Crop rotation reduces the frequency of anaerobic soil bacteria in Red Latosol of Brazil
Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: cr...
Saved in:
Published in | Brazilian journal of microbiology Vol. 52; no. 4; pp. 2169 - 2177 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (
Triticum aestivum
-
Glycine max
) and rotation (
Vicia sativa
-
Zea mays
-
Avena sativa
-
Glycine max
-
Triticum aestivum
-
Glycine max
). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria
Chloroacidobacteria
,
Holophagae
,
Spirochaetes
,
Euryarchaeota
, and
Crenarchaeota.
It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability. |
---|---|
AbstractList | Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability. Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession ( Triticum aestivum - Glycine max ) and rotation ( Vicia sativa - Zea mays - Avena sativa - Glycine max - Triticum aestivum - Glycine max ). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria , Holophagae , Spirochaetes , Euryarchaeota , and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability. Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability. |
Author | Cezar, Raul Matias Molin, Rudimar Kaschuk, Glaciela Balsanelli, Eduardo de Souza, Emanuel Maltempi Vezzani, Fabiane Machado Vargas, Luciano Kayser |
Author_xml | – sequence: 1 givenname: Raul Matias surname: Cezar fullname: Cezar, Raul Matias organization: Post-Graduate in Soil Science, Federal University of Paraná – sequence: 2 givenname: Fabiane Machado surname: Vezzani fullname: Vezzani, Fabiane Machado organization: Post-Graduate in Soil Science, Federal University of Paraná – sequence: 3 givenname: Glaciela orcidid: 0000-0002-8993-6563 surname: Kaschuk fullname: Kaschuk, Glaciela email: glaciela.kaschuk@ufpr.br organization: Post-Graduate in Soil Science, Federal University of Paraná – sequence: 4 givenname: Eduardo surname: Balsanelli fullname: Balsanelli, Eduardo organization: Department of Biochemistry, Federal University of Paraná – sequence: 5 givenname: Emanuel Maltempi surname: de Souza fullname: de Souza, Emanuel Maltempi organization: Department of Biochemistry, Federal University of Paraná – sequence: 6 givenname: Luciano Kayser surname: Vargas fullname: Vargas, Luciano Kayser organization: Department of Agricultural Diagnosis and Research, Secretary of Agriculture and Livestock of the State of Rio Grande Do Sul – sequence: 7 givenname: Rudimar surname: Molin fullname: Molin, Rudimar organization: ABC Foundation |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34319574$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URNuFL8ABWeLCJTD-FzsXJLpqAWklJATiaHmdSesqay92glQ-PV5SCvTQk0fy7828mXdKjmKKSMhzBq8ZgH5TJNcaGuCsAVDaNPCInLC2FlKCOqq1YroxwvBjclrKNQBXIPkTciykYJ3S8oR8W-e0pzlNbgop0oz97LHQ6QrpkPH7jNHf0DRQFx3mtA2elhRGunV-whwcDZF-xp5u3JRKGg_kWXY_w_iUPB7cWPDZ7bsiXy_Ov6w_NJtP7z-u320aryRMTS90p4Vx3HQw6K5Fb4TmugVdS9ez1nUI0rVGml6Inrc9qEEyJ7eoBza0YkXeLn3383aHvcc4ZTfafQ47l29scsH-_xPDlb1MP6ypB1NwaPDqtkFOdd0y2V0oHsfRRUxzsVwp1WmuuKjoy3vodZpzrOtVqqsY7yq2Ii_-dXRn5c_NK8AXwOdUSsbhDmFgD8HaJVhbg7W_g7VQReaeyIcls7pVGB-WikVa6px4ifmv7QdUvwBx0rbj |
CitedBy_id | crossref_primary_10_1038_s41598_023_42291_y crossref_primary_10_1007_s42770_023_01148_2 crossref_primary_10_3389_fsufs_2024_1481005 |
Cites_doi | 10.1016/j.apsoil.2013.05.021 10.1016/j.ecolind.2020.106586 10.1099/ijs.0.000113 10.1038/s41564-019-0391-z 10.1038/s41598-019-56465-0 10.1093/nar/gks1219 10.1016/j.fcr.2019.107580 10.1007/s11104-004-0907-y 10.1016/j.still.2017.09.002 10.1016/j.soilbio.2015.01.025 10.1038/s41396-018-0148-3 10.1038/srep44641 10.1371/journal.pone.0082443 10.1002/ecs2.2235 10.1127/0941-2948/2013/0507 10.4056/sigs.2746047 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 10.1371/journal.pone.0192953 10.1007/s42729-020-00227-9 10.1016/j.soilbio.2018.11.002 10.1128/mSystems.00107-19 10.1146/annurev-micro-092611-150128 10.1038/ismej.2012.8 10.1016/S1002-0160(19)60826-X 10.1890/13-0616.1 10.1016/j.soilbio.2009.08.020 10.1016/j.pedobi.2016.04.001 10.1128/AEM.02738-17 10.1371/journal.pone.0051075 10.1111/1462-2920.14043 10.1007/s11101-009-9137-5 10.1038/ismej.2014.17 10.1111/ele.12453 10.1186/s12866-016-0657-z 10.1016/j.soilbio.2017.07.019 10.1111/jipb.12802 10.1093/femsec/fix006 10.1134/S0026261706020020 10.1016/j.pedobi.2016.04.004 10.1016/j.scitotenv.2019.04.225 10.1155/2017/1654237 10.6064/2012/963401 10.2136/sssabookser5.1.2ed.c15 |
ContentType | Journal Article |
Copyright | Sociedade Brasileira de Microbiologia 2021 2021. Sociedade Brasileira de Microbiologia. Sociedade Brasileira de Microbiologia 2021. |
Copyright_xml | – notice: Sociedade Brasileira de Microbiologia 2021 – notice: 2021. Sociedade Brasileira de Microbiologia. – notice: Sociedade Brasileira de Microbiologia 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7U9 C1K H94 K9. M7N 7X8 5PM |
DOI | 10.1007/s42770-021-00578-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1678-4405 |
EndPage | 2177 |
ExternalDocumentID | PMC8578506 34319574 10_1007_s42770_021_00578_0 |
Genre | Journal Article |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | 0R~ 0SF 23N 2WC 3V. 406 457 53G 5GY 5VS 6I. 6J9 7X7 7XC 88E 88I 8FE 8FH 8FI 8FJ AACDK AACTN AAEDW AAFTH AAHBH AAHNG AAJBT AALRI AASML AATNV AAUYE AAXUO ABAKF ABECU ABFTV ABJNI ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABUWG ABXHO ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACOKC ACPIV ACPRK ACZOJ ADBBV ADFRT ADKNI ADTPH ADURQ ADVLN ADYFF AEFQL AEMSY AENEX AESKC AEUYN AEXQZ AFBBN AFKRA AFQWF AFRAH AGDGC AGHFR AGMZJ AGQEE AHMBA AIGIU AILAN AITGF AITUG AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH AMXSW AMYLF AOIJS APOWU ATCPS AXYYD AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BGNMA BHPHI BPHCQ BVXVI C1A CCPQU CLZPN CS3 CSCUP DIK DPUIP DU5 DWQXO E3Z EBLON EBS EJD FDB FIGPU FNLPD FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IKXTQ IPNFZ IWAJR JZLTJ KOV KQ8 LK8 LLZTM M1P M2P M41 M4Y M7P M~E NCXOZ NPVJJ NQJWS NU0 O9- OK1 P2P PATMY PQQKQ PROAC PSQYO PT4 PYCSY RIG RNS ROL RPM RSC RSV SCD SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ TR2 UKHRP UOJIU UTJUX VEKWB VFIZW XSB ZMTXR AAYWO AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR AYFIA CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7U9 ABRTQ C1K H94 K9. M7N 7X8 5PM |
ID | FETCH-LOGICAL-c540t-d379738a2890f796ec837276076ecad16a9e04a6848d33d26d05f41a4be7f1f63 |
ISSN | 1517-8382 1678-4405 |
IngestDate | Thu Aug 21 14:10:09 EDT 2025 Sun Aug 24 03:43:52 EDT 2025 Fri Jul 25 11:16:32 EDT 2025 Thu Apr 03 06:59:57 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Tue Jul 01 00:06:45 EDT 2025 Fri Feb 21 02:47:52 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Metagenomics 16S rDNA sequencing Cropping systems Crenarchaeota Holophagae Euryarchaeota Chloroacidobacteria Spirochaetes |
Language | English |
License | 2021. Sociedade Brasileira de Microbiologia. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c540t-d379738a2890f796ec837276076ecad16a9e04a6848d33d26d05f41a4be7f1f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8993-6563 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8578506 |
PMID | 34319574 |
PQID | 2595592952 |
PQPubID | 1536339 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8578506 proquest_miscellaneous_2555972523 proquest_journals_2595592952 pubmed_primary_34319574 crossref_primary_10_1007_s42770_021_00578_0 crossref_citationtrail_10_1007_s42770_021_00578_0 springer_journals_10_1007_s42770_021_00578_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Brazil – name: São Paulo |
PublicationTitle | Brazilian journal of microbiology |
PublicationTitleAbbrev | Braz J Microbiol |
PublicationTitleAlternate | Braz J Microbiol |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Peralta, Sun, McDaniel, Lennon (CR7) 2018; 9 Babin, Deubel, Jacquiod, Sørensen, Geistlinger, Grosch, Smalla (CR23) 2019; 129 Fedosov, Podkopaeva, Miroshnichenko, Bonch-Osmolovskaya, Lebedinsky, Grabovich (CR48) 2006; 75 Mendes, Kuramae, Navarrete, van Veen, Tsai (CR3) 2014; 8 Maron, Sarr, Kaisermann, Lévêque, Mathieu, Guigue, Karimi, Bernard, Dequiedt, Terrat, Chabbi, Ranjard (CR29) 2018; 84 Anzalone, Vezzani, Kaschuk, Hungria, Vargas, Nogueira (CR1) 2020; 117 Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (CR17) 2013; 41 Dong, Greening, Brüls, Conrad, Guo, Blaskowski, Kaschani, Kaiser, Laban, Meckenstock (CR36) 2018; 12 Alvares, Stape, Sentelhas, Gonçalves, Sparovek (CR11) 2013; 22 Greening, Grinter, Chiri (CR38) 2019; 4 Schmidt, Gravuer, Bossange, Mitchell, Scow (CR40) 2018; 13 Figuerola, Guerrero, Rosa, Simonetti, Duval, Galantini, Bedano, Wall, Erijman (CR21) 2012; 7 McDaniel, Tiemann, Grandy (CR8) 2014; 24 Kessler, Chen, Waite, Hutchinson, Koh, Popa, Beardall, Hugenholtz, Cook, Greening (CR37) 2019; 4 Venter, Karin, Heidi-Jayne (CR9) 2016; 59 Nunes da Rocha, Plugge, George, van Elsas, van Overbeek (CR34) 2013; 8 Stahl, de la Torre (CR41) 2013; 66 Gamboa, Vezzani, Kaschuk, Favaretto, Cobos, Costa (CR43) 2020 Behnke, Villamil (CR46) 2019; 241 CR49 Ferreira, Soares, Soares (CR27) 2019; 682 Timonen, Bomberg (CR39) 2009; 8 Vezzani, Graig, Meenken, Gillespie, Peterson, Beare (CR42) 2018; 175 Rasse, Rumpel, Dignac (CR44) 2005; 269 Xia, Zhang, He, Gao, Li, Zhou, Li, Li, Yang (CR24) 2019; 61 Eichorst, Trojan, Roux, Herbold, Rattei, Woebken (CR31) 2018; 20 Kuzyakov, Blagodatskaya (CR45) 2015; 83 CR15 CR14 Liesack, Bak, Kreft, Stackebrandt (CR33) 1994; 162 CR13 CR12 Carciochi, Rosso, Secchi, Torres, Naeve, Casteel, Kovács, Davidson, Purcell, Archontoulis, Ciampitti (CR25) 2019; 9 Eisenhauer (CR5) 2016; 59 Souza, Mendes, Reis-Junior, Carvalho, Nogueira, Vasconcelos, Vicente, Hungria (CR20) 2016; 16 Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer, Gormley, Gilbert, Smith, Knight (CR16) 2012; 6 Tank, Bryant (CR32) 2015; 65 Tiemann, Grandy, Atkinson, Marin-Spiotta, McDaniel (CR4) 2015; 18 Rosenberg, Rosenberg, DeLong, Lory, Stackebrandt, Thompson (CR47) 2014 Jia, Whalen (CR18) 2020; 30 CR28 CR26 Anderson, Held, Lapidus, Nolan, Lucas, Tice, Del Rio, Cheng, Han, Tapia, Goodwin, Pitluck, Liolios, Mavromatis, Pagani, Ivanova, Mikhailova, Pati, Chen, Palaniappan, Land, Brambilla, Rohde, Spring, Göker, Detter, Woyke, Bristow, Eisen, Markowitz, Hugenholtz, Klenk, Kyrpides (CR35) 2012; 6 Eisenhauer, Lanoue, Strecker, Scheu, Steinauer, Thakur, Mommer (CR6) 2017; 7 Souza, Cantão, Vasconcelos, Nogueira, Hungria (CR19) 2013; 72 Ashworth, De Bruyn, Allen, Radosevich, Owens (CR22) 2017; 114 Ho, Di Lonardo, Bodelier (CR30) 2017; 93 Hooper, Bignell, Brown, Brussard, Dangerfield, Wall, Wardle, Coleman, Giller, Lavelle, Van der Putten, de Ruiter, Rusek, Silver, Tiedje, Wolters (CR2) 2000; 50 Kaschuk, Alberton, Hungria (CR10) 2010; 42 578_CR49 D Babin (578_CR23) 2019; 129 N Eisenhauer (578_CR6) 2017; 7 G Kaschuk (578_CR10) 2010; 42 Y Kuzyakov (578_CR45) 2015; 83 DA Stahl (578_CR41) 2013; 66 GD Behnke (578_CR46) 2019; 241 AJ Kessler (578_CR37) 2019; 4 U Nunes da Rocha (578_CR34) 2013; 8 X Xia (578_CR24) 2019; 61 P-A Maron (578_CR29) 2018; 84 ELM Figuerola (578_CR21) 2012; 7 C Greening (578_CR38) 2019; 4 CMH Ferreira (578_CR27) 2019; 682 W Liesack (578_CR33) 1994; 162 R Schmidt (578_CR40) 2018; 13 RA Anzalone (578_CR1) 2020; 117 ZS Venter (578_CR9) 2016; 59 I Anderson (578_CR35) 2012; 6 CA Alvares (578_CR11) 2013; 22 RC Souza (578_CR20) 2016; 16 S Timonen (578_CR39) 2009; 8 WD Carciochi (578_CR25) 2019; 9 578_CR28 578_CR26 AJ Ashworth (578_CR22) 2017; 114 X Dong (578_CR36) 2018; 12 N Eisenhauer (578_CR5) 2016; 59 MD McDaniel (578_CR8) 2014; 24 LK Tiemann (578_CR4) 2015; 18 C Quast (578_CR17) 2013; 41 FM Vezzani (578_CR42) 2018; 175 E Rosenberg (578_CR47) 2014 LW Mendes (578_CR3) 2014; 8 SA Eichorst (578_CR31) 2018; 20 AL Peralta (578_CR7) 2018; 9 Y Jia (578_CR18) 2020; 30 578_CR15 578_CR13 578_CR14 578_CR12 RC Souza (578_CR19) 2013; 72 DV Fedosov (578_CR48) 2006; 75 DP Rasse (578_CR44) 2005; 269 DU Hooper (578_CR2) 2000; 50 M Tank (578_CR32) 2015; 65 A Ho (578_CR30) 2017; 93 JG Caporaso (578_CR16) 2012; 6 CH Gamboa (578_CR43) 2020 |
References_xml | – volume: 72 start-page: 49 year: 2013 end-page: 61 ident: CR19 article-title: Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2013.05.021 – ident: CR49 – volume: 117 start-page: 106586 year: 2020 ident: CR1 article-title: Establishing reference values for soil microbial biomass-C in agroecosystems in the Atlantic Forest Biome in Southern Brazil publication-title: Ecol Indic doi: 10.1016/j.ecolind.2020.106586 – volume: 65 start-page: 1426 year: 2015 end-page: 1430 ident: CR32 article-title: Chloracidobacterium thermophilum gen. nov. sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.000113 – ident: CR12 – volume: 4 start-page: 1014 year: 2019 end-page: 1023 ident: CR37 article-title: Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments publication-title: Nat Microbiol doi: 10.1038/s41564-019-0391-z – volume: 9 start-page: 19908 year: 2019 ident: CR25 article-title: Soybean yield, biological N2 fixation and seed composition responses to additional inoculation in the United States publication-title: Sci Rep doi: 10.1038/s41598-019-56465-0 – volume: 41 start-page: 590 year: 2013 end-page: 596 ident: CR17 article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 241 start-page: 107580 year: 2019 ident: CR46 article-title: Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA publication-title: Field Crop Res doi: 10.1016/j.fcr.2019.107580 – volume: 269 start-page: 341 year: 2005 end-page: 356 ident: CR44 article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation publication-title: Plant Soil doi: 10.1007/s11104-004-0907-y – volume: 175 start-page: 139 year: 2018 end-page: 149 ident: CR42 article-title: The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions publication-title: Soil Til Res doi: 10.1016/j.still.2017.09.002 – volume: 83 start-page: 184 year: 2015 end-page: 199 ident: CR45 article-title: Microbial hotspots and hot moments in soil: concept and review publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.01.025 – volume: 12 start-page: 2039 year: 2018 end-page: 2050 ident: CR36 article-title: Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats publication-title: ISME J doi: 10.1038/s41396-018-0148-3 – volume: 7 start-page: 44641 year: 2017 ident: CR6 article-title: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass publication-title: Sci Rep doi: 10.1038/srep44641 – ident: CR15 – volume: 8 start-page: e82443 issue: 12 year: 2013 ident: CR34 article-title: The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia publication-title: PLoS ONE doi: 10.1371/journal.pone.0082443 – volume: 9 start-page: e02235 year: 2018 ident: CR7 article-title: Crop rotational diversity increases disease suppressive capacity of soil microbiomes publication-title: Ecosphere doi: 10.1002/ecs2.2235 – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: CR11 article-title: Köppen's climate classification map for Brazil publication-title: Meteorol Zeitschrift doi: 10.1127/0941-2948/2013/0507 – volume: 6 start-page: 174 year: 2012 end-page: 84 ident: CR35 article-title: Genome sequence of the homoacetogenic bacterium Holophaga foetida type strain (TMBS4(T)) publication-title: Stand Genomic Sci doi: 10.4056/sigs.2746047 – volume: 50 start-page: 1049 year: 2000 end-page: 1061 ident: CR2 article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks: We assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship—depending on the strength and type of interactions among species publication-title: Bioscience doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 – ident: CR26 – volume: 13 start-page: e0192953 issue: 2 year: 2018 ident: CR40 article-title: Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil publication-title: PLoS ONE doi: 10.1371/journal.pone.0192953 – year: 2020 ident: CR43 article-title: Soil-Root Dynamics in maize-beans-eggplant intercropping system under organic management in a Subtropical Region publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-020-00227-9 – volume: 129 start-page: 17 year: 2019 end-page: 28 ident: CR23 article-title: Impact of long-term agricultural management practices on soil prokaryotic communities publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.11.002 – ident: CR14 – volume: 4 start-page: e00107 year: 2019 end-page: 19 ident: CR38 article-title: Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches publication-title: mSystems doi: 10.1128/mSystems.00107-19 – volume: 66 start-page: 83 year: 2013 end-page: 101 ident: CR41 article-title: Physiology and diversity of ammonia-oxidizing Archaea publication-title: Ann Rev Microbiol doi: 10.1146/annurev-micro-092611-150128 – volume: 6 start-page: 1621 year: 2012 end-page: 1624 ident: CR16 article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms publication-title: ISME J doi: 10.1038/ismej.2012.8 – year: 2014 ident: CR47 article-title: The Phylum Fibrobacteres publication-title: The Prokaryotes – volume: 30 start-page: 18 year: 2020 end-page: 24 ident: CR18 article-title: A new perspective on functional redundancy and phylogenetic niche conservatism in soil microbial communities publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60826-X – volume: 24 start-page: 560 year: 2014 end-page: 570 ident: CR8 article-title: Does agricultural crop diversity enhances soil microbial biomass and organic matter dynamics? A meta-analysis publication-title: Ecol Appl doi: 10.1890/13-0616.1 – volume: 42 start-page: 1 year: 2010 end-page: 10 ident: CR10 article-title: Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.08.020 – volume: 59 start-page: 215 issue: 4 year: 2016 end-page: 223 ident: CR9 article-title: The impact of crop rotation on soil microbial diversity: a meta-analysis publication-title: Pedobiolgia doi: 10.1016/j.pedobi.2016.04.001 – volume: 84 start-page: e02738 issue: 9 year: 2018 end-page: e2817 ident: CR29 article-title: High microbial diversity promotes soil ecosystem functioning publication-title: Appl Environm Microbiol doi: 10.1128/AEM.02738-17 – volume: 7 start-page: e51075 issue: 11 year: 2012 ident: CR21 article-title: Bacterial indicator of agricultural management for soil under no-till crop production publication-title: PLoS ONE doi: 10.1371/journal.pone.0051075 – volume: 20 start-page: 1041 year: 2018 end-page: 1063 ident: CR31 article-title: Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments publication-title: Environ Microbiol doi: 10.1111/1462-2920.14043 – volume: 8 start-page: 505 year: 2009 end-page: 518 ident: CR39 article-title: Archaea in dry soil environments publication-title: Phytochem Rev doi: 10.1007/s11101-009-9137-5 – volume: 8 start-page: 1577 year: 2014 end-page: 1587 ident: CR3 article-title: Taxonomical and functional microbial community selection in soybean rhizosphere publication-title: ISME J doi: 10.1038/ismej.2014.17 – volume: 18 start-page: 761 year: 2015 end-page: 771 ident: CR4 article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem publication-title: Ecol Lett doi: 10.1111/ele.12453 – volume: 16 start-page: 42 year: 2016 ident: CR20 article-title: Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian Cerrado? publication-title: BMC Microbiol doi: 10.1186/s12866-016-0657-z – volume: 114 start-page: 210 year: 2017 end-page: 219 ident: CR22 article-title: Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.07.019 – ident: CR13 – volume: 61 start-page: 765 year: 2019 end-page: 777 ident: CR24 article-title: Effects of tillage managements and maize straw returning on soil microbiome using 16S rDNA sequencing publication-title: J Int Plant Biol doi: 10.1111/jipb.12802 – volume: 162 start-page: 85 year: 1994 end-page: 90 ident: CR33 article-title: Holophaga foetida gen. nov. sp. nov. a new. homoacetogenic bacterium degrading methoxylated aromatic compounds publication-title: Arch Microbiol – volume: 93 start-page: fix006 year: 2017 ident: CR30 article-title: Revisiting life strategy concepts in environmental microbial ecology publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fix006 – volume: 75 start-page: 119 year: 2006 end-page: 212 ident: CR48 article-title: Investigation of the catabolism of acetate and peptides in the new anaerobic thermophilic bacterium publication-title: Microbiology doi: 10.1134/S0026261706020020 – volume: 59 start-page: 175 year: 2016 end-page: 177 ident: CR5 article-title: Plant diversity effects on soil microorganisms: spatial and temporal heterogeneity of plant inputs increase soil biodiversity publication-title: Pedobiologia doi: 10.1016/j.pedobi.2016.04.004 – ident: CR28 – volume: 682 start-page: 779 year: 2019 end-page: 799 ident: CR27 article-title: Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.04.225 – volume: 7 start-page: e51075 issue: 11 year: 2012 ident: 578_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0051075 – volume: 6 start-page: 1621 year: 2012 ident: 578_CR16 publication-title: ISME J doi: 10.1038/ismej.2012.8 – year: 2020 ident: 578_CR43 publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-020-00227-9 – volume: 65 start-page: 1426 year: 2015 ident: 578_CR32 publication-title: Int J Syst Evol Microbiol doi: 10.1099/ijs.0.000113 – volume: 30 start-page: 18 year: 2020 ident: 578_CR18 publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60826-X – ident: 578_CR12 – volume: 42 start-page: 1 year: 2010 ident: 578_CR10 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.08.020 – volume: 84 start-page: e02738 issue: 9 year: 2018 ident: 578_CR29 publication-title: Appl Environm Microbiol doi: 10.1128/AEM.02738-17 – ident: 578_CR49 doi: 10.1155/2017/1654237 – volume: 117 start-page: 106586 year: 2020 ident: 578_CR1 publication-title: Ecol Indic doi: 10.1016/j.ecolind.2020.106586 – volume: 114 start-page: 210 year: 2017 ident: 578_CR22 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2017.07.019 – volume: 162 start-page: 85 year: 1994 ident: 578_CR33 publication-title: Arch Microbiol – volume: 61 start-page: 765 year: 2019 ident: 578_CR24 publication-title: J Int Plant Biol doi: 10.1111/jipb.12802 – volume: 59 start-page: 215 issue: 4 year: 2016 ident: 578_CR9 publication-title: Pedobiolgia doi: 10.1016/j.pedobi.2016.04.001 – volume: 682 start-page: 779 year: 2019 ident: 578_CR27 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.04.225 – volume: 93 start-page: fix006 year: 2017 ident: 578_CR30 publication-title: FEMS Microbiol Ecol doi: 10.1093/femsec/fix006 – volume: 20 start-page: 1041 year: 2018 ident: 578_CR31 publication-title: Environ Microbiol doi: 10.1111/1462-2920.14043 – volume: 24 start-page: 560 year: 2014 ident: 578_CR8 publication-title: Ecol Appl doi: 10.1890/13-0616.1 – volume: 50 start-page: 1049 year: 2000 ident: 578_CR2 publication-title: Bioscience doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2 – volume: 41 start-page: 590 year: 2013 ident: 578_CR17 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks1219 – volume: 8 start-page: e82443 issue: 12 year: 2013 ident: 578_CR34 publication-title: PLoS ONE doi: 10.1371/journal.pone.0082443 – volume: 83 start-page: 184 year: 2015 ident: 578_CR45 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2015.01.025 – ident: 578_CR13 – volume: 175 start-page: 139 year: 2018 ident: 578_CR42 publication-title: Soil Til Res doi: 10.1016/j.still.2017.09.002 – volume: 72 start-page: 49 year: 2013 ident: 578_CR19 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2013.05.021 – volume-title: The Prokaryotes year: 2014 ident: 578_CR47 – volume: 4 start-page: e00107 year: 2019 ident: 578_CR38 publication-title: mSystems doi: 10.1128/mSystems.00107-19 – volume: 75 start-page: 119 year: 2006 ident: 578_CR48 publication-title: Microbiology doi: 10.1134/S0026261706020020 – volume: 16 start-page: 42 year: 2016 ident: 578_CR20 publication-title: BMC Microbiol doi: 10.1186/s12866-016-0657-z – volume: 66 start-page: 83 year: 2013 ident: 578_CR41 publication-title: Ann Rev Microbiol doi: 10.1146/annurev-micro-092611-150128 – ident: 578_CR26 doi: 10.6064/2012/963401 – volume: 6 start-page: 174 year: 2012 ident: 578_CR35 publication-title: Stand Genomic Sci doi: 10.4056/sigs.2746047 – volume: 59 start-page: 175 year: 2016 ident: 578_CR5 publication-title: Pedobiologia doi: 10.1016/j.pedobi.2016.04.004 – volume: 9 start-page: 19908 year: 2019 ident: 578_CR25 publication-title: Sci Rep doi: 10.1038/s41598-019-56465-0 – volume: 129 start-page: 17 year: 2019 ident: 578_CR23 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2018.11.002 – volume: 269 start-page: 341 year: 2005 ident: 578_CR44 publication-title: Plant Soil doi: 10.1007/s11104-004-0907-y – ident: 578_CR28 – volume: 8 start-page: 505 year: 2009 ident: 578_CR39 publication-title: Phytochem Rev doi: 10.1007/s11101-009-9137-5 – volume: 18 start-page: 761 year: 2015 ident: 578_CR4 publication-title: Ecol Lett doi: 10.1111/ele.12453 – volume: 22 start-page: 711 year: 2013 ident: 578_CR11 publication-title: Meteorol Zeitschrift doi: 10.1127/0941-2948/2013/0507 – volume: 4 start-page: 1014 year: 2019 ident: 578_CR37 publication-title: Nat Microbiol doi: 10.1038/s41564-019-0391-z – volume: 9 start-page: e02235 year: 2018 ident: 578_CR7 publication-title: Ecosphere doi: 10.1002/ecs2.2235 – volume: 8 start-page: 1577 year: 2014 ident: 578_CR3 publication-title: ISME J doi: 10.1038/ismej.2014.17 – volume: 7 start-page: 44641 year: 2017 ident: 578_CR6 publication-title: Sci Rep doi: 10.1038/srep44641 – volume: 12 start-page: 2039 year: 2018 ident: 578_CR36 publication-title: ISME J doi: 10.1038/s41396-018-0148-3 – volume: 13 start-page: e0192953 issue: 2 year: 2018 ident: 578_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0192953 – volume: 241 start-page: 107580 year: 2019 ident: 578_CR46 publication-title: Field Crop Res doi: 10.1016/j.fcr.2019.107580 – ident: 578_CR15 – ident: 578_CR14 doi: 10.2136/sssabookser5.1.2ed.c15 |
SSID | ssj0025042 |
Score | 2.2964451 |
Snippet | Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2169 |
SubjectTerms | Aerobic bacteria Agricultural practices Agriculture - methods Anaerobic bacteria Archaea Bacteria Bacteria - genetics Bacteria, Anaerobic - physiology Biodiversity Biomedical and Life Sciences Brazil Crop diversification Crop Production Crop rotation Crops Ecological niches Ecological succession Emissions control Environmental Microbiology - Research Paper Food Microbiology Gene sequencing Glycine max Greenhouse gases Life Sciences Medical Microbiology Microbial activity Microbial Ecology Microbial Genetics and Genomics Microbiology Microorganisms Mycology Organic matter Oxygen RNA, Ribosomal, 16S - genetics rRNA 16S Soil bacteria Soil conditions Soil Microbiology Soil microorganisms Soil organic matter Soils Sustainable agriculture Tillage Triticum aestivum Wheat |
Title | Crop rotation reduces the frequency of anaerobic soil bacteria in Red Latosol of Brazil |
URI | https://link.springer.com/article/10.1007/s42770-021-00578-0 https://www.ncbi.nlm.nih.gov/pubmed/34319574 https://www.proquest.com/docview/2595592952 https://www.proquest.com/docview/2555972523 https://pubmed.ncbi.nlm.nih.gov/PMC8578506 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTaC9IL4pDGQk3kKmfNj5eFyrlQnRCaEN9hY5iaNV6pIqbR7oH8nfxF3suGk7EOwlihwncXI_23fn8-8I-RBGrgyj3LULmXk2izJui8LnNgf7lhcB6HQpbk6eXgTnV-zzNb8eDH71opaaVXqSre_cV3IfqUIZyBV3yf6HZM1DoQDOQb5wBAnD8Z9kPK6rhVVXOmCwRhZWZGwAyRe1CpFu189FKSTSLWXWsprNrVQRNAt0dXwDffML2N3QTqw5qsVax1wY0iMsmWl3vVZdb2cb-iaziCHXOlZbNHNrCk0SRl3_LtdrlTvKmggkOW8THt2IvDLjvQAru2lH5k9zAePNfOMogN8oMBinvf8sR0xXfWeF5-4EfnTOyh1358bj1h-Jcfr0VWaiE6nKYGa1GXN4f_jmXg-mbGssVklg9LwOtld455yhwkSWzAsxBw-0GTfoRrbTrwxyX9y2KPJB44q5yiy0w9T9dTqOkDsIGeAP4WmosB-eTkajC-MC4E6bzsl8nN7G1W7m3GvAEXnYvW1ba9ozhfYjeneW9Vtt6fIxeaTNHHqqMPuEDGT5lDxQiU9_PiM_ELm0Qy7VyKWAXGqQS6uCGuRSRC7tkEtnJQXkUo1crKlw-pxcTc4ux-e2TvFhZ2AqrOzcD-PQjwQudxdhHMgs8kGjDpwQTkXuBiKWDhNBxKLc93MvyB1eMFewVIaFWwT-C3JQVqV8RWjA4REZEgNEYCJLLxZuLkTs5mARs9Tzh8TtfmGSaf57TMMyTwxzdyuBBCSQtBJInCGxzD0Lxf7y19rHnWQS3SeXiceR49GLuTck781lGMNxYQ56T9VgHbTrPY6NfKkEaV7XIWBIwi0RmwrID799pZzdtDzxGoxD8rEDw6ZZf_6K1_d-0RtytOnzx-RgVTfyLajsq_Sd7ge_Ad3p604 |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+rotation+reduces+the+frequency+of+anaerobic+soil+bacteria+in+Red+Latosol+of+Brazil&rft.jtitle=Brazilian+journal+of+microbiology&rft.au=Cezar%2C+Raul+Matias&rft.au=Vezzani%2C+Fabiane+Machado&rft.au=Kaschuk%2C+Glaciela&rft.au=Balsanelli%2C+Eduardo&rft.date=2021-12-01&rft.pub=Springer+International+Publishing&rft.issn=1517-8382&rft.eissn=1678-4405&rft.volume=52&rft.issue=4&rft.spage=2169&rft.epage=2177&rft_id=info:doi/10.1007%2Fs42770-021-00578-0&rft_id=info%3Apmid%2F34319574&rft.externalDocID=PMC8578506 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1517-8382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1517-8382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1517-8382&client=summon |