A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images

Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure sh...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 791 - 14
Main Authors Ullah, Ihsan, Ali, Farman, Shah, Babar, El-Sappagh, Shaker, Abuhmed, Tamer, Park, Sang Hyun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.01.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.
AbstractList Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.
Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder-decoder convolutional neural network (CNN). The first network in the dual encoder-decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network's representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder-decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.
Abstract Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system for the anatomical structure segmentation remains challenging due to several indistinct structures, variations in the anatomical structure shape among different individuals, the presence of medical tools, such as pacemakers and catheters, and various artifacts in the chest radiographic images. In this paper, we propose a robust deep learning segmentation framework for the anatomical structure in chest radiographs that utilizes a dual encoder–decoder convolutional neural network (CNN). The first network in the dual encoder–decoder structure effectively utilizes a pre-trained VGG19 as an encoder for the segmentation task. The pre-trained encoder output is fed into the squeeze-and-excitation (SE) to boost the network’s representation power, which enables it to perform dynamic channel-wise feature calibrations. The calibrated features are efficiently passed into the first decoder to generate the mask. We integrated the generated mask with the input image and passed it through a second encoder–decoder network with the recurrent residual blocks and an attention the gate module to capture the additional contextual features and improve the segmentation of the smaller regions. Three public chest X-ray datasets are used to evaluate the proposed method for multi-organs segmentation, such as the heart, lungs, and clavicles, and single-organ segmentation, which include only lungs. The results from the experiment show that our proposed technique outperformed the existing multi-class and single-class segmentation methods.
ArticleNumber 791
Author El-Sappagh, Shaker
Ali, Farman
Shah, Babar
Park, Sang Hyun
Abuhmed, Tamer
Ullah, Ihsan
Author_xml – sequence: 1
  givenname: Ihsan
  surname: Ullah
  fullname: Ullah, Ihsan
  organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST)
– sequence: 2
  givenname: Farman
  surname: Ali
  fullname: Ali, Farman
  organization: Department of Computer Science and Engineering, School of Convergence, College of Computing and Informatics, Sungkyunkwan University
– sequence: 3
  givenname: Babar
  surname: Shah
  fullname: Shah, Babar
  organization: College of Technological Innovation, Zayed University
– sequence: 4
  givenname: Shaker
  surname: El-Sappagh
  fullname: El-Sappagh, Shaker
  organization: Faculty of Computer Science and Engineering, Galala University, Information Systems Department, Faculty of Computers and Artificial Intelligence, Benha University
– sequence: 5
  givenname: Tamer
  surname: Abuhmed
  fullname: Abuhmed, Tamer
  organization: Department of Computer Science and Engineering, College of Computing and Informatics, Sungkyunkwan University
– sequence: 6
  givenname: Sang Hyun
  surname: Park
  fullname: Park, Sang Hyun
  email: shpark13135@dgist.ac.kr
  organization: Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Engineering (DGIST)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36646735$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJZYsMm4LedDVJV8ahUiQ1I7CyPfZNmSOzBTjrqjn_gD_kSPJMW2i7qjS37nHOP7z3Pq4MQA1TVS4LfEsz0u8yJaHSNKaup0kTU2yfVEcVc1JRRenDnfFid5LzGZQnacNI8qw6ZlFwqJo6qdIo8wAYNYFPoQ4dWNoNHfrYDguCih_Tn128P-xNqkx1hG9MP1MaEbLBTHHtXoHlKs5vmBChDN0KY7NTHgPqA3CXkCX2vk71G_Wg7yC-qp60dMpzc7MfVt48fvp59ri--fDo_O72oneB4qj1rCFdcW4W9ki1oJplcScko9rjhyrbEAmmZkKB8yxRuvXOaMNwQv1IrzI6r80XXR7s2m1Sqp2sTbW_2FzF1xqapdwOYVlNpHVgnVWkM01Z4THjTeEGgEV4UrfeL1mZejeBd-WGywz3R-y-hvzRdvDKN5lQKXgTe3Aik-HMuLTFjnx0Mgw0Q52yoKiNhBItdrdcPoOs4p1BatUMJrZWitKBe3XX0z8rtaAtALwCXYs4JWuP6ZSzFYD8Ygs0uSGYJkilBMvsgmW2h0gfUW_VHSWwh5QIOHaT_th9h_QWSJd0k
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_108088
crossref_primary_10_1016_j_compbiomed_2024_109187
crossref_primary_10_3390_app13169114
crossref_primary_10_3390_curroncol30090608
crossref_primary_10_1016_j_measurement_2023_112993
crossref_primary_10_1016_j_inffus_2023_102016
crossref_primary_10_1049_ipr2_13287
crossref_primary_10_1038_s41598_024_56079_1
crossref_primary_10_1002_ima_23116
crossref_primary_10_1016_j_aej_2024_12_030
crossref_primary_10_1016_j_heliyon_2024_e34429
crossref_primary_10_7717_peerj_cs_1813
crossref_primary_10_1016_j_imu_2024_101504
crossref_primary_10_1016_j_neunet_2024_106505
crossref_primary_10_1007_s13246_024_01489_8
crossref_primary_10_1080_21681163_2023_2227741
crossref_primary_10_1007_s43538_023_00223_4
crossref_primary_10_1038_s41598_024_79915_w
crossref_primary_10_3390_cancers15153982
crossref_primary_10_1109_ACCESS_2025_3532631
crossref_primary_10_3390_life13091893
Cites_doi 10.1109/CVPR.2018.00474
10.1093/comjnl/bxaa148
10.1118/1.597738
10.1109/CVPR.2017.660
10.1007/s00521-019-04532-y
10.2214/ajr.174.1.1740071
10.1186/s12938-015-0014-8
10.1016/j.media.2005.02.002
10.1007/978-981-15-6329-4_23
10.1016/j.cmpb.2019.06.005
10.1109/IST.2008.4659946
10.3390/app10186264
10.1117/12.154500
10.1111/j.1469-8137.1912.tb05611.x
10.1049/iet-cvi.2009.0141
10.1007/s11277-018-5702-9
10.1109/CVPR.2017.243
10.1109/TPAMI.2016.2644615
10.1016/S1076-6332(98)80223-7
10.1109/FSKD.2009.811
10.1109/ICCV.2017.74
10.2214/ajr.182.2.1820505
10.1109/CBMS.2019.00092
10.3390/app11041638
10.1109/TMI.2018.2806086
10.1007/978-3-319-46723-8_16
10.1109/TMI.2014.2305691
10.1007/978-3-319-59129-2_24
10.1016/S1076-6332(03)80688-8
10.1118/1.598405
10.1101/2020.09.13.20193565
10.1109/ITAB.2009.5394326
10.1109/CVPR.2018.00745
10.1109/ISBI.2016.7493451
10.1109/CVPR.2016.90
10.1109/JBHI.2017.2687939
10.1109/ACCESS.2019.2950263
10.1007/978-981-13-9184-2_27
10.1118/1.3222872
10.3934/mbe.2019326
10.1109/ICCV.2017.322
10.1007/978-3-319-67558-9_11
10.1007/978-3-030-32281-6_13
10.1007/s00371-018-1519-5
10.1109/TMI.2013.2290491
10.1007/s00521-018-3627-6
10.1118/1.598277
10.1109/VCIP.2017.8305148
10.1118/1.596513
10.1080/07038992.1998.10874685
10.1007/978-3-319-24574-4_28
10.4015/S1016237210001876
10.1117/12.968961
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-27815-w
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ: Directory of Open Access Journal (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_f826aceac6764638a5d01499d51e95d5
PMC9842654
36646735
10_1038_s41598_023_27815_w
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cluster grant R20143 of Zayed University
  grantid: R20143
– fundername: Medical device technology development program funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea)
  grantid: 20006006
– fundername: National Research Foundation of Korea(NRF) grant funded by the Korean Government (MSIT)
  grantid: 2019R1C1C1008727
– fundername: ;
  grantid: 2019R1C1C1008727
– fundername: ;
  grantid: 20006006
– fundername: ;
  grantid: R20143
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-d3914748a70d76fe83636b66320d0947af1ae1f356e7df370fdcc813091db7b03
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:32:55 EDT 2025
Thu Aug 21 18:39:12 EDT 2025
Fri Jul 11 04:57:36 EDT 2025
Wed Aug 13 08:18:38 EDT 2025
Thu Apr 03 07:02:41 EDT 2025
Thu Apr 24 23:11:28 EDT 2025
Tue Jul 01 00:55:46 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d3914748a70d76fe83636b66320d0947af1ae1f356e7df370fdcc813091db7b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-023-27815-w
PMID 36646735
PQID 2765887722
PQPubID 2041939
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_f826aceac6764638a5d01499d51e95d5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9842654
proquest_miscellaneous_2766431055
proquest_journals_2765887722
pubmed_primary_36646735
crossref_citationtrail_10_1038_s41598_023_27815_w
crossref_primary_10_1038_s41598_023_27815_w
springer_journals_10_1038_s41598_023_27815_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-16
PublicationDateYYYYMMDD 2023-01-16
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KakedaSImproved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis systemAm. J. Roentgenol.200418250551010.2214/ajr.182.2.1820505
YangWLung field segmentation in chest radiographs from boundary maps by a structured edge detectorIEEE J. Biomed. Health Inform.20172284285110.1109/JBHI.2017.268793928368835
Wang, C. Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. in Scandinavian Conference on Image Analysis. 282–289 (Springer, 2017).
CandemirSLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans. Med. Imaging20133357759010.1109/TMI.2013.229049124239990
Peng, T., Xu, T. C., Wang, Y. & Li, F. Deep belief network and closed polygonal line for lung segmentation in chest radiographs. Comput. J. (2020).
Cheng, D. & Goldberg, M. An algorithm for segmenting chest radiographs. in Visual Communications and Image Processing’88: Third in a Series. Vol. 1001. 261–268 (International Society for Optics and Photonics, 1988).
ArmatoSGIIIGigerMLMacMahonHAutomated lung segmentation in digitized posteroanterior chest radiographsAcad. Radiol.1998524525510.1016/S1076-6332(98)80223-79561257
XuX-WDoiKImage feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographsMed. Phys.199623161316241:STN:280:DyaK2s%2Fksleguw%3D%3D10.1118/1.5977388892259
Hwang, S. & Park, S. Accurate lung segmentation via network-wise training of convolutional networks. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 92–99 (Springer, 2017).
Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International Conference on Machine Learning. 448–456 (PMLR, 2015).
WangJLiFLiQAutomated segmentation of lungs with severe interstitial lung disease in CTMed. Phys.2009364592459910.1118/1.3222872199280902771715
VinogradovaKDibrovAMyersGTowards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract)Proc. AAAI Conf. Artif. Intell.2020341394313944
Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
BiLFengDKimJDual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentationVis. Comput.2018341043105210.1007/s00371-018-1519-5
Ibragimov, B., Likar, B., Pernuš, F. & Vrtovec, T. Accurate landmark-based segmentation by incorporating landmark misdetections. in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). 1072–1075 (IEEE, 2016).
UllahIChikontwePParkSHReal-time tracking of guidewire robot tips using deep convolutional neural networks on successive localized framesIEEE Access2019715974315975310.1109/ACCESS.2019.2950263
Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2881–2890 (2017).
ShaoYHierarchical lung field segmentation with joint shape and appearance sparse learningIEEE Trans. Med. Imaging2014331761178010.1109/TMI.2014.230569125181734
Kalinovsky, A. & Kovalev, V. Lung Image Segmentation Using Deep Learning Methods and Convolutional Neural Networks. (2016).
UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly 56. Session (10–18 July 2008). Official Records: 63. Session, Suppl. No. 46 (a/63/46). Technical Report, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008).
Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. in International Conference on Machine Learning. 6105–6114 (PMLR, 2019).
UllahIChikontwePChoiHYoonC-HParkSHSynthesize and segment: Towards improved catheter segmentation via adversarial augmentationAppl. Sci.20211116381:CAS:528:DC%2BB3MXhsFSis7jJ10.3390/app11041638
BeaucheminMThomsonKPEdwardsGOn the Hausdorff distance used for the evaluation of segmentation resultsCan. J. Remote Sens.1998243810.1080/07038992.1998.108746851998CaJRS..24....3B
Iakovidis, D. K. & Papamichalis, G. Automatic segmentation of the lung fields in portable chest radiographs based on Bézier interpolation of salient control points. in 2008 IEEE International Workshop on Imaging Systems and Techniques. 82–87 (IEEE, 2008).
BosdelekidisVIoakeimidisNSLung field segmentation in chest X-rays: A deformation-tolerant procedure based on the approximation of rib cage seed pointsAppl. Sci.20201062641:CAS:528:DC%2BB3cXitFarur3E10.3390/app10186264
NovikovAAFully convolutional architectures for multiclass segmentation in chest radiographsIEEE Trans. Med. Imaging2018371865187610.1109/TMI.2018.280608629994439
Wang, J., Li, Z., Jiang, R. & Xie, Z. Instance segmentation of anatomical structures in chest radiographs. in 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). 441–446 (IEEE, 2019).
Bartels, R. H., Beatty, J. C. & Barsky, B. A. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufmann, 1995).
DawoudALung segmentation in chest radiographs by fusing shape information in iterative thresholdingIET Comput. Vis.2011518519010.1049/iet-cvi.2009.0141
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4510–4520 (2018).
Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE International Conference on Computer Vision. 618–626 (2017).
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016).
Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7132–7141 (2018).
ShiraishiJDevelopment of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodulesAm. J. Roentgenol.200017471741:STN:280:DC%2BD3c%2Fpt1Sgug%3D%3D10.2214/ajr.174.1.1740071
He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. in Proceedings of the IEEE International Conference on Computer Vision. 2961–2969 (2017).
Liu, M. & Yin, H. Feature pyramid encoding network for real-time semantic segmentation. arXiv preprint arXiv:1909.08599 (2019).
Van GinnekenBStegmannMBLoogMSegmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public databaseMed. Image Anal.200610194010.1016/j.media.2005.02.00215919232
DeGrave, A. J., Janizek, J. D. & Lee, S.-I. Ai for radiographic Covid-19 detection selects shortcuts over signal. Nat. Mach. Intell. 1–10 (2021).
Iakovidis, D. K. & Savelonas, M. Active shape model aided by selective thresholding for lung field segmentation in chest radiographs. in 2009 9th International Conference on Information Technology and Applications in Biomedicine. 1–4 (IEEE, 2009).
Shi, Z. et al. Lung segmentation in chest radiographs by means of Gaussian kernel-based fcm with spatial constraints. in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 3. 428–432 (IEEE, 2009).
MittalAHoodaRSofatSLf-segnet: A fully convolutional encoder–decoder network for segmenting lung fields from chest radiographsWirel. Pers. Commun.201810151152910.1007/s11277-018-5702-9
Fu, H., Xu, Y., Lin, S., Wong, D. W. K. & Liu, J. Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. in International Conference on Medical Image Computing and Computer-assisted Intervention. 132–139 (Springer, 2016).
Ullah, I., Chikontwe, P. & Park, S. H. Catheter synthesis in X-ray fluoroscopy with generative adversarial networks. in International Workshop on PRedictive Intelligence In MEdicine. 125–133 (Springer, 2019).
Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017).
Chaurasia, A. & Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. in 2017 IEEE Visual Communications and Image Processing (VCIP). 1–4 (IEEE, 2017).
VittitoeNFVargas-VoracekRFloydCEJrIdentification of lung regions in chest radiographs using Markov random field modelingMed. Phys.1998259769851:STN:280:DyaK1czhtlyktg%3D%3D10.1118/1.5984059650188
Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol.11, 37–50 (1912).
NakamoriNDoiKSabetiVMacMahonHImage feature analysis and computer-aided diagnosis in digital radiography: Automated analysis of sizes of heart and lung in chest imagesMed. Phys.1990173423501:STN:280:DyaK3czkvVGitw%3D%3D10.1118/1.5965132143554
BadrinarayananVKendallACipollaRSegnet: A deep convolutional encoder–decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.264461528060704
Chandra, T. B., Verma, K., Jain, D. & Netam, S. S. Segmented lung boundary correction in chest radiograph using context-aware adaptive scan algorithm. in Advances in Biomedical Engineering and Technology. 263–275 (Springer, 2021).
SouzaJCAn automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networksComput. Methods Programs Biomed.201917728529610.1016/j.cmpb.2019.06.00531319957
Ahmad, W. S. H. M. W., Zaki, W. M. D. W. & Fauzi, M. F. A. Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomed. Eng. Online14, 1–26 (2015).
Badrinarayanan, V., Handa, A. & Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for robust semantic pixel-wise la
S Jaeger (27815_CR47) 2014; 4
27815_CR6
27815_CR5
27815_CR26
27815_CR24
27815_CR29
27815_CR1
27815_CR28
27815_CR62
27815_CR60
27815_CR65
27815_CR22
27815_CR64
I Ullah (27815_CR18) 2021; 11
O Tsujii (27815_CR30) 1998; 25
V Badrinarayanan (27815_CR52) 2017; 39
Y Shao (27815_CR14) 2014; 33
L Bi (27815_CR55) 2018; 34
L Li (27815_CR10) 2001; 8
27815_CR58
27815_CR15
A Mittal (27815_CR36) 2018; 101
27815_CR56
27815_CR19
J Shiraishi (27815_CR48) 2000; 174
27815_CR17
27815_CR50
27815_CR51
S Kakeda (27815_CR2) 2004; 182
27815_CR11
27815_CR53
J Gao (27815_CR21) 2019; 16
AA Novikov (27815_CR16) 2018; 37
NF Vittitoe (27815_CR31) 1998; 25
TA Sorensen (27815_CR57) 1948; 5
27815_CR45
27815_CR49
W Yang (27815_CR7) 2017; 22
A Dawoud (27815_CR9) 2011; 5
27815_CR40
27815_CR43
27815_CR44
I Ullah (27815_CR20) 2019; 7
27815_CR41
27815_CR42
N Nakamori (27815_CR4) 1990; 17
J-S Lee (27815_CR13) 2010; 22
O Gomez (27815_CR54) 2020; 32
S Candemir (27815_CR12) 2013; 33
J Wang (27815_CR3) 2009; 36
27815_CR37
X-W Xu (27815_CR27) 1996; 23
27815_CR34
27815_CR35
SG Armato III (27815_CR25) 1998; 5
MZ Alom (27815_CR46) 2020; 32
27815_CR38
27815_CR39
K Vinogradova (27815_CR63) 2020; 34
V Bosdelekidis (27815_CR61) 2020; 10
M Beauchemin (27815_CR59) 1998; 24
27815_CR32
B Van Ginneken (27815_CR8) 2006; 10
27815_CR33
JC Souza (27815_CR23) 2019; 177
References_xml – reference: GaoJJiangQZhouBChenDConvolutional neural networks for computer-aided detection or diagnosis in medical image analysis: An overviewMath. Biosci. Eng.20191665366561403430210.3934/mbe.2019326316985751470.92167
– reference: Tan, M. & Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. in International Conference on Machine Learning. 6105–6114 (PMLR, 2019).
– reference: Ibragimov, B., Likar, B., Pernuš, F. & Vrtovec, T. Accurate landmark-based segmentation by incorporating landmark misdetections. in 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). 1072–1075 (IEEE, 2016).
– reference: Zhao, H., Shi, J., Qi, X., Wang, X. & Jia, J. Pyramid scene parsing network. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2881–2890 (2017).
– reference: BosdelekidisVIoakeimidisNSLung field segmentation in chest X-rays: A deformation-tolerant procedure based on the approximation of rib cage seed pointsAppl. Sci.20201062641:CAS:528:DC%2BB3cXitFarur3E10.3390/app10186264
– reference: Van GinnekenBStegmannMBLoogMSegmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public databaseMed. Image Anal.200610194010.1016/j.media.2005.02.00215919232
– reference: Wang, J., Li, Z., Jiang, R. & Xie, Z. Instance segmentation of anatomical structures in chest radiographs. in 2019 IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS). 441–446 (IEEE, 2019).
– reference: Hu, J., Shen, L. & Sun, G. Squeeze-and-excitation networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 7132–7141 (2018).
– reference: Fu, H., Xu, Y., Lin, S., Wong, D. W. K. & Liu, J. Deepvessel: Retinal vessel segmentation via deep learning and conditional random field. in International Conference on Medical Image Computing and Computer-assisted Intervention. 132–139 (Springer, 2016).
– reference: He, K., Gkioxari, G., Dollár, P. & Girshick, R. Mask r-cnn. in Proceedings of the IEEE International Conference on Computer Vision. 2961–2969 (2017).
– reference: UNSCEAR. Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. General Assembly 56. Session (10–18 July 2008). Official Records: 63. Session, Suppl. No. 46 (a/63/46). Technical Report, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (2008).
– reference: VinogradovaKDibrovAMyersGTowards interpretable semantic segmentation via gradient-weighted class activation mapping (student abstract)Proc. AAAI Conf. Artif. Intell.2020341394313944
– reference: YangWLung field segmentation in chest radiographs from boundary maps by a structured edge detectorIEEE J. Biomed. Health Inform.20172284285110.1109/JBHI.2017.268793928368835
– reference: Jaccard, P. The distribution of the flora in the alpine zone. 1. New Phytol.11, 37–50 (1912).
– reference: BadrinarayananVKendallACipollaRSegnet: A deep convolutional encoder–decoder architecture for image segmentationIEEE Trans. Pattern Anal. Mach. Intell.2017392481249510.1109/TPAMI.2016.264461528060704
– reference: VittitoeNFVargas-VoracekRFloydCEJrIdentification of lung regions in chest radiographs using Markov random field modelingMed. Phys.1998259769851:STN:280:DyaK1czhtlyktg%3D%3D10.1118/1.5984059650188
– reference: NakamoriNDoiKSabetiVMacMahonHImage feature analysis and computer-aided diagnosis in digital radiography: Automated analysis of sizes of heart and lung in chest imagesMed. Phys.1990173423501:STN:280:DyaK3czkvVGitw%3D%3D10.1118/1.5965132143554
– reference: Ahmad, W. S. H. M. W., Zaki, W. M. D. W. & Fauzi, M. F. A. Lung segmentation on standard and mobile chest radiographs using oriented Gaussian derivatives filter. Biomed. Eng. Online14, 1–26 (2015).
– reference: Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. in International Conference on Machine Learning. 448–456 (PMLR, 2015).
– reference: Tang, Y.-B., Tang, Y.-X., Xiao, J. & Summers, R. M. Xlsor: A robust and accurate lung segmentor on chest X-rays using criss-cross attention and customized radiorealistic abnormalities generation. in International Conference on Medical Imaging with Deep Learning. 457–467 (PMLR, 2019).
– reference: DawoudALung segmentation in chest radiographs by fusing shape information in iterative thresholdingIET Comput. Vis.2011518519010.1049/iet-cvi.2009.0141
– reference: SouzaJCAn automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networksComput. Methods Programs Biomed.201917728529610.1016/j.cmpb.2019.06.00531319957
– reference: Bartels, R. H., Beatty, J. C. & Barsky, B. A. An Introduction to Splines for Use in Computer Graphics and Geometric Modeling (Morgan Kaufmann, 1995).
– reference: He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778 (2016).
– reference: LiLZhengYKallergiMClarkRAImproved method for automatic identification of lung regions on chest radiographsAcad. Radiol.200186296381:STN:280:DC%2BD38%2FitVOmtg%3D%3D10.1016/S1076-6332(03)80688-811450964
– reference: DeGrave, A. J., Janizek, J. D. & Lee, S.-I. Ai for radiographic Covid-19 detection selects shortcuts over signal. Nat. Mach. Intell. 1–10 (2021).
– reference: ShiraishiJDevelopment of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodulesAm. J. Roentgenol.200017471741:STN:280:DC%2BD3c%2Fpt1Sgug%3D%3D10.2214/ajr.174.1.1740071
– reference: Wang, C. Segmentation of multiple structures in chest radiographs using multi-task fully convolutional networks. in Scandinavian Conference on Image Analysis. 282–289 (Springer, 2017).
– reference: Shi, Z. et al. Lung segmentation in chest radiographs by means of Gaussian kernel-based fcm with spatial constraints. in 2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Vol. 3. 428–432 (IEEE, 2009).
– reference: Hwang, S. & Park, S. Accurate lung segmentation via network-wise training of convolutional networks. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. 92–99 (Springer, 2017).
– reference: CandemirSLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans. Med. Imaging20133357759010.1109/TMI.2013.229049124239990
– reference: Iakovidis, D. K. & Savelonas, M. Active shape model aided by selective thresholding for lung field segmentation in chest radiographs. in 2009 9th International Conference on Information Technology and Applications in Biomedicine. 1–4 (IEEE, 2009).
– reference: AlomMZHasanMYakopcicCTahaTMAsariVKImproved inception-residual convolutional neural network for object recognitionNeural Comput. Appl.20203227929310.1007/s00521-018-3627-6
– reference: Badrinarayanan, V., Handa, A. & Cipolla, R. Segnet: A deep convolutional encoder–decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015).
– reference: ArmatoSGIIIGigerMLMacMahonHAutomated lung segmentation in digitized posteroanterior chest radiographsAcad. Radiol.1998524525510.1016/S1076-6332(98)80223-79561257
– reference: ShaoYHierarchical lung field segmentation with joint shape and appearance sparse learningIEEE Trans. Med. Imaging2014331761178010.1109/TMI.2014.230569125181734
– reference: Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. in Proceedings of the IEEE International Conference on Computer Vision. 618–626 (2017).
– reference: Huang, G., Liu, Z., Van Der Maaten, L. & Weinberger, K. Q. Densely connected convolutional networks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4700–4708 (2017).
– reference: Ullah, I., Chikontwe, P. & Park, S. H. Catheter synthesis in X-ray fluoroscopy with generative adversarial networks. in International Workshop on PRedictive Intelligence In MEdicine. 125–133 (Springer, 2019).
– reference: KakedaSImproved detection of lung nodules on chest radiographs using a commercial computer-aided diagnosis systemAm. J. Roentgenol.200418250551010.2214/ajr.182.2.1820505
– reference: BiLFengDKimJDual-path adversarial learning for fully convolutional network (FCN)-based medical image segmentationVis. Comput.2018341043105210.1007/s00371-018-1519-5
– reference: GomezOMesejoPIbanezOValsecchiACordonODeep architectures for high-resolution multi-organ chest X-ray image segmentationNeural Comput. Appl.202032159491596310.1007/s00521-019-04532-y
– reference: Chaurasia, A. & Culurciello, E. Linknet: Exploiting encoder representations for efficient semantic segmentation. in 2017 IEEE Visual Communications and Image Processing (VCIP). 1–4 (IEEE, 2017).
– reference: BeaucheminMThomsonKPEdwardsGOn the Hausdorff distance used for the evaluation of segmentation resultsCan. J. Remote Sens.1998243810.1080/07038992.1998.108746851998CaJRS..24....3B
– reference: MittalAHoodaRSofatSLf-segnet: A fully convolutional encoder–decoder network for segmenting lung fields from chest radiographsWirel. Pers. Commun.201810151152910.1007/s11277-018-5702-9
– reference: LeeJ-SWuH-HYuanM-ZLung segmentation for chest radiograph by using adaptive active shape modelsBiomed. Eng. Appl. Basis Commun.20102214915610.4015/S1016237210001876
– reference: TsujiiOFreedmanMTMunSKAutomated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural networkMed. Phys.19982599810071:STN:280:DyaK1czhtlyktA%3D%3D10.1118/1.5982779650190
– reference: Ronneberger, O., Fischer, P. & Brox, T. U-net: Convolutional networks for biomedical image segmentation. in International Conference on Medical Image Computing and Computer-Assisted Intervention. 234–241 (Springer, 2015).
– reference: Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
– reference: Cheng, D. & Goldberg, M. An algorithm for segmenting chest radiographs. in Visual Communications and Image Processing’88: Third in a Series. Vol. 1001. 261–268 (International Society for Optics and Photonics, 1988).
– reference: UllahIChikontwePChoiHYoonC-HParkSHSynthesize and segment: Towards improved catheter segmentation via adversarial augmentationAppl. Sci.20211116381:CAS:528:DC%2BB3MXhsFSis7jJ10.3390/app11041638
– reference: UllahIChikontwePParkSHReal-time tracking of guidewire robot tips using deep convolutional neural networks on successive localized framesIEEE Access2019715974315975310.1109/ACCESS.2019.2950263
– reference: Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 4510–4520 (2018).
– reference: Kalinovsky, A. & Kovalev, V. Lung Image Segmentation Using Deep Learning Methods and Convolutional Neural Networks. (2016).
– reference: Peng, T., Xu, T. C., Wang, Y. & Li, F. Deep belief network and closed polygonal line for lung segmentation in chest radiographs. Comput. J. (2020).
– reference: Iakovidis, D. K. & Papamichalis, G. Automatic segmentation of the lung fields in portable chest radiographs based on Bézier interpolation of salient control points. in 2008 IEEE International Workshop on Imaging Systems and Techniques. 82–87 (IEEE, 2008).
– reference: SorensenTAA method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on danish commonsBiol. Skar.19485134
– reference: XuX-WDoiKImage feature analysis for computer-aided diagnosis: Detection of right and left hemidiaphragm edges and delineation of lung field in chest radiographsMed. Phys.199623161316241:STN:280:DyaK2s%2Fksleguw%3D%3D10.1118/1.5977388892259
– reference: Liu, M. & Yin, H. Feature pyramid encoding network for real-time semantic segmentation. arXiv preprint arXiv:1909.08599 (2019).
– reference: WangJLiFLiQAutomated segmentation of lungs with severe interstitial lung disease in CTMed. Phys.2009364592459910.1118/1.3222872199280902771715
– reference: NovikovAAFully convolutional architectures for multiclass segmentation in chest radiographsIEEE Trans. Med. Imaging2018371865187610.1109/TMI.2018.280608629994439
– reference: JaegerSTwo public chest X-ray datasets for computer-aided screening of pulmonary diseasesQuant. Imaging Med. Surg.201444752552558042562332014qonc.book.....J
– reference: Chandra, T. B., Verma, K., Jain, D. & Netam, S. S. Segmented lung boundary correction in chest radiograph using context-aware adaptive scan algorithm. in Advances in Biomedical Engineering and Technology. 263–275 (Springer, 2021).
– reference: McNitt-Gray, M. F., Sayre, J. W., Huang, H. & Razavi, M. Pattern classification approach to segmentation of chest radiographs. in Medical Imaging 1993: Image Processing. Vol. 1898. 160–170 (International Society for Optics and Photonics, 1993).
– reference: Jangam, E. & Rao, A. Segmentation of lungs from chest X rays using firefly optimized fuzzy c-means and level set algorithm. in International Conference on Recent Trends in Image Processing and Pattern Recognition. 303–311 (Springer, 2018).
– ident: 27815_CR40
  doi: 10.1109/CVPR.2018.00474
– ident: 27815_CR39
  doi: 10.1093/comjnl/bxaa148
– volume: 23
  start-page: 1613
  year: 1996
  ident: 27815_CR27
  publication-title: Med. Phys.
  doi: 10.1118/1.597738
– ident: 27815_CR51
  doi: 10.1109/CVPR.2017.660
– volume: 32
  start-page: 15949
  year: 2020
  ident: 27815_CR54
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04532-y
– volume: 174
  start-page: 71
  year: 2000
  ident: 27815_CR48
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.174.1.1740071
– ident: 27815_CR28
  doi: 10.1186/s12938-015-0014-8
– volume: 10
  start-page: 19
  year: 2006
  ident: 27815_CR8
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2005.02.002
– ident: 27815_CR53
  doi: 10.1007/978-981-15-6329-4_23
– ident: 27815_CR34
– volume: 177
  start-page: 285
  year: 2019
  ident: 27815_CR23
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.06.005
– ident: 27815_CR11
  doi: 10.1109/IST.2008.4659946
– volume: 10
  start-page: 6264
  year: 2020
  ident: 27815_CR61
  publication-title: Appl. Sci.
  doi: 10.3390/app10186264
– ident: 27815_CR29
  doi: 10.1117/12.154500
– ident: 27815_CR58
  doi: 10.1111/j.1469-8137.1912.tb05611.x
– volume: 5
  start-page: 1
  year: 1948
  ident: 27815_CR57
  publication-title: Biol. Skar.
– volume: 5
  start-page: 185
  year: 2011
  ident: 27815_CR9
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2009.0141
– volume: 101
  start-page: 511
  year: 2018
  ident: 27815_CR36
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-018-5702-9
– ident: 27815_CR42
  doi: 10.1109/CVPR.2017.243
– volume: 39
  start-page: 2481
  year: 2017
  ident: 27815_CR52
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 5
  start-page: 245
  year: 1998
  ident: 27815_CR25
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(98)80223-7
– ident: 27815_CR32
  doi: 10.1109/FSKD.2009.811
– ident: 27815_CR64
  doi: 10.1109/ICCV.2017.74
– ident: 27815_CR43
– volume: 182
  start-page: 505
  year: 2004
  ident: 27815_CR2
  publication-title: Am. J. Roentgenol.
  doi: 10.2214/ajr.182.2.1820505
– ident: 27815_CR26
– ident: 27815_CR38
  doi: 10.1109/CBMS.2019.00092
– volume: 4
  start-page: 475
  year: 2014
  ident: 27815_CR47
  publication-title: Quant. Imaging Med. Surg.
– volume: 11
  start-page: 1638
  year: 2021
  ident: 27815_CR18
  publication-title: Appl. Sci.
  doi: 10.3390/app11041638
– volume: 37
  start-page: 1865
  year: 2018
  ident: 27815_CR16
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2806086
– ident: 27815_CR17
  doi: 10.1007/978-3-319-46723-8_16
– volume: 33
  start-page: 1761
  year: 2014
  ident: 27815_CR14
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2305691
– ident: 27815_CR56
  doi: 10.1007/978-3-319-59129-2_24
– volume: 8
  start-page: 629
  year: 2001
  ident: 27815_CR10
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(03)80688-8
– volume: 25
  start-page: 976
  year: 1998
  ident: 27815_CR31
  publication-title: Med. Phys.
  doi: 10.1118/1.598405
– ident: 27815_CR33
  doi: 10.1101/2020.09.13.20193565
– ident: 27815_CR15
  doi: 10.1109/ITAB.2009.5394326
– ident: 27815_CR44
  doi: 10.1109/CVPR.2018.00745
– ident: 27815_CR65
– volume: 34
  start-page: 13943
  year: 2020
  ident: 27815_CR63
  publication-title: Proc. AAAI Conf. Artif. Intell.
– ident: 27815_CR6
  doi: 10.1109/ISBI.2016.7493451
– ident: 27815_CR41
  doi: 10.1109/CVPR.2016.90
– volume: 22
  start-page: 842
  year: 2017
  ident: 27815_CR7
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2687939
– volume: 7
  start-page: 159743
  year: 2019
  ident: 27815_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2950263
– ident: 27815_CR60
  doi: 10.1007/978-981-13-9184-2_27
– ident: 27815_CR1
– volume: 36
  start-page: 4592
  year: 2009
  ident: 27815_CR3
  publication-title: Med. Phys.
  doi: 10.1118/1.3222872
– volume: 16
  start-page: 6536
  year: 2019
  ident: 27815_CR21
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2019326
– ident: 27815_CR45
– ident: 27815_CR37
  doi: 10.1109/ICCV.2017.322
– ident: 27815_CR5
  doi: 10.1007/978-3-319-67558-9_11
– ident: 27815_CR19
  doi: 10.1007/978-3-030-32281-6_13
– ident: 27815_CR49
– volume: 34
  start-page: 1043
  year: 2018
  ident: 27815_CR55
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-018-1519-5
– volume: 33
  start-page: 577
  year: 2013
  ident: 27815_CR12
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2290491
– volume: 32
  start-page: 279
  year: 2020
  ident: 27815_CR46
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-018-3627-6
– volume: 25
  start-page: 998
  year: 1998
  ident: 27815_CR30
  publication-title: Med. Phys.
  doi: 10.1118/1.598277
– ident: 27815_CR35
– ident: 27815_CR62
– ident: 27815_CR50
  doi: 10.1109/VCIP.2017.8305148
– volume: 17
  start-page: 342
  year: 1990
  ident: 27815_CR4
  publication-title: Med. Phys.
  doi: 10.1118/1.596513
– volume: 24
  start-page: 3
  year: 1998
  ident: 27815_CR59
  publication-title: Can. J. Remote Sens.
  doi: 10.1080/07038992.1998.10874685
– ident: 27815_CR22
  doi: 10.1007/978-3-319-24574-4_28
– volume: 22
  start-page: 149
  year: 2010
  ident: 27815_CR13
  publication-title: Biomed. Eng. Appl. Basis Commun.
  doi: 10.4015/S1016237210001876
– ident: 27815_CR24
  doi: 10.1117/12.968961
SSID ssj0000529419
Score 2.4900784
Snippet Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a CAD system...
Abstract Automated multi-organ segmentation plays an essential part in the computer-aided diagnostic (CAD) of chest X-ray fluoroscopy. However, developing a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 791
SubjectTerms 631/114/1305
631/114/1564
Chest
Deep Learning
Fluoroscopy
Humanities and Social Sciences
Humans
Image processing
Image Processing, Computer-Assisted - methods
multidisciplinary
Neural networks
Neural Networks, Computer
Pacemakers
Science
Science (multidisciplinary)
Segmentation
Thorax - diagnostic imaging
X-Rays
SummonAdditionalLinks – databaseName: DOAJ: Directory of Open Access Journal (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2naVGht1bE0sh6HNPSEArtqYG9CdmS0oXGCbsJIbf-h_7D_JKMJO822-elJxuPjGXNjOYbJH1DyCtlBg1SeCZ7UExa0TNvbWC-y8wwEFJbyJ4_flIHh_LDrJvdKPWV94RVeuA6cLsJ8a8fcHpQWkk0Ft-FjOpt6Hi0XSjspRjzbiRTldVbWMntdEqmBbO7xEiVT5MJYEIb3rGLjUhUCPt_hzJ_3Sz504ppCUT798jdCUHSvdrz--RWHB-Q27Wm5OVDstijIcZTOpWDOKI5TgWaj1zRTFoZ4uLq2_cQyx1Nq71ZFMEr9SOm4IU_gFZe2fNFpMt4dDwdUBrpfKSlwhadsYW_pPNjnI6Wj8jh_vvP7w7YVFiBDQjQzlgAy6WWxus2aJWiAQWqR-wh2oDpnvaJ-8gTdCrqkEC3KQyDwWhneeh138JjsjWejPEpoZr3IqWIQT72EucqPwxc4isAgFctGsJXg-yGiXU8F7_46srqNxhXFeNQMa4oxl005PX6ndPKufHX1m-z7tYtM192eYBW5CYrcv-yoobsrDTvJide4gcQnhlMP_AvXq7F6H55TcWP8eS8tEFMl6uMNuRJNZR1TwBFSgNK9IYJbXR1UzLOvxSKb2sQOXWyIW9WxvajW38eiu3_MRTPyB2RvaTNBcR3yBaaW3yOwOusf1F87BomoCoR
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgCIkN4t1AQUZiB1bjR-x4hQqiqpBgRaXZWU5sDyPRzJC0qrrjH_qH_RKuHSfV8OhqRmNH8uRe33vsa5-D0BtZt4oLZolouCRCs4ZYrR2xVWSG4S6Uiez5y1d5dCw-L6pF3nAb8rHKKSamQO3Wbdwj32cKcmUNWJC93_wkUTUqVlezhMZtdCdSl8UjXWqh5j2WWMUSVOe7MiWv9wfIV_FOGeOEqZpW5HwrHyXa_n9hzb-PTP5RN03p6PABup9xJD4YDf8Q3fLdI3R3VJa8eIz6A-y83-AsCrHEMVs5HC9e4Uhd6Xx_9evS-fQNh-mEFgYIi20HC_HEIoBHdtmz3uPBL0_yNaUOrzqcdLbwgvT2Aq9OICgNT9Dx4advH49IllcgLcC0U-K4pkKJ2qrSKRl8zSWXDSAQVjpY9CkbqPU08Ep65QJXZXBtW0PO09Q1qin5U7TTrTu_i7CiDQvBQ6r3jYCIZduWCniEcw6fihWITi_ZtJl7PEpg_DCpBs5rMxrGgGFMMow5L9Db-ZnNyLxxY-8P0XZzz8ianX5Y90uTJ6EJsJayLaQaqaSAwGMrF1eI2lXU68pVBdqbLG_yVB7MteMV6PXcDJMwVlZs59dnqQ8gu6g1WqBno6PMI-HQJBWHFrXlQltD3W7pVt8T0beuAT9VokDvJme7Htb_X8Xzm__FC3SPRf8vo0D4HtoBR_IvAVidNq_S7PkNWxIh1A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxQxFA61Ivgi9dqxVSL4psHJPXlsF0sR9MnCvoXMJFkX7GzZrZS--R_8h_6SnmQusloFn2aYJMyZnJOcL5Oc7yD0WplWc8E8EQ1XRFjWEG9tIF5mZhgeUl3Inj9-Uqdn4sNczncQG2NhyqH9QmlZpunxdNi7DTiaHAzGOGHaUEmu7qC7mbo9W_VMzab_KnnnSlA7xMfU3NzSdMsHFar-2_Dln8ckf9srLS7oZA89GLAjPuqlfYh2YvcI3euzSV4_RusjHGK8wEMiiAXOHirgHGyFM11liOuf33-EWO5wGk9lYYCt2ENvrApzAO4ZZaFr8CYuzofQpA4vO1xya-E5WftrvDyHiWjzBJ2dvP88OyVDSgXSAjS7JIFbKrQwXtdBqxQNV1w1gDpYHWChp32iPtLEpYo6JK7rFNrWgJ-zNDS6qflTtNuturiPsKYNSymCe4-NgFnKty0V0IRzDlfNKkTHTnbtwDee0158dWXfmxvXK8aBYlxRjLuq0JupzUXPtvHP2sdZd1PNzJRdHqzWCzdYjkuwfvItuBellYDJxsuQV4U2SBqtDLJCh6Pm3TB8N_ACAGYGFh7wFa-mYhh4eTfFd3H1rdQBNJfzi1boWW8okyQcipTmUKK3TGhL1O2SbvmlkHtbA5hJigq9HY3tl1h_74rn_1f9AN1neTzUOUn4IdoFw4ovAFxdNi_LaLoBgMUgGA
  priority: 102
  providerName: Springer Nature
Title A deep learning based dual encoder–decoder framework for anatomical structure segmentation in chest X-ray images
URI https://link.springer.com/article/10.1038/s41598-023-27815-w
https://www.ncbi.nlm.nih.gov/pubmed/36646735
https://www.proquest.com/docview/2765887722
https://www.proquest.com/docview/2766431055
https://pubmed.ncbi.nlm.nih.gov/PMC9842654
https://doaj.org/article/f826aceac6764638a5d01499d51e95d5
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL4JjMpIvIEhsR07eUCoqzZNlTYhoFLfIie2S6UtLemm0f-es5MUFQriyVLsJK7vzve7Ovc7gNcyqxQXTFNRcklFzkqq89xQnXpmGG5cHMiezy_k2USMp-l0D_pyR90CrnaGdr6e1KS5fPfj-_ojGvyHNmU8e79CJ-QTxRinTGVJSm_34RA9k_KGet7B_Zbrm-Ui1PrwJOwUwQTr8mh2P2bLVwVK_1049M_PKX87Uw2u6vQ-3OswJhm2SvEA9mz9EO60VSfXj2A5JMbaJekKRsyI92SG-KQs4mktjW2osaElrv92iyC4JbrGED3wC5CWd_amsWRlZ1ddAlNN5jUJFbjIlDZ6TeZXuF2tHsPk9OTr6Ix2hRdohQDumhqeJ0KJTKvYKOlsxiWXJWITFhsMB5V2ibaJ46m0yjiuYmeqKkNvmCemVGXMn8BBvajtMyAqKZlzFkGALQXuZbqqEoG3cM6xVSyCpF_ioupYyX1xjMsinI7zrGjFUqBYiiCW4jaCN5t7li0nxz9HH3vJbUZ6Pu1wYdHMis48C4dRlq7QCUklBW5JOjU-dsxNmtg8NWkER73ci15H8QUI3zIMT_BXvNp0o3n6Mxdd28VNGIOYz1chjeBpqyabmXDskopjj9pSoK2pbvfU82-BAjzPEFmlIoK3var9mtbfl-L5f0zzBdxl3gRiXz_8CA5Qm-xLxF3X5QD21VQN4HA4HH8ZY3t8cvHpM14dydEg_JcxCOb2E151LR0
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFD4anRDcIP4JDDASXIG1xHbi5AKhDTZ1bKsQ2qTeeU7slEosLc2mqne8A-_BQ_EkHDtJp_Kzu101qp3I8fnP8TkfwMskLSQXTFOR84SKjOVUZ5mhOnadYbgpQ9_s-XCQ9I_Fx2E8XIOfXS2MO1bZ6USvqM2kcN_IN5lEW5miL8jeTb9RhxrlsqsdhEbDFvt2MceQrX679wHp-4qx3Z2j933aogrQAr2TM2p4FgkpUi1DI5PSpjzhSY6Gl4UGYx2py0jbqORxYqUpuQxLUxQpqvosMrnMQ47PvQbrgmMo04P17Z3Bp8_LrzoubyairK3OCXm6WaOFdFVsjFMm0yim8xUL6IEC_uXd_n1I849MrTeAu7fhVuu5kq2G1e7Amq3uwvUGy3JxD2ZbxFg7JS0MxYg4-2iIK_UirlmmsbNf338Y669I2Z0JI-g0E11h6O_7FpCmn-35zJLajk7bwqiKjCvikb3IkM70goxPUQ3W9-H4Srb-AfSqSWUfAZFRzsrSonNhc4E6UhdFJPAWzjn-ShZA1G2yKtpu5w5046vyWXeeqoYwCgmjPGHUPIDXy3umTa-PS2dvO9otZ7o-3f6PyWykWrFXJUZvukDjlshEoKrTsXExaWbiyGaxiQPY6CivWuVRqwtWD-DFchjF3uVydGUn534O-pIO3TSAhw2jLFfCcSiRHEfkCgutLHV1pBp_8a3FsxQ9tlgE8KZjtotl_X8rHl_-Fs_hRv_o8EAd7A32n8BN5mQhdPDkG9BDprJP0a07y5-1skTg5KrF9zc9Xl8b
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxLOkFDASnCDa-JE4OSBUKKuWQsWBSnszTmwvK9Hsdner1d74D_wbfg6_hLGTbLU8euspUexEjudpj2c-gGdZXkkumI5FybNYFKyMdVGYWKe-Mgw3LgnFnj8eZfvH4v0gHWzAzy4Xxh-r7HRiUNRmXPk98h6TaCtz9AVZz7XHIj7t9V9PTmOPIOUjrR2cRsMih3a5wOXb7NXBHtL6OWP9d5_f7sctwkBcoacyjw0vqJAi1zIxMnM25xnPSjTCLDG47pHaUW2p42lmpXFcJs5UVY5qv6CmlGXC8btX4KrkKfUyJgdytb_jI2iCFm2eTsLz3gxtpc9nYzxmMqdpvFizhQEy4F9-7t_HNf-I2QZT2L8FN1sfluw2THcbNmx9B641qJbLuzDdJcbaCWkBKYbEW0pDfNIX8WUzjZ3--v7D2HBHXHc6jKD7THSt5-NQwYA0lW3PppbM7PCkTZGqyagmAeOLDOKpXpLRCSrE2T04vpSJvw-b9bi2D4BIWjLnLLoZthSoLXVVUYGvcM7xKlkEtJtkVbV1zz38xjcV4u88Vw1hFBJGBcKoRQQvVu9MmqofF_Z-42m36ukrdocH4-lQtQpAOVzH6QrNXCYzgUpPp8avTguTUlukJo1gp6O8atXITJ0zfQRPV82oAHxUR9d2fBb6oFfpcU4j2GoYZTUSjk0ZcmcEco2F1oa63lKPvoYi40WOvlsqInjZMdv5sP4_FdsX_8UTuI5Cqz4cHB0-hBvMi0Liccp3YBN5yj5C_25ePg6CRODLZUvub6o6Yes
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+dual+encoder-decoder+framework+for+anatomical+structure+segmentation+in+chest+X-ray+images&rft.jtitle=Scientific+reports&rft.au=Ullah%2C+Ihsan&rft.au=Ali%2C+Farman&rft.au=Shah%2C+Babar&rft.au=El-Sappagh%2C+Shaker&rft.date=2023-01-16&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=791&rft_id=info:doi/10.1038%2Fs41598-023-27815-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon