Crop rotation reduces the frequency of anaerobic soil bacteria in Red Latosol of Brazil

Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: cr...

Full description

Saved in:
Bibliographic Details
Published inBrazilian journal of microbiology Vol. 52; no. 4; pp. 2169 - 2177
Main Authors Cezar, Raul Matias, Vezzani, Fabiane Machado, Kaschuk, Glaciela, Balsanelli, Eduardo, de Souza, Emanuel Maltempi, Vargas, Luciano Kayser, Molin, Rudimar
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession ( Triticum aestivum - Glycine max ) and rotation ( Vicia sativa - Zea mays - Avena sativa - Glycine max - Triticum aestivum - Glycine max ). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria , Holophagae , Spirochaetes , Euryarchaeota , and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.
AbstractList Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.
Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession ( Triticum aestivum - Glycine max ) and rotation ( Vicia sativa - Zea mays - Avena sativa - Glycine max - Triticum aestivum - Glycine max ). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria , Holophagae , Spirochaetes , Euryarchaeota , and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.
Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study was conducted for soil prokaryotic diversity sequencing 16S rDNA genes from a 25-year no-tillage experiment comprised of two crop systems: crop succession (Triticum aestivum-Glycine max) and rotation (Vicia sativa-Zea mays-Avena sativa-Glycine max-Triticum aestivum-Glycine max). The hypothesis was that a crop system with higher crop diversification (rotation) would affect the frequencies of prokaryotic taxa against a less diverse crop system (succession) altering the major soil functions guided by bacterial diversity. Soils in both crop systems were dominated by Proteobacteria (31%), Acidobacteria (23%), Actinobacteria (10%), and Gemmatimonadetes (7.2%), among other common copiotrophic soil bacteria. Crop systems did not affect the richness and diversity indexes of soil bacteria and soil archaea. However, the crop rotation system reduced only the frequencies of anaerobic metabolism bacteria Chloroacidobacteria, Holophagae, Spirochaetes, Euryarchaeota, and Crenarchaeota. It can be concluded that crop succession, a system that is poorer in root diversity over time, may have conditioned the soil to lower oxygen diffusion and built up ecological niches that suitable for anaerobic bacteria tolerating lower levels of oxygen. On the other hand, it appeared that crop rotation has restructured the soil over the years while enabling copiotrophic aerobic bacteria to dominate the soil ecosystem. The changes prompted by crop succession have implications for efficient soil organic matter decomposition, reduced greenhouse gas emissions, higher root activity, and overall soil productivity, which compromise to agriculture sustainability.
Author Cezar, Raul Matias
Molin, Rudimar
Kaschuk, Glaciela
Balsanelli, Eduardo
de Souza, Emanuel Maltempi
Vezzani, Fabiane Machado
Vargas, Luciano Kayser
Author_xml – sequence: 1
  givenname: Raul Matias
  surname: Cezar
  fullname: Cezar, Raul Matias
  organization: Post-Graduate in Soil Science, Federal University of Paraná
– sequence: 2
  givenname: Fabiane Machado
  surname: Vezzani
  fullname: Vezzani, Fabiane Machado
  organization: Post-Graduate in Soil Science, Federal University of Paraná
– sequence: 3
  givenname: Glaciela
  orcidid: 0000-0002-8993-6563
  surname: Kaschuk
  fullname: Kaschuk, Glaciela
  email: glaciela.kaschuk@ufpr.br
  organization: Post-Graduate in Soil Science, Federal University of Paraná
– sequence: 4
  givenname: Eduardo
  surname: Balsanelli
  fullname: Balsanelli, Eduardo
  organization: Department of Biochemistry, Federal University of Paraná
– sequence: 5
  givenname: Emanuel Maltempi
  surname: de Souza
  fullname: de Souza, Emanuel Maltempi
  organization: Department of Biochemistry, Federal University of Paraná
– sequence: 6
  givenname: Luciano Kayser
  surname: Vargas
  fullname: Vargas, Luciano Kayser
  organization: Department of Agricultural Diagnosis and Research, Secretary of Agriculture and Livestock of the State of Rio Grande Do Sul
– sequence: 7
  givenname: Rudimar
  surname: Molin
  fullname: Molin, Rudimar
  organization: ABC Foundation
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34319574$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URNuFL8ABWeLCJTD-FzsXJLpqAWklJATiaHmdSesqay92glQ-PV5SCvTQk0fy7828mXdKjmKKSMhzBq8ZgH5TJNcaGuCsAVDaNPCInLC2FlKCOqq1YroxwvBjclrKNQBXIPkTciykYJ3S8oR8W-e0pzlNbgop0oz97LHQ6QrpkPH7jNHf0DRQFx3mtA2elhRGunV-whwcDZF-xp5u3JRKGg_kWXY_w_iUPB7cWPDZ7bsiXy_Ov6w_NJtP7z-u320aryRMTS90p4Vx3HQw6K5Fb4TmugVdS9ez1nUI0rVGml6Inrc9qEEyJ7eoBza0YkXeLn3383aHvcc4ZTfafQ47l29scsH-_xPDlb1MP6ypB1NwaPDqtkFOdd0y2V0oHsfRRUxzsVwp1WmuuKjoy3vodZpzrOtVqqsY7yq2Ii_-dXRn5c_NK8AXwOdUSsbhDmFgD8HaJVhbg7W_g7VQReaeyIcls7pVGB-WikVa6px4ifmv7QdUvwBx0rbj
CitedBy_id crossref_primary_10_1038_s41598_023_42291_y
crossref_primary_10_1007_s42770_023_01148_2
crossref_primary_10_3389_fsufs_2024_1481005
Cites_doi 10.1016/j.apsoil.2013.05.021
10.1016/j.ecolind.2020.106586
10.1099/ijs.0.000113
10.1038/s41564-019-0391-z
10.1038/s41598-019-56465-0
10.1093/nar/gks1219
10.1016/j.fcr.2019.107580
10.1007/s11104-004-0907-y
10.1016/j.still.2017.09.002
10.1016/j.soilbio.2015.01.025
10.1038/s41396-018-0148-3
10.1038/srep44641
10.1371/journal.pone.0082443
10.1002/ecs2.2235
10.1127/0941-2948/2013/0507
10.4056/sigs.2746047
10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
10.1371/journal.pone.0192953
10.1007/s42729-020-00227-9
10.1016/j.soilbio.2018.11.002
10.1128/mSystems.00107-19
10.1146/annurev-micro-092611-150128
10.1038/ismej.2012.8
10.1016/S1002-0160(19)60826-X
10.1890/13-0616.1
10.1016/j.soilbio.2009.08.020
10.1016/j.pedobi.2016.04.001
10.1128/AEM.02738-17
10.1371/journal.pone.0051075
10.1111/1462-2920.14043
10.1007/s11101-009-9137-5
10.1038/ismej.2014.17
10.1111/ele.12453
10.1186/s12866-016-0657-z
10.1016/j.soilbio.2017.07.019
10.1111/jipb.12802
10.1093/femsec/fix006
10.1134/S0026261706020020
10.1016/j.pedobi.2016.04.004
10.1016/j.scitotenv.2019.04.225
10.1155/2017/1654237
10.6064/2012/963401
10.2136/sssabookser5.1.2ed.c15
ContentType Journal Article
Copyright Sociedade Brasileira de Microbiologia 2021
2021. Sociedade Brasileira de Microbiologia.
Sociedade Brasileira de Microbiologia 2021.
Copyright_xml – notice: Sociedade Brasileira de Microbiologia 2021
– notice: 2021. Sociedade Brasileira de Microbiologia.
– notice: Sociedade Brasileira de Microbiologia 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
C1K
H94
K9.
M7N
7X8
5PM
DOI 10.1007/s42770-021-00578-0
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1678-4405
EndPage 2177
ExternalDocumentID PMC8578506
34319574
10_1007_s42770_021_00578_0
Genre Journal Article
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID 0R~
0SF
23N
2WC
3V.
406
457
53G
5GY
5VS
6I.
6J9
7X7
7XC
88E
88I
8FE
8FH
8FI
8FJ
AACDK
AACTN
AAEDW
AAFTH
AAHBH
AAHNG
AAJBT
AALRI
AASML
AATNV
AAUYE
AAXUO
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ABXHO
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADFRT
ADKNI
ADTPH
ADURQ
ADVLN
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEUYN
AEXQZ
AFBBN
AFKRA
AFQWF
AFRAH
AGDGC
AGHFR
AGMZJ
AGQEE
AHMBA
AIGIU
AILAN
AITGF
AITUG
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMRAJ
AMTXH
AMXSW
AMYLF
AOIJS
APOWU
ATCPS
AXYYD
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CLZPN
CS3
CSCUP
DIK
DPUIP
DU5
DWQXO
E3Z
EBLON
EBS
EJD
FDB
FIGPU
FNLPD
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IKXTQ
IPNFZ
IWAJR
JZLTJ
KOV
KQ8
LK8
LLZTM
M1P
M2P
M41
M4Y
M7P
M~E
NCXOZ
NPVJJ
NQJWS
NU0
O9-
OK1
P2P
PATMY
PQQKQ
PROAC
PSQYO
PT4
PYCSY
RIG
RNS
ROL
RPM
RSC
RSV
SCD
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
TR2
UKHRP
UOJIU
UTJUX
VEKWB
VFIZW
XSB
ZMTXR
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
ABRTQ
C1K
H94
K9.
M7N
7X8
5PM
ID FETCH-LOGICAL-c540t-d379738a2890f796ec837276076ecad16a9e04a6848d33d26d05f41a4be7f1f63
ISSN 1517-8382
1678-4405
IngestDate Thu Aug 21 14:10:09 EDT 2025
Sun Aug 24 03:43:52 EDT 2025
Fri Jul 25 11:16:32 EDT 2025
Thu Apr 03 06:59:57 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Tue Jul 01 00:06:45 EDT 2025
Fri Feb 21 02:47:52 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Metagenomics
16S rDNA sequencing
Cropping systems
Crenarchaeota
Holophagae
Euryarchaeota
Chloroacidobacteria
Spirochaetes
Language English
License 2021. Sociedade Brasileira de Microbiologia.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c540t-d379738a2890f796ec837276076ecad16a9e04a6848d33d26d05f41a4be7f1f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8993-6563
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8578506
PMID 34319574
PQID 2595592952
PQPubID 1536339
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8578506
proquest_miscellaneous_2555972523
proquest_journals_2595592952
pubmed_primary_34319574
crossref_primary_10_1007_s42770_021_00578_0
crossref_citationtrail_10_1007_s42770_021_00578_0
springer_journals_10_1007_s42770_021_00578_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Brazil
– name: São Paulo
PublicationTitle Brazilian journal of microbiology
PublicationTitleAbbrev Braz J Microbiol
PublicationTitleAlternate Braz J Microbiol
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Peralta, Sun, McDaniel, Lennon (CR7) 2018; 9
Babin, Deubel, Jacquiod, Sørensen, Geistlinger, Grosch, Smalla (CR23) 2019; 129
Fedosov, Podkopaeva, Miroshnichenko, Bonch-Osmolovskaya, Lebedinsky, Grabovich (CR48) 2006; 75
Mendes, Kuramae, Navarrete, van Veen, Tsai (CR3) 2014; 8
Maron, Sarr, Kaisermann, Lévêque, Mathieu, Guigue, Karimi, Bernard, Dequiedt, Terrat, Chabbi, Ranjard (CR29) 2018; 84
Anzalone, Vezzani, Kaschuk, Hungria, Vargas, Nogueira (CR1) 2020; 117
Quast, Pruesse, Yilmaz, Gerken, Schweer, Yarza, Peplies, Glöckner (CR17) 2013; 41
Dong, Greening, Brüls, Conrad, Guo, Blaskowski, Kaschani, Kaiser, Laban, Meckenstock (CR36) 2018; 12
Alvares, Stape, Sentelhas, Gonçalves, Sparovek (CR11) 2013; 22
Greening, Grinter, Chiri (CR38) 2019; 4
Schmidt, Gravuer, Bossange, Mitchell, Scow (CR40) 2018; 13
Figuerola, Guerrero, Rosa, Simonetti, Duval, Galantini, Bedano, Wall, Erijman (CR21) 2012; 7
McDaniel, Tiemann, Grandy (CR8) 2014; 24
Kessler, Chen, Waite, Hutchinson, Koh, Popa, Beardall, Hugenholtz, Cook, Greening (CR37) 2019; 4
Venter, Karin, Heidi-Jayne (CR9) 2016; 59
Nunes da Rocha, Plugge, George, van Elsas, van Overbeek (CR34) 2013; 8
Stahl, de la Torre (CR41) 2013; 66
Gamboa, Vezzani, Kaschuk, Favaretto, Cobos, Costa (CR43) 2020
Behnke, Villamil (CR46) 2019; 241
CR49
Ferreira, Soares, Soares (CR27) 2019; 682
Timonen, Bomberg (CR39) 2009; 8
Vezzani, Graig, Meenken, Gillespie, Peterson, Beare (CR42) 2018; 175
Rasse, Rumpel, Dignac (CR44) 2005; 269
Xia, Zhang, He, Gao, Li, Zhou, Li, Li, Yang (CR24) 2019; 61
Eichorst, Trojan, Roux, Herbold, Rattei, Woebken (CR31) 2018; 20
Kuzyakov, Blagodatskaya (CR45) 2015; 83
CR15
CR14
Liesack, Bak, Kreft, Stackebrandt (CR33) 1994; 162
CR13
CR12
Carciochi, Rosso, Secchi, Torres, Naeve, Casteel, Kovács, Davidson, Purcell, Archontoulis, Ciampitti (CR25) 2019; 9
Eisenhauer (CR5) 2016; 59
Souza, Mendes, Reis-Junior, Carvalho, Nogueira, Vasconcelos, Vicente, Hungria (CR20) 2016; 16
Caporaso, Lauber, Walters, Berg-Lyons, Huntley, Fierer, Owens, Betley, Fraser, Bauer, Gormley, Gilbert, Smith, Knight (CR16) 2012; 6
Tank, Bryant (CR32) 2015; 65
Tiemann, Grandy, Atkinson, Marin-Spiotta, McDaniel (CR4) 2015; 18
Rosenberg, Rosenberg, DeLong, Lory, Stackebrandt, Thompson (CR47) 2014
Jia, Whalen (CR18) 2020; 30
CR28
CR26
Anderson, Held, Lapidus, Nolan, Lucas, Tice, Del Rio, Cheng, Han, Tapia, Goodwin, Pitluck, Liolios, Mavromatis, Pagani, Ivanova, Mikhailova, Pati, Chen, Palaniappan, Land, Brambilla, Rohde, Spring, Göker, Detter, Woyke, Bristow, Eisen, Markowitz, Hugenholtz, Klenk, Kyrpides (CR35) 2012; 6
Eisenhauer, Lanoue, Strecker, Scheu, Steinauer, Thakur, Mommer (CR6) 2017; 7
Souza, Cantão, Vasconcelos, Nogueira, Hungria (CR19) 2013; 72
Ashworth, De Bruyn, Allen, Radosevich, Owens (CR22) 2017; 114
Ho, Di Lonardo, Bodelier (CR30) 2017; 93
Hooper, Bignell, Brown, Brussard, Dangerfield, Wall, Wardle, Coleman, Giller, Lavelle, Van der Putten, de Ruiter, Rusek, Silver, Tiedje, Wolters (CR2) 2000; 50
Kaschuk, Alberton, Hungria (CR10) 2010; 42
578_CR49
D Babin (578_CR23) 2019; 129
N Eisenhauer (578_CR6) 2017; 7
G Kaschuk (578_CR10) 2010; 42
Y Kuzyakov (578_CR45) 2015; 83
DA Stahl (578_CR41) 2013; 66
GD Behnke (578_CR46) 2019; 241
AJ Kessler (578_CR37) 2019; 4
U Nunes da Rocha (578_CR34) 2013; 8
X Xia (578_CR24) 2019; 61
P-A Maron (578_CR29) 2018; 84
ELM Figuerola (578_CR21) 2012; 7
C Greening (578_CR38) 2019; 4
CMH Ferreira (578_CR27) 2019; 682
W Liesack (578_CR33) 1994; 162
R Schmidt (578_CR40) 2018; 13
RA Anzalone (578_CR1) 2020; 117
ZS Venter (578_CR9) 2016; 59
I Anderson (578_CR35) 2012; 6
CA Alvares (578_CR11) 2013; 22
RC Souza (578_CR20) 2016; 16
S Timonen (578_CR39) 2009; 8
WD Carciochi (578_CR25) 2019; 9
578_CR28
578_CR26
AJ Ashworth (578_CR22) 2017; 114
X Dong (578_CR36) 2018; 12
N Eisenhauer (578_CR5) 2016; 59
MD McDaniel (578_CR8) 2014; 24
LK Tiemann (578_CR4) 2015; 18
C Quast (578_CR17) 2013; 41
FM Vezzani (578_CR42) 2018; 175
E Rosenberg (578_CR47) 2014
LW Mendes (578_CR3) 2014; 8
SA Eichorst (578_CR31) 2018; 20
AL Peralta (578_CR7) 2018; 9
Y Jia (578_CR18) 2020; 30
578_CR15
578_CR13
578_CR14
578_CR12
RC Souza (578_CR19) 2013; 72
DV Fedosov (578_CR48) 2006; 75
DP Rasse (578_CR44) 2005; 269
DU Hooper (578_CR2) 2000; 50
M Tank (578_CR32) 2015; 65
A Ho (578_CR30) 2017; 93
JG Caporaso (578_CR16) 2012; 6
CH Gamboa (578_CR43) 2020
References_xml – volume: 72
  start-page: 49
  year: 2013
  end-page: 61
  ident: CR19
  article-title: Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2013.05.021
– ident: CR49
– volume: 117
  start-page: 106586
  year: 2020
  ident: CR1
  article-title: Establishing reference values for soil microbial biomass-C in agroecosystems in the Atlantic Forest Biome in Southern Brazil
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.106586
– volume: 65
  start-page: 1426
  year: 2015
  end-page: 1430
  ident: CR32
  article-title: Chloracidobacterium thermophilum gen. nov. sp. nov.: an anoxygenic microaerophilic chlorophotoheterotrophic acidobacterium
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.000113
– ident: CR12
– volume: 4
  start-page: 1014
  year: 2019
  end-page: 1023
  ident: CR37
  article-title: Bacterial fermentation and respiration processes are uncoupled in anoxic permeable sediments
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0391-z
– volume: 9
  start-page: 19908
  year: 2019
  ident: CR25
  article-title: Soybean yield, biological N2 fixation and seed composition responses to additional inoculation in the United States
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56465-0
– volume: 41
  start-page: 590
  year: 2013
  end-page: 596
  ident: CR17
  article-title: The SILVA ribosomal RNA gene database project: improved data processing and web-based tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
– volume: 241
  start-page: 107580
  year: 2019
  ident: CR46
  article-title: Cover crop rotations affect greenhouse gas emissions and crop production in Illinois, USA
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2019.107580
– volume: 269
  start-page: 341
  year: 2005
  end-page: 356
  ident: CR44
  article-title: Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0907-y
– volume: 175
  start-page: 139
  year: 2018
  end-page: 149
  ident: CR42
  article-title: The importance of plants to development and maintenance of soil structure, microbial communities and ecosystem functions
  publication-title: Soil Til Res
  doi: 10.1016/j.still.2017.09.002
– volume: 83
  start-page: 184
  year: 2015
  end-page: 199
  ident: CR45
  article-title: Microbial hotspots and hot moments in soil: concept and review
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.01.025
– volume: 12
  start-page: 2039
  year: 2018
  end-page: 2050
  ident: CR36
  article-title: Fermentative Spirochaetes mediate necromass recycling in anoxic hydrocarbon-contaminated habitats
  publication-title: ISME J
  doi: 10.1038/s41396-018-0148-3
– volume: 7
  start-page: 44641
  year: 2017
  ident: CR6
  article-title: Root biomass and exudates link plant diversity with soil bacterial and fungal biomass
  publication-title: Sci Rep
  doi: 10.1038/srep44641
– ident: CR15
– volume: 8
  start-page: e82443
  issue: 12
  year: 2013
  ident: CR34
  article-title: The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0082443
– volume: 9
  start-page: e02235
  year: 2018
  ident: CR7
  article-title: Crop rotational diversity increases disease suppressive capacity of soil microbiomes
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2235
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: CR11
  article-title: Köppen's climate classification map for Brazil
  publication-title: Meteorol Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– volume: 6
  start-page: 174
  year: 2012
  end-page: 84
  ident: CR35
  article-title: Genome sequence of the homoacetogenic bacterium Holophaga foetida type strain (TMBS4(T))
  publication-title: Stand Genomic Sci
  doi: 10.4056/sigs.2746047
– volume: 50
  start-page: 1049
  year: 2000
  end-page: 1061
  ident: CR2
  article-title: Interactions between aboveground and belowground biodiversity in terrestrial ecosystems: patterns, mechanisms, and feedbacks: We assess the evidence for correlation between aboveground and belowground diversity and conclude that a variety of mechanisms could lead to positive, negative, or no relationship—depending on the strength and type of interactions among species
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
– ident: CR26
– volume: 13
  start-page: e0192953
  issue: 2
  year: 2018
  ident: CR40
  article-title: Long-term use of cover crops and no-till shift soil microbial community life strategies in agricultural soil
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192953
– year: 2020
  ident: CR43
  article-title: Soil-Root Dynamics in maize-beans-eggplant intercropping system under organic management in a Subtropical Region
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-020-00227-9
– volume: 129
  start-page: 17
  year: 2019
  end-page: 28
  ident: CR23
  article-title: Impact of long-term agricultural management practices on soil prokaryotic communities
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.11.002
– ident: CR14
– volume: 4
  start-page: e00107
  year: 2019
  end-page: 19
  ident: CR38
  article-title: Uncovering the metabolic strategies of the dormant microbial majority: towards integrative approaches
  publication-title: mSystems
  doi: 10.1128/mSystems.00107-19
– volume: 66
  start-page: 83
  year: 2013
  end-page: 101
  ident: CR41
  article-title: Physiology and diversity of ammonia-oxidizing Archaea
  publication-title: Ann Rev Microbiol
  doi: 10.1146/annurev-micro-092611-150128
– volume: 6
  start-page: 1621
  year: 2012
  end-page: 1624
  ident: CR16
  article-title: Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms
  publication-title: ISME J
  doi: 10.1038/ismej.2012.8
– year: 2014
  ident: CR47
  article-title: The Phylum Fibrobacteres
  publication-title: The Prokaryotes
– volume: 30
  start-page: 18
  year: 2020
  end-page: 24
  ident: CR18
  article-title: A new perspective on functional redundancy and phylogenetic niche conservatism in soil microbial communities
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60826-X
– volume: 24
  start-page: 560
  year: 2014
  end-page: 570
  ident: CR8
  article-title: Does agricultural crop diversity enhances soil microbial biomass and organic matter dynamics? A meta-analysis
  publication-title: Ecol Appl
  doi: 10.1890/13-0616.1
– volume: 42
  start-page: 1
  year: 2010
  end-page: 10
  ident: CR10
  article-title: Three decades of soil microbial biomass studies in Brazilian ecosystems: lessons learned about soil quality and indications for improving sustainability
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.08.020
– volume: 59
  start-page: 215
  issue: 4
  year: 2016
  end-page: 223
  ident: CR9
  article-title: The impact of crop rotation on soil microbial diversity: a meta-analysis
  publication-title: Pedobiolgia
  doi: 10.1016/j.pedobi.2016.04.001
– volume: 84
  start-page: e02738
  issue: 9
  year: 2018
  end-page: e2817
  ident: CR29
  article-title: High microbial diversity promotes soil ecosystem functioning
  publication-title: Appl Environm Microbiol
  doi: 10.1128/AEM.02738-17
– volume: 7
  start-page: e51075
  issue: 11
  year: 2012
  ident: CR21
  article-title: Bacterial indicator of agricultural management for soil under no-till crop production
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0051075
– volume: 20
  start-page: 1041
  year: 2018
  end-page: 1063
  ident: CR31
  article-title: Genomic insights into the Acidobacteria reveal strategies for their success in terrestrial environments
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14043
– volume: 8
  start-page: 505
  year: 2009
  end-page: 518
  ident: CR39
  article-title: Archaea in dry soil environments
  publication-title: Phytochem Rev
  doi: 10.1007/s11101-009-9137-5
– volume: 8
  start-page: 1577
  year: 2014
  end-page: 1587
  ident: CR3
  article-title: Taxonomical and functional microbial community selection in soybean rhizosphere
  publication-title: ISME J
  doi: 10.1038/ismej.2014.17
– volume: 18
  start-page: 761
  year: 2015
  end-page: 771
  ident: CR4
  article-title: Crop rotational diversity enhances belowground communities and functions in an agroecosystem
  publication-title: Ecol Lett
  doi: 10.1111/ele.12453
– volume: 16
  start-page: 42
  year: 2016
  ident: CR20
  article-title: Shifts in taxonomic and functional microbial diversity with agriculture: how fragile is the Brazilian Cerrado?
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-016-0657-z
– volume: 114
  start-page: 210
  year: 2017
  end-page: 219
  ident: CR22
  article-title: Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.07.019
– ident: CR13
– volume: 61
  start-page: 765
  year: 2019
  end-page: 777
  ident: CR24
  article-title: Effects of tillage managements and maize straw returning on soil microbiome using 16S rDNA sequencing
  publication-title: J Int Plant Biol
  doi: 10.1111/jipb.12802
– volume: 162
  start-page: 85
  year: 1994
  end-page: 90
  ident: CR33
  article-title: Holophaga foetida gen. nov. sp. nov. a new. homoacetogenic bacterium degrading methoxylated aromatic compounds
  publication-title: Arch Microbiol
– volume: 93
  start-page: fix006
  year: 2017
  ident: CR30
  article-title: Revisiting life strategy concepts in environmental microbial ecology
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fix006
– volume: 75
  start-page: 119
  year: 2006
  end-page: 212
  ident: CR48
  article-title: Investigation of the catabolism of acetate and peptides in the new anaerobic thermophilic bacterium
  publication-title: Microbiology
  doi: 10.1134/S0026261706020020
– volume: 59
  start-page: 175
  year: 2016
  end-page: 177
  ident: CR5
  article-title: Plant diversity effects on soil microorganisms: spatial and temporal heterogeneity of plant inputs increase soil biodiversity
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2016.04.004
– ident: CR28
– volume: 682
  start-page: 779
  year: 2019
  end-page: 799
  ident: CR27
  article-title: Promising bacterial genera for agricultural practices: an insight on plant growth-promoting properties and microbial safety aspects
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.04.225
– volume: 7
  start-page: e51075
  issue: 11
  year: 2012
  ident: 578_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0051075
– volume: 6
  start-page: 1621
  year: 2012
  ident: 578_CR16
  publication-title: ISME J
  doi: 10.1038/ismej.2012.8
– year: 2020
  ident: 578_CR43
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-020-00227-9
– volume: 65
  start-page: 1426
  year: 2015
  ident: 578_CR32
  publication-title: Int J Syst Evol Microbiol
  doi: 10.1099/ijs.0.000113
– volume: 30
  start-page: 18
  year: 2020
  ident: 578_CR18
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60826-X
– ident: 578_CR12
– volume: 42
  start-page: 1
  year: 2010
  ident: 578_CR10
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.08.020
– volume: 84
  start-page: e02738
  issue: 9
  year: 2018
  ident: 578_CR29
  publication-title: Appl Environm Microbiol
  doi: 10.1128/AEM.02738-17
– ident: 578_CR49
  doi: 10.1155/2017/1654237
– volume: 117
  start-page: 106586
  year: 2020
  ident: 578_CR1
  publication-title: Ecol Indic
  doi: 10.1016/j.ecolind.2020.106586
– volume: 114
  start-page: 210
  year: 2017
  ident: 578_CR22
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2017.07.019
– volume: 162
  start-page: 85
  year: 1994
  ident: 578_CR33
  publication-title: Arch Microbiol
– volume: 61
  start-page: 765
  year: 2019
  ident: 578_CR24
  publication-title: J Int Plant Biol
  doi: 10.1111/jipb.12802
– volume: 59
  start-page: 215
  issue: 4
  year: 2016
  ident: 578_CR9
  publication-title: Pedobiolgia
  doi: 10.1016/j.pedobi.2016.04.001
– volume: 682
  start-page: 779
  year: 2019
  ident: 578_CR27
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.04.225
– volume: 93
  start-page: fix006
  year: 2017
  ident: 578_CR30
  publication-title: FEMS Microbiol Ecol
  doi: 10.1093/femsec/fix006
– volume: 20
  start-page: 1041
  year: 2018
  ident: 578_CR31
  publication-title: Environ Microbiol
  doi: 10.1111/1462-2920.14043
– volume: 24
  start-page: 560
  year: 2014
  ident: 578_CR8
  publication-title: Ecol Appl
  doi: 10.1890/13-0616.1
– volume: 50
  start-page: 1049
  year: 2000
  ident: 578_CR2
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2000)050[1049:IBAABB]2.0.CO;2
– volume: 41
  start-page: 590
  year: 2013
  ident: 578_CR17
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1219
– volume: 8
  start-page: e82443
  issue: 12
  year: 2013
  ident: 578_CR34
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0082443
– volume: 83
  start-page: 184
  year: 2015
  ident: 578_CR45
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2015.01.025
– ident: 578_CR13
– volume: 175
  start-page: 139
  year: 2018
  ident: 578_CR42
  publication-title: Soil Til Res
  doi: 10.1016/j.still.2017.09.002
– volume: 72
  start-page: 49
  year: 2013
  ident: 578_CR19
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2013.05.021
– volume-title: The Prokaryotes
  year: 2014
  ident: 578_CR47
– volume: 4
  start-page: e00107
  year: 2019
  ident: 578_CR38
  publication-title: mSystems
  doi: 10.1128/mSystems.00107-19
– volume: 75
  start-page: 119
  year: 2006
  ident: 578_CR48
  publication-title: Microbiology
  doi: 10.1134/S0026261706020020
– volume: 16
  start-page: 42
  year: 2016
  ident: 578_CR20
  publication-title: BMC Microbiol
  doi: 10.1186/s12866-016-0657-z
– volume: 66
  start-page: 83
  year: 2013
  ident: 578_CR41
  publication-title: Ann Rev Microbiol
  doi: 10.1146/annurev-micro-092611-150128
– ident: 578_CR26
  doi: 10.6064/2012/963401
– volume: 6
  start-page: 174
  year: 2012
  ident: 578_CR35
  publication-title: Stand Genomic Sci
  doi: 10.4056/sigs.2746047
– volume: 59
  start-page: 175
  year: 2016
  ident: 578_CR5
  publication-title: Pedobiologia
  doi: 10.1016/j.pedobi.2016.04.004
– volume: 9
  start-page: 19908
  year: 2019
  ident: 578_CR25
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56465-0
– volume: 129
  start-page: 17
  year: 2019
  ident: 578_CR23
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2018.11.002
– volume: 269
  start-page: 341
  year: 2005
  ident: 578_CR44
  publication-title: Plant Soil
  doi: 10.1007/s11104-004-0907-y
– ident: 578_CR28
– volume: 8
  start-page: 505
  year: 2009
  ident: 578_CR39
  publication-title: Phytochem Rev
  doi: 10.1007/s11101-009-9137-5
– volume: 18
  start-page: 761
  year: 2015
  ident: 578_CR4
  publication-title: Ecol Lett
  doi: 10.1111/ele.12453
– volume: 22
  start-page: 711
  year: 2013
  ident: 578_CR11
  publication-title: Meteorol Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– volume: 4
  start-page: 1014
  year: 2019
  ident: 578_CR37
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0391-z
– volume: 9
  start-page: e02235
  year: 2018
  ident: 578_CR7
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2235
– volume: 8
  start-page: 1577
  year: 2014
  ident: 578_CR3
  publication-title: ISME J
  doi: 10.1038/ismej.2014.17
– volume: 7
  start-page: 44641
  year: 2017
  ident: 578_CR6
  publication-title: Sci Rep
  doi: 10.1038/srep44641
– volume: 12
  start-page: 2039
  year: 2018
  ident: 578_CR36
  publication-title: ISME J
  doi: 10.1038/s41396-018-0148-3
– volume: 13
  start-page: e0192953
  issue: 2
  year: 2018
  ident: 578_CR40
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0192953
– volume: 241
  start-page: 107580
  year: 2019
  ident: 578_CR46
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2019.107580
– ident: 578_CR15
– ident: 578_CR14
  doi: 10.2136/sssabookser5.1.2ed.c15
SSID ssj0025042
Score 2.2964451
Snippet Crop diversity affects the processes of soil physical structuring and most likely provokes changes in the frequencies of soil microbial communities. The study...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2169
SubjectTerms Aerobic bacteria
Agricultural practices
Agriculture - methods
Anaerobic bacteria
Archaea
Bacteria
Bacteria - genetics
Bacteria, Anaerobic - physiology
Biodiversity
Biomedical and Life Sciences
Brazil
Crop diversification
Crop Production
Crop rotation
Crops
Ecological niches
Ecological succession
Emissions control
Environmental Microbiology - Research Paper
Food Microbiology
Gene sequencing
Glycine max
Greenhouse gases
Life Sciences
Medical Microbiology
Microbial activity
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microorganisms
Mycology
Organic matter
Oxygen
RNA, Ribosomal, 16S - genetics
rRNA 16S
Soil bacteria
Soil conditions
Soil Microbiology
Soil microorganisms
Soil organic matter
Soils
Sustainable agriculture
Tillage
Triticum aestivum
Wheat
Title Crop rotation reduces the frequency of anaerobic soil bacteria in Red Latosol of Brazil
URI https://link.springer.com/article/10.1007/s42770-021-00578-0
https://www.ncbi.nlm.nih.gov/pubmed/34319574
https://www.proquest.com/docview/2595592952
https://www.proquest.com/docview/2555972523
https://pubmed.ncbi.nlm.nih.gov/PMC8578506
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELeqTaC9IL4pDGQk3kKmfNj5eFyrlQnRCaEN9hY5iaNV6pIqbR7oH8nfxF3suGk7EOwlihwncXI_23fn8-8I-RBGrgyj3LULmXk2izJui8LnNgf7lhcB6HQpbk6eXgTnV-zzNb8eDH71opaaVXqSre_cV3IfqUIZyBV3yf6HZM1DoQDOQb5wBAnD8Z9kPK6rhVVXOmCwRhZWZGwAyRe1CpFu189FKSTSLWXWsprNrVQRNAt0dXwDffML2N3QTqw5qsVax1wY0iMsmWl3vVZdb2cb-iaziCHXOlZbNHNrCk0SRl3_LtdrlTvKmggkOW8THt2IvDLjvQAru2lH5k9zAePNfOMogN8oMBinvf8sR0xXfWeF5-4EfnTOyh1358bj1h-Jcfr0VWaiE6nKYGa1GXN4f_jmXg-mbGssVklg9LwOtld455yhwkSWzAsxBw-0GTfoRrbTrwxyX9y2KPJB44q5yiy0w9T9dTqOkDsIGeAP4WmosB-eTkajC-MC4E6bzsl8nN7G1W7m3GvAEXnYvW1ba9ozhfYjeneW9Vtt6fIxeaTNHHqqMPuEDGT5lDxQiU9_PiM_ELm0Qy7VyKWAXGqQS6uCGuRSRC7tkEtnJQXkUo1crKlw-pxcTc4ux-e2TvFhZ2AqrOzcD-PQjwQudxdhHMgs8kGjDpwQTkXuBiKWDhNBxKLc93MvyB1eMFewVIaFWwT-C3JQVqV8RWjA4REZEgNEYCJLLxZuLkTs5mARs9Tzh8TtfmGSaf57TMMyTwxzdyuBBCSQtBJInCGxzD0Lxf7y19rHnWQS3SeXiceR49GLuTck781lGMNxYQ56T9VgHbTrPY6NfKkEaV7XIWBIwi0RmwrID799pZzdtDzxGoxD8rEDw6ZZf_6K1_d-0RtytOnzx-RgVTfyLajsq_Sd7ge_Ad3p604
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crop+rotation+reduces+the+frequency+of+anaerobic+soil+bacteria+in+Red+Latosol+of+Brazil&rft.jtitle=Brazilian+journal+of+microbiology&rft.au=Cezar%2C+Raul+Matias&rft.au=Vezzani%2C+Fabiane+Machado&rft.au=Kaschuk%2C+Glaciela&rft.au=Balsanelli%2C+Eduardo&rft.date=2021-12-01&rft.pub=Springer+International+Publishing&rft.issn=1517-8382&rft.eissn=1678-4405&rft.volume=52&rft.issue=4&rft.spage=2169&rft.epage=2177&rft_id=info:doi/10.1007%2Fs42770-021-00578-0&rft_id=info%3Apmid%2F34319574&rft.externalDocID=PMC8578506
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1517-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1517-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1517-8382&client=summon