2021
  ident: CR16
  article-title: Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009970
– volume: 7
  start-page: 18063
  year: 2019
  end-page: 18071
  ident: CR33
  article-title: Polydopamine-modulated covalent organic framework membranes for molecular separation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05040J
– volume: 6
  start-page: eabb1110
  year: 2020
  ident: CR31
  article-title: Self-standing and flexible covalent organic framework (COF) membranes for molecular separation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1110
– volume: 141
  start-page: 1807
  year: 2019
  end-page: 1822
  ident: CR22
  article-title: Covalent organic frameworks: chemistry beyond the structure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10334
– volume: 6
  start-page: 13331
  year: 2018
  end-page: 13339
  ident: CR17
  article-title: A two-dimensional cationic covalent organic framework membrane for selective molecular sieving
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04178D
– volume: 143
  start-page: 955
  year: 2021
  end-page: 963
  ident: CR23
  article-title: Self-assembly-driven nanomechanics in porous covalent organic framework thin films
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11122
– volume: 11
  year: 2020
  ident: CR44
  article-title: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14056-7
– volume: 141
  start-page: 5880
  year: 2019
  end-page: 5885
  ident: CR12
  article-title: Solvent-free, single lithium-ion conducting covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00543
– volume: 59
  start-page: 1161
  year: 2019
  end-page: 1165
  ident: CR36
  article-title: Nanoparticle size-fractionation through self-standing porous covalent organic framework films
  publication-title: Angew. Chem. Int. Ed.
– volume: 50
  start-page: 5468
  year: 2021
  end-page: 5516
  ident: CR11
  article-title: Organic molecular sieve membranes for chemical separations
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01347A
– volume: 10
  year: 2019
  ident: CR35
  article-title: Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10157-5
– volume: 8
  start-page: 18505
  year: 2016
  end-page: 18512
  ident: CR38
  article-title: Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06189
– volume: 22
  start-page: 4667
  year: 2010
  end-page: 4690
  ident: CR45
  article-title: Structure–morphology–property relationships of non-perfluorinated proton-conducting membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001164
– volume: 54
  start-page: 2986
  year: 2015
  end-page: 2990
  ident: CR9
  article-title: Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411262
– volume: 32
  start-page: 2001284
  year: 2020
  ident: CR4
  article-title: De novo design of covalent organic framework membranes toward ultrafast anion transport
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001284
– volume: 57
  start-page: 10894
  year: 2018
  end-page: 10898
  ident: CR21
  article-title: Superprotonic conductivity in flexible porous covalent organic framework membranes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804753
– volume: 106
  start-page: 4049
  year: 1984
  end-page: 4050
  ident: CR41
  article-title: Density functional approach to the frontier-electron theory of chemical reactivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00326a036
– volume: 48
  start-page: 2665
  year: 2019
  end-page: 2681
  ident: CR29
  article-title: Covalent organic frameworks for membrane separation
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00919H
– volume: 502
  start-page: 1
  year: 2001
  end-page: 14
  ident: CR46
  article-title: Proton transfer in a single pore of a polymer electrolyte membrane
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00368-5
– volume: 60
  start-page: 17638
  year: 2021
  end-page: 17646
  ident: CR18
  article-title: Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105190
– volume: 28
  start-page: 1489
  year: 2016
  end-page: 1494
  ident: CR15
  article-title: Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04947
– volume: 135
  start-page: 5328
  year: 2013
  end-page: 5331
  ident: CR43
  article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 140
  start-page: 896
  year: 2018
  end-page: 899
  ident: CR8
  article-title: Cationic covalent organic framework nanosheets for fast Li-ion conduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12292
– volume: 60
  start-page: 14875
  year: 2021
  end-page: 14880
  ident: CR14
  article-title: Surface-mediated construction of ultrathin free-standing covalent organic framework membrane for efficient proton conduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104106
– volume: 143
  start-page: 9415
  year: 2021
  end-page: 9422
  ident: CR30
  article-title: Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02090
– volume: 104
  start-page: 4587
  year: 2004
  end-page: 4612
  ident: CR47
  article-title: Alternative polymer systems for proton exchange membranes (PEMs)
  publication-title: Chem. Rev.
  doi: 10.1021/cr020711a
– volume: 618
  start-page: 118727
  year: 2021
  ident: CR34
  article-title: Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118727
– volume: 58
  start-page: 1845
  year: 2015
  end-page: 1852
  ident: CR49
  article-title: Comparative study on the methods for predicting the reactive site of nucleophilic reaction
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-015-5494-7
– volume: 256
  start-page: 117787
  year: 2021
  ident: CR39
  article-title: Highly crystalline ionic covalent organic framework membrane for nanofiltration and charge-controlled organic pollutants removal
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117787
– volume: 33
  start-page: 580
  year: 2012
  end-page: 592
  ident: CR50
  article-title: Multiwfn: a multifunctional wavefunction analyzer
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 8
  start-page: 18505
  year: 2016
  ident: 28643_CR38
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b06189
– volume: 60
  start-page: 18051
  year: 2021
  ident: 28643_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202102965
– volume: 57
  start-page: 10894
  year: 2018
  ident: 28643_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804753
– volume: 57
  start-page: 16501
  year: 2018
  ident: 28643_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811250
– volume: 60
  start-page: 17638
  year: 2021
  ident: 28643_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202105190
– volume: 438
  start-page: 213873
  year: 2021
  ident: 28643_CR10
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213873
– volume: 104
  start-page: 4637
  year: 2004
  ident: 28643_CR48
  publication-title: Chem. Rev.
  doi: 10.1021/cr020715f
– volume: 6
  start-page: eabb1110
  year: 2020
  ident: 28643_CR31
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abb1110
– volume: 106
  start-page: 4049
  year: 1984
  ident: 28643_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00326a036
– volume: 6
  start-page: 1900547
  year: 2019
  ident: 28643_CR6
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900547
– volume: 50
  start-page: 5468
  year: 2021
  ident: 28643_CR11
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01347A
– volume: 1
  start-page: 16068
  year: 2016
  ident: 28643_CR1
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 141
  start-page: 1807
  year: 2019
  ident: 28643_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10334
– volume: 141
  start-page: 5880
  year: 2019
  ident: 28643_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b00543
– volume: 10
  year: 2019
  ident: 28643_CR35
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10157-5
– volume: 22
  start-page: 4667
  year: 2010
  ident: 28643_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001164
– volume: 29
  start-page: 1603945
  year: 2017
  ident: 28643_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603945
– volume: 256
  start-page: 117787
  year: 2021
  ident: 28643_CR39
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2020.117787
– volume: 104
  start-page: 4587
  year: 2004
  ident: 28643_CR47
  publication-title: Chem. Rev.
  doi: 10.1021/cr020711a
– volume: 58
  start-page: 1845
  year: 2015
  ident: 28643_CR49
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-015-5494-7
– volume: 143
  start-page: 9415
  year: 2021
  ident: 28643_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02090
– volume: 33
  start-page: 580
  year: 2012
  ident: 28643_CR50
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.22885
– volume: 7
  start-page: 18063
  year: 2019
  ident: 28643_CR33
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA05040J
– volume: 139
  start-page: 13083
  year: 2017
  ident: 28643_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06640
– volume: 28
  start-page: 1489
  year: 2016
  ident: 28643_CR15
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04947
– volume: 31
  start-page: 2009970
  year: 2021
  ident: 28643_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009970
– volume: 140
  start-page: 896
  year: 2018
  ident: 28643_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12292
– volume: 59
  start-page: 1161
  year: 2019
  ident: 28643_CR36
  publication-title: Angew. Chem. Int. Ed.
– volume: 60
  start-page: 14875
  year: 2021
  ident: 28643_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202104106
– volume: 140
  start-page: 5138
  year: 2018
  ident: 28643_CR40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13558
– volume: 32
  start-page: 2005565
  year: 2020
  ident: 28643_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202005565
– volume: 59
  start-page: 5050
  year: 2019
  ident: 28643_CR2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904291
– volume: 384
  start-page: 123240
  year: 2020
  ident: 28643_CR5
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.123240
– volume: 60
  start-page: 9925
  year: 2021
  ident: 28643_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100205
– volume: 502
  start-page: 1
  year: 2001
  ident: 28643_CR46
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/S0022-0728(00)00368-5
– volume: 54
  start-page: 2986
  year: 2015
  ident: 28643_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201411262
– volume: 48
  start-page: 488
  year: 2018
  ident: 28643_CR28
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00376A
– volume: 30
  start-page: 1705479
  year: 2018
  ident: 28643_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705479
– ident: 28643_CR42
– volume: 59
  start-page: 5165
  year: 2020
  ident: 28643_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913975
– volume: 48
  start-page: 2665
  year: 2019
  ident: 28643_CR29
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00919H
– volume: 143
  start-page: 955
  year: 2021
  ident: 28643_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11122
– volume: 32
  start-page: 2001284
  year: 2020
  ident: 28643_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001284
– volume: 618
  start-page: 118727
  year: 2021
  ident: 28643_CR34
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118727
– volume: 134
  start-page: 19524
  year: 2012
  ident: 28643_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308278w
– volume: 135
  start-page: 5328
  year: 2013
  ident: 28643_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4017842
– volume: 11
  year: 2020
  ident: 28643_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-14056-7
– volume: 6
  start-page: 13331
  year: 2018
  ident: 28643_CR17
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA04178D
– volume: 143
  start-page: 1466
  year: 2021
  ident: 28643_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11159
– volume: 4
  start-page: 308
  year: 2018
  ident: 28643_CR24
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.12.011
SSID ssj0000391844
Score 2.6587481
Snippet Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic...
Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1020
SubjectTerms 119/118
639/301/299/1013
639/638/298
Aldehydes
Conduction
Conductivity
Covalence
Humanities and Social Sciences
Ion exchange
Ion transport
Membranes
Monomers
multidisciplinary
Polymerization
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1daxQxcCgFoS9SterWKhF806XZTTabPKpYiqAvttC3kE8U7F3p3YH-e2eSvbPn50tf88XsZD53MjMAL3hImQ-9bpUXvJWo0loTZWq17Hw2PA95pGzkDx_V6bl8fzFc3Gj1RW_Canngirjj6JSJIkZnEip7lwxudkiVow99h8MkfVHn3XCmigwWBl0XOWXJcKGPF7LIBHq83mtUw63e0kSlYP-frMzfH0v-EjEtiuhkH-5OFiR7XSG_Bztpdh_u1J6S3x_AJwrjXnrKMmdhjnSEB7LauymwvH6KxS5xDaqptGD0J5YtVlTxeH7N8JpY-lbTgVlATRrQTD-A85N3Z29P26lzQhvQAlu2UY2CXDmPDp_UMXquMto5bshJo4-HRpiJPofRZc3jwL1T2ak-OKX6aFIfxUPYnc1n6TGwnOPoBNpFsQt4lDdB9igl_KhQPiH7NtCtsWjDVFacult8tSW8LbStmLcIji2Yt7qBl5s9V7Woxj9Xv6HL2aykgthlAHFnJzKx_yOTBo7WV2snLl1YqlWPPqjhpoHnm2nkLwqa4BXMV3WN7ij-2MCjSgkbSKi54SiHroFxi0a2QN2emX35XGp4a63w44YGXq2p6SdYf0fF4W2g4gns9cQGlJcvjmB3eb1KT9GyWvpnhYl-AHY8IOM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3ZahUx9KAVwRdxd2qVCL5p6CyZTOZJVLwWQV-00LeQFQV7p3buBfv3npPJTLkufZ1kQnL25GwAL0oXYtnWikvblFygSuO9F4ErUdnYl7GNHWUjf_osj47Fx5P2JD-4jTmscpaJSVD7wdEb-SHVFcf7Ql_2r89-cuoaRd7V3ELjOtyoUNNQSJdafVjeWKj6uRIi58qUjTocRZIMFMJeK1TGXO3oo1S2_1-25t8hk3_4TZM6Wt2B29mOZG8mxN-Fa2F9D25OnSUv7sMXcuaeWso1Z25AasIF2dTBybE4B2SxU5yDyiqMjN5j2bilusfDOUNksfBrSgpmDvWpQ2P9ARyv3n99d8Rz_wTu0A7bcC-7hi50Fq99QnlvSxnR2jFtDApvemiK9d5G15moSt-W1shoZO2MlLXvQ-2bh7C3HtbhMbAYfWcatI585XAp2ztRo6ywnUQphUxcQDVDUbtcXJx6XPzQycndKD1BXuN2dIK8VgW8XP45m0prXDn7LSFnmUllsdMHhJ3OXKa9wSM13ps-oGVoQo-UZlCEddbVFX4u4GBGrc68OupLyirg-TKMXEauE0TBsJ3mqIq8kAU8mihh2Qm1OOxEWxXQ7dDIzlZ3R9bfv6VK3kpJPFxbwKuZmi639X9Q7F99iidwqyYCp7z75gD2Nufb8BQtp419ltjjN9-5FnM
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9RADA_nHYIv4rfVU0bwTYvT6XQ687iKx7GgL-fBvQ3ziYK3K7e7oP-9yfRDVk_B1zYtaSaZZJrkF4CXPKTMO6Fr5VteS3RptYky1Vo2Phueu9xTN_KHj-r0XC4vuosDEFMvTCnaL5CWZZueqsPebGQxaao9Fxq9aK1vwBFBtaNuHy0Wy7Pl_GeFMM-1lGOHDG_1NQ_veaEC1n9dhPlnoeRv2dLihE7uwO0xemSLgd-7cJBW9-DmME_yx304oxTupacOcxbWqEP4QjbMbQosT2VY7BJp0EWlDaO_sGyzI7Tj9RXDJWLp-9AKzAJ60YAh-gM4P3n_6d1pPU5NqANGX9s6qr6lY5zHw57UMXquMsY4rstJ4_kOAzATfQ69y5rHjnunslMiOKVENEnE9iEcrtar9BhYzrF3LcZEsQn4Km-CFLhD-F7h3oSmW0EzSdGGEVKcJlt8tSW13Wo7SN4iO7ZI3uoKXs3PfBsANf5J_ZYWZ6YkMOxyAWVnR-Ww0eEntTE6kzAedMmgfjncuHofRIOXKzieltaOFrqxhFOP50_DTQUv5ttoW5QwwSVY7wYa3VDusYJHgybMnNBgQ1S_poJ-T0f2WN2_s_ryueB3a63w47oKXk_a9Iutv4viyf-RP4VbghSeuu_bYzjcXu3SM4yftv75aDA_Ae0cFao
  priority: 102
  providerName: Springer Nature
Title Assembling covalent organic framework membranes with superior ion exchange capacity
URI https://link.springer.com/article/10.1038/s41467-022-28643-8
https://www.ncbi.nlm.nih.gov/pubmed/35197451
https://www.proquest.com/docview/2632026909
https://www.proquest.com/docview/2632811224
https://pubmed.ncbi.nlm.nih.gov/PMC8866435
https://doaj.org/article/da69d3dda9e545ae9f7ba3017bc21dda
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxRBEC5yIPgixnM0Li34pqNz9vEgslmyhoUEMS7sW9MnEZJd3QOSf291z8yGTVbBlxno6Wl6qqu6vprqqgJ4lxnns7rgKdVlllao0lJhK5fyKtdeZL72LEQjn57Rk3E1mtSTHejKHbUEXGw17UI9qfH88uP175svKPCfm5Bx_mlRRXEP59ILjho25buwj5qJhYoGpy3cjztzKdCgCY7mIqvyFDuUbRzN9mE2dFVM6b8Nh94_TnnHpxpV1fAxPGoxJuk3THEAO276BB40VSdvnsJ5cPRe6RCHTswMOQ0HJE11J0N8d1iLXGEfVGRuQcK_WrJYhZzIsznBhSTuugkYJgZ1rUEg_wzGw-Mfg5O0ra2QGsRoy9RSVgZjT6NJWHFrdUY9IiFVe8fRCkSYJqz2hinPM1tnWlGvaGEUpYUVrrDlc9ibzqbuJRDvLVMlIiebGxxKC1MVuI9oRnEHQwFPIO-oKE2beDzUv7iU0QFectlQXuJ0ZKS85Am8X7_zq0m78c_eR2Fx1j1DyuzYgLSTrQRKq_CTSmuVcIgalRPIhQq3N6ZNkWNzAofd0sqODWXIZo9WqshEAm_Xj1ECg1sFl2C2avrwPHgoE3jRcMJ6JqH8IavqPAG2wSMbU918Mv15EbN8c07x4-oEPnTcdDutv5Pi1X8R7jU8LAK_hxD98hD2lvOVe4Mga6l7sMsmDK98-LUH-_3-6HyE96Pjs2_fsXVAB734-6IXJewPlUcmFA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwEB6VIgQXxE6ggJHgBFETx3GcA0Jsj1e6XGil3tx4E5Xal9K8J-if4jcyk616LL31GjuWPf48i8czA_AisT4kOVexNFkSCxRpcemEj5VITSiTkIeCopG3d-R0T3zZz_dX4NcQC0PPKgee2DJqV1u6I1-nvOJoL5RJ-fbke0xVo8i7OpTQ6GCx6c9-oMnWvNn4iPv7kvPJp90P07ivKhBb1E7msZNFRmaOQWNIKOdMIgPqAFUevEL7BxWU0plgiyqoxOWJqWSoJLeVlNyVnrsMx70CV0WGkpwi0yefxzsdyrauhOhjc5JMrTei5UT0ZJ4rFP6xWpJ_bZmAf-m2fz_R_MNP24q_yS242eut7F0HtNuw4md34FpXyfLsLnwl5_Gxodh2ZmtELw7IuopRloXhARg7xj4oHH3D6P6XNQvKs1yfMgQH8z-7IGRmUX5bNA7uwd6lUPY-rM7qmX8ILARXVBlqYy61OJQpreDIm0whkSsi04ggHaiobZ_MnGpqHOnWqZ4p3VFe43R0S3mtIng1_nPSpfK4sPd72pyxJ6Xhbj8g7XR_qrWrcEmZc1XpUROtfInIrpBlFsbyFD9HsDZsre55Q6PPkRzB87EZTzW5anAL6kXXR6Xk9YzgQYeEcSZUUrEQeRpBsYSRpakut8wOv7WZw5WSuLg8gtcDms6n9X9SPLp4Fc_g-nR3e0tvbexsPoYbnMBOMf_ZGqzOTxf-CWptc_O0PSoMDi77bP4GIW9TTQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KlMBeKC2AkUMBKcIJrESRzngBClHbUURhVQqTfjVSDRSWlmBP01vo73skw1LL31GjuW_fxWvw3gaWJ9SAouY2GyJM5RpMWVy30s89SEKglFKCkb-f1U7Bzkbw-LwzX4NeTCUFjlwBNbRu1qS2_kY6orjvZClVTj0IdF7G9NXh1_j6mDFHlah3YaHYrs-dMfaL41L3e38K6fcT7Z_vRmJ-47DMQWNZV57ESZkclj0DDKpXMmEQH1AV0EL9EWQmWlcibYUgeZuCIxWgQtuNVCcFd57jJc9xKsl2QVjWB9c3u6_2H5wkO112We95k6SSbHTd7yJQqg5xJVgViuSMO2acC_NN2_Azb_8Nq2wnByHa71Wix73aHdDVjzs5twuetreXoLPpIr-chQpjuzNeIyLsi6_lGWhSEcjB3hHBSVvmH0GsyaBVVdrk8YogrzP7uUZGZRmls0FW7DwYXA9g6MZvXM3wMWgit1hrqZSy0uZSqbc-RUphTII5GFRJAOUFS2L21OHTa-qdbFnknVQV7hdlQLeSUjeL7857gr7HHu7E26nOVMKsrdfkDYqZ7GldN4pMw5XXnUS7WvEM81MtDSWJ7i5wg2hqtVPado1BleR_BkOYw0To4bvIJ60c2RKflAI7jbYcJyJ9RgscyLNIJyBUdWtro6Mvv6pa0jLqXAwxURvBiw6Wxb_wfF_fNP8RiuIF2qd7vTvQdwlROuUwGAbANG85OFf4gq3Nw86mmFweeLJs_fpctY3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembling+covalent+organic+framework+membranes+with+superior+ion+exchange+capacity&rft.jtitle=Nature+communications&rft.au=Wang%2C+Xiaoyao&rft.au=Shi%2C+Benbing&rft.au=Yang%2C+Hao&rft.au=Guan%2C+Jingyuan&rft.date=2022-02-23&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-28643-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_28643_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon