Assembling covalent organic framework membranes with superior ion exchange capacity
Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (I...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 1020 - 9 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.02.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g
−1
, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm
−1
, holding great promise in ion transport and ionic separation applications.
Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity. |
---|---|
AbstractList | Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g-1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm-1, holding great promise in ion transport and ionic separation applications.Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g-1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm-1, holding great promise in ion transport and ionic separation applications. Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g −1 , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm −1 , holding great promise in ion transport and ionic separation applications. Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity. Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g −1 , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm −1 , holding great promise in ion transport and ionic separation applications. Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity. Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g−1, using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm−1, holding great promise in ion transport and ionic separation applications.Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a dual-activation interfacial polymerization strategy to prepare ionic covalent organic framework membranes with high ion exchange capacity. Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic groups could afford superior ion conduction. The key to push the upper limit of ion conductivity is to maximize the ion exchange capacity (IEC). Here, we explore iCOFMs with a superhigh ion exchange capacity of 4.6 mmol g , using a dual-activation interfacial polymerization strategy. Fukui function is employed as a descriptor of monomer reactivity. We use Brønsted acid to activate aldehyde monomers in organic phase and Brønsted base to activate ionic amine monomers in water phase. After the dual-activation, the reaction between aldehyde monomer and amine monomer at the water-organic interface is significantly accelerated, leading to iCOFMs with high crystallinity. The resultant iCOFMs display a prominent proton conductivity up to 0.66 S cm , holding great promise in ion transport and ionic separation applications. |
ArticleNumber | 1020 |
Author | Jiang, Zhongyi Yang, Hao Zhang, Zhe Wu, Hong Wang, Yanan Liang, Xu You, Xinda Guan, Jingyuan Zhang, Runnan Shi, Benbing Wang, Xiaoyao Cheng, Tao Fan, Chunyang |
Author_xml | – sequence: 1 givenname: Xiaoyao orcidid: 0000-0002-5745-0905 surname: Wang fullname: Wang, Xiaoyao organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 2 givenname: Benbing surname: Shi fullname: Shi, Benbing organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 3 givenname: Hao orcidid: 0000-0002-8241-6231 surname: Yang fullname: Yang, Hao organization: Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 4 givenname: Jingyuan surname: Guan fullname: Guan, Jingyuan organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 5 givenname: Xu surname: Liang fullname: Liang, Xu organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 6 givenname: Chunyang surname: Fan fullname: Fan, Chunyang organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 7 givenname: Xinda orcidid: 0000-0001-6584-6611 surname: You fullname: You, Xinda organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 8 givenname: Yanan surname: Wang fullname: Wang, Yanan organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) – sequence: 9 givenname: Zhe surname: Zhang fullname: Zhang, Zhe organization: Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 10 givenname: Hong orcidid: 0000-0001-6600-4459 surname: Wu fullname: Wu, Hong organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University – sequence: 11 givenname: Tao surname: Cheng fullname: Cheng, Tao organization: Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University – sequence: 12 givenname: Runnan orcidid: 0000-0002-9312-3610 surname: Zhang fullname: Zhang, Runnan email: runnan.zhang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Zhejiang Institute of Tianjin University – sequence: 13 givenname: Zhongyi orcidid: 0000-0002-0048-8849 surname: Jiang fullname: Jiang, Zhongyi email: zhyjiang@tju.edu.cn organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Zhejiang Institute of Tianjin University, Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35197451$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1UREvpH2CBIrFhE_ArjrNBqioelSqxANbWje3MeEjswc708e-5TFpou2g2iZxzPh2fe1-Sg5iiJ-Q1o-8ZFfpDkUyqtqac11wrKWr9jBxxKlnNWi4O7n0fkpNSNhQf0TEt5QtyKBrWtbJhR-T7aSl-6scQV5VNlzD6OFcpryAGWw0ZJn-V8q9qQk2G6Et1FeZ1VXZbn0PKVUix8td2DXHlKwtbsGG-eUWeDzAWf3L7PiY_P3_6cfa1vvj25fzs9KK2jaRz7VQrGObvGVVSO9dTNSguoBm85gzTq871g21h0NQ1tAc1gOIWlOKu89yJY3K-cF2CjdnmMEG-MQmC2R_gLQzkOdjRGwcIE85B5xvZgO-GtgdBWdtbzvAYWR8X1nbXT95ZrCHD-AD68E8Ma7NKl0Zrhe03CHh3C8jp986X2UyhWD-O2FraFcOV4JoxziVK3z6SbtIuR6xqr6JcdbRD1Zv7if5FuZsdCvQisDmVkv1gsHyYcSQYMIyGUfN3U8yyKQabNvtNMRqt_JH1jv6kSSymgmKcd_4f-wnXHwXy0ac |
CitedBy_id | crossref_primary_10_20517_cs_2023_61 crossref_primary_10_1002_ange_202414472 crossref_primary_10_1039_D2SM00451H crossref_primary_10_1016_j_advmem_2024_100112 crossref_primary_10_1016_j_cej_2023_144856 crossref_primary_10_1002_adma_202208640 crossref_primary_10_1016_j_jpowsour_2024_235353 crossref_primary_10_1002_ange_202207369 crossref_primary_10_1016_j_advmem_2024_100111 crossref_primary_10_3390_bios13060636 crossref_primary_10_1007_s11426_022_1379_y crossref_primary_10_1016_j_cej_2025_161631 crossref_primary_10_1002_anie_202214301 crossref_primary_10_1039_D4CC02873B crossref_primary_10_1016_j_jhazmat_2023_130908 crossref_primary_10_1016_j_cej_2023_142304 crossref_primary_10_1002_adfm_202300386 crossref_primary_10_1021_acsnano_4c16480 crossref_primary_10_1002_smll_202500927 crossref_primary_10_1039_D5EE00494B crossref_primary_10_1016_j_memsci_2024_122483 crossref_primary_10_1021_jacs_2c12186 crossref_primary_10_1016_j_cej_2024_153569 crossref_primary_10_1016_j_seppur_2024_127844 crossref_primary_10_1002_ange_202418394 crossref_primary_10_1021_acsestengg_4c00053 crossref_primary_10_1016_j_desal_2022_116202 crossref_primary_10_1002_ange_202214449 crossref_primary_10_1016_j_cej_2023_146611 crossref_primary_10_1002_smll_202302060 crossref_primary_10_1038_s41467_023_41555_5 crossref_primary_10_1039_D2TA08435J crossref_primary_10_1021_acsnano_5c00165 crossref_primary_10_1016_j_memsci_2023_122103 crossref_primary_10_1016_j_memsci_2023_122347 crossref_primary_10_1016_j_cej_2022_141008 crossref_primary_10_1021_acsami_4c12069 crossref_primary_10_1021_acsanm_2c03346 crossref_primary_10_1021_acsnano_2c11339 crossref_primary_10_1016_j_memsci_2025_123914 crossref_primary_10_1002_adma_202413022 crossref_primary_10_1002_marc_202200678 crossref_primary_10_1039_D4NR03711A crossref_primary_10_1007_s40242_022_2219_2 crossref_primary_10_1016_j_ijhydene_2024_12_498 crossref_primary_10_1016_j_xcrp_2023_101477 crossref_primary_10_1039_D2CP03044F crossref_primary_10_1016_j_cej_2024_149339 crossref_primary_10_1186_s12951_023_02253_y crossref_primary_10_1016_j_jpowsour_2023_233081 crossref_primary_10_1016_j_memsci_2022_120799 crossref_primary_10_1039_D4CC02480J crossref_primary_10_1002_adfm_202306593 crossref_primary_10_1021_acs_nanolett_4c04326 crossref_primary_10_1016_j_memsci_2023_122120 crossref_primary_10_1002_ange_202214301 crossref_primary_10_1021_acsami_4c11422 crossref_primary_10_1007_s11426_022_1366_y crossref_primary_10_1002_ange_202308921 crossref_primary_10_1002_eem2_12621 crossref_primary_10_1002_advs_202307165 crossref_primary_10_1002_smtd_202400063 crossref_primary_10_1021_acsnano_2c07813 crossref_primary_10_1016_j_cej_2022_140283 crossref_primary_10_1021_acsanm_3c05398 crossref_primary_10_1002_advs_202405539 crossref_primary_10_1021_jacs_3c07958 crossref_primary_10_1002_smll_202303131 crossref_primary_10_1002_anie_202423118 crossref_primary_10_1002_anie_202411535 crossref_primary_10_1016_j_dyepig_2024_112148 crossref_primary_10_1016_j_polymer_2025_128195 crossref_primary_10_1002_anie_202219084 crossref_primary_10_1021_acsapm_3c01939 crossref_primary_10_1002_smll_202402284 crossref_primary_10_1007_s40820_022_00968_5 crossref_primary_10_1002_adma_202405744 crossref_primary_10_1002_asia_202301076 crossref_primary_10_1016_j_cej_2025_161671 crossref_primary_10_1021_jacs_3c03198 crossref_primary_10_1126_sciadv_adp1450 crossref_primary_10_1002_anie_202308921 crossref_primary_10_1016_j_jcis_2023_05_133 crossref_primary_10_1021_jacs_3c10832 crossref_primary_10_1016_j_jcis_2022_08_183 crossref_primary_10_1021_acsanm_2c03218 crossref_primary_10_1007_s10118_023_3061_9 crossref_primary_10_1016_j_gee_2024_07_008 crossref_primary_10_1002_adfm_202312203 crossref_primary_10_1021_acssuschemeng_3c00674 crossref_primary_10_1002_smll_202304575 crossref_primary_10_3390_ijms26051957 crossref_primary_10_1016_j_jcis_2023_02_010 crossref_primary_10_1126_science_ade8092 crossref_primary_10_1016_j_cej_2024_150076 crossref_primary_10_1002_ejic_202400435 crossref_primary_10_1016_j_memsci_2023_121610 crossref_primary_10_1002_adfm_202418627 crossref_primary_10_1039_D3RA04855A crossref_primary_10_1002_anie_202214449 crossref_primary_10_1021_acsnano_3c08028 crossref_primary_10_1002_anse_202300078 crossref_primary_10_1002_ange_202411535 crossref_primary_10_1002_anie_202300167 crossref_primary_10_1002_anie_202418394 crossref_primary_10_1002_advs_202415520 crossref_primary_10_1002_anie_202414472 crossref_primary_10_1021_acs_chemmater_4c00059 crossref_primary_10_1002_ange_202423118 crossref_primary_10_1021_acs_iecr_3c02384 crossref_primary_10_1002_smll_202207972 crossref_primary_10_3389_fenvs_2022_921841 crossref_primary_10_1021_acsaem_2c01908 crossref_primary_10_1002_anie_202207369 crossref_primary_10_1021_jacs_3c11542 crossref_primary_10_1002_ange_202219084 crossref_primary_10_1002_smll_202403684 crossref_primary_10_1021_jacs_3c10691 crossref_primary_10_1016_j_cej_2022_138446 crossref_primary_10_1016_j_memsci_2024_123153 crossref_primary_10_1039_D4TA04342A crossref_primary_10_1016_j_ijhydene_2024_05_019 crossref_primary_10_3390_membranes13070677 crossref_primary_10_1002_ange_202300167 |
Cites_doi | 10.1016/j.cej.2019.123240 10.1038/natrevmats.2016.68 10.1016/j.chempr.2017.12.011 10.1002/anie.201904291 10.1016/j.ccr.2021.213873 10.1002/anie.202102965 10.1021/jacs.0c11159 10.1002/anie.202100205 10.1021/jacs.7b06640 10.1021/jacs.7b13558 10.1002/anie.201913975 10.1002/adma.202005565 10.1002/anie.201811250 10.1039/C8CS00376A 10.1002/adma.201705479 10.1021/cr020715f 10.1002/adma.201603945 10.1002/advs.201900547 10.1021/ja308278w 10.1002/adfm.202009970 10.1039/C9TA05040J 10.1126/sciadv.abb1110 10.1021/jacs.8b10334 10.1039/C8TA04178D 10.1021/jacs.0c11122 10.1038/s41467-019-14056-7 10.1021/jacs.9b00543 10.1039/D0CS01347A 10.1038/s41467-019-10157-5 10.1021/acsami.6b06189 10.1002/adma.201001164 10.1002/anie.201411262 10.1002/adma.202001284 10.1002/anie.201804753 10.1021/ja00326a036 10.1039/C8CS00919H 10.1016/S0022-0728(00)00368-5 10.1002/anie.202105190 10.1021/acs.chemmater.5b04947 10.1021/ja4017842 10.1021/jacs.7b12292 10.1002/anie.202104106 10.1021/jacs.1c02090 10.1021/cr020711a 10.1016/j.memsci.2020.118727 10.1007/s11426-015-5494-7 10.1016/j.seppur.2020.117787 10.1002/jcc.22885 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-28643-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_da69d3dda9e545ae9f7ba3017bc21dda PMC8866435 35197451 10_1038_s41467_022_28643_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22103054; U20B2024; 21903058; 22008172; 21838008 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Jiangsu Higher Education Institutions (Grant No. BK20190810) Jiangsu Province High-Level Talents (Grant No. JNHB-106). – fundername: China Postdoctoral Science Foundation grantid: 2020TQ0226; 2021M692384 funderid: https://doi.org/10.13039/501100002858 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22008172 – fundername: China Postdoctoral Science Foundation grantid: 2021M692384 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: U20B2024 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21903058 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 22103054 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21838008 – fundername: China Postdoctoral Science Foundation grantid: 2020TQ0226 – fundername: ; – fundername: ; grantid: 2020TQ0226; 2021M692384 – fundername: ; grantid: 22103054; U20B2024; 21903058; 22008172; 21838008 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-d6731022b10648ddb06f623a5fe82104169dbfc7af80d50ba6fa62ca662d9e2d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:52 EDT 2025 Thu Aug 21 17:42:48 EDT 2025 Fri Jul 11 16:26:02 EDT 2025 Wed Aug 13 02:51:43 EDT 2025 Wed Feb 19 02:25:47 EST 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 04:17:45 EDT 2025 Fri Feb 21 02:38:36 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-d6731022b10648ddb06f623a5fe82104169dbfc7af80d50ba6fa62ca662d9e2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6584-6611 0000-0001-6600-4459 0000-0002-9312-3610 0000-0002-8241-6231 0000-0002-0048-8849 0000-0002-5745-0905 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-28643-8 |
PMID | 35197451 |
PQID | 2632026909 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_da69d3dda9e545ae9f7ba3017bc21dda pubmedcentral_primary_oai_pubmedcentral_nih_gov_8866435 proquest_miscellaneous_2632811224 proquest_journals_2632026909 pubmed_primary_35197451 crossref_citationtrail_10_1038_s41467_022_28643_8 crossref_primary_10_1038_s41467_022_28643_8 springer_journals_10_1038_s41467_022_28643_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-23 |
PublicationDateYYYYMMDD | 2022-02-23 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | He (CR4) 2020; 32 Chen (CR2) 2019; 59 Lu, Chen (CR50) 2012; 33 Liu (CR14) 2021; 60 Parr, Yang (CR41) 1984; 106 Zhang, Zhang, Zhao, Li, Ma (CR17) 2018; 6 Xiong (CR6) 2019; 6 Wang (CR11) 2021; 50 Kong (CR18) 2021; 60 Burke (CR27) 2020; 59 Sun (CR7) 2018; 30 Karak, Kumar, Pachfule, Banerjee (CR40) 2018; 140 Kreuer, Paddison, Spohr, Schuster (CR48) 2004; 104 Jeong (CR12) 2019; 141 Kandambeth (CR20) 2017; 29 Kandambeth, Dey, Banerjee (CR22) 2019; 141 Kandambeth (CR37) 2012; 134 Matsumoto (CR24) 2018; 4 Yang (CR35) 2019; 10 Hou (CR16) 2021; 31 Yuan (CR29) 2019; 48 CR42 Dey, Bhunia, Sasmal, Reddy, Banerjee (CR23) 2021; 143 Huang, Wang, Jiang (CR1) 2016; 1 Fan (CR25) 2021; 60 Cao, Ren, Chen, Lu (CR49) 2015; 58 Peng (CR38) 2016; 8 Dey (CR19) 2017; 139 Yin, Fang, Shi, Zhang, Wang (CR34) 2021; 618 Sasmal (CR21) 2018; 57 Huang, Chen, Krishna, Jiang (CR9) 2015; 54 Biswal (CR43) 2013; 135 Shen (CR33) 2019; 7 Li (CR44) 2020; 11 Banerjee, Dey, Kunjattu, A (CR36) 2019; 59 Hou (CR13) 2021; 60 Shao (CR32) 2018; 57 Eikerling, Kornyshev (CR46) 2001; 502 Cao (CR3) 2020; 32 Chen (CR30) 2021; 143 Liu (CR31) 2020; 6 Hickner, Ghassemi, Kim, Einsla, McGrath (CR47) 2004; 104 Chen (CR8) 2018; 140 Xiong (CR5) 2020; 384 Chen (CR39) 2021; 256 Zhang, Wang, Cheng, Chen, Zhang (CR10) 2021; 438 Wang (CR28) 2018; 48 Peckham, Holdcroft (CR45) 2010; 22 Chandra (CR15) 2016; 28 Fenton, Burke, Qian, Cruz, Dichtel (CR26) 2021; 143 Y Peng (28643_CR38) 2016; 8 C Yin (28643_CR34) 2021; 618 K Dey (28643_CR19) 2017; 139 P Shao (28643_CR32) 2018; 57 Y Kong (28643_CR18) 2021; 60 S Chen (28643_CR30) 2021; 143 S Yuan (28643_CR29) 2019; 48 J Shen (28643_CR33) 2019; 7 C Fan (28643_CR25) 2021; 60 S Chandra (28643_CR15) 2016; 28 T Lu (28643_CR50) 2012; 33 Q Sun (28643_CR7) 2018; 30 S Kandambeth (28643_CR20) 2017; 29 JL Fenton (28643_CR26) 2021; 143 S Karak (28643_CR40) 2018; 140 RG Parr (28643_CR41) 1984; 106 X He (28643_CR4) 2020; 32 Y Li (28643_CR44) 2020; 11 H Yang (28643_CR35) 2019; 10 J Cao (28643_CR49) 2015; 58 H Wang (28643_CR11) 2021; 50 28643_CR42 MA Hickner (28643_CR47) 2004; 104 J Liu (28643_CR31) 2020; 6 M Eikerling (28643_CR46) 2001; 502 DW Burke (28643_CR27) 2020; 59 N Huang (28643_CR9) 2015; 54 S Hou (28643_CR13) 2021; 60 L Liu (28643_CR14) 2021; 60 P Zhang (28643_CR10) 2021; 438 L Cao (28643_CR3) 2020; 32 R Banerjee (28643_CR36) 2019; 59 TJ Peckham (28643_CR45) 2010; 22 X Chen (28643_CR2) 2019; 59 K Jeong (28643_CR12) 2019; 141 W Zhang (28643_CR17) 2018; 6 K Dey (28643_CR23) 2021; 143 M Matsumoto (28643_CR24) 2018; 4 BP Biswal (28643_CR43) 2013; 135 H Chen (28643_CR8) 2018; 140 S Kandambeth (28643_CR22) 2019; 141 K-D Kreuer (28643_CR48) 2004; 104 XH Xiong (28643_CR6) 2019; 6 S Kandambeth (28643_CR37) 2012; 134 N Huang (28643_CR1) 2016; 1 HS Sasmal (28643_CR21) 2018; 57 H Wang (28643_CR28) 2018; 48 XH Xiong (28643_CR5) 2020; 384 T Chen (28643_CR39) 2021; 256 L Hou (28643_CR16) 2021; 31 |
References_xml | – volume: 384 start-page: 123240 year: 2020 ident: CR5 article-title: Selective extraction of thorium from uranium and rare earth elements using sulfonated covalent organic framework and its membrane derivate publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123240 – volume: 1 start-page: 16068 year: 2016 ident: CR1 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 4 start-page: 308 year: 2018 end-page: 317 ident: CR24 article-title: Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films publication-title: Chem doi: 10.1016/j.chempr.2017.12.011 – volume: 59 start-page: 5050 year: 2019 end-page: 5091 ident: CR2 article-title: Covalent organic frameworks: chemical approaches to designer structures and built-in functions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904291 – volume: 438 start-page: 213873 year: 2021 ident: CR10 article-title: Design and application of ionic covalent organic frameworks publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213873 – volume: 60 start-page: 18051 year: 2021 end-page: 18058 ident: CR25 article-title: Scalable fabrication of crystalline COF membrane from amorphous polymeric membrane publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102965 – volume: 143 start-page: 1466 year: 2021 end-page: 1473 ident: CR26 article-title: Polycrystalline covalent organic framework films act as adsorbents, not membranes publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11159 – volume: 60 start-page: 9925 year: 2021 end-page: 9930 ident: CR13 article-title: Free-standing covalent organic framework membrane for high-efficiency salinity gradient energy conversion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100205 – volume: 139 start-page: 13083 year: 2017 end-page: 13091 ident: CR19 article-title: Selective molecular separation by interfacially crystallized covalent organic framework thin films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06640 – volume: 140 start-page: 5138 year: 2018 end-page: 5145 ident: CR40 article-title: Porosity prediction through hydrogen bonding in covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13558 – ident: CR42 – volume: 59 start-page: 5165 year: 2020 end-page: 5171 ident: CR27 article-title: Acid exfoliation of imine-linked covalent organic frameworks enables solution processing into crystalline thin films publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913975 – volume: 32 start-page: 2005565 year: 2020 ident: CR3 article-title: Weakly humidity-dependent proton-conducting COF membranes publication-title: Adv. Mater. doi: 10.1002/adma.202005565 – volume: 57 start-page: 16501 year: 2018 end-page: 16505 ident: CR32 article-title: Flexible films of covalent organic frameworks with ultralow dielectric constants under high humidity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811250 – volume: 48 start-page: 488 year: 2018 end-page: 516 ident: CR28 article-title: Recent progress in covalent organic framework thin films: fabrications, applications and perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00376A – volume: 30 start-page: 1705479 year: 2018 ident: CR7 article-title: Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration publication-title: Adv. Mater. doi: 10.1002/adma.201705479 – volume: 104 start-page: 4637 year: 2004 end-page: 4678 ident: CR48 article-title: Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology publication-title: Chem. Rev. doi: 10.1021/cr020715f – volume: 29 start-page: 1603945 year: 2017 ident: CR20 article-title: Selective molecular sieving in self-standing porous covalent-organic-framework membranes publication-title: Adv. Mater. doi: 10.1002/adma.201603945 – volume: 6 start-page: 1900547 year: 2019 ident: CR6 article-title: Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions publication-title: Adv. Sci. doi: 10.1002/advs.201900547 – volume: 134 start-page: 19524 year: 2012 end-page: 19527 ident: CR37 article-title: Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 31 start-page: 2009970 year: 2021 ident: CR16 article-title: Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009970 – volume: 7 start-page: 18063 year: 2019 end-page: 18071 ident: CR33 article-title: Polydopamine-modulated covalent organic framework membranes for molecular separation publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05040J – volume: 6 start-page: eabb1110 year: 2020 ident: CR31 article-title: Self-standing and flexible covalent organic framework (COF) membranes for molecular separation publication-title: Sci. Adv. doi: 10.1126/sciadv.abb1110 – volume: 141 start-page: 1807 year: 2019 end-page: 1822 ident: CR22 article-title: Covalent organic frameworks: chemistry beyond the structure publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10334 – volume: 6 start-page: 13331 year: 2018 end-page: 13339 ident: CR17 article-title: A two-dimensional cationic covalent organic framework membrane for selective molecular sieving publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04178D – volume: 143 start-page: 955 year: 2021 end-page: 963 ident: CR23 article-title: Self-assembly-driven nanomechanics in porous covalent organic framework thin films publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11122 – volume: 11 year: 2020 ident: CR44 article-title: Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving publication-title: Nat. Commun. doi: 10.1038/s41467-019-14056-7 – volume: 141 start-page: 5880 year: 2019 end-page: 5885 ident: CR12 article-title: Solvent-free, single lithium-ion conducting covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00543 – volume: 59 start-page: 1161 year: 2019 end-page: 1165 ident: CR36 article-title: Nanoparticle size-fractionation through self-standing porous covalent organic framework films publication-title: Angew. Chem. Int. Ed. – volume: 50 start-page: 5468 year: 2021 end-page: 5516 ident: CR11 article-title: Organic molecular sieve membranes for chemical separations publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01347A – volume: 10 year: 2019 ident: CR35 article-title: Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations publication-title: Nat. Commun. doi: 10.1038/s41467-019-10157-5 – volume: 8 start-page: 18505 year: 2016 end-page: 18512 ident: CR38 article-title: Mechanoassisted synthesis of sulfonated covalent organic frameworks with high intrinsic proton conductivity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06189 – volume: 22 start-page: 4667 year: 2010 end-page: 4690 ident: CR45 article-title: Structure–morphology–property relationships of non-perfluorinated proton-conducting membranes publication-title: Adv. Mater. doi: 10.1002/adma.201001164 – volume: 54 start-page: 2986 year: 2015 end-page: 2990 ident: CR9 article-title: Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411262 – volume: 32 start-page: 2001284 year: 2020 ident: CR4 article-title: De novo design of covalent organic framework membranes toward ultrafast anion transport publication-title: Adv. Mater. doi: 10.1002/adma.202001284 – volume: 57 start-page: 10894 year: 2018 end-page: 10898 ident: CR21 article-title: Superprotonic conductivity in flexible porous covalent organic framework membranes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804753 – volume: 106 start-page: 4049 year: 1984 end-page: 4050 ident: CR41 article-title: Density functional approach to the frontier-electron theory of chemical reactivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00326a036 – volume: 48 start-page: 2665 year: 2019 end-page: 2681 ident: CR29 article-title: Covalent organic frameworks for membrane separation publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00919H – volume: 502 start-page: 1 year: 2001 end-page: 14 ident: CR46 article-title: Proton transfer in a single pore of a polymer electrolyte membrane publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00368-5 – volume: 60 start-page: 17638 year: 2021 end-page: 17646 ident: CR18 article-title: Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105190 – volume: 28 start-page: 1489 year: 2016 end-page: 1494 ident: CR15 article-title: Interplaying intrinsic and extrinsic proton conductivities in covalent organic frameworks publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04947 – volume: 135 start-page: 5328 year: 2013 end-page: 5331 ident: CR43 article-title: Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 140 start-page: 896 year: 2018 end-page: 899 ident: CR8 article-title: Cationic covalent organic framework nanosheets for fast Li-ion conduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12292 – volume: 60 start-page: 14875 year: 2021 end-page: 14880 ident: CR14 article-title: Surface-mediated construction of ultrathin free-standing covalent organic framework membrane for efficient proton conduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104106 – volume: 143 start-page: 9415 year: 2021 end-page: 9422 ident: CR30 article-title: Imparting ion selectivity to covalent organic framework membranes using de novo assembly for blue energy harvesting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02090 – volume: 104 start-page: 4587 year: 2004 end-page: 4612 ident: CR47 article-title: Alternative polymer systems for proton exchange membranes (PEMs) publication-title: Chem. Rev. doi: 10.1021/cr020711a – volume: 618 start-page: 118727 year: 2021 ident: CR34 article-title: Pressure-modulated synthesis of self-repairing covalent organic frameworks (COFs) for high-flux nanofiltration publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118727 – volume: 58 start-page: 1845 year: 2015 end-page: 1852 ident: CR49 article-title: Comparative study on the methods for predicting the reactive site of nucleophilic reaction publication-title: Sci. China Chem. doi: 10.1007/s11426-015-5494-7 – volume: 256 start-page: 117787 year: 2021 ident: CR39 article-title: Highly crystalline ionic covalent organic framework membrane for nanofiltration and charge-controlled organic pollutants removal publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117787 – volume: 33 start-page: 580 year: 2012 end-page: 592 ident: CR50 article-title: Multiwfn: a multifunctional wavefunction analyzer publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 8 start-page: 18505 year: 2016 ident: 28643_CR38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b06189 – volume: 60 start-page: 18051 year: 2021 ident: 28643_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202102965 – volume: 57 start-page: 10894 year: 2018 ident: 28643_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804753 – volume: 57 start-page: 16501 year: 2018 ident: 28643_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811250 – volume: 60 start-page: 17638 year: 2021 ident: 28643_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202105190 – volume: 438 start-page: 213873 year: 2021 ident: 28643_CR10 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2021.213873 – volume: 104 start-page: 4637 year: 2004 ident: 28643_CR48 publication-title: Chem. Rev. doi: 10.1021/cr020715f – volume: 6 start-page: eabb1110 year: 2020 ident: 28643_CR31 publication-title: Sci. Adv. doi: 10.1126/sciadv.abb1110 – volume: 106 start-page: 4049 year: 1984 ident: 28643_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00326a036 – volume: 6 start-page: 1900547 year: 2019 ident: 28643_CR6 publication-title: Adv. Sci. doi: 10.1002/advs.201900547 – volume: 50 start-page: 5468 year: 2021 ident: 28643_CR11 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01347A – volume: 1 start-page: 16068 year: 2016 ident: 28643_CR1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 141 start-page: 1807 year: 2019 ident: 28643_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b10334 – volume: 141 start-page: 5880 year: 2019 ident: 28643_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b00543 – volume: 10 year: 2019 ident: 28643_CR35 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10157-5 – volume: 22 start-page: 4667 year: 2010 ident: 28643_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201001164 – volume: 29 start-page: 1603945 year: 2017 ident: 28643_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201603945 – volume: 256 start-page: 117787 year: 2021 ident: 28643_CR39 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2020.117787 – volume: 104 start-page: 4587 year: 2004 ident: 28643_CR47 publication-title: Chem. Rev. doi: 10.1021/cr020711a – volume: 58 start-page: 1845 year: 2015 ident: 28643_CR49 publication-title: Sci. China Chem. doi: 10.1007/s11426-015-5494-7 – volume: 143 start-page: 9415 year: 2021 ident: 28643_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02090 – volume: 33 start-page: 580 year: 2012 ident: 28643_CR50 publication-title: J. Comput. Chem. doi: 10.1002/jcc.22885 – volume: 7 start-page: 18063 year: 2019 ident: 28643_CR33 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA05040J – volume: 139 start-page: 13083 year: 2017 ident: 28643_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06640 – volume: 28 start-page: 1489 year: 2016 ident: 28643_CR15 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04947 – volume: 31 start-page: 2009970 year: 2021 ident: 28643_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009970 – volume: 140 start-page: 896 year: 2018 ident: 28643_CR8 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12292 – volume: 59 start-page: 1161 year: 2019 ident: 28643_CR36 publication-title: Angew. Chem. Int. Ed. – volume: 60 start-page: 14875 year: 2021 ident: 28643_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202104106 – volume: 140 start-page: 5138 year: 2018 ident: 28643_CR40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13558 – volume: 32 start-page: 2005565 year: 2020 ident: 28643_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.202005565 – volume: 59 start-page: 5050 year: 2019 ident: 28643_CR2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904291 – volume: 384 start-page: 123240 year: 2020 ident: 28643_CR5 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123240 – volume: 60 start-page: 9925 year: 2021 ident: 28643_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100205 – volume: 502 start-page: 1 year: 2001 ident: 28643_CR46 publication-title: J. Electroanal. Chem. doi: 10.1016/S0022-0728(00)00368-5 – volume: 54 start-page: 2986 year: 2015 ident: 28643_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201411262 – volume: 48 start-page: 488 year: 2018 ident: 28643_CR28 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00376A – volume: 30 start-page: 1705479 year: 2018 ident: 28643_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201705479 – ident: 28643_CR42 – volume: 59 start-page: 5165 year: 2020 ident: 28643_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913975 – volume: 48 start-page: 2665 year: 2019 ident: 28643_CR29 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00919H – volume: 143 start-page: 955 year: 2021 ident: 28643_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11122 – volume: 32 start-page: 2001284 year: 2020 ident: 28643_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.202001284 – volume: 618 start-page: 118727 year: 2021 ident: 28643_CR34 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118727 – volume: 134 start-page: 19524 year: 2012 ident: 28643_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308278w – volume: 135 start-page: 5328 year: 2013 ident: 28643_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4017842 – volume: 11 year: 2020 ident: 28643_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-019-14056-7 – volume: 6 start-page: 13331 year: 2018 ident: 28643_CR17 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA04178D – volume: 143 start-page: 1466 year: 2021 ident: 28643_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11159 – volume: 4 start-page: 308 year: 2018 ident: 28643_CR24 publication-title: Chem doi: 10.1016/j.chempr.2017.12.011 |
SSID | ssj0000391844 |
Score | 2.6587481 |
Snippet | Ionic covalent organic framework membranes (iCOFMs) hold great promise in ion conduction-relevant applications because the high content and monodispersed ionic... Covalent organic framework-based membranes are highly tunable materials with potential use in a variety of applications. Here the authors report a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1020 |
SubjectTerms | 119/118 639/301/299/1013 639/638/298 Aldehydes Conduction Conductivity Covalence Humanities and Social Sciences Ion exchange Ion transport Membranes Monomers multidisciplinary Polymerization Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1daxQxcCgFoS9SterWKhF806XZTTabPKpYiqAvttC3kE8U7F3p3YH-e2eSvbPn50tf88XsZD53MjMAL3hImQ-9bpUXvJWo0loTZWq17Hw2PA95pGzkDx_V6bl8fzFc3Gj1RW_Canngirjj6JSJIkZnEip7lwxudkiVow99h8MkfVHn3XCmigwWBl0XOWXJcKGPF7LIBHq83mtUw63e0kSlYP-frMzfH0v-EjEtiuhkH-5OFiR7XSG_Bztpdh_u1J6S3x_AJwrjXnrKMmdhjnSEB7LauymwvH6KxS5xDaqptGD0J5YtVlTxeH7N8JpY-lbTgVlATRrQTD-A85N3Z29P26lzQhvQAlu2UY2CXDmPDp_UMXquMto5bshJo4-HRpiJPofRZc3jwL1T2ak-OKX6aFIfxUPYnc1n6TGwnOPoBNpFsQt4lDdB9igl_KhQPiH7NtCtsWjDVFacult8tSW8LbStmLcIji2Yt7qBl5s9V7Woxj9Xv6HL2aykgthlAHFnJzKx_yOTBo7WV2snLl1YqlWPPqjhpoHnm2nkLwqa4BXMV3WN7ij-2MCjSgkbSKi54SiHroFxi0a2QN2emX35XGp4a63w44YGXq2p6SdYf0fF4W2g4gns9cQGlJcvjmB3eb1KT9GyWvpnhYl-AHY8IOM priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3ZahUx9KAVwRdxd2qVCL5p6CyZTOZJVLwWQV-00LeQFQV7p3buBfv3npPJTLkufZ1kQnL25GwAL0oXYtnWikvblFygSuO9F4ErUdnYl7GNHWUjf_osj47Fx5P2JD-4jTmscpaJSVD7wdEb-SHVFcf7Ql_2r89-cuoaRd7V3ELjOtyoUNNQSJdafVjeWKj6uRIi58qUjTocRZIMFMJeK1TGXO3oo1S2_1-25t8hk3_4TZM6Wt2B29mOZG8mxN-Fa2F9D25OnSUv7sMXcuaeWso1Z25AasIF2dTBybE4B2SxU5yDyiqMjN5j2bilusfDOUNksfBrSgpmDvWpQ2P9ARyv3n99d8Rz_wTu0A7bcC-7hi50Fq99QnlvSxnR2jFtDApvemiK9d5G15moSt-W1shoZO2MlLXvQ-2bh7C3HtbhMbAYfWcatI585XAp2ztRo6ywnUQphUxcQDVDUbtcXJx6XPzQycndKD1BXuN2dIK8VgW8XP45m0prXDn7LSFnmUllsdMHhJ3OXKa9wSM13ps-oGVoQo-UZlCEddbVFX4u4GBGrc68OupLyirg-TKMXEauE0TBsJ3mqIq8kAU8mihh2Qm1OOxEWxXQ7dDIzlZ3R9bfv6VK3kpJPFxbwKuZmi639X9Q7F99iidwqyYCp7z75gD2Nufb8BQtp419ltjjN9-5FnM priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9RADA_nHYIv4rfVU0bwTYvT6XQ687iKx7GgL-fBvQ3ziYK3K7e7oP-9yfRDVk_B1zYtaSaZZJrkF4CXPKTMO6Fr5VteS3RptYky1Vo2Phueu9xTN_KHj-r0XC4vuosDEFMvTCnaL5CWZZueqsPebGQxaao9Fxq9aK1vwBFBtaNuHy0Wy7Pl_GeFMM-1lGOHDG_1NQ_veaEC1n9dhPlnoeRv2dLihE7uwO0xemSLgd-7cJBW9-DmME_yx304oxTupacOcxbWqEP4QjbMbQosT2VY7BJp0EWlDaO_sGyzI7Tj9RXDJWLp-9AKzAJ60YAh-gM4P3n_6d1pPU5NqANGX9s6qr6lY5zHw57UMXquMsY4rstJ4_kOAzATfQ69y5rHjnunslMiOKVENEnE9iEcrtar9BhYzrF3LcZEsQn4Km-CFLhD-F7h3oSmW0EzSdGGEVKcJlt8tSW13Wo7SN4iO7ZI3uoKXs3PfBsANf5J_ZYWZ6YkMOxyAWVnR-Ww0eEntTE6kzAedMmgfjncuHofRIOXKzieltaOFrqxhFOP50_DTQUv5ttoW5QwwSVY7wYa3VDusYJHgybMnNBgQ1S_poJ-T0f2WN2_s_ryueB3a63w47oKXk_a9Iutv4viyf-RP4VbghSeuu_bYzjcXu3SM4yftv75aDA_Ae0cFao priority: 102 providerName: Springer Nature |
Title | Assembling covalent organic framework membranes with superior ion exchange capacity |
URI | https://link.springer.com/article/10.1038/s41467-022-28643-8 https://www.ncbi.nlm.nih.gov/pubmed/35197451 https://www.proquest.com/docview/2632026909 https://www.proquest.com/docview/2632811224 https://pubmed.ncbi.nlm.nih.gov/PMC8866435 https://doaj.org/article/da69d3dda9e545ae9f7ba3017bc21dda |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZaxRBEC5yIPgixnM0Li34pqNz9vEgslmyhoUEMS7sW9MnEZJd3QOSf291z8yGTVbBlxno6Wl6qqu6vprqqgJ4lxnns7rgKdVlllao0lJhK5fyKtdeZL72LEQjn57Rk3E1mtSTHejKHbUEXGw17UI9qfH88uP175svKPCfm5Bx_mlRRXEP59ILjho25buwj5qJhYoGpy3cjztzKdCgCY7mIqvyFDuUbRzN9mE2dFVM6b8Nh94_TnnHpxpV1fAxPGoxJuk3THEAO276BB40VSdvnsJ5cPRe6RCHTswMOQ0HJE11J0N8d1iLXGEfVGRuQcK_WrJYhZzIsznBhSTuugkYJgZ1rUEg_wzGw-Mfg5O0ra2QGsRoy9RSVgZjT6NJWHFrdUY9IiFVe8fRCkSYJqz2hinPM1tnWlGvaGEUpYUVrrDlc9ibzqbuJRDvLVMlIiebGxxKC1MVuI9oRnEHQwFPIO-oKE2beDzUv7iU0QFectlQXuJ0ZKS85Am8X7_zq0m78c_eR2Fx1j1DyuzYgLSTrQRKq_CTSmuVcIgalRPIhQq3N6ZNkWNzAofd0sqODWXIZo9WqshEAm_Xj1ECg1sFl2C2avrwPHgoE3jRcMJ6JqH8IavqPAG2wSMbU918Mv15EbN8c07x4-oEPnTcdDutv5Pi1X8R7jU8LAK_hxD98hD2lvOVe4Mga6l7sMsmDK98-LUH-_3-6HyE96Pjs2_fsXVAB734-6IXJewPlUcmFA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwEB6VIgQXxE6ggJHgBFETx3GcA0Jsj1e6XGil3tx4E5Xal9K8J-if4jcyk616LL31GjuWPf48i8czA_AisT4kOVexNFkSCxRpcemEj5VITSiTkIeCopG3d-R0T3zZz_dX4NcQC0PPKgee2DJqV1u6I1-nvOJoL5RJ-fbke0xVo8i7OpTQ6GCx6c9-oMnWvNn4iPv7kvPJp90P07ivKhBb1E7msZNFRmaOQWNIKOdMIgPqAFUevEL7BxWU0plgiyqoxOWJqWSoJLeVlNyVnrsMx70CV0WGkpwi0yefxzsdyrauhOhjc5JMrTei5UT0ZJ4rFP6xWpJ_bZmAf-m2fz_R_MNP24q_yS242eut7F0HtNuw4md34FpXyfLsLnwl5_Gxodh2ZmtELw7IuopRloXhARg7xj4oHH3D6P6XNQvKs1yfMgQH8z-7IGRmUX5bNA7uwd6lUPY-rM7qmX8ILARXVBlqYy61OJQpreDIm0whkSsi04ggHaiobZ_MnGpqHOnWqZ4p3VFe43R0S3mtIng1_nPSpfK4sPd72pyxJ6Xhbj8g7XR_qrWrcEmZc1XpUROtfInIrpBlFsbyFD9HsDZsre55Q6PPkRzB87EZTzW5anAL6kXXR6Xk9YzgQYeEcSZUUrEQeRpBsYSRpakut8wOv7WZw5WSuLg8gtcDms6n9X9SPLp4Fc_g-nR3e0tvbexsPoYbnMBOMf_ZGqzOTxf-CWptc_O0PSoMDi77bP4GIW9TTQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KlMBeKC2AkUMBKcIJrESRzngBClHbUURhVQqTfjVSDRSWlmBP01vo73skw1LL31GjuW_fxWvw3gaWJ9SAouY2GyJM5RpMWVy30s89SEKglFKCkb-f1U7Bzkbw-LwzX4NeTCUFjlwBNbRu1qS2_kY6orjvZClVTj0IdF7G9NXh1_j6mDFHlah3YaHYrs-dMfaL41L3e38K6fcT7Z_vRmJ-47DMQWNZV57ESZkclj0DDKpXMmEQH1AV0EL9EWQmWlcibYUgeZuCIxWgQtuNVCcFd57jJc9xKsl2QVjWB9c3u6_2H5wkO112We95k6SSbHTd7yJQqg5xJVgViuSMO2acC_NN2_Azb_8Nq2wnByHa71Wix73aHdDVjzs5twuetreXoLPpIr-chQpjuzNeIyLsi6_lGWhSEcjB3hHBSVvmH0GsyaBVVdrk8YogrzP7uUZGZRmls0FW7DwYXA9g6MZvXM3wMWgit1hrqZSy0uZSqbc-RUphTII5GFRJAOUFS2L21OHTa-qdbFnknVQV7hdlQLeSUjeL7857gr7HHu7E26nOVMKsrdfkDYqZ7GldN4pMw5XXnUS7WvEM81MtDSWJ7i5wg2hqtVPado1BleR_BkOYw0To4bvIJ60c2RKflAI7jbYcJyJ9RgscyLNIJyBUdWtro6Mvv6pa0jLqXAwxURvBiw6Wxb_wfF_fNP8RiuIF2qd7vTvQdwlROuUwGAbANG85OFf4gq3Nw86mmFweeLJs_fpctY3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assembling+covalent+organic+framework+membranes+with+superior+ion+exchange+capacity&rft.jtitle=Nature+communications&rft.au=Wang%2C+Xiaoyao&rft.au=Shi%2C+Benbing&rft.au=Yang%2C+Hao&rft.au=Guan%2C+Jingyuan&rft.date=2022-02-23&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-28643-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_28643_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |