A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure sh...
Saved in:
Published in | Scientific reports Vol. 13; no. 1; pp. 791 - 14 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.01.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods. |
---|---|
AbstractList | Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods. Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods. Abstract Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods. |
ArticleNumber | 791 |
Author | El-Sappagh, Shaker Ali, Farman Shah, Babar Park, Sang Hyun Abuhmed, Tamer Ullah, Ihsan |
Author_xml | – sequence: 1 givenname: Ihsan surname: Ullah fullname: Ullah, Ihsan organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST) – sequence: 2 givenname: Farman surname: Ali fullname: Ali, Farman organization: Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University – sequence: 3 givenname: Babar surname: Shah fullname: Shah, Babar organization: College of Technological Innovation, Zayed University – sequence: 4 givenname: Shaker surname: El-Sappagh fullname: El-Sappagh, Shaker organization: Faculty of Computer Science and Engineering, Galala University, Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University – sequence: 5 givenname: Tamer surname: Abuhmed fullname: Abuhmed, Tamer organization: Department of Computer Science and Engineering, College of Computing and Informatics, Sungkyunkwan University – sequence: 6 givenname: Sang Hyun surname: Park fullname: Park, Sang Hyun email: shpark13135@dgist.ac.kr organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36646735$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJZYsMm4LedDVJV8ahUiQ1I7CyPfZNmSOzBTjrqjn_gD_kSPJMW2i7qjS37nHOP7z3Pq4MQA1TVS4LfEsz0u8yJaHSNKaup0kTU2yfVEcVc1JRRenDnfFid5LzGZQnacNI8qw6ZlFwqJo6qdIo8wAYNYFPoQ4dWNoNHfrYDguCih_Tn128P-xNqkx1hG9MP1MaEbLBTHHtXoHlKs5vmBChDN0KY7NTHgPqA3CXkCX2vk71G_Wg7yC-qp60dMpzc7MfVt48fvp59ri--fDo_O72oneB4qj1rCFdcW4W9ki1oJplcScko9rjhyrbEAmmZkKB8yxRuvXOaMNwQv1IrzI6r80XXR7s2m1Sqp2sTbW_2FzF1xqapdwOYVlNpHVgnVWkM01Z4THjTeEGgEV4UrfeL1mZejeBd-WGywz3R-y-hvzRdvDKN5lQKXgTe3Aik-HMuLTFjnx0Mgw0Q52yoKiNhBItdrdcPoOs4p1BatUMJrZWitKBe3XX0z8rtaAtALwCXYs4JWuP6ZSzFYD8Ygs0uSGYJkilBMvsgmW2h0gfUW_VHSWwh5QIOHaT_th9h_QWSJd0k |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_108088 crossref_primary_10_1016_j_compbiomed_2024_109187 crossref_primary_10_3390_app13169114 crossref_primary_10_3390_curroncol30090608 crossref_primary_10_1016_j_measurement_2023_112993 crossref_primary_10_1016_j_inffus_2023_102016 crossref_primary_10_1049_ipr2_13287 crossref_primary_10_1038_s41598_024_56079_1 crossref_primary_10_1002_ima_23116 crossref_primary_10_1016_j_aej_2024_12_030 crossref_primary_10_1016_j_heliyon_2024_e34429 crossref_primary_10_7717_peerj_cs_1813 crossref_primary_10_1016_j_imu_2024_101504 crossref_primary_10_1016_j_neunet_2024_106505 crossref_primary_10_1007_s13246_024_01489_8 crossref_primary_10_1080_21681163_2023_2227741 crossref_primary_10_1007_s43538_023_00223_4 crossref_primary_10_1038_s41598_024_79915_w crossref_primary_10_3390_cancers15153982 crossref_primary_10_1109_ACCESS_2025_3532631 crossref_primary_10_3390_life13091893 |
Cites_doi | 10.1109/CVPR.2018.00474 10.1093/comjnl/bxaa148 10.1118/1.597738 10.1109/CVPR.2017.660 10.1007/s00521-019-04532-y 10.2214/ajr.174.1.1740071 10.1186/s12938-015-0014-8 10.1016/j.media.2005.02.002 10.1007/978-981-15-6329-4_23 10.1016/j.cmpb.2019.06.005 10.1109/IST.2008.4659946 10.3390/app10186264 10.1117/12.154500 10.1111/j.1469-8137.1912.tb05611.x 10.1049/iet-cvi.2009.0141 10.1007/s11277-018-5702-9 10.1109/CVPR.2017.243 10.1109/TPAMI.2016.2644615 10.1016/S1076-6332(98)80223-7 10.1109/FSKD.2009.811 10.1109/ICCV.2017.74 10.2214/ajr.182.2.1820505 10.1109/CBMS.2019.00092 10.3390/app11041638 10.1109/TMI.2018.2806086 10.1007/978-3-319-46723-8_16 10.1109/TMI.2014.2305691 10.1007/978-3-319-59129-2_24 10.1016/S1076-6332(03)80688-8 10.1118/1.598405 10.1101/2020.09.13.20193565 10.1109/ITAB.2009.5394326 10.1109/CVPR.2018.00745 10.1109/ISBI.2016.7493451 10.1109/CVPR.2016.90 10.1109/JBHI.2017.2687939 10.1109/ACCESS.2019.2950263 10.1007/978-981-13-9184-2_27 10.1118/1.3222872 10.3934/mbe.2019326 10.1109/ICCV.2017.322 10.1007/978-3-319-67558-9_11 10.1007/978-3-030-32281-6_13 10.1007/s00371-018-1519-5 10.1109/TMI.2013.2290491 10.1007/s00521-018-3627-6 10.1118/1.598277 10.1109/VCIP.2017.8305148 10.1118/1.596513 10.1080/07038992.1998.10874685 10.1007/978-3-319-24574-4_28 10.4015/S1016237210001876 10.1117/12.968961 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. corrected publication 2023 2023. The Author(s). The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2023 |
Copyright_xml | – notice: The Author(s) 2023. corrected publication 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2023 |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-023-27815-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ: Directory of Open Access Journal (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_f826aceac6764638a5d01499d51e95d5 PMC9842654 36646735 10_1038_s41598_023_27815_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cluster grant R20143 of Zayed University grantid: R20143 – fundername: Medical device technology development program funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea) grantid: 20006006 – fundername: National Research Foundation of Korea(NRF) grant funded by the Korean Government (MSIT) grantid: 2019R1C1C1008727 – fundername: ; grantid: 2019R1C1C1008727 – fundername: ; grantid: 20006006 – fundername: ; grantid: R20143 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-d3914748a70d76fe83636b66320d0947af1ae1f356e7df370fdcc813091db7b03 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:32:55 EDT 2025 Thu Aug 21 18:39:12 EDT 2025 Fri Jul 11 04:57:36 EDT 2025 Wed Aug 13 08:18:38 EDT 2025 Thu Apr 03 07:02:41 EDT 2025 Thu Apr 24 23:11:28 EDT 2025 Tue Jul 01 00:55:46 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-d3914748a70d76fe83636b66320d0947af1ae1f356e7df370fdcc813091db7b03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-27815-w |
PMID | 36646735 |
PQID | 2765887722 |
PQPubID | 2041939 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f826aceac6764638a5d01499d51e95d5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842654 proquest_miscellaneous_2766431055 proquest_journals_2765887722 pubmed_primary_36646735 crossref_citationtrail_10_1038_s41598_023_27815_w crossref_primary_10_1038_s41598_023_27815_w springer_journals_10_1038_s41598_023_27815_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-16 |
PublicationDateYYYYMMDD | 2023-01-16 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KakedaSImproved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis systemAm. J. Roentgenol.200418250551010.2214/ajr.182.2.1820505 YangWLung field segmentation in chest radiographs from boundary maps by a structured edge detectorIEEE J. Biomed. Health Inform.20172284285110.1109/JBHI.2017.268793928368835 Wang, C. Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. in Scandinavian Conference on Image Analysis. 282–289 (Springer, 2017). CandemirSLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans. Med. Imaging20133357759010.1109/TMI.2013.229049124239990 Peng, T., Xu, T. C., Wang, Y. & Li, F. Deep belief network and closed polygonal line for lung segmentation in chest radiographs. Comput. J. (2020). Cheng, D. & Goldberg, M. An algorithm for segmenting chest radiographs. in Visual Communications and Image Processing’88: Third in a Series. Vol. 1001. 261–268 (International Society for Optics and Photonics, 1988). ArmatoSGIIIGigerMLMacMahonHAutomated lung segmentation in digitized posteroanterior chest radiographsAcad. Radiol.1998524525510.1016/S1076-6332(98)80223-79561257 XuX-WDoiKImage feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographsMed. Phys.199623161316241:STN:280:DyaK2s%2Fksleguw%3D%3D10.1118/1.5977388892259 Hwang, S. & Park, S. Accurate lung segmentation via network-wise training of convolutional networks. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 92–99 (Springer, 2017). Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International Conference on Machine Learning. 448–456 (PMLR, 2015). WangJLiFLiQAutomated segmentation of lungs with severe interstitial lung disease in CTMed. Phys.2009364592459910.1118/1.3222872199280902771715 VinogradovaKDibrovAMyersGTowards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract)Proc. AAAI Conf. Artif. Intell.2020341394313944 Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). BiLFengDKimJDual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentationVis. Comput.2018341043105210.1007/s00371-018-1519-5 Ibragimov, B., Likar, B., Pernuš, F. & Vrtovec, T. Accurate landmark-based segmentation by incorporating landmark misdetections. in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). 1072–1075 (IEEE, 2016). UllahIChikontwePParkSHReal-time tracking of guidewire robot tips using deep convolutional neural networks on successive localized framesIEEE Access2019715974315975310.1109/ACCESS.2019.2950263 Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2881–2890 (2017). ShaoYHierarchical lung field segmentation with joint shape and appearance sparse learningIEEE Trans. Med. Imaging2014331761178010.1109/TMI.2014.230569125181734 Kalinovsky, A. & Kovalev, V. Lung Image Segmentation Using Deep Learning Methods and Convolutional Neural Networks. (2016). UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly 56. Session (10–18 July 2008). Official Records: 63. Session, Suppl. No. 46 (a/63/46). Technical Report, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008). Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. in International Conference on Machine Learning. 6105–6114 (PMLR, 2019). UllahIChikontwePChoiHYoonC-HParkSHSynthesize and segment: Towards improved catheter segmentation via adversarial augmentationAppl. Sci.20211116381:CAS:528:DC%2BB3MXhsFSis7jJ10.3390/app11041638 BeaucheminMThomsonKPEdwardsGOn the Hausdorff distance used for the evaluation of segmentation resultsCan. J. Remote Sens.1998243810.1080/07038992.1998.108746851998CaJRS..24....3B Iakovidis, D. K. & Papamichalis, G. Automatic segmentation of the lung fields in portable chest radiographs based on Bézier interpolation of salient control points. in 2008 IEEE International Workshop on Imaging Systems and Techniques. 82–87 (IEEE, 2008). BosdelekidisVIoakeimidisNSLung field segmentation in chest X-rays: A deformation-tolerant procedure based on the approximation of rib cage seed pointsAppl. Sci.20201062641:CAS:528:DC%2BB3cXitFarur3E10.3390/app10186264 NovikovAAFully convolutional architectures for multiclass segmentation in chest radiographsIEEE Trans. Med. Imaging2018371865187610.1109/TMI.2018.280608629994439 Wang, J., Li, Z., Jiang, R. & Xie, Z. Instance segmentation of anatomical structures in chest radiographs. in 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). 441–446 (IEEE, 2019). Bartels, R. H., Beatty, J. C. & Barsky, B. A. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufmann, 1995). DawoudALung segmentation in chest radiographs by fusing shape information in iterative thresholdingIET Comput. Vis.2011518519010.1049/iet-cvi.2009.0141 Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4510–4520 (2018). Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE International Conference on Computer Vision. 618–626 (2017). He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016). Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7132–7141 (2018). ShiraishiJDevelopment of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodulesAm. J. Roentgenol.200017471741:STN:280:DC%2BD3c%2Fpt1Sgug%3D%3D10.2214/ajr.174.1.1740071 He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. in Proceedings of the IEEE International Conference on Computer Vision. 2961–2969 (2017). Liu, M. & Yin, H. Feature pyramid encoding network for real-time semantic segmentation. arXiv preprint arXiv:1909.08599 (2019). Van GinnekenBStegmannMBLoogMSegmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public databaseMed. Image Anal.200610194010.1016/j.media.2005.02.00215919232 DeGrave, A. J., Janizek, J. D. & Lee, S.-I. Ai for radiographic Covid-19 detection selects shortcuts over signal. Nat. Mach. Intell. 1–10 (2021). Iakovidis, D. K. & Savelonas, M. Active shape model aided by selective thresholding for lung field segmentation in chest radiographs. in 2009 9th International Conference on Information Technology and Applications in Biomedicine. 1–4 (IEEE, 2009). Shi, Z. et al. Lung segmentation in chest radiographs by means of Gaussian kernel-based fcm with spatial constraints. in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 3. 428–432 (IEEE, 2009). MittalAHoodaRSofatSLf-segnet: A fully convolutional encoder–decoder network for segmenting lung fields from chest radiographsWirel. Pers. Commun.201810151152910.1007/s11277-018-5702-9 Fu, H., Xu, Y., Lin, S., Wong, D. W. K. & Liu, J. Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. in International Conference on Medical Image Computing and Computer-assisted Intervention. 132–139 (Springer, 2016). Ullah, I., Chikontwe, P. & Park, S. H. Catheter synthesis in X-ray fluoroscopy with generative adversarial networks. in International Workshop on PRedictive Intelligence In MEdicine. 125–133 (Springer, 2019). Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017). Chaurasia, A. & Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. in 2017 IEEE Visual Communications and Image Processing (VCIP). 1–4 (IEEE, 2017). VittitoeNFVargas-VoracekRFloydCEJrIdentification of lung regions in chest radiographs using Markov random field modelingMed. Phys.1998259769851:STN:280:DyaK1czhtlyktg%3D%3D10.1118/1.5984059650188 Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol.11, 37–50 (1912). NakamoriNDoiKSabetiVMacMahonHImage feature analysis and computer-aided diagnosis in digital radiography: Automated analysis of sizes of heart and lung in chest imagesMed. Phys.1990173423501:STN:280:DyaK3czkvVGitw%3D%3D10.1118/1.5965132143554 BadrinarayananVKendallACipollaRSegnet: A deep convolutional encoder–decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.264461528060704 Chandra, T. B., Verma, K., Jain, D. & Netam, S. S. Segmented lung boundary correction in chest radiograph using context-aware adaptive scan algorithm. in Advances in Biomedical Engineering and Technology. 263–275 (Springer, 2021). SouzaJCAn automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networksComput. Methods Programs Biomed.201917728529610.1016/j.cmpb.2019.06.00531319957 Ahmad, W. S. H. M. W., Zaki, W. M. D. W. & Fauzi, M. F. A. Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomed. Eng. Online14, 1–26 (2015). Badrinarayanan, V., Handa, A. & Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for robust semantic pixel-wise la S Jaeger (27815_CR47) 2014; 4 27815_CR6 27815_CR5 27815_CR26 27815_CR24 27815_CR29 27815_CR1 27815_CR28 27815_CR62 27815_CR60 27815_CR65 27815_CR22 27815_CR64 I Ullah (27815_CR18) 2021; 11 O Tsujii (27815_CR30) 1998; 25 V Badrinarayanan (27815_CR52) 2017; 39 Y Shao (27815_CR14) 2014; 33 L Bi (27815_CR55) 2018; 34 L Li (27815_CR10) 2001; 8 27815_CR58 27815_CR15 A Mittal (27815_CR36) 2018; 101 27815_CR56 27815_CR19 J Shiraishi (27815_CR48) 2000; 174 27815_CR17 27815_CR50 27815_CR51 S Kakeda (27815_CR2) 2004; 182 27815_CR11 27815_CR53 J Gao (27815_CR21) 2019; 16 AA Novikov (27815_CR16) 2018; 37 NF Vittitoe (27815_CR31) 1998; 25 TA Sorensen (27815_CR57) 1948; 5 27815_CR45 27815_CR49 W Yang (27815_CR7) 2017; 22 A Dawoud (27815_CR9) 2011; 5 27815_CR40 27815_CR43 27815_CR44 I Ullah (27815_CR20) 2019; 7 27815_CR41 27815_CR42 N Nakamori (27815_CR4) 1990; 17 J-S Lee (27815_CR13) 2010; 22 O Gomez (27815_CR54) 2020; 32 S Candemir (27815_CR12) 2013; 33 J Wang (27815_CR3) 2009; 36 27815_CR37 X-W Xu (27815_CR27) 1996; 23 27815_CR34 27815_CR35 SG Armato III (27815_CR25) 1998; 5 MZ Alom (27815_CR46) 2020; 32 27815_CR38 27815_CR39 K Vinogradova (27815_CR63) 2020; 34 V Bosdelekidis (27815_CR61) 2020; 10 M Beauchemin (27815_CR59) 1998; 24 27815_CR32 B Van Ginneken (27815_CR8) 2006; 10 27815_CR33 JC Souza (27815_CR23) 2019; 177 |
References_xml | – reference: GaoJJiangQZhouBChenDConvolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overviewMath. Biosci. Eng.20191665366561403430210.3934/mbe.2019326316985751470.92167 – reference: Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. in International Conference on Machine Learning. 6105–6114 (PMLR, 2019). – reference: Ibragimov, B., Likar, B., Pernuš, F. & Vrtovec, T. Accurate landmark-based segmentation by incorporating landmark misdetections. in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). 1072–1075 (IEEE, 2016). – reference: Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2881–2890 (2017). – reference: BosdelekidisVIoakeimidisNSLung field segmentation in chest X-rays: A deformation-tolerant procedure based on the approximation of rib cage seed pointsAppl. Sci.20201062641:CAS:528:DC%2BB3cXitFarur3E10.3390/app10186264 – reference: Van GinnekenBStegmannMBLoogMSegmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public databaseMed. Image Anal.200610194010.1016/j.media.2005.02.00215919232 – reference: Wang, J., Li, Z., Jiang, R. & Xie, Z. Instance segmentation of anatomical structures in chest radiographs. in 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). 441–446 (IEEE, 2019). – reference: Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7132–7141 (2018). – reference: Fu, H., Xu, Y., Lin, S., Wong, D. W. K. & Liu, J. Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. in International Conference on Medical Image Computing and Computer-assisted Intervention. 132–139 (Springer, 2016). – reference: He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. in Proceedings of the IEEE International Conference on Computer Vision. 2961–2969 (2017). – reference: UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly 56. Session (10–18 July 2008). Official Records: 63. Session, Suppl. No. 46 (a/63/46). Technical Report, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008). – reference: VinogradovaKDibrovAMyersGTowards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract)Proc. AAAI Conf. Artif. Intell.2020341394313944 – reference: YangWLung field segmentation in chest radiographs from boundary maps by a structured edge detectorIEEE J. Biomed. Health Inform.20172284285110.1109/JBHI.2017.268793928368835 – reference: Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol.11, 37–50 (1912). – reference: BadrinarayananVKendallACipollaRSegnet: A deep convolutional encoder–decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.264461528060704 – reference: VittitoeNFVargas-VoracekRFloydCEJrIdentification of lung regions in chest radiographs using Markov random field modelingMed. Phys.1998259769851:STN:280:DyaK1czhtlyktg%3D%3D10.1118/1.5984059650188 – reference: NakamoriNDoiKSabetiVMacMahonHImage feature analysis and computer-aided diagnosis in digital radiography: Automated analysis of sizes of heart and lung in chest imagesMed. Phys.1990173423501:STN:280:DyaK3czkvVGitw%3D%3D10.1118/1.5965132143554 – reference: Ahmad, W. S. H. M. W., Zaki, W. M. D. W. & Fauzi, M. F. A. Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomed. Eng. Online14, 1–26 (2015). – reference: Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International Conference on Machine Learning. 448–456 (PMLR, 2015). – reference: Tang, Y.-B., Tang, Y.-X., Xiao, J. & Summers, R. M. Xlsor: A robust and accurate lung segmentor on chest X-rays using criss-cross attention and customized radiorealistic abnormalities generation. in International Conference on Medical Imaging with Deep Learning. 457–467 (PMLR, 2019). – reference: DawoudALung segmentation in chest radiographs by fusing shape information in iterative thresholdingIET Comput. Vis.2011518519010.1049/iet-cvi.2009.0141 – reference: SouzaJCAn automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networksComput. Methods Programs Biomed.201917728529610.1016/j.cmpb.2019.06.00531319957 – reference: Bartels, R. H., Beatty, J. C. & Barsky, B. A. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufmann, 1995). – reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016). – reference: LiLZhengYKallergiMClarkRAImproved method for automatic identification of lung regions on chest radiographsAcad. Radiol.200186296381:STN:280:DC%2BD38%2FitVOmtg%3D%3D10.1016/S1076-6332(03)80688-811450964 – reference: DeGrave, A. J., Janizek, J. D. & Lee, S.-I. Ai for radiographic Covid-19 detection selects shortcuts over signal. Nat. Mach. Intell. 1–10 (2021). – reference: ShiraishiJDevelopment of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodulesAm. J. Roentgenol.200017471741:STN:280:DC%2BD3c%2Fpt1Sgug%3D%3D10.2214/ajr.174.1.1740071 – reference: Wang, C. Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. in Scandinavian Conference on Image Analysis. 282–289 (Springer, 2017). – reference: Shi, Z. et al. Lung segmentation in chest radiographs by means of Gaussian kernel-based fcm with spatial constraints. in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 3. 428–432 (IEEE, 2009). – reference: Hwang, S. & Park, S. Accurate lung segmentation via network-wise training of convolutional networks. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 92–99 (Springer, 2017). – reference: CandemirSLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans. Med. Imaging20133357759010.1109/TMI.2013.229049124239990 – reference: Iakovidis, D. K. & Savelonas, M. Active shape model aided by selective thresholding for lung field segmentation in chest radiographs. in 2009 9th International Conference on Information Technology and Applications in Biomedicine. 1–4 (IEEE, 2009). – reference: AlomMZHasanMYakopcicCTahaTMAsariVKImproved inception-residual convolutional neural network for object recognitionNeural Comput. Appl.20203227929310.1007/s00521-018-3627-6 – reference: Badrinarayanan, V., Handa, A. & Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015). – reference: ArmatoSGIIIGigerMLMacMahonHAutomated lung segmentation in digitized posteroanterior chest radiographsAcad. Radiol.1998524525510.1016/S1076-6332(98)80223-79561257 – reference: ShaoYHierarchical lung field segmentation with joint shape and appearance sparse learningIEEE Trans. Med. Imaging2014331761178010.1109/TMI.2014.230569125181734 – reference: Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE International Conference on Computer Vision. 618–626 (2017). – reference: Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017). – reference: Ullah, I., Chikontwe, P. & Park, S. H. Catheter synthesis in X-ray fluoroscopy with generative adversarial networks. in International Workshop on PRedictive Intelligence In MEdicine. 125–133 (Springer, 2019). – reference: KakedaSImproved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis systemAm. J. Roentgenol.200418250551010.2214/ajr.182.2.1820505 – reference: BiLFengDKimJDual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentationVis. Comput.2018341043105210.1007/s00371-018-1519-5 – reference: GomezOMesejoPIbanezOValsecchiACordonODeep architectures for high-resolution multi-organ chest X-ray image segmentationNeural Comput. Appl.202032159491596310.1007/s00521-019-04532-y – reference: Chaurasia, A. & Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. in 2017 IEEE Visual Communications and Image Processing (VCIP). 1–4 (IEEE, 2017). – reference: BeaucheminMThomsonKPEdwardsGOn the Hausdorff distance used for the evaluation of segmentation resultsCan. J. Remote Sens.1998243810.1080/07038992.1998.108746851998CaJRS..24....3B – reference: MittalAHoodaRSofatSLf-segnet: A fully convolutional encoder–decoder network for segmenting lung fields from chest radiographsWirel. Pers. Commun.201810151152910.1007/s11277-018-5702-9 – reference: LeeJ-SWuH-HYuanM-ZLung segmentation for chest radiograph by using adaptive active shape modelsBiomed. Eng. Appl. Basis Commun.20102214915610.4015/S1016237210001876 – reference: TsujiiOFreedmanMTMunSKAutomated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural networkMed. Phys.19982599810071:STN:280:DyaK1czhtlyktA%3D%3D10.1118/1.5982779650190 – reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241 (Springer, 2015). – reference: Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014). – reference: Cheng, D. & Goldberg, M. An algorithm for segmenting chest radiographs. in Visual Communications and Image Processing’88: Third in a Series. Vol. 1001. 261–268 (International Society for Optics and Photonics, 1988). – reference: UllahIChikontwePChoiHYoonC-HParkSHSynthesize and segment: Towards improved catheter segmentation via adversarial augmentationAppl. Sci.20211116381:CAS:528:DC%2BB3MXhsFSis7jJ10.3390/app11041638 – reference: UllahIChikontwePParkSHReal-time tracking of guidewire robot tips using deep convolutional neural networks on successive localized framesIEEE Access2019715974315975310.1109/ACCESS.2019.2950263 – reference: Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4510–4520 (2018). – reference: Kalinovsky, A. & Kovalev, V. Lung Image Segmentation Using Deep Learning Methods and Convolutional Neural Networks. (2016). – reference: Peng, T., Xu, T. C., Wang, Y. & Li, F. Deep belief network and closed polygonal line for lung segmentation in chest radiographs. Comput. J. (2020). – reference: Iakovidis, D. K. & Papamichalis, G. Automatic segmentation of the lung fields in portable chest radiographs based on Bézier interpolation of salient control points. in 2008 IEEE International Workshop on Imaging Systems and Techniques. 82–87 (IEEE, 2008). – reference: SorensenTAA method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commonsBiol. Skar.19485134 – reference: XuX-WDoiKImage feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographsMed. Phys.199623161316241:STN:280:DyaK2s%2Fksleguw%3D%3D10.1118/1.5977388892259 – reference: Liu, M. & Yin, H. Feature pyramid encoding network for real-time semantic segmentation. arXiv preprint arXiv:1909.08599 (2019). – reference: WangJLiFLiQAutomated segmentation of lungs with severe interstitial lung disease in CTMed. Phys.2009364592459910.1118/1.3222872199280902771715 – reference: NovikovAAFully convolutional architectures for multiclass segmentation in chest radiographsIEEE Trans. Med. Imaging2018371865187610.1109/TMI.2018.280608629994439 – reference: JaegerSTwo public chest X-ray datasets for computer-aided screening of pulmonary diseasesQuant. Imaging Med. Surg.201444752552558042562332014qonc.book.....J – reference: Chandra, T. B., Verma, K., Jain, D. & Netam, S. S. Segmented lung boundary correction in chest radiograph using context-aware adaptive scan algorithm. in Advances in Biomedical Engineering and Technology. 263–275 (Springer, 2021). – reference: McNitt-Gray, M. F., Sayre, J. W., Huang, H. & Razavi, M. Pattern classification approach to segmentation of chest radiographs. in Medical Imaging 1993: Image Processing. Vol. 1898. 160–170 (International Society for Optics and Photonics, 1993). – reference: Jangam, E. & Rao, A. Segmentation of lungs from chest X rays using firefly optimized fuzzy c-means and level set algorithm. in International Conference on Recent Trends in Image Processing and Pattern Recognition. 303–311 (Springer, 2018). – ident: 27815_CR40 doi: 10.1109/CVPR.2018.00474 – ident: 27815_CR39 doi: 10.1093/comjnl/bxaa148 – volume: 23 start-page: 1613 year: 1996 ident: 27815_CR27 publication-title: Med. Phys. doi: 10.1118/1.597738 – ident: 27815_CR51 doi: 10.1109/CVPR.2017.660 – volume: 32 start-page: 15949 year: 2020 ident: 27815_CR54 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04532-y – volume: 174 start-page: 71 year: 2000 ident: 27815_CR48 publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.174.1.1740071 – ident: 27815_CR28 doi: 10.1186/s12938-015-0014-8 – volume: 10 start-page: 19 year: 2006 ident: 27815_CR8 publication-title: Med. Image Anal. doi: 10.1016/j.media.2005.02.002 – ident: 27815_CR53 doi: 10.1007/978-981-15-6329-4_23 – ident: 27815_CR34 – volume: 177 start-page: 285 year: 2019 ident: 27815_CR23 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.06.005 – ident: 27815_CR11 doi: 10.1109/IST.2008.4659946 – volume: 10 start-page: 6264 year: 2020 ident: 27815_CR61 publication-title: Appl. Sci. doi: 10.3390/app10186264 – ident: 27815_CR29 doi: 10.1117/12.154500 – ident: 27815_CR58 doi: 10.1111/j.1469-8137.1912.tb05611.x – volume: 5 start-page: 1 year: 1948 ident: 27815_CR57 publication-title: Biol. Skar. – volume: 5 start-page: 185 year: 2011 ident: 27815_CR9 publication-title: IET Comput. Vis. doi: 10.1049/iet-cvi.2009.0141 – volume: 101 start-page: 511 year: 2018 ident: 27815_CR36 publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-018-5702-9 – ident: 27815_CR42 doi: 10.1109/CVPR.2017.243 – volume: 39 start-page: 2481 year: 2017 ident: 27815_CR52 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 5 start-page: 245 year: 1998 ident: 27815_CR25 publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(98)80223-7 – ident: 27815_CR32 doi: 10.1109/FSKD.2009.811 – ident: 27815_CR64 doi: 10.1109/ICCV.2017.74 – ident: 27815_CR43 – volume: 182 start-page: 505 year: 2004 ident: 27815_CR2 publication-title: Am. J. Roentgenol. doi: 10.2214/ajr.182.2.1820505 – ident: 27815_CR26 – ident: 27815_CR38 doi: 10.1109/CBMS.2019.00092 – volume: 4 start-page: 475 year: 2014 ident: 27815_CR47 publication-title: Quant. Imaging Med. Surg. – volume: 11 start-page: 1638 year: 2021 ident: 27815_CR18 publication-title: Appl. Sci. doi: 10.3390/app11041638 – volume: 37 start-page: 1865 year: 2018 ident: 27815_CR16 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2806086 – ident: 27815_CR17 doi: 10.1007/978-3-319-46723-8_16 – volume: 33 start-page: 1761 year: 2014 ident: 27815_CR14 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2014.2305691 – ident: 27815_CR56 doi: 10.1007/978-3-319-59129-2_24 – volume: 8 start-page: 629 year: 2001 ident: 27815_CR10 publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)80688-8 – volume: 25 start-page: 976 year: 1998 ident: 27815_CR31 publication-title: Med. Phys. doi: 10.1118/1.598405 – ident: 27815_CR33 doi: 10.1101/2020.09.13.20193565 – ident: 27815_CR15 doi: 10.1109/ITAB.2009.5394326 – ident: 27815_CR44 doi: 10.1109/CVPR.2018.00745 – ident: 27815_CR65 – volume: 34 start-page: 13943 year: 2020 ident: 27815_CR63 publication-title: Proc. AAAI Conf. Artif. Intell. – ident: 27815_CR6 doi: 10.1109/ISBI.2016.7493451 – ident: 27815_CR41 doi: 10.1109/CVPR.2016.90 – volume: 22 start-page: 842 year: 2017 ident: 27815_CR7 publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2687939 – volume: 7 start-page: 159743 year: 2019 ident: 27815_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2950263 – ident: 27815_CR60 doi: 10.1007/978-981-13-9184-2_27 – ident: 27815_CR1 – volume: 36 start-page: 4592 year: 2009 ident: 27815_CR3 publication-title: Med. Phys. doi: 10.1118/1.3222872 – volume: 16 start-page: 6536 year: 2019 ident: 27815_CR21 publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2019326 – ident: 27815_CR45 – ident: 27815_CR37 doi: 10.1109/ICCV.2017.322 – ident: 27815_CR5 doi: 10.1007/978-3-319-67558-9_11 – ident: 27815_CR19 doi: 10.1007/978-3-030-32281-6_13 – ident: 27815_CR49 – volume: 34 start-page: 1043 year: 2018 ident: 27815_CR55 publication-title: Vis. Comput. doi: 10.1007/s00371-018-1519-5 – volume: 33 start-page: 577 year: 2013 ident: 27815_CR12 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2290491 – volume: 32 start-page: 279 year: 2020 ident: 27815_CR46 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-018-3627-6 – volume: 25 start-page: 998 year: 1998 ident: 27815_CR30 publication-title: Med. Phys. doi: 10.1118/1.598277 – ident: 27815_CR35 – ident: 27815_CR62 – ident: 27815_CR50 doi: 10.1109/VCIP.2017.8305148 – volume: 17 start-page: 342 year: 1990 ident: 27815_CR4 publication-title: Med. Phys. doi: 10.1118/1.596513 – volume: 24 start-page: 3 year: 1998 ident: 27815_CR59 publication-title: Can. J. Remote Sens. doi: 10.1080/07038992.1998.10874685 – ident: 27815_CR22 doi: 10.1007/978-3-319-24574-4_28 – volume: 22 start-page: 149 year: 2010 ident: 27815_CR13 publication-title: Biomed. Eng. Appl. Basis Commun. doi: 10.4015/S1016237210001876 – ident: 27815_CR24 doi: 10.1117/12.968961 |
SSID | ssj0000529419 |
Score | 2.4900784 |
Snippet | Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system... Abstract Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 791 |
SubjectTerms | 631/114/1305 631/114/1564 Chest Deep Learning Fluoroscopy Humanities and Social Sciences Humans Image processing Image Processing, Computer-Assisted - methods multidisciplinary Neural networks Neural Networks, Computer Pacemakers Science Science (multidisciplinary) Segmentation Thorax - diagnostic imaging X-Rays |
SummonAdditionalLinks | – databaseName: DOAJ: Directory of Open Access Journal (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2naVGht1bE0sh6HNPSEArtqYG9CdmS0oXGCbsJIbf-h_7D_JKMJO822-elJxuPjGXNjOYbJH1DyCtlBg1SeCZ7UExa0TNvbWC-y8wwEFJbyJ4_flIHh_LDrJvdKPWV94RVeuA6cLsJ8a8fcHpQWkk0Ft-FjOpt6Hi0XSjspRjzbiRTldVbWMntdEqmBbO7xEiVT5MJYEIb3rGLjUhUCPt_hzJ_3Sz504ppCUT798jdCUHSvdrz--RWHB-Q27Wm5OVDstijIcZTOpWDOKI5TgWaj1zRTFoZ4uLq2_cQyx1Nq71ZFMEr9SOm4IU_gFZe2fNFpMt4dDwdUBrpfKSlwhadsYW_pPNjnI6Wj8jh_vvP7w7YVFiBDQjQzlgAy6WWxus2aJWiAQWqR-wh2oDpnvaJ-8gTdCrqkEC3KQyDwWhneeh138JjsjWejPEpoZr3IqWIQT72EucqPwxc4isAgFctGsJXg-yGiXU8F7_46srqNxhXFeNQMa4oxl005PX6ndPKufHX1m-z7tYtM192eYBW5CYrcv-yoobsrDTvJide4gcQnhlMP_AvXq7F6H55TcWP8eS8tEFMl6uMNuRJNZR1TwBFSgNK9IYJbXR1UzLOvxSKb2sQOXWyIW9WxvajW38eiu3_MRTPyB2RvaTNBcR3yBaaW3yOwOusf1F87BomoCoR priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgCIkN4t1AQUZiB1bjR-x4hQqiqpBgRaXZWU5sDyPRzJC0qrrjH_qH_RKuHSfV8OhqRmNH8uRe33vsa5-D0BtZt4oLZolouCRCs4ZYrR2xVWSG4S6Uiez5y1d5dCw-L6pF3nAb8rHKKSamQO3Wbdwj32cKcmUNWJC93_wkUTUqVlezhMZtdCdSl8UjXWqh5j2WWMUSVOe7MiWv9wfIV_FOGeOEqZpW5HwrHyXa_n9hzb-PTP5RN03p6PABup9xJD4YDf8Q3fLdI3R3VJa8eIz6A-y83-AsCrHEMVs5HC9e4Uhd6Xx_9evS-fQNh-mEFgYIi20HC_HEIoBHdtmz3uPBL0_yNaUOrzqcdLbwgvT2Aq9OICgNT9Dx4advH49IllcgLcC0U-K4pkKJ2qrSKRl8zSWXDSAQVjpY9CkbqPU08Ep65QJXZXBtW0PO09Q1qin5U7TTrTu_i7CiDQvBQ6r3jYCIZduWCniEcw6fihWITi_ZtJl7PEpg_DCpBs5rMxrGgGFMMow5L9Db-ZnNyLxxY-8P0XZzz8ianX5Y90uTJ6EJsJayLaQaqaSAwGMrF1eI2lXU68pVBdqbLG_yVB7MteMV6PXcDJMwVlZs59dnqQ8gu6g1WqBno6PMI-HQJBWHFrXlQltD3W7pVt8T0beuAT9VokDvJme7Htb_X8Xzm__FC3SPRf8vo0D4HtoBR_IvAVidNq_S7PkNWxIh1A priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA61Ivgi9dqxVSL4psHJPXlsF0sR9MnCvoXMJFkX7GzZrZS--R_8h_6SnmQusloFn2aYJMyZnJOcL5Oc7yD0WplWc8E8EQ1XRFjWEG9tIF5mZhgeUl3Inj9-Uqdn4sNczncQG2NhyqH9QmlZpunxdNi7DTiaHAzGOGHaUEmu7qC7mbo9W_VMzab_KnnnSlA7xMfU3NzSdMsHFar-2_Dln8ckf9srLS7oZA89GLAjPuqlfYh2YvcI3euzSV4_RusjHGK8wEMiiAXOHirgHGyFM11liOuf33-EWO5wGk9lYYCt2ENvrApzAO4ZZaFr8CYuzofQpA4vO1xya-E5WftrvDyHiWjzBJ2dvP88OyVDSgXSAjS7JIFbKrQwXtdBqxQNV1w1gDpYHWChp32iPtLEpYo6JK7rFNrWgJ-zNDS6qflTtNuturiPsKYNSymCe4-NgFnKty0V0IRzDlfNKkTHTnbtwDee0158dWXfmxvXK8aBYlxRjLuq0JupzUXPtvHP2sdZd1PNzJRdHqzWCzdYjkuwfvItuBellYDJxsuQV4U2SBqtDLJCh6Pm3TB8N_ACAGYGFh7wFa-mYhh4eTfFd3H1rdQBNJfzi1boWW8okyQcipTmUKK3TGhL1O2SbvmlkHtbA5hJigq9HY3tl1h_74rn_1f9AN1neTzUOUn4IdoFw4ovAFxdNi_LaLoBgMUgGA priority: 102 providerName: Springer Nature |
Title | A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images |
URI | https://link.springer.com/article/10.1038/s41598-023-27815-w https://www.ncbi.nlm.nih.gov/pubmed/36646735 https://www.proquest.com/docview/2765887722 https://www.proquest.com/docview/2766431055 https://pubmed.ncbi.nlm.nih.gov/PMC9842654 https://doaj.org/article/f826aceac6764638a5d01499d51e95d5 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvIEhsR07eUCoqzZNlTYhoFLfIie2S6UtLemm0f-es5MUFQriyVLsJK7vzve7Ovc7gNcyqxQXTFNRcklFzkqq89xQnXpmGG5cHMiezy_k2USMp-l0D_pyR90CrnaGdr6e1KS5fPfj-_ojGvyHNmU8e79CJ-QTxRinTGVJSm_34RA9k_KGet7B_Zbrm-Ui1PrwJOwUwQTr8mh2P2bLVwVK_1049M_PKX87Uw2u6vQ-3OswJhm2SvEA9mz9EO60VSfXj2A5JMbaJekKRsyI92SG-KQs4mktjW2osaElrv92iyC4JbrGED3wC5CWd_amsWRlZ1ddAlNN5jUJFbjIlDZ6TeZXuF2tHsPk9OTr6Ix2hRdohQDumhqeJ0KJTKvYKOlsxiWXJWITFhsMB5V2ibaJ46m0yjiuYmeqKkNvmCemVGXMn8BBvajtMyAqKZlzFkGALQXuZbqqEoG3cM6xVSyCpF_ioupYyX1xjMsinI7zrGjFUqBYiiCW4jaCN5t7li0nxz9HH3vJbUZ6Pu1wYdHMis48C4dRlq7QCUklBW5JOjU-dsxNmtg8NWkER73ci15H8QUI3zIMT_BXvNp0o3n6Mxdd28VNGIOYz1chjeBpqyabmXDskopjj9pSoK2pbvfU82-BAjzPEFmlIoK3var9mtbfl-L5f0zzBdxl3gRiXz_8CA5Qm-xLxF3X5QD21VQN4HA4HH8ZY3t8cvHpM14dydEg_JcxCOb2E151LR0 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anRDcIP4JDDASXIG1xHbi5AKhDTZ1bKsQ2qTeeU7slEosLc2mqne8A-_BQ_EkHDtJp_Kzu101qp3I8fnP8TkfwMskLSQXTFOR84SKjOVUZ5mhOnadYbgpQ9_s-XCQ9I_Fx2E8XIOfXS2MO1bZ6USvqM2kcN_IN5lEW5miL8jeTb9RhxrlsqsdhEbDFvt2MceQrX679wHp-4qx3Z2j933aogrQAr2TM2p4FgkpUi1DI5PSpjzhSY6Gl4UGYx2py0jbqORxYqUpuQxLUxQpqvosMrnMQ47PvQbrgmMo04P17Z3Bp8_LrzoubyairK3OCXm6WaOFdFVsjFMm0yim8xUL6IEC_uXd_n1I849MrTeAu7fhVuu5kq2G1e7Amq3uwvUGy3JxD2ZbxFg7JS0MxYg4-2iIK_UirlmmsbNf338Y669I2Z0JI-g0E11h6O_7FpCmn-35zJLajk7bwqiKjCvikb3IkM70goxPUQ3W9-H4Srb-AfSqSWUfAZFRzsrSonNhc4E6UhdFJPAWzjn-ShZA1G2yKtpu5w5046vyWXeeqoYwCgmjPGHUPIDXy3umTa-PS2dvO9otZ7o-3f6PyWykWrFXJUZvukDjlshEoKrTsXExaWbiyGaxiQPY6CivWuVRqwtWD-DFchjF3uVydGUn534O-pIO3TSAhw2jLFfCcSiRHEfkCgutLHV1pBp_8a3FsxQ9tlgE8KZjtotl_X8rHl_-Fs_hRv_o8EAd7A32n8BN5mQhdPDkG9BDprJP0a07y5-1skTg5KrF9zc9Xl8b |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLOkFDASnCDa-JE4OSBUKKuWQsWBSnszTmwvK9Hsdner1d74D_wbfg6_hLGTbLU8euspUexEjudpj2c-gGdZXkkumI5FybNYFKyMdVGYWKe-Mgw3LgnFnj8eZfvH4v0gHWzAzy4Xxh-r7HRiUNRmXPk98h6TaCtz9AVZz7XHIj7t9V9PTmOPIOUjrR2cRsMih3a5wOXb7NXBHtL6OWP9d5_f7sctwkBcoacyjw0vqJAi1zIxMnM25xnPSjTCLDG47pHaUW2p42lmpXFcJs5UVY5qv6CmlGXC8btX4KrkKfUyJgdytb_jI2iCFm2eTsLz3gxtpc9nYzxmMqdpvFizhQEy4F9-7t_HNf-I2QZT2L8FN1sfluw2THcbNmx9B641qJbLuzDdJcbaCWkBKYbEW0pDfNIX8WUzjZ3--v7D2HBHXHc6jKD7THSt5-NQwYA0lW3PppbM7PCkTZGqyagmAeOLDOKpXpLRCSrE2T04vpSJvw-b9bi2D4BIWjLnLLoZthSoLXVVUYGvcM7xKlkEtJtkVbV1zz38xjcV4u88Vw1hFBJGBcKoRQQvVu9MmqofF_Z-42m36ukrdocH4-lQtQpAOVzH6QrNXCYzgUpPp8avTguTUlukJo1gp6O8atXITJ0zfQRPV82oAHxUR9d2fBb6oFfpcU4j2GoYZTUSjk0ZcmcEco2F1oa63lKPvoYi40WOvlsqInjZMdv5sP4_FdsX_8UTuI5Cqz4cHB0-hBvMi0Liccp3YBN5yj5C_25ePg6CRODLZUvub6o6Yes |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+dual+encoder-decoder+framework+for+anatomical+structure+segmentation+in+chest+X-ray+images&rft.jtitle=Scientific+reports&rft.au=Ullah%2C+Ihsan&rft.au=Ali%2C+Farman&rft.au=Shah%2C+Babar&rft.au=El-Sappagh%2C+Shaker&rft.date=2023-01-16&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=791&rft_id=info:doi/10.1038%2Fs41598-023-27815-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |