Erosion reduces soil microbial diversity, network complexity and multifunctionality
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the e...
Saved in:
Published in | The ISME Journal Vol. 15; no. 8; pp. 2474 - 2489 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.08.2021
Oxford University Press |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality. |
---|---|
AbstractList | While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality. While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality. |
Author | Wei, Xiaorong Sadowsky, Michael J. Ishii, Satoshi Shao, Mingan Zhang, Qian Qiu, Liping Banerjee, Samiran Zhu, Hansong van der Heijden, Marcel G. A. Jia, Xiaoxu Reich, Peter B. Liu, Baoyuan Jiao, Huan Li, Haiqiang |
Author_xml | – sequence: 1 givenname: Liping surname: Qiu fullname: Qiu, Liping organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, CAS Center for Excellence in Quaternary Science and Global Change, College of Natural Resources and Environment, Northwest A&F University – sequence: 2 givenname: Qian orcidid: 0000-0002-1222-308X surname: Zhang fullname: Zhang, Qian organization: BioTechnology Institute, University of Minnesota, College of the Environment and Ecology, Xiamen University, Xiamen – sequence: 3 givenname: Hansong surname: Zhu fullname: Zhu, Hansong organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 4 givenname: Peter B. orcidid: 0000-0003-4424-662X surname: Reich fullname: Reich, Peter B. organization: Department of Forest Resources, University of Minnesota, Hawkesbury Institute for the Environment, Western Sydney University – sequence: 5 givenname: Samiran surname: Banerjee fullname: Banerjee, Samiran organization: Department of Microbiological Sciences, North Dakota State University – sequence: 6 givenname: Marcel G. A. orcidid: 0000-0001-7040-1924 surname: van der Heijden fullname: van der Heijden, Marcel G. A. organization: Agroscope, Department of Agroecology & Environment, Department of Plant and Microbial Biology, University of Zürich – sequence: 7 givenname: Michael J. orcidid: 0000-0001-8779-2781 surname: Sadowsky fullname: Sadowsky, Michael J. organization: BioTechnology Institute, University of Minnesota, Department of Soil, Water, and Climate, University of Minnesota – sequence: 8 givenname: Satoshi orcidid: 0000-0003-3600-9165 surname: Ishii fullname: Ishii, Satoshi organization: BioTechnology Institute, University of Minnesota, Department of Soil, Water, and Climate, University of Minnesota – sequence: 9 givenname: Xiaoxu surname: Jia fullname: Jia, Xiaoxu organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences – sequence: 10 givenname: Mingan surname: Shao fullname: Shao, Mingan organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences – sequence: 11 givenname: Baoyuan surname: Liu fullname: Liu, Baoyuan organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University – sequence: 12 givenname: Huan surname: Jiao fullname: Jiao, Huan organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 13 givenname: Haiqiang surname: Li fullname: Li, Haiqiang organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University – sequence: 14 givenname: Xiaorong orcidid: 0000-0002-0359-0339 surname: Wei fullname: Wei, Xiaorong email: weixr@nwsuaf.edu.cn organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, CAS Center for Excellence in Quaternary Science and Global Change, University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33712698$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1PHSEYhUmjqZ9_oItmkm5cdCofA8xsmhij1cTEhe2aMPCORRm4hZmr_nu5vWqrC1eQl-c9OZyzgzZCDIDQJ4K_Eczaw9wQ1okaU1Jj3BFWkw9om0hOaskk3ni5C7qFdnK-wZhLIeRHtMWYJFR07Ta6OkkxuxiqBHY2kKscna9GZ1LsnfaVdUtI2U0PX6sA011Mt5WJ48LDfZlVOthqnP3khjmYqchoX8Z7aHPQPsP-07mLfp2e_Dw-qy8uf5wfH13Uhjd4qi21vLXWsJ7SFmvK7WA7bJjFgnfGDJhYsJR1sgcKjWREtL3UIPQgtG24Zrvo-1p3MfcjWANhStqrRXKjTg8qaqdevwT3W13HpWoZ6RpCisDBk0CKf2bIkxpdNuC9DhDnrCjHJSYiO1bQL2_Qmzin8t8VxbmUreCyUJ__d_Ri5TnvArRroOSbc4JBGTfpVXLFoPOKYLWqVq2rVaVa9bdatTJL36w-q7-7xNZLucDhGtI_2-9sPQLSn7io |
CitedBy_id | crossref_primary_10_1016_j_watres_2024_121930 crossref_primary_10_3390_agronomy14112631 crossref_primary_10_3390_agriculture13122247 crossref_primary_10_1016_j_scitotenv_2024_177424 crossref_primary_10_1016_j_cej_2023_143649 crossref_primary_10_1016_j_jhazmat_2024_136043 crossref_primary_10_1128_spectrum_02483_22 crossref_primary_10_1093_hr_uhae290 crossref_primary_10_3390_bacteria3040018 crossref_primary_10_18307_2024_0513 crossref_primary_10_1111_ejss_13447 crossref_primary_10_3390_microorganisms12091756 crossref_primary_10_1002_ldr_4260 crossref_primary_10_1007_s11104_024_06489_x crossref_primary_10_1016_j_jhazmat_2022_129186 crossref_primary_10_1016_j_apsoil_2024_105376 crossref_primary_10_2139_ssrn_4100320 crossref_primary_10_1016_j_watres_2023_120330 crossref_primary_10_1016_j_envres_2024_120027 crossref_primary_10_1016_j_jenvman_2023_119688 crossref_primary_10_1016_j_apsoil_2025_105993 crossref_primary_10_1016_j_scitotenv_2024_176586 crossref_primary_10_1016_j_envres_2024_119152 crossref_primary_10_1016_j_apsoil_2022_104725 crossref_primary_10_1007_s42773_024_00376_5 crossref_primary_10_1016_j_catena_2022_106430 crossref_primary_10_1016_j_foreco_2024_121744 crossref_primary_10_1186_s40168_021_01224_5 crossref_primary_10_1007_s11356_023_30273_6 crossref_primary_10_1007_s40333_022_0064_2 crossref_primary_10_1016_j_catena_2024_108298 crossref_primary_10_1093_jpe_rtad040 crossref_primary_10_1007_s11356_022_20325_8 crossref_primary_10_1016_j_ecolind_2024_111660 crossref_primary_10_1007_s00374_023_01716_6 crossref_primary_10_3390_microorganisms12101972 crossref_primary_10_1016_j_apsoil_2022_104735 crossref_primary_10_1016_j_jwpe_2025_107046 crossref_primary_10_3390_microorganisms10081620 crossref_primary_10_1016_j_envpol_2021_117660 crossref_primary_10_1016_j_chemosphere_2023_138832 crossref_primary_10_1016_j_apsoil_2021_104323 crossref_primary_10_1016_j_micres_2024_127931 crossref_primary_10_1016_j_pedsph_2022_06_044 crossref_primary_10_3390_plants13030393 crossref_primary_10_2139_ssrn_4111357 crossref_primary_10_1016_j_micres_2024_127936 crossref_primary_10_1186_s40538_022_00372_6 crossref_primary_10_1016_j_jenvman_2023_118135 crossref_primary_10_1016_j_bcab_2023_102872 crossref_primary_10_1016_j_eja_2023_127058 crossref_primary_10_1016_j_catena_2024_108195 crossref_primary_10_1128_aem_01443_24 crossref_primary_10_1016_j_envint_2024_108823 crossref_primary_10_1007_s42729_024_01749_2 crossref_primary_10_1038_s41559_024_02437_1 crossref_primary_10_1016_j_micres_2025_128075 crossref_primary_10_1016_j_gecco_2024_e03379 crossref_primary_10_1111_sum_12790 crossref_primary_10_1016_j_envres_2025_121432 crossref_primary_10_3390_w14040614 crossref_primary_10_1016_j_envres_2023_116847 crossref_primary_10_1016_j_pedsph_2024_10_010 crossref_primary_10_3390_land10060605 crossref_primary_10_1007_s00374_023_01719_3 crossref_primary_10_3389_fmicb_2023_1198808 crossref_primary_10_1111_1462_2920_16185 crossref_primary_10_1016_j_jclepro_2025_144963 crossref_primary_10_1007_s00374_022_01675_4 crossref_primary_10_1016_j_envint_2024_108611 crossref_primary_10_1016_j_jece_2024_113624 crossref_primary_10_1016_j_foreco_2021_119877 crossref_primary_10_1016_j_soilbio_2022_108698 crossref_primary_10_1016_j_ecoleng_2024_107501 crossref_primary_10_3390_d14010014 crossref_primary_10_1016_j_catena_2023_107737 crossref_primary_10_1016_j_jes_2025_03_009 crossref_primary_10_3390_agronomy13122950 crossref_primary_10_1007_s10123_023_00388_4 crossref_primary_10_1016_j_baae_2023_05_008 crossref_primary_10_3390_su16020795 crossref_primary_10_1016_j_apsoil_2023_104900 crossref_primary_10_3389_fmicb_2025_1513944 crossref_primary_10_1021_acs_est_4c02082 crossref_primary_10_1016_j_jhazmat_2023_131525 crossref_primary_10_1016_j_ecolind_2024_112227 crossref_primary_10_1016_j_jenvman_2024_122604 crossref_primary_10_1128_spectrum_03683_23 crossref_primary_10_1016_j_rhisph_2022_100649 crossref_primary_10_1016_j_envres_2024_120258 crossref_primary_10_3390_soilsystems8020039 crossref_primary_10_1016_j_jenvman_2023_118182 crossref_primary_10_1016_j_scitotenv_2024_177564 crossref_primary_10_1016_j_jenvman_2023_119390 crossref_primary_10_3390_agronomy14030594 crossref_primary_10_3390_su16156381 crossref_primary_10_1016_j_jece_2024_113646 crossref_primary_10_1002_ldr_4562 crossref_primary_10_1002_imt2_106 crossref_primary_10_1002_jpln_202300372 crossref_primary_10_1002_ldr_4682 crossref_primary_10_1002_ldr_5411 crossref_primary_10_1016_j_catena_2022_106588 crossref_primary_10_1111_gcb_70057 crossref_primary_10_3389_fpls_2024_1460462 crossref_primary_10_1186_s40793_024_00608_y crossref_primary_10_1016_j_scitotenv_2024_176489 crossref_primary_10_1016_j_envint_2024_108508 crossref_primary_10_1128_msystems_00100_21 crossref_primary_10_1016_j_scitotenv_2022_160654 crossref_primary_10_1021_acs_jafc_4c06528 crossref_primary_10_3390_plants11091164 crossref_primary_10_1016_j_agee_2021_107636 crossref_primary_10_1016_j_ibiod_2022_105493 crossref_primary_10_1016_j_apsoil_2023_105247 crossref_primary_10_1002_ldr_4305 crossref_primary_10_1002_ldr_4547 crossref_primary_10_1007_s11104_023_05983_y crossref_primary_10_1016_j_still_2023_105950 crossref_primary_10_1111_nph_20118 crossref_primary_10_1016_j_scitotenv_2022_160824 crossref_primary_10_3389_fmicb_2024_1372403 crossref_primary_10_1016_j_catena_2024_108106 crossref_primary_10_1111_1462_2920_70074 crossref_primary_10_1002_ps_8509 crossref_primary_10_1016_j_scitotenv_2022_156334 crossref_primary_10_1016_j_foreco_2023_121632 crossref_primary_10_1016_j_catena_2024_108464 crossref_primary_10_1016_j_catena_2024_108223 crossref_primary_10_1038_s41598_024_57690_y crossref_primary_10_1016_j_envres_2023_117675 crossref_primary_10_3389_fpls_2024_1411073 crossref_primary_10_3390_f14050955 crossref_primary_10_1016_j_scitotenv_2024_173354 crossref_primary_10_3389_fpls_2022_928367 crossref_primary_10_1016_j_scitotenv_2024_172263 crossref_primary_10_1016_j_geoderma_2023_116340 crossref_primary_10_1093_jpe_rtae096 crossref_primary_10_1016_j_scitotenv_2023_165559 crossref_primary_10_1007_s10123_023_00379_5 crossref_primary_10_1016_j_jenvman_2024_123152 crossref_primary_10_3390_agriculture13122188 crossref_primary_10_1016_j_scitotenv_2024_176957 crossref_primary_10_1016_j_psep_2024_12_004 crossref_primary_10_1016_j_biortech_2024_130548 crossref_primary_10_1016_j_biortech_2024_131758 crossref_primary_10_1016_j_geoderma_2024_116852 crossref_primary_10_1002_ppp3_10575 crossref_primary_10_1016_j_ecolind_2022_108695 crossref_primary_10_3389_fmicb_2023_1125564 crossref_primary_10_1016_j_micres_2024_127651 crossref_primary_10_1016_j_scitotenv_2023_167969 crossref_primary_10_3390_d14121095 crossref_primary_10_1016_j_jhazmat_2024_136227 crossref_primary_10_2139_ssrn_4011783 crossref_primary_10_1007_s11104_023_05897_9 crossref_primary_10_1016_j_envres_2024_118922 crossref_primary_10_1016_j_geoderma_2023_116562 crossref_primary_10_1016_j_ecoenv_2024_116783 crossref_primary_10_3389_fpls_2024_1440951 crossref_primary_10_3390_toxics13010020 crossref_primary_10_1016_j_agee_2021_107686 crossref_primary_10_7717_peerj_17221 crossref_primary_10_3389_fmicb_2022_890712 crossref_primary_10_1007_s00248_024_02390_3 crossref_primary_10_1021_acs_jafc_3c06972 crossref_primary_10_1186_s40793_025_00675_9 crossref_primary_10_1016_j_soilbio_2022_108865 crossref_primary_10_1080_13416979_2023_2265006 crossref_primary_10_1016_j_chemosphere_2023_140067 crossref_primary_10_1016_j_apsoil_2025_105934 crossref_primary_10_1016_j_watres_2023_120955 crossref_primary_10_1016_j_apsoil_2025_105935 crossref_primary_10_1016_j_pedsph_2024_06_011 crossref_primary_10_1016_j_envpol_2022_120953 crossref_primary_10_1016_j_agee_2021_107677 crossref_primary_10_1016_j_envpol_2024_125528 crossref_primary_10_1016_j_catena_2024_108231 crossref_primary_10_1016_j_scitotenv_2022_157459 crossref_primary_10_1016_j_catena_2025_108894 crossref_primary_10_1186_s12870_024_06011_6 crossref_primary_10_3390_microorganisms11030754 crossref_primary_10_1016_j_apsoil_2024_105441 crossref_primary_10_3389_fmicb_2022_971437 crossref_primary_10_1186_s12870_025_06266_7 crossref_primary_10_1016_j_apsoil_2024_105685 crossref_primary_10_1016_j_catena_2023_106914 crossref_primary_10_1016_j_jhazmat_2024_135792 crossref_primary_10_1016_j_envres_2025_121448 crossref_primary_10_1016_j_jece_2024_114435 crossref_primary_10_1016_j_jclepro_2022_133305 crossref_primary_10_1016_j_soilbio_2024_109388 crossref_primary_10_1016_j_scitotenv_2022_156893 crossref_primary_10_1016_j_scitotenv_2023_165486 crossref_primary_10_1016_j_catena_2024_108023 crossref_primary_10_1016_j_jenvman_2023_118553 crossref_primary_10_1016_j_still_2024_106174 crossref_primary_10_3389_fmicb_2023_1167353 crossref_primary_10_1016_j_catena_2025_108790 crossref_primary_10_1016_j_soilbio_2022_108604 crossref_primary_10_1016_j_jhazmat_2024_134450 crossref_primary_10_1016_j_agee_2021_107388 crossref_primary_10_1093_nsr_nwae281 crossref_primary_10_1016_j_marenvres_2023_106233 crossref_primary_10_1016_j_scitotenv_2023_165239 crossref_primary_10_1016_j_scitotenv_2023_164147 crossref_primary_10_1016_j_gecco_2023_e02641 crossref_primary_10_1002_imt2_49 crossref_primary_10_3390_w17050714 crossref_primary_10_1111_1365_2435_14542 crossref_primary_10_3390_biology12071023 crossref_primary_10_3389_fmicb_2022_972300 crossref_primary_10_1111_1462_2920_16236 crossref_primary_10_1016_j_agsy_2023_103768 crossref_primary_10_1016_j_resconrec_2024_107754 crossref_primary_10_1016_j_scitotenv_2024_173128 crossref_primary_10_1016_j_envres_2023_117602 crossref_primary_10_1016_j_scitotenv_2024_173367 crossref_primary_10_1016_j_scitotenv_2024_174572 crossref_primary_10_3390_agriculture13061189 crossref_primary_10_1016_j_apsoil_2025_105869 crossref_primary_10_1016_j_soilbio_2022_108836 crossref_primary_10_1002_imt2_79 crossref_primary_10_1016_j_scitotenv_2023_164377 crossref_primary_10_1073_pnas_2307519120 crossref_primary_10_3390_biology12050693 crossref_primary_10_1016_j_apsoil_2025_105974 crossref_primary_10_3390_plants10081533 crossref_primary_10_1007_s00253_025_13415_3 crossref_primary_10_1016_j_ecolind_2022_109639 crossref_primary_10_1038_s41598_024_65646_5 crossref_primary_10_1016_j_scitotenv_2023_166666 crossref_primary_10_1002_sae2_12059 crossref_primary_10_1016_j_jhazmat_2022_129507 crossref_primary_10_1016_j_hal_2024_102782 crossref_primary_10_1007_s11427_023_2432_9 crossref_primary_10_1016_j_still_2024_106000 crossref_primary_10_1016_j_scitotenv_2023_163416 crossref_primary_10_1016_j_still_2024_106244 crossref_primary_10_1007_s11356_021_15894_z crossref_primary_10_1016_j_catena_2023_107251 crossref_primary_10_1016_j_scitotenv_2023_163663 crossref_primary_10_1016_j_jhazmat_2024_134301 crossref_primary_10_1016_j_agee_2024_109190 crossref_primary_10_3390_land11122231 crossref_primary_10_1016_j_jes_2024_12_008 crossref_primary_10_1038_s43705_023_00286_w crossref_primary_10_1016_j_soilbio_2023_109182 crossref_primary_10_1016_j_jenvman_2024_122339 crossref_primary_10_1080_03067319_2024_2401620 crossref_primary_10_1016_j_ijdrr_2024_105015 crossref_primary_10_1016_j_scitotenv_2024_172788 crossref_primary_10_56430_japro_1279830 crossref_primary_10_1016_j_jhazmat_2021_128127 crossref_primary_10_3390_agronomy14071456 crossref_primary_10_1016_j_agee_2024_109189 crossref_primary_10_3389_fmicb_2022_858125 crossref_primary_10_1016_j_agee_2024_109186 crossref_primary_10_1016_j_jhazmat_2024_133567 crossref_primary_10_1016_j_catena_2025_108912 crossref_primary_10_1016_j_scitotenv_2023_163412 crossref_primary_10_1016_j_indic_2023_100332 crossref_primary_10_1016_j_geoderma_2024_116801 crossref_primary_10_1016_j_scitotenv_2022_156868 crossref_primary_10_1016_j_jhazmat_2022_129727 crossref_primary_10_1016_j_scitotenv_2024_174812 crossref_primary_10_1016_j_ecoenv_2024_117468 crossref_primary_10_1007_s00248_023_02173_2 crossref_primary_10_1128_spectrum_00101_22 crossref_primary_10_1002_ldr_4926 crossref_primary_10_1002_ldr_4925 crossref_primary_10_1016_j_soilbio_2024_109366 crossref_primary_10_1016_j_soilbio_2023_109167 crossref_primary_10_3389_fpls_2023_1238056 crossref_primary_10_1021_acs_est_4c01418 crossref_primary_10_3389_fpls_2022_930069 crossref_primary_10_1016_j_jclepro_2024_142836 crossref_primary_10_1016_j_jhazmat_2021_127258 crossref_primary_10_1016_j_still_2024_106159 crossref_primary_10_1016_j_catena_2024_108634 crossref_primary_10_3390_microorganisms12071254 crossref_primary_10_1016_j_jenvman_2024_121395 crossref_primary_10_1016_j_scitotenv_2024_174935 crossref_primary_10_1016_j_geoderma_2023_116607 crossref_primary_10_1016_j_envres_2024_118715 crossref_primary_10_1016_j_biortech_2023_128889 crossref_primary_10_1016_j_catena_2024_108303 crossref_primary_10_1016_j_ecoleng_2023_106933 crossref_primary_10_3390_agronomy14102348 crossref_primary_10_1016_j_catena_2023_107176 crossref_primary_10_1029_2021JG006742 crossref_primary_10_1016_j_catena_2024_108549 crossref_primary_10_1016_j_jenvman_2025_124851 crossref_primary_10_1016_j_jenvman_2024_121188 crossref_primary_10_1016_j_agee_2023_108618 crossref_primary_10_3390_land13101621 crossref_primary_10_3390_agronomy13051392 crossref_primary_10_1186_s40168_023_01484_3 crossref_primary_10_1002_wer_10841 crossref_primary_10_1016_j_anifeedsci_2024_116007 crossref_primary_10_1007_s00253_023_12696_w crossref_primary_10_1007_s11104_023_06231_z crossref_primary_10_1016_j_jece_2025_115770 crossref_primary_10_1016_j_ecss_2025_109163 crossref_primary_10_1016_j_apsoil_2024_105733 crossref_primary_10_1016_j_foreco_2022_120734 crossref_primary_10_1007_s11356_024_32390_2 crossref_primary_10_1016_j_catena_2024_108418 crossref_primary_10_1016_j_jhydrol_2024_132155 crossref_primary_10_1007_s10661_023_11593_z crossref_primary_10_1016_j_anifeedsci_2023_115606 crossref_primary_10_1016_j_ecoenv_2025_117991 crossref_primary_10_1016_j_envpol_2022_119276 crossref_primary_10_1016_j_scitotenv_2024_171007 crossref_primary_10_1016_j_geoderma_2024_116849 crossref_primary_10_1016_j_jhazmat_2021_127470 crossref_primary_10_1016_j_chemosphere_2024_142850 crossref_primary_10_1016_j_jhazmat_2021_127223 crossref_primary_10_3103_S0147687422050039 crossref_primary_10_1016_j_jhydrol_2024_131158 crossref_primary_10_1016_j_apsoil_2024_105827 crossref_primary_10_3389_fmicb_2023_1188229 crossref_primary_10_1016_j_jhazmat_2024_133556 crossref_primary_10_1016_j_jhazmat_2024_134647 crossref_primary_10_1111_1365_2664_14228 crossref_primary_10_1016_j_desal_2023_117228 crossref_primary_10_1016_j_scitotenv_2023_162472 crossref_primary_10_3389_fagro_2023_1134514 crossref_primary_10_3389_fmicb_2024_1391193 crossref_primary_10_1080_13416979_2023_2235499 crossref_primary_10_3390_microorganisms12071322 crossref_primary_10_1016_j_scitotenv_2024_174744 crossref_primary_10_1016_j_foreco_2025_122545 crossref_primary_10_1016_j_catena_2024_108315 crossref_primary_10_1016_j_soilbio_2025_109732 crossref_primary_10_1007_s42832_023_0176_4 crossref_primary_10_3390_microorganisms10061206 crossref_primary_10_1016_j_catena_2025_108732 crossref_primary_10_1016_j_scitotenv_2022_154944 crossref_primary_10_1016_j_agee_2024_109356 crossref_primary_10_1016_j_apsoil_2022_104792 crossref_primary_10_1016_j_agee_2025_109515 crossref_primary_10_1016_j_catena_2024_107806 crossref_primary_10_3390_microorganisms12081546 crossref_primary_10_1016_j_jenvman_2023_119052 crossref_primary_10_3390_agronomy13122984 crossref_primary_10_3390_microorganisms10010042 crossref_primary_10_1016_j_apsoil_2023_104956 crossref_primary_10_1016_j_envint_2024_108655 crossref_primary_10_1016_j_copbio_2024_103254 crossref_primary_10_1016_j_scitotenv_2023_162972 crossref_primary_10_1016_j_ecolind_2025_113185 crossref_primary_10_3390_ijms25010448 crossref_primary_10_3389_fmicb_2023_1068595 crossref_primary_10_1016_j_jece_2025_116130 crossref_primary_10_1016_j_ecolind_2023_110342 crossref_primary_10_1016_j_scitotenv_2023_169351 crossref_primary_10_1002_imt2_161 crossref_primary_10_1016_j_apsoil_2022_104446 crossref_primary_10_1007_s11104_024_06860_y crossref_primary_10_1016_j_envpol_2023_122616 crossref_primary_10_1016_j_eja_2024_127188 crossref_primary_10_1016_j_jes_2024_10_002 crossref_primary_10_1029_2021EF002588 crossref_primary_10_1016_j_foreco_2023_121086 crossref_primary_10_1021_acs_est_2c08004 crossref_primary_10_3390_land12030638 crossref_primary_10_1016_j_catena_2021_105805 crossref_primary_10_1111_mec_17238 crossref_primary_10_1186_s13717_024_00510_y crossref_primary_10_1007_s11368_023_03687_5 crossref_primary_10_3389_fenvs_2024_1307631 crossref_primary_10_1016_j_conbuildmat_2024_137230 crossref_primary_10_3389_fmicb_2023_1327523 crossref_primary_10_3390_min13010012 crossref_primary_10_3389_fmicb_2024_1413973 crossref_primary_10_1016_j_ejsobi_2024_103684 crossref_primary_10_1016_j_scitotenv_2022_161029 crossref_primary_10_1016_j_still_2024_106435 crossref_primary_10_1038_s43247_024_01765_1 crossref_primary_10_1016_j_apsoil_2023_104924 crossref_primary_10_1016_j_envres_2024_119330 crossref_primary_10_1038_s41561_024_01440_2 crossref_primary_10_1002_imt2_138 crossref_primary_10_1007_s00248_024_02462_4 crossref_primary_10_1016_j_pedsph_2022_07_007 crossref_primary_10_1016_j_soilbio_2024_109515 crossref_primary_10_3389_fmicb_2024_1430059 crossref_primary_10_1002_ldr_5163 crossref_primary_10_3389_frwa_2024_1374081 crossref_primary_10_1016_j_jenvman_2024_122428 crossref_primary_10_1016_j_jenvman_2024_122668 crossref_primary_10_1128_msystems_00147_24 crossref_primary_10_3389_fmicb_2025_1533839 crossref_primary_10_1016_j_apsoil_2022_104631 crossref_primary_10_1186_s12866_025_03750_w crossref_primary_10_1007_s42729_023_01504_z crossref_primary_10_1016_j_geoderma_2024_117088 crossref_primary_10_1016_j_catena_2023_107452 crossref_primary_10_1016_j_chemosphere_2022_134811 crossref_primary_10_3389_fevo_2023_1154787 crossref_primary_10_1002_advs_202307793 crossref_primary_10_1016_j_jclepro_2023_139888 crossref_primary_10_1002_ldr_5031 crossref_primary_10_1016_j_scitotenv_2024_172724 crossref_primary_10_1016_j_catena_2023_107335 crossref_primary_10_1016_j_catena_2023_107698 crossref_primary_10_1016_j_scitotenv_2024_172983 crossref_primary_10_1016_j_indcrop_2024_119000 crossref_primary_10_1007_s11104_023_06380_1 crossref_primary_10_1016_j_ejsobi_2024_103660 crossref_primary_10_3390_microorganisms12050949 crossref_primary_10_3390_plants13081091 crossref_primary_10_1016_j_agee_2023_108470 crossref_primary_10_1016_j_jenvman_2024_120119 crossref_primary_10_2139_ssrn_4135990 crossref_primary_10_1111_pce_15215 crossref_primary_10_1002_ldr_5267 crossref_primary_10_1016_j_fcr_2025_109834 crossref_primary_10_3389_fmicb_2023_1132875 crossref_primary_10_1016_j_scitotenv_2022_153517 crossref_primary_10_1007_s00253_023_12519_y crossref_primary_10_1177_03091333231216595 crossref_primary_10_1016_j_envint_2023_108151 crossref_primary_10_1016_j_geoderma_2022_115880 crossref_primary_10_1016_j_jclepro_2024_144022 crossref_primary_10_1016_j_scitotenv_2023_163837 crossref_primary_10_1016_j_scitotenv_2023_164932 crossref_primary_10_1016_j_catena_2024_108604 crossref_primary_10_1016_j_ecolecon_2023_108103 crossref_primary_10_1016_j_scitotenv_2024_170648 crossref_primary_10_1016_j_jclepro_2023_139989 crossref_primary_10_3390_su16219481 crossref_primary_10_1016_j_catena_2023_107675 crossref_primary_10_1016_j_jenvman_2024_120379 crossref_primary_10_1016_j_pedobi_2025_151035 crossref_primary_10_1002_imt2_187 crossref_primary_10_3389_fmicb_2022_1013408 crossref_primary_10_1016_j_agee_2023_108372 crossref_primary_10_1128_spectrum_01081_22 crossref_primary_10_1016_j_catena_2023_107329 crossref_primary_10_1016_j_fmre_2025_02_008 crossref_primary_10_1002_ldr_5362 |
Cites_doi | 10.1016/j.soilbio.2019.107686 10.1038/nrmicro.2017.87 10.1016/j.apsoil.2014.06.005 10.1126/science.319.5866.1040 10.1111/gcb.14557 10.1016/j.agee.2020.107081 10.1038/nature10386 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 10.1126/science.267.5201.1117 10.1016/j.ejsobi.2015.10.003 10.1038/nclimate1781 10.1016/0038-0717(85)90144-0 10.1038/nclimate1951 10.1128/mSystems.00202-17 10.1093/femsec/fix146 10.1016/j.foreco.2019.117805 10.1038/s41579-018-0024-1 10.1371/journal.pcbi.1004658 10.1038/ngeo838 10.1002/ldr.607 10.1126/science.aav0550 10.1038/ncomms7936 10.1016/j.agee.2020.107232 10.1128/AEM.00162-19 10.1126/science.aaf4507 10.1016/j.physleta.2006.04.076 10.1073/pnas.1516684112 10.1111/gcb.14113 10.1111/nph.16345 10.1038/ismej.2013.141 10.1007/s00374-018-01336-5 10.1038/ismej.2011.159 10.1111/1462-2920.14257 10.1016/j.soilbio.2016.02.013 10.1186/2049-2618-1-28 10.2136/sssaj2000.6441285x 10.1128/AEM.05005-11 10.1038/ismej.2013.253 10.1128/AEM.03414-13 10.1186/s40168-019-0757-8 10.1038/ismej.2008.113 10.1186/1471-2105-13-113 10.2136/sssaj2000.641286x 10.1038/nature15744 10.1111/j.1365-2745.2011.01918.x 10.1016/j.soilbio.2020.108013 10.1038/ismej.2017.118 10.1038/ismej.2015.261 10.1128/mBio.00122-11 10.1016/j.apsoil.2020.103544 10.1098/rstb.2013.0119 10.1038/nmeth.1923 10.1038/s41559-019-1084-y 10.1007/s00374-018-1328-z 10.1038/s41467-018-05516-7 10.1128/AEM.72.3.1719-1728.2006 10.1126/sciadv.aat1808 10.1609/icwsm.v3i1.13937 10.1038/ismej.2011.139 10.1038/s41559-017-0415-0 10.1038/ismej.2011.119 10.1007/s00284-017-1195-0 10.1016/j.ecolind.2018.05.033 10.1038/nature08058 10.1002/ecy.2137 10.1002/ldr.3189 10.1016/S1002-0160(06)60071-4 10.1016/j.apsoil.2019.03.001 10.1126/science.1215442 10.1146/annurev-ecolsys-110617-062605 10.1038/s41396-019-0383-2 10.1038/s41467-017-01789-6 10.1038/s41564-019-0631-2 10.1128/mBio.00764-17 10.1038/ncomms12083 10.1016/j.soilbio.2016.03.017 10.1038/s41559-019-0954-7 10.1016/j.chnaes.2014.10.001 10.1111/mec.13172 10.1093/biomet/93.3.491 10.1038/s41598-017-18922-6 10.1038/ismej.2009.43 10.1038/nature16069 10.1128/AEM.01015-06 10.1038/ncomms10541 10.2307/1942268 10.1038/srep04062 10.1038/s41467-019-12798-y 10.1093/acprof:oso/9780199575923.003.0027 10.1038/ismej.2012.113 10.1002/ecy.2142 10.1016/j.apsoil.2017.06.009 10.1111/j.1461-0248.2007.01139.x 10.1016/j.soilbio.2011.04.020 10.1093/femsec/fiaa047 10.1186/1471-2105-9-559 10.1038/ngeo2421 10.3389/fmicb.2014.00219 10.1038/s41467-017-02142-7 10.1073/pnas.0801925105 10.1126/science.1145724 10.1111/ele.12567 10.1038/s41558-018-0254-2 10.1002/ecy.2482 10.1126/science.aap9516 10.1038/nature13855 10.1016/j.soilbio.2016.05.005 10.1111/gcb.12788 10.1038/nmeth.f.303 10.1073/pnas.1502956112 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to International Society for Microbial Ecology 2021 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology. The Author(s), under exclusive licence to International Society for Microbial Ecology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2021 – notice: 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology. – notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7SN 7ST 7T7 7TM 7X7 7XB 88E 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7N M7P P64 PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PYCSY SOI 7X8 5PM |
DOI | 10.1038/s41396-021-00913-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Health & Medical Research Collection Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1751-7370 |
EndPage | 2489 |
ExternalDocumentID | PMC8319411 33712698 10_1038_s41396_021_00913_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 41977068 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 41977068 |
GroupedDBID | --- -Q- 0R~ 123 29J 39C 3V. 4.4 406 53G 70F 7X7 7XC 88E 8FE 8FH 8FI 8FJ AAHBH AANZL AAZLF ABAKF ABAWZ ABDBF ABEJV ABGNP ABJNI ABLJU ABUWG ABXVV ACGFS ACKTT ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AENEX AEUYN AEVLU AEXYK AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AILAN AJRNO ALFFA ALMA_UNASSIGNED_HOLDINGS AMNDL AMYLF AOIJS ASPBG ATCPS AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI C6C CCPQU CS3 DNIVK DPUIP DU5 EBS EDH EE. EIOEI EJD EMOBN ESX F5P FDQFY FEDTE FERAY FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HYE HZ~ I-F IWAJR JSO KQ8 LK8 M1P M7P MM. NAO NQJWS O9- OK1 PATMY PQQKQ PROAC PSQYO PYCSY RNT RNTTT ROX RPM SNX SNYQT SOHCF SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TOX TR2 TSG TUS UKHRP ~02 ~8M AAYXX ACSTC AYFIA CITATION JZLTJ PHGZM PHGZT CGR CUY CVF ECGQY ECM EIF GROUPED_DOAJ NPM PJZUB PPXIY PQGLB 7QL 7SN 7ST 7T7 7TM 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ K9. M7N P64 PKEHL PQEST PQUKI PRINS SOI 7X8 5PM |
ID | FETCH-LOGICAL-c540t-d2d58ddc3b2280a25dfd90c3d0659ccf01ded2397be2e473168b7ae6af6ad45a3 |
IEDL.DBID | C6C |
ISSN | 1751-7362 1751-7370 |
IngestDate | Thu Aug 21 14:01:15 EDT 2025 Thu Jul 10 22:29:46 EDT 2025 Fri Jul 25 10:49:38 EDT 2025 Mon Jul 21 05:44:27 EDT 2025 Tue Jul 01 01:04:28 EDT 2025 Thu Apr 24 22:58:04 EDT 2025 Fri Feb 21 02:40:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-d2d58ddc3b2280a25dfd90c3d0659ccf01ded2397be2e473168b7ae6af6ad45a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3600-9165 0000-0002-1222-308X 0000-0001-8779-2781 0000-0002-0359-0339 0000-0001-7040-1924 0000-0003-4424-662X |
OpenAccessLink | https://www.nature.com/articles/s41396-021-00913-1 |
PMID | 33712698 |
PQID | 2555778657 |
PQPubID | 536304 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319411 proquest_miscellaneous_2501261793 proquest_journals_2555778657 pubmed_primary_33712698 crossref_citationtrail_10_1038_s41396_021_00913_1 crossref_primary_10_1038_s41396_021_00913_1 springer_journals_10_1038_s41396_021_00913_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | Multidisciplinary Journal of Microbial Ecology |
PublicationTitle | The ISME Journal |
PublicationTitleAbbrev | ISME J |
PublicationTitleAlternate | ISME J |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Oxford University Press |
Publisher_xml | – name: Nature Publishing Group UK – name: Oxford University Press |
References | Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.3-1. 2015, http://CRAN.R-project.org/package=vegan. Al-GhalithGAHillmannBAngKShields-CutlerRKnightsDSHI7 is a self-learning pipeline for multipurpose short-read DNA quality controlmSystems.20183e00202171:CAS:528:DC%2BC1MXisVentLnF29719872591569910.1128/mSystems.00202-17 BrayJRCurtisJTAn ordination of the upland forest communities of southern WisconsinEcol Monogr.1957273264910.2307/1942268 ZhangCLiuGXueSWangGSoil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess PlateauSoil Biol Biochem.20169740491:CAS:528:DC%2BC28XjsFKjtLs%3D10.1016/j.soilbio.2016.02.013 FaninNGundaleMJFarrellMCiobanuMBaldockJANilssonMCConsistent effects of biodiversity loss on multifunctionality across contrasting ecosystemsNat Ecol Evol20182269782925529910.1038/s41559-017-0415-0 WeiXShaoMGaleWLiLGlobal pattern of soil carbon losses due to the conversion of forests to agricultural landSci Rep.2014424513580392027110.1038/srep040621:CAS:528:DC%2BC2cXmvVKnu78%3D HartmannMNiklausPAZimmermannSSchmutzSKremerJAbarenkovKResistance and resilience of the forest soil microbiome to logging-associated compactionISME J20148226441:CAS:528:DC%2BC3sXhvFOksrrL2403059410.1038/ismej.2013.141 GuoXFengJShiZZhouXYuanMTaoXClimate warming leads to divergent succession of grassland microbial communitiesNat Clim Change.20188813810.1038/s41558-018-0254-2 Santos-MedellinCEdwardsJLiechtyZNguyenBSundaresanVDrought stress results in a compartment-specific restructuring of the rice root-associated microbiomesmBio.20178e007641728720730551625310.1128/mBio.00764-17 WiederWRBonanGBAllisonSDGlobal soil carbon projections are improved by modelling microbial processesNat Clim Change.20133909121:CAS:528:DC%2BC3sXhsVShtrvO10.1038/nclimate1951 LoucaSParfreyLWDoebeliMDecoupling function and taxonomy in the global ocean microbiomeScience.2016353127271:CAS:528:DC%2BC28XhsV2ksbjM2763453210.1126/science.aaf4507 WangZZhangQStaleyCGaoHIshiiSWeiXImpact of long-term grazing exclusion on soil microbial community composition and nutrient availabilityBiol Fertil Soils201955121341:CAS:528:DC%2BC1MXhtVCjt7rF10.1007/s00374-018-01336-5 McDonaldDPriceMNGoodrichJNawrockiEPDeSantisTZProbstAAn improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaeaISME J.2012661081:CAS:528:DC%2BC38XisVGgsbs%3D2213464610.1038/ismej.2011.139 FAO. 2019.Soil erosion: the greatest challenge for sustainable soil management.2019RomeFood and Agriculture Organization of the United Nations104 CrowtherTWVan Den HoogenJWanJMayesMAKeiserADMoLThe global soil community and its influence on biogeochemistryScience.2019365eaav05501:CAS:528:DC%2BC1MXhs1CjtLbI3143976110.1126/science.aav0550 GuoJLingNChenZXueCLiLLiuLSoil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processesN Phytol.20202262324310.1111/nph.16345 MarcosMSBertillerMBOliveraNLMicrobial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle sizeAppl Soil Ecol.20191382233210.1016/j.apsoil.2019.03.001 Delgado-BaquerizoMReichPBTrivediCEldridgeDJAbadesSAlfaroFDMultiple elements of soil biodiversity drive ecosystem functions across biomesNat Ecol Evol20204210203201542710.1038/s41559-019-1084-y LehmannJKleberMThe contentious nature of soil organic matterNature.201552860681:CAS:528:DC%2BC2MXhvVOqs7fE2659527110.1038/nature16069 BrookesPLandmanAPrudenGJenkinsonDChloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soilSoil Biol Biochem.198517837421:CAS:528:DyaL28XhvFSgug%3D%3D10.1016/0038-0717(85)90144-0 PengMJiaHWangQThe effect of land use on bacterial communities in Saline-Alkali soilCurr Microbiol201774325331:CAS:528:DC%2BC2sXht1Cmtr8%3D2810244110.1007/s00284-017-1195-0 BorrelliPRobinsonDAFleischerLRLugatoEBallabioCAlewellCAn assessment of the global impact of 21st century land use change on soil erosionNat Commun.201781131:CAS:528:DC%2BC1cXpsVWht7w%3D10.1038/s41467-017-02142-7 García-PalaciosPVandegehuchteMLShawEADamMPostKHRamirezKSAre there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspectiveGlob Change Biol.2015211590160010.1111/gcb.12788 BaiYXSheWWMiaoLQinSGZhangYQSoil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern ChinaSoil Biol Biochem.20201501080131:CAS:528:DC%2BB3cXitVGgtLbJ10.1016/j.soilbio.2020.108013 BanerjeeSMisraASarAPalSChaudhurySDamBPoor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profilesAppl Soil Ecol.202015210354410.1016/j.apsoil.2020.103544 QuintonJNGoversGVan OostKBardgettRDThe impact of agricultural soil erosion on biogeochemical cyclingNat Geosci2010331141:CAS:528:DC%2BC3cXlsFSksbg%3D10.1038/ngeo838 BenjaminiYKriegerAMYekutieliDAdaptive linear step-up procedures that control the false discovery rateBiometrika.20069349150710.1093/biomet/93.3.491 MabuhayJANakagoshiNIsagiYInfluence of erosion on soil microbial biomass, abundance and community diversityLand Degrad Dev.2004151839510.1002/ldr.607 VitousekPMMengeDNLReedSCClevelandCCBiological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystemsPhilos Trans R Soc B Biol Sci2013368162110.1098/rstb.2013.01191:CAS:528:DC%2BC3sXht1WktrfM RyuMHZhangJTothTKhokhaniDGeddesBAMusFControl of nitrogen fixation in bacteria that associate with cerealsNat Microbiol20205314301:CAS:528:DC%2BC1MXisVSktb3P3184429810.1038/s41564-019-0631-2 Abu-HamdehNHReederRCSoil thermal conductivity: effects of density, moisture, salt concentration, and organic matterSoil Sci Soc Am J2000641285901:CAS:528:DC%2BD3cXmsF2iurw%3D10.2136/sssaj2000.6441285x LangfelderPHorvathSWGCNA: an R package for weighted correlation network analysisBMC Bioinforma.2008910.1186/1471-2105-9-5591:CAS:528:DC%2BD1MXht1Khsbw%3D BanerjeeSKirkbyCASchmutterDBissettAKirkegaardJARichardsonAENetwork analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soilSoil Biol Biochem.201697188981:CAS:528:DC%2BC28XlsVajt7o%3D10.1016/j.soilbio.2016.03.017 Van Oost K, Bakker MM. Soil productivity and erosion. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, et al. (eds.). Soil ecology and ecosystem services. Oxford, UK: Oxford University Press; 2012. 301–14. LiZXiaoHTangZHuangJNieXHuangBMicrobial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern ChinaEur J Soil Biol20157137441:CAS:528:DC%2BC2MXhslantrnO10.1016/j.ejsobi.2015.10.003 FAO, ITPS. Status of the World’s Soil Resources - Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. Rome, Italy. https://www.fao.org/3/a-i5199e.pdf. XueLRenHBrodribbTJWangJYaoXLiSLong term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantationFor Ecol Manag202045911780510.1016/j.foreco.2019.117805 Ochoa-HuesoRCollinsSLDelgado-BaquerizoMHamontsKPockmanWTSinsabaughRLDrought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continentsGlob Change Biol20182428182710.1111/gcb.14113 ZhengFEffect of vegetation changes on soil erosion on the Loess PlateauPedosphere200616420710.1016/S1002-0160(06)60071-4 JanssenPHIdentifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genesAppl Environ Microb.2006721719281:CAS:528:DC%2BD28XjsFCmsrs%3D10.1128/AEM.72.3.1719-1728.2006 ChowdhuryTRLeeJYBottosEMBrislawnCJWhiteRABramerLMMetaphenomic responses of a native prairie soil microbiome to moisture perturbationsmSystems.20194e0006119 Crits-ChristophARobinsonCKBarnumTFrickeWFDavilaAFJedynakBColonization patterns of soil microbial communities in the Atacama DesertMicrobiome.2013124451153397161310.1186/2049-2618-1-28 CrowtherTWThomasSMMaynardDSBaldrianPCoveyKFreySDBiotic interactions mediate soil microbial feedbacks to climate changeProc Natl Acad Sci USA.2015112703381:CAS:528:DC%2BC2MXosVKrurY%3D26038557446046910.1073/pnas.1502956112 NottinghamATFiererNTurnerBLWhitakerJOstleNJMcNamaraNPMicrobes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the AndesEcology.2018992455663007659210.1002/ecy.2482 FiererNEmbracing the unknown: disentangling the complexities of the soil microbiomeNat Rev Microbiol.201715579901:CAS:528:DC%2BC2sXhtlGktbfN2882417710.1038/nrmicro.2017.87 Page A, Miller R, Keeney D. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, Wisconsin, American Society of Agronomy, Inc., Soil Science Society of America, Inc, 1982. SaleemMHuJJoussetAMore than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil healthAnnu Rev Ecol Evol Syst.2019501456810.1146/annurev-ecolsys-110617-062605 LingNZhuCXueCChenHDuanYHPengCInsight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysisSoil Biol Biochem201699137491:CAS:528:DC%2BC28Xot1Shsrc%3D10.1016/j.soilbio.2016.05.005 ByersAKCondronLDonavanTO’CallaghanMPatuawaTWaiparaNSoil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forestFEMS Microbiol Ecol.202096fiaa0471:CAS:528:DC%2BB3cXisFyis7jL32179899716173710.1093/femsec/fiaa047 PimentelDHarveyCResosudarmoPSinclairKKurzDMcNairMEnvironmental and economic costs of soil erosion and conservation bene Nottingham (2024011007174092200_CR118) 2018; 99 Zhang (2024011007174092200_CR82) 2016; 97 Janssen (2024011007174092200_CR80) 2006; 72 García-Palacios (2024011007174092200_CR78) 2015; 21 Berry (2024011007174092200_CR67) 2014; 5 2024011007174092200_CR17 Delgado-Baquerizo (2024011007174092200_CR116) 2018; 99 Acosta-Martínez (2024011007174092200_CR108) 2014; 84 Bastian (2024011007174092200_CR68) 2009; 8 Wang (2024011007174092200_CR52) 2019; 55 Hamamura (2024011007174092200_CR107) 2006; 72 Zhou (2024011007174092200_CR119) 2016; 7 Ochoa-Hueso (2024011007174092200_CR41) 2018; 24 Delgado-Baquerizo (2024011007174092200_CR15) 2016; 7 Van Horn (2024011007174092200_CR90) 2014; 80 Banerjee (2024011007174092200_CR98) 2016; 97 Wagg (2024011007174092200_CR33) 2019; 10 Chowdhury (2024011007174092200_CR88) 2019; 4 DeBruyn (2024011007174092200_CR84) 2011; 77 Santos-Medellin (2024011007174092200_CR87) 2017; 8 Banerjee (2024011007174092200_CR39) 2018; 16 Van Oost (2024011007174092200_CR7) 2012 Langfelder (2024011007174092200_CR62) 2008; 9 Van Der Voort (2024011007174092200_CR77) 2016; 19 Lehmann (2024011007174092200_CR113) 2015; 528 de Vries (2024011007174092200_CR23) 2018; 9 Fanin (2024011007174092200_CR16) 2018; 2 Crowther (2024011007174092200_CR22) 2019; 365 Mickan (2024011007174092200_CR89) 2019; 55 Wolińska (2024011007174092200_CR93) 2018; 93 Fierer (2024011007174092200_CR19) 2017; 15 Mabuhay (2024011007174092200_CR42) 2004; 15 Bragazza (2024011007174092200_CR25) 2013; 3 Luo (2024011007174092200_CR63) 2006; 357 Crits-Christoph (2024011007174092200_CR71) 2013; 1 Li (2024011007174092200_CR29) 2019; 25 Bardgett (2024011007174092200_CR18) 2014; 515 Saleem (2024011007174092200_CR21) 2019; 50 Hou (2024011007174092200_CR44) 2014; 34 Qi (2024011007174092200_CR100) 2019; 85 Benjamini (2024011007174092200_CR64) 2006; 93 Van Oost (2024011007174092200_CR13) 2007; 318 McDonald (2024011007174092200_CR58) 2012; 6 Barberán (2024011007174092200_CR35) 2012; 6 Ling (2024011007174092200_CR102) 2016; 99 Bai (2024011007174092200_CR104) 2020; 150 Bray (2024011007174092200_CR59) 1957; 27 Allison (2024011007174092200_CR120) 2008; 105 Zhou (2024011007174092200_CR24) 2011; 2 Spain (2024011007174092200_CR81) 2009; 3 Kielak (2024011007174092200_CR91) 2009; 3 Zheng (2024011007174092200_CR47) 2006; 16 Pimentel (2024011007174092200_CR4) 1995; 267 FAO. 2019. (2024011007174092200_CR3) 2019 Fuhrman (2024011007174092200_CR38) 2009; 459 Abu-Hamdeh (2024011007174092200_CR74) 2000; 64 Herren (2024011007174092200_CR40) 2018; 20 Wei (2024011007174092200_CR115) 2014; 4 Delgado-Baquerizo (2024011007174092200_CR117) 2018; 359 Chen (2024011007174092200_CR31) 2020; 141 Mendonça (2024011007174092200_CR10) 2017; 8 Freilich (2024011007174092200_CR37) 2018; 99 Guo (2024011007174092200_CR99) 2020; 226 Wieder (2024011007174092200_CR30) 2013; 3 Van der Heijden (2024011007174092200_CR34) 2008; 11 2024011007174092200_CR61 2024011007174092200_CR6 Al-Ghalith (2024011007174092200_CR55) 2018; 3 FAO, ITPS (2024011007174092200_CR1) 2015 Anderson (2024011007174092200_CR60) 2003; 84 Wolińska (2024011007174092200_CR83) 2017; 119 Ryu (2024011007174092200_CR97) 2020; 5 2024011007174092200_CR2 Bouskill (2024011007174092200_CR85) 2013; 7 Quinton (2024011007174092200_CR11) 2010; 3 Yang (2024011007174092200_CR94) 2019; 30 Lal (2024011007174092200_CR9) 2008; 319 Tiemann (2024011007174092200_CR72) 2011; 43 Liang (2024011007174092200_CR76) 2018; 8 Schmidt (2024011007174092200_CR112) 2011; 478 Buzzard (2024011007174092200_CR114) 2019; 3 Li (2024011007174092200_CR46) 2020; 302 Delgado-Baquerizo (2024011007174092200_CR32) 2020; 4 Banerjee (2024011007174092200_CR36) 2019; 13 Langmead (2024011007174092200_CR57) 2012; 9 Fierer (2024011007174092200_CR92) 2012; 6 Maestre (2024011007174092200_CR27) 2015; 112 Vitousek (2024011007174092200_CR95) 2013; 368 Ma (2024011007174092200_CR66) 2016; 10 Smith (2024011007174092200_CR12) 2015; 8 Guo (2024011007174092200_CR28) 2018; 8 Maestre (2024011007174092200_CR51) 2012; 100 Bajracharya (2024011007174092200_CR75) 2000; 64 Navarrete (2024011007174092200_CR110) 2015; 24 Byers (2024011007174092200_CR111) 2020; 96 Zhang (2024011007174092200_CR45) 2007; 96 Li (2024011007174092200_CR43) 2015; 71 Lefcheck (2024011007174092200_CR50) 2015; 6 Marcos (2024011007174092200_CR106) 2019; 138 Caporaso (2024011007174092200_CR53) 2010; 7 Csardi (2024011007174092200_CR65) 2006; 1695 Wall (2024011007174092200_CR20) 2015; 528 Page (2024011007174092200_CR48) 1982 Mueller (2024011007174092200_CR54) 2014; 8 Maestre (2024011007174092200_CR14) 2012; 335 Al-Ghalith (2024011007174092200_CR56) 2016; 12 Xue (2024011007174092200_CR101) 2020; 459 Qiu (2024011007174092200_CR70) 2021; 307 Gregorich (2024011007174092200_CR8) 1998; 47 Brookes (2024011007174092200_CR49) 1985; 17 Crowther (2024011007174092200_CR26) 2015; 112 Banerjee (2024011007174092200_CR73) 2020; 152 Karimi (2024011007174092200_CR79) 2018; 4 Hartmann (2024011007174092200_CR121) 2014; 8 Peng (2024011007174092200_CR109) 2017; 74 Fan (2024011007174092200_CR96) 2019; 7 Louca (2024011007174092200_CR69) 2016; 353 Borrelli (2024011007174092200_CR5) 2017; 8 Szoboszlay (2024011007174092200_CR105) 2017; 93 Deng (2024011007174092200_CR103) 2012; 13 Naylor (2024011007174092200_CR86) 2017; 11 |
References_xml | – reference: Acosta‐MartínezVCottonJGardnerTMoore‐KuceraJZakJWesterDPredominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cyclingAppl Soil Ecol.201484698210.1016/j.apsoil.2014.06.005 – reference: Delgado‐BaquerizoMReithFDennisPGHamontsKPowellJRYoungAEcological drivers of soil microbial diversity and soil biological networks in the Southern HemisphereEcology.201899583962931553010.1002/ecy.2137 – reference: MaestreFTDelgado-BaquerizoMJeffriesTCEldridgeDJOchoaVGozaloBIncreasing aridity reduces soil microbial diversity and abundance in global drylandsProc Natl Acad Sci USA.20151121568491:CAS:528:DC%2BC2MXhvFKqsb%2FE26647180469738510.1073/pnas.1516684112 – reference: YangFNiuKCCollinsCGYanXBJiYGLingNGrazing practices affect the soil microbial community composition in a Tibetan alpine meadowLand Degrad Dev.201930495910.1002/ldr.3189 – reference: UN (United Nations). Sustainable Development Goals [online]. 2015. https://www.un.org/sustainabledevelopment/sustainabledevelopment-goals/. – reference: ZhouJDengYShenLWenCYanQNingDTemperature mediates continental-scale diversity of microbes in forest soilsNat Commun.201671:CAS:528:DC%2BC28XhtFCrsL3N27377774493597010.1038/ncomms12083 – reference: BouskillNJLimHCBorglinSSalveRWoodTESilverWLPre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended droughtISME J20137384941:CAS:528:DC%2BC3sXhsVansrc%3D2315164110.1038/ismej.2012.113 – reference: WeiXShaoMGaleWLiLGlobal pattern of soil carbon losses due to the conversion of forests to agricultural landSci Rep.2014424513580392027110.1038/srep040621:CAS:528:DC%2BC2cXmvVKnu78%3D – reference: Van OostKQuineTAGoversGDe GryzeSSixJHardenJWThe impact of agricultural soil erosion on the global carbon cycleScience.200731862691796255910.1126/science.11457241:CAS:528:DC%2BD2sXhtF2rsbnF – reference: NavarreteAATsaiSMMendesLWFaustKde HollanderMCassmanNASoil microbiome responses to the short-term effects of Amazonian deforestationMol Ecol.2015242433481:CAS:528:DC%2BC2MXntFGltr0%3D2580978810.1111/mec.13172 – reference: BrayJRCurtisJTAn ordination of the upland forest communities of southern WisconsinEcol Monogr.1957273264910.2307/1942268 – reference: FiererNLauberCLRamirezKSZaneveldJBradfordMAKnightRComparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradientsISME J.201261007171:CAS:528:DC%2BC38XlvVGktLg%3D2213464210.1038/ismej.2011.159 – reference: NaylorDDeGraafSPurdomEColeman-DerrDDrought and host selection influence bacterial community dynamics in the grass root microbiomeISME J201711269170428753209570272510.1038/ismej.2017.118 – reference: KielakAPijlASVan VeenJAKowalchukGAPhylogenetic diversity of Acidobacteria in a former agricultural soilISME J.20093378821:CAS:528:DC%2BD1MXms12gsLs%3D1902055810.1038/ismej.2008.113 – reference: MendonçaRMüllerRAClowDVerpoorterCRaymondPTranvikLJOrganic carbon burial in global lakes and reservoirsNat Commun2017829162815569849710.1038/s41467-017-01789-61:CAS:528:DC%2BC1cXhtV2ktrrO – reference: de VriesFTGriffithsRIBaileyMCraigHGirlandaMGweonHSSoil bacterial networks are less stable under drought than fungal networksNat Commun.2018930072764607279410.1038/s41467-018-05516-71:CAS:528:DC%2BC1cXhsVersrjI – reference: Crits-ChristophARobinsonCKBarnumTFrickeWFDavilaAFJedynakBColonization patterns of soil microbial communities in the Atacama DesertMicrobiome.2013124451153397161310.1186/2049-2618-1-28 – reference: TiemannLKBillingsSAChanges in variability of soil moisture alter microbial community C and N resource useSoil Biol Biochem2011431837471:CAS:528:DC%2BC3MXhtVWrt7fJ10.1016/j.soilbio.2011.04.020 – reference: BanerjeeSSchlaeppiKVan Der HeijdenMGAKeystone taxa as drivers of microbiome structure and functioningNat Rev Microbiol201816567761:CAS:528:DC%2BC1cXhtVSlu73F10.1038/s41579-018-0024-129789680 – reference: LiZXiaoHTangZHuangJNieXHuangBMicrobial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern ChinaEur J Soil Biol20157137441:CAS:528:DC%2BC2MXhslantrnO10.1016/j.ejsobi.2015.10.003 – reference: ChowdhuryTRLeeJYBottosEMBrislawnCJWhiteRABramerLMMetaphenomic responses of a native prairie soil microbiome to moisture perturbationsmSystems.20194e0006119 – reference: PimentelDHarveyCResosudarmoPSinclairKKurzDMcNairMEnvironmental and economic costs of soil erosion and conservation benefitsScience.19952671117231:CAS:528:DyaK2MXktVKjsL4%3D1778919310.1126/science.267.5201.1117 – reference: NottinghamATFiererNTurnerBLWhitakerJOstleNJMcNamaraNPMicrobes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the AndesEcology.2018992455663007659210.1002/ecy.2482 – reference: Garland G, Banerjee S, Edlinger A, Oliveira EM, Herzog C, Wittwer R, et al. A closer look at the functions behind ecosystem multifunctionality: a review. J Ecol. 2020, https://doi.org/10.1111/1365-2745.13511. – reference: HartmannMNiklausPAZimmermannSSchmutzSKremerJAbarenkovKResistance and resilience of the forest soil microbiome to logging-associated compactionISME J20148226441:CAS:528:DC%2BC3sXhvFOksrrL2403059410.1038/ismej.2013.141 – reference: JanssenPHIdentifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genesAppl Environ Microb.2006721719281:CAS:528:DC%2BD28XjsFCmsrs%3D10.1128/AEM.72.3.1719-1728.2006 – reference: LingNZhuCXueCChenHDuanYHPengCInsight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysisSoil Biol Biochem201699137491:CAS:528:DC%2BC28Xot1Shsrc%3D10.1016/j.soilbio.2016.05.005 – reference: WiederWRBonanGBAllisonSDGlobal soil carbon projections are improved by modelling microbial processesNat Clim Change.20133909121:CAS:528:DC%2BC3sXhsVShtrvO10.1038/nclimate1951 – reference: SchmidtMWITornMSAbivenSDittmarTGuggenbergerGJanssensIATrumbore, Persistence of soil organic matter as an ecosystem propertyNature.201147849561:CAS:528:DC%2BC3MXht1yltrnF2197904510.1038/nature10386 – reference: BajracharyaRMLalRKimbleJMDiurnal and seasonal CO2-C flux from soil as related to erosion phases in central OhioSoil Sci Soc Am J200064286931:CAS:528:DC%2BD3cXmslyhtLo%3D10.2136/sssaj2000.641286x – reference: LangfelderPHorvathSWGCNA: an R package for weighted correlation network analysisBMC Bioinforma.2008910.1186/1471-2105-9-5591:CAS:528:DC%2BD1MXht1Khsbw%3D – reference: Abu-HamdehNHReederRCSoil thermal conductivity: effects of density, moisture, salt concentration, and organic matterSoil Sci Soc Am J2000641285901:CAS:528:DC%2BD3cXmsF2iurw%3D10.2136/sssaj2000.6441285x – reference: Delgado-BaquerizoMMaestreFTReichPBJeffriesTCGaitanJJEncinarDMicrobial diversity drives multifunctionality in terrestrial ecosystemsNat Commun.201671:CAS:528:DC%2BC28XhslOntb0%3D26817514473835910.1038/ncomms10541 – reference: BaiYXSheWWMiaoLQinSGZhangYQSoil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern ChinaSoil Biol Biochem.20201501080131:CAS:528:DC%2BB3cXitVGgtLbJ10.1016/j.soilbio.2020.108013 – reference: ByersAKCondronLDonavanTO’CallaghanMPatuawaTWaiparaNSoil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forestFEMS Microbiol Ecol.202096fiaa0471:CAS:528:DC%2BB3cXisFyis7jL32179899716173710.1093/femsec/fiaa047 – reference: QiuLZhuHLiuJYaoYWangXRongGSoil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experimentAgr Ecosyst Environ.20213071072321:CAS:528:DC%2BB3cXisFSlsr7N10.1016/j.agee.2020.107232 – reference: BastianMHeymannSJacomyMGephi: an open source software for exploring and manipulating networksICWSM Conf20098361210.1609/icwsm.v3i1.13937 – reference: LiangYLalRGuoSLiuRHuYImpacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central OhioSci Rep.2018829323288576496710.1038/s41598-017-18922-61:CAS:528:DC%2BC1cXhsFOhu7rN – reference: QuintonJNGoversGVan OostKBardgettRDThe impact of agricultural soil erosion on biogeochemical cyclingNat Geosci2010331141:CAS:528:DC%2BC3cXlsFSksbg%3D10.1038/ngeo838 – reference: LiZTianDWangBWangJWangSChenHMicrobes drive global soil nitrogen mineralization and availabilityGlob Change Biol20192510788810.1111/gcb.14557 – reference: FanKKDelgado-BaquerizoMGuoXSWangDZWuYYZhuMSuppressed N fixation and diazotrophs after four decades of fertilizationMicrobiome.2019731672173682402310.1186/s40168-019-0757-8 – reference: BorrelliPRobinsonDAFleischerLRLugatoEBallabioCAlewellCAn assessment of the global impact of 21st century land use change on soil erosionNat Commun.201781131:CAS:528:DC%2BC1cXpsVWht7w%3D10.1038/s41467-017-02142-7 – reference: HamamuraNOlsonSHWardDMInskeepWPMicrobial population dynamics associated with crude-oil biodegradation in diverse soilsAppl Environ Microb2006726316241:CAS:528:DC%2BD28XpvVKjtbY%3D10.1128/AEM.01015-06 – reference: LehmannJKleberMThe contentious nature of soil organic matterNature.201552860681:CAS:528:DC%2BC2MXhvVOqs7fE2659527110.1038/nature16069 – reference: WaggCSchlaeppiKBanerjeeSKuramaeEEVan Der HeijdenMGAFungal-bacterial diversity and microbiome complexity predict ecosystem functioningNat Commun20191031649246681333110.1038/s41467-019-12798-y1:CAS:528:DC%2BC1MXitVGmtL%2FJ – reference: FAO, ITPS. Status of the World’s Soil Resources - Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. Rome, Italy. https://www.fao.org/3/a-i5199e.pdf. – reference: MaestreFTCastillo-MonroyAPBowkerMAOchoa-HuesoRSpecies richness effects on ecosystem multifunctionality depend on evenness, composition and spatial patternJ Ecol2012100317301:CAS:528:DC%2BC38Xlt1Gksbc%3D10.1111/j.1365-2745.2011.01918.x – reference: LalRPimentelDSoil erosion: a carbon sink or source?Science.2008319104021:CAS:528:DC%2BD1cXis1Kksrc%3D1829232410.1126/science.319.5866.1040 – reference: FreilichMAWietersEBroitmanBRMarquetPANavarreteSASpecies co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?Ecology.20189969092933648010.1002/ecy.2142 – reference: ChenQDongJZhuDHuHDelgado-BaquerizoMMaYRare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soilsSoil Biol Biochem.20201411076861:CAS:528:DC%2BC1MXit12jt7zO10.1016/j.soilbio.2019.107686 – reference: MaestreFTQueroJLGotelliNJEscuderoAOchoaVDelgado-BaquerizoMPlant species richness and ecosystem multifunctionality in global drylandsScience.201233521481:CAS:528:DC%2BC38XksVSgtA%3D%3D22246775355873910.1126/science.1215442 – reference: DeBruynLMNixonLTFawazMNJohnsonAMRadosevichMGlobal biogeography and quantitative seasonal dynamics of gemmatimonadetes in soilAppl Environ Microb.201177629563001:CAS:528:DC%2BC3MXht1Oju77E10.1128/AEM.05005-11 – reference: MabuhayJANakagoshiNIsagiYInfluence of erosion on soil microbial biomass, abundance and community diversityLand Degrad Dev.2004151839510.1002/ldr.607 – reference: KarimiBTerratSDequiedtSSabyNPAHorriguelWLelievreMBiogeography of soil bacteria and archaea across FranceSci Adv.20184eaat180829978046603137010.1126/sciadv.aat1808 – reference: ZhengFEffect of vegetation changes on soil erosion on the Loess PlateauPedosphere200616420710.1016/S1002-0160(06)60071-4 – reference: Ochoa-HuesoRCollinsSLDelgado-BaquerizoMHamontsKPockmanWTSinsabaughRLDrought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continentsGlob Change Biol20182428182710.1111/gcb.14113 – reference: LuoFZhongJYangYScheuermannRHZhouJApplication of random matrix theory to biological networksPhys Lett A.200635742031:CAS:528:DC%2BD28XnsFyhur8%3D10.1016/j.physleta.2006.04.076 – reference: BrookesPLandmanAPrudenGJenkinsonDChloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soilSoil Biol Biochem.198517837421:CAS:528:DyaL28XhvFSgug%3D%3D10.1016/0038-0717(85)90144-0 – reference: LoucaSParfreyLWDoebeliMDecoupling function and taxonomy in the global ocean microbiomeScience.2016353127271:CAS:528:DC%2BC28XhsV2ksbjM2763453210.1126/science.aaf4507 – reference: Delgado-BaquerizoMOliverioAMBrewerTEBenavent-GonzálezAEldridgeDJBardgettRDA global atlas of the dominant bacteria found in soilScience.201835932051:CAS:528:DC%2BC1cXhtFKntr4%3D2934823610.1126/science.aap9516 – reference: XueLRenHBrodribbTJWangJYaoXLiSLong term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantationFor Ecol Manag202045911780510.1016/j.foreco.2019.117805 – reference: Van Der VoortMKempenaarMVan DrielMRaaijmakersJMMendesRImpact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppressionEcol Lett.201619375822683354710.1111/ele.12567 – reference: BarberánABatesSTCasamayorEOFiererNUsing network analysis to explore co-occurrence patterns in soil microbial communitiesISME J20126343512190096810.1038/ismej.2011.1191:CAS:528:DC%2BC38XhtVCgtb8%3D – reference: MarcosMSBertillerMBOliveraNLMicrobial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle sizeAppl Soil Ecol.20191382233210.1016/j.apsoil.2019.03.001 – reference: BragazzaLParisodJButtlerABardgettRDBiogeochemical plant–soil microbe feedback in response to climate warming in peatlandsNat Clim Change.2013327371:CAS:528:DC%2BC3sXjtVWqu70%3D10.1038/nclimate1781 – reference: LiHZhuHQiuLWeiXLiuBShaoMResponse of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast ChinaAgr Ecosyst Environ.20203021070811:CAS:528:DC%2BB3cXhsFehs7rF10.1016/j.agee.2020.107081 – reference: Van HornDJOkieJGBuelowHNGooseffMNBarrettJETakacs-VesbachCDSoil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desertAppl Environ Microb.20148030344310.1128/AEM.03414-131:CAS:528:DC%2BC2cXovV2kt7c%3D – reference: QiGMaGChenSLinCZhaoXMicrobial network and soil properties are changed in bacterial wilt-susceptible soilAppl Environ Microb.201985e00162191:CAS:528:DC%2BC1MXhs1Oks7vI10.1128/AEM.00162-19 – reference: Page A, Miller R, Keeney D. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, Wisconsin, American Society of Agronomy, Inc., Soil Science Society of America, Inc, 1982. – reference: GuoXFengJShiZZhouXYuanMTaoXClimate warming leads to divergent succession of grassland microbial communitiesNat Clim Change.20188813810.1038/s41558-018-0254-2 – reference: ZhouJDengYLuoFHeZYangYPhylogenetic molecular ecological network of soil microbial communities in response to elevated CO2MBio.20112e001221121791581314384310.1128/mBio.00122-11 – reference: LefcheckJSByrnesJEKIsbellFGamfeldtLGriffinJNEisenhauerNBiodiversity enhances ecosystem multifunctionality across trophic levels and habitatsNat Commun.201561:CAS:528:DC%2BC2MXhtF2lurvI2590711510.1038/ncomms7936 – reference: BanerjeeSKirkbyCASchmutterDBissettAKirkegaardJARichardsonAENetwork analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soilSoil Biol Biochem.201697188981:CAS:528:DC%2BC28XlsVajt7o%3D10.1016/j.soilbio.2016.03.017 – reference: Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.3-1. 2015, http://CRAN.R-project.org/package=vegan. – reference: ZhangYWuYLiuBZhengQYinJCharacteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast ChinaSoil Res.2007962841 – reference: GregorichEGGreerKJAndersonDWLiangBCCarbon distribution and losses: erosion and deposition effectsSoil Res199847291302 – reference: Van der HeijdenMGABardgettRDVan StraalenNMThe unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystemsEcol Lett2008112963101804758710.1111/j.1461-0248.2007.01139.x – reference: FuhrmanJAMicrobial community structure and its functional implicationsNature.200945919391:CAS:528:DC%2BD1MXlvFShu70%3D1944420510.1038/nature08058 – reference: WallHNielsenUNSixJSoil biodiversity and human healthNature.201552869761:CAS:528:DC%2BC2MXhvVOqs7fP2659527610.1038/nature15744 – reference: Santos-MedellinCEdwardsJLiechtyZNguyenBSundaresanVDrought stress results in a compartment-specific restructuring of the rice root-associated microbiomesmBio.20178e007641728720730551625310.1128/mBio.00764-17 – reference: WolińskaAKuzniarAZielenkiewiczUBanachABlaszczykMIndicators of arable soils fatigue Bacterial - families and genera: a metagenomic approachEcol Indic.20189349050010.1016/j.ecolind.2018.05.033 – reference: García-PalaciosPVandegehuchteMLShawEADamMPostKHRamirezKSAre there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspectiveGlob Change Biol.2015211590160010.1111/gcb.12788 – reference: BenjaminiYKriegerAMYekutieliDAdaptive linear step-up procedures that control the false discovery rateBiometrika.20069349150710.1093/biomet/93.3.491 – reference: BanerjeeSMisraASarAPalSChaudhurySDamBPoor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profilesAppl Soil Ecol.202015210354410.1016/j.apsoil.2020.103544 – reference: FaninNGundaleMJFarrellMCiobanuMBaldockJANilssonMCConsistent effects of biodiversity loss on multifunctionality across contrasting ecosystemsNat Ecol Evol20182269782925529910.1038/s41559-017-0415-0 – reference: LangmeadBSalzbergSLFast gapped-read alignment with Bowtie 2Nat Methods.2012935791:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923 – reference: ZhangCLiuGXueSWangGSoil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess PlateauSoil Biol Biochem.20169740491:CAS:528:DC%2BC28XjsFKjtLs%3D10.1016/j.soilbio.2016.02.013 – reference: CaporasoJGKuczynskiJStombaughJBittingerKBushmanFDCostelloEKQIIME allows analysis of high-throughput community sequencing dataNat Methods2010733561:CAS:528:DC%2BC3cXksFalurg%3D20383131315657310.1038/nmeth.f.303 – reference: FiererNEmbracing the unknown: disentangling the complexities of the soil microbiomeNat Rev Microbiol.201715579901:CAS:528:DC%2BC2sXhtlGktbfN2882417710.1038/nrmicro.2017.87 – reference: Al-GhalithGAHillmannBAngKShields-CutlerRKnightsDSHI7 is a self-learning pipeline for multipurpose short-read DNA quality controlmSystems.20183e00202171:CAS:528:DC%2BC1MXisVentLnF29719872591569910.1128/mSystems.00202-17 – reference: FAO. 2019.Soil erosion: the greatest challenge for sustainable soil management.2019RomeFood and Agriculture Organization of the United Nations104 – reference: Delgado-BaquerizoMReichPBTrivediCEldridgeDJAbadesSAlfaroFDMultiple elements of soil biodiversity drive ecosystem functions across biomesNat Ecol Evol20204210203201542710.1038/s41559-019-1084-y – reference: McDonaldDPriceMNGoodrichJNawrockiEPDeSantisTZProbstAAn improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaeaISME J.2012661081:CAS:528:DC%2BC38XisVGgsbs%3D2213464610.1038/ismej.2011.139 – reference: DengYJiangYHYangYFHeZLLuoFZhouJZMolecular ecological network analysesBMC Bioinforma.20121310.1186/1471-2105-13-113 – reference: CrowtherTWVan Den HoogenJWanJMayesMAKeiserADMoLThe global soil community and its influence on biogeochemistryScience.2019365eaav05501:CAS:528:DC%2BC1MXhs1CjtLbI3143976110.1126/science.aav0550 – reference: VitousekPMMengeDNLReedSCClevelandCCBiological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystemsPhilos Trans R Soc B Biol Sci2013368162110.1098/rstb.2013.01191:CAS:528:DC%2BC3sXht1WktrfM – reference: Al-GhalithGAMontassierEWardHNKnightsDNINJA-OPS: fast accurate marker gene alignment using concatenated ribosomesPLoS Comput Biol.201612e100465826820746473146410.1371/journal.pcbi.10046581:CAS:528:DC%2BC28XhtF2lur3O – reference: GuoJLingNChenZXueCLiLLiuLSoil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processesN Phytol.20202262324310.1111/nph.16345 – reference: AndersonMJWillisTJCanonical analysis of principal coordinates: a useful method of constrained ordination for ecologyEcology.2003845112510.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 – reference: BerryDWidderSDeciphering microbial interactions and detecting keystone species with co-occurrence networksFront Microbiol2014521924904535403304110.3389/fmicb.2014.00219 – reference: BuzzardVMichaletzSTDengYHeZNingDShenLContinental scale structuring of forest and soil diversity via functional traitsNat Ecol Evol2019312983083142773210.1038/s41559-019-0954-7 – reference: MaBWangHZDsouzaMLouJHeYDaiZMGeographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern ChinaISME J20161018919011:CAS:528:DC%2BC28Xht12ls7fK26771927502915810.1038/ismej.2015.261 – reference: SpainAMKrumholzLRElshahedMSAbundance, composition, diversity and novelty of soil ProteobacteriaISME J.2009399210001:CAS:528:DC%2BD1MXovFOgurs%3D1940432610.1038/ismej.2009.43 – reference: SzoboszlayMDohrmannABPoeplauCDonATebbeCCImpact of land-use change and soil organic carbon quality on microbial diversity in soils across EuropeFEMS Microbiol Ecol.201793fix14610.1093/femsec/fix1461:CAS:528:DC%2BC1cXhvVWku73I – reference: WolińskaAKuzniarAZielenkiewiczUIzakDSzafranek-NakoniecznaABanachABacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approachAppl Soil Ecol20171191283710.1016/j.apsoil.2017.06.009 – reference: AllisonSDMartinyJBHResistance resilience, and redundancy in microbial communitiesProc Natl Acad Sci USA.20081051151291:CAS:528:DC%2BD1cXhtVSjtrzO18695234255642110.1073/pnas.0801925105 – reference: SmithRWBianchiTSAllisonMSavageCGalyVHigh rates of organic carbon burial in fjord sediments globallyNat Geosci.20158450U461:CAS:528:DC%2BC2MXnvFShsLs%3D10.1038/ngeo2421 – reference: RyuMHZhangJTothTKhokhaniDGeddesBAMusFControl of nitrogen fixation in bacteria that associate with cerealsNat Microbiol20205314301:CAS:528:DC%2BC1MXisVSktb3P3184429810.1038/s41564-019-0631-2 – reference: HerrenCMMcMahonKDKeystone taxa predict compositional change in microbial communitiesEnviron Microbiol.2018202207172970864510.1111/1462-2920.14257 – reference: WangZZhangQStaleyCGaoHIshiiSWeiXImpact of long-term grazing exclusion on soil microbial community composition and nutrient availabilityBiol Fertil Soils201955121341:CAS:528:DC%2BC1MXhtVCjt7rF10.1007/s00374-018-01336-5 – reference: MickanBSAbbottLKSolaimanZMMathesFSiddiqueKHMJenkinsSNSoil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soilBiol Fert Soils.20195553661:CAS:528:DC%2BC1cXitFejs7zM10.1007/s00374-018-1328-z – reference: CsardiGNepuszTThe igraph software package for complex network research. InterJournalComplex Syst2006169519 – reference: MuellerRCPaulaFSMirzaBSRodriguesJLMNuessleinKBohannanBJMLinks between plant and fungal communities across a deforestation chronosequence in the Amazon rainforestISME J.201481548501:CAS:528:DC%2BC2cXhtVKmtrbM24451208406939510.1038/ismej.2013.253 – reference: Van Oost K, Bakker MM. Soil productivity and erosion. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, et al. (eds.). Soil ecology and ecosystem services. Oxford, UK: Oxford University Press; 2012. 301–14. – reference: UN (United Nations). World Soil Day [online]. 2019. https://www.un.org/en/observances/world-soil-day. – reference: BardgettRDVan Der PuttenWHBelowground biodiversity and ecosystem functioningNature.2014515505111:CAS:528:DC%2BC2cXitFamsrnM2542849810.1038/nature13855 – reference: HouSXinMWangLLJiangHLiNWangZThe effects of erosion on the microbial populations and enzyme activity in black soil of northeastern ChinaActa Ecologica Sin20143429530110.1016/j.chnaes.2014.10.001 – reference: SaleemMHuJJoussetAMore than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil healthAnnu Rev Ecol Evol Syst.2019501456810.1146/annurev-ecolsys-110617-062605 – reference: CrowtherTWThomasSMMaynardDSBaldrianPCoveyKFreySDBiotic interactions mediate soil microbial feedbacks to climate changeProc Natl Acad Sci USA.2015112703381:CAS:528:DC%2BC2MXosVKrurY%3D26038557446046910.1073/pnas.1502956112 – reference: PengMJiaHWangQThe effect of land use on bacterial communities in Saline-Alkali soilCurr Microbiol201774325331:CAS:528:DC%2BC2sXht1Cmtr8%3D2810244110.1007/s00284-017-1195-0 – reference: BanerjeeSWalderFBüchiLMeyerMHeldAYGattingerAAgricultural intensification reduces microbial network complexity and the abundance of keystone taxa in rootsISME J.20191317223630850707659112610.1038/s41396-019-0383-2 – volume: 141 start-page: 107686 year: 2020 ident: 2024011007174092200_CR31 article-title: Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils publication-title: Soil Biol Biochem. doi: 10.1016/j.soilbio.2019.107686 – volume: 15 start-page: 579 year: 2017 ident: 2024011007174092200_CR19 article-title: Embracing the unknown: disentangling the complexities of the soil microbiome publication-title: Nat Rev Microbiol. doi: 10.1038/nrmicro.2017.87 – volume: 84 start-page: 69 year: 2014 ident: 2024011007174092200_CR108 article-title: Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling publication-title: Appl Soil Ecol. doi: 10.1016/j.apsoil.2014.06.005 – volume: 319 start-page: 1040 year: 2008 ident: 2024011007174092200_CR9 article-title: Soil erosion: a carbon sink or source? publication-title: Science. doi: 10.1126/science.319.5866.1040 – volume: 25 start-page: 1078 year: 2019 ident: 2024011007174092200_CR29 article-title: Microbes drive global soil nitrogen mineralization and availability publication-title: Glob Change Biol doi: 10.1111/gcb.14557 – volume: 302 start-page: 107081 year: 2020 ident: 2024011007174092200_CR46 article-title: Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China publication-title: Agr Ecosyst Environ. doi: 10.1016/j.agee.2020.107081 – volume: 478 start-page: 49 year: 2011 ident: 2024011007174092200_CR112 article-title: Trumbore, Persistence of soil organic matter as an ecosystem property publication-title: Nature. doi: 10.1038/nature10386 – volume: 84 start-page: 511 year: 2003 ident: 2024011007174092200_CR60 article-title: Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology publication-title: Ecology. doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 – volume: 267 start-page: 1117 year: 1995 ident: 2024011007174092200_CR4 article-title: Environmental and economic costs of soil erosion and conservation benefits publication-title: Science. doi: 10.1126/science.267.5201.1117 – volume: 71 start-page: 37 year: 2015 ident: 2024011007174092200_CR43 article-title: Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2015.10.003 – volume: 3 start-page: 273 year: 2013 ident: 2024011007174092200_CR25 article-title: Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands publication-title: Nat Clim Change. doi: 10.1038/nclimate1781 – volume: 96 start-page: 28 year: 2007 ident: 2024011007174092200_CR45 article-title: Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China publication-title: Soil Res. – volume: 17 start-page: 837 year: 1985 ident: 2024011007174092200_CR49 article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil publication-title: Soil Biol Biochem. doi: 10.1016/0038-0717(85)90144-0 – volume: 3 start-page: 909 year: 2013 ident: 2024011007174092200_CR30 article-title: Global soil carbon projections are improved by modelling microbial processes publication-title: Nat Clim Change. doi: 10.1038/nclimate1951 – volume: 3 start-page: e00202 year: 2018 ident: 2024011007174092200_CR55 article-title: SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control publication-title: mSystems. doi: 10.1128/mSystems.00202-17 – volume: 93 start-page: fix146 year: 2017 ident: 2024011007174092200_CR105 article-title: Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe publication-title: FEMS Microbiol Ecol. doi: 10.1093/femsec/fix146 – volume: 459 start-page: 117805 year: 2020 ident: 2024011007174092200_CR101 article-title: Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation publication-title: For Ecol Manag doi: 10.1016/j.foreco.2019.117805 – volume: 16 start-page: 567 year: 2018 ident: 2024011007174092200_CR39 article-title: Keystone taxa as drivers of microbiome structure and functioning publication-title: Nat Rev Microbiol doi: 10.1038/s41579-018-0024-1 – volume: 12 start-page: e1004658 year: 2016 ident: 2024011007174092200_CR56 article-title: NINJA-OPS: fast accurate marker gene alignment using concatenated ribosomes publication-title: PLoS Comput Biol. doi: 10.1371/journal.pcbi.1004658 – volume: 3 start-page: 311 year: 2010 ident: 2024011007174092200_CR11 article-title: The impact of agricultural soil erosion on biogeochemical cycling publication-title: Nat Geosci doi: 10.1038/ngeo838 – volume: 15 start-page: 183 year: 2004 ident: 2024011007174092200_CR42 article-title: Influence of erosion on soil microbial biomass, abundance and community diversity publication-title: Land Degrad Dev. doi: 10.1002/ldr.607 – volume: 365 start-page: eaav0550 year: 2019 ident: 2024011007174092200_CR22 article-title: The global soil community and its influence on biogeochemistry publication-title: Science. doi: 10.1126/science.aav0550 – volume: 6 start-page: 6936 year: 2015 ident: 2024011007174092200_CR50 article-title: Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats publication-title: Nat Commun. doi: 10.1038/ncomms7936 – volume: 307 start-page: 107232 year: 2021 ident: 2024011007174092200_CR70 article-title: Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment publication-title: Agr Ecosyst Environ. doi: 10.1016/j.agee.2020.107232 – volume: 85 start-page: e00162 year: 2019 ident: 2024011007174092200_CR100 article-title: Microbial network and soil properties are changed in bacterial wilt-susceptible soil publication-title: Appl Environ Microb. doi: 10.1128/AEM.00162-19 – volume: 353 start-page: 1272 year: 2016 ident: 2024011007174092200_CR69 article-title: Decoupling function and taxonomy in the global ocean microbiome publication-title: Science. doi: 10.1126/science.aaf4507 – volume: 357 start-page: 420 year: 2006 ident: 2024011007174092200_CR63 article-title: Application of random matrix theory to biological networks publication-title: Phys Lett A. doi: 10.1016/j.physleta.2006.04.076 – volume: 112 start-page: 15684 year: 2015 ident: 2024011007174092200_CR27 article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1516684112 – volume: 24 start-page: 2818 year: 2018 ident: 2024011007174092200_CR41 article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents publication-title: Glob Change Biol doi: 10.1111/gcb.14113 – volume: 226 start-page: 232 year: 2020 ident: 2024011007174092200_CR99 article-title: Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes publication-title: N Phytol. doi: 10.1111/nph.16345 – volume: 8 start-page: 226 year: 2014 ident: 2024011007174092200_CR121 article-title: Resistance and resilience of the forest soil microbiome to logging-associated compaction publication-title: ISME J doi: 10.1038/ismej.2013.141 – volume: 55 start-page: 121 year: 2019 ident: 2024011007174092200_CR52 article-title: Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability publication-title: Biol Fertil Soils doi: 10.1007/s00374-018-01336-5 – volume: 6 start-page: 1007 year: 2012 ident: 2024011007174092200_CR92 article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients publication-title: ISME J. doi: 10.1038/ismej.2011.159 – volume: 20 start-page: 2207 year: 2018 ident: 2024011007174092200_CR40 article-title: Keystone taxa predict compositional change in microbial communities publication-title: Environ Microbiol. doi: 10.1111/1462-2920.14257 – volume: 97 start-page: 40 year: 2016 ident: 2024011007174092200_CR82 article-title: Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau publication-title: Soil Biol Biochem. doi: 10.1016/j.soilbio.2016.02.013 – volume: 1 start-page: 28 year: 2013 ident: 2024011007174092200_CR71 article-title: Colonization patterns of soil microbial communities in the Atacama Desert publication-title: Microbiome. doi: 10.1186/2049-2618-1-28 – volume: 64 start-page: 1285 year: 2000 ident: 2024011007174092200_CR74 article-title: Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.6441285x – volume: 77 start-page: 6295 year: 2011 ident: 2024011007174092200_CR84 article-title: Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil publication-title: Appl Environ Microb. doi: 10.1128/AEM.05005-11 – volume: 8 start-page: 1548 year: 2014 ident: 2024011007174092200_CR54 article-title: Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest publication-title: ISME J. doi: 10.1038/ismej.2013.253 – volume: 80 start-page: 3034 year: 2014 ident: 2024011007174092200_CR90 article-title: Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert publication-title: Appl Environ Microb. doi: 10.1128/AEM.03414-13 – volume: 7 start-page: 143 year: 2019 ident: 2024011007174092200_CR96 article-title: Suppressed N fixation and diazotrophs after four decades of fertilization publication-title: Microbiome. doi: 10.1186/s40168-019-0757-8 – volume: 3 start-page: 378 year: 2009 ident: 2024011007174092200_CR91 article-title: Phylogenetic diversity of Acidobacteria in a former agricultural soil publication-title: ISME J. doi: 10.1038/ismej.2008.113 – volume: 13 start-page: 113 year: 2012 ident: 2024011007174092200_CR103 article-title: Molecular ecological network analyses publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-13-113 – volume: 64 start-page: 286 year: 2000 ident: 2024011007174092200_CR75 article-title: Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio publication-title: Soil Sci Soc Am J doi: 10.2136/sssaj2000.641286x – volume: 528 start-page: 69 year: 2015 ident: 2024011007174092200_CR20 article-title: Soil biodiversity and human health publication-title: Nature. doi: 10.1038/nature15744 – volume: 100 start-page: 317 year: 2012 ident: 2024011007174092200_CR51 article-title: Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern publication-title: J Ecol doi: 10.1111/j.1365-2745.2011.01918.x – volume: 150 start-page: 108013 year: 2020 ident: 2024011007174092200_CR104 article-title: Soil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern China publication-title: Soil Biol Biochem. doi: 10.1016/j.soilbio.2020.108013 – volume: 11 start-page: 2691 year: 2017 ident: 2024011007174092200_CR86 article-title: Drought and host selection influence bacterial community dynamics in the grass root microbiome publication-title: ISME J doi: 10.1038/ismej.2017.118 – volume: 10 start-page: 1891 year: 2016 ident: 2024011007174092200_CR66 article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China publication-title: ISME J doi: 10.1038/ismej.2015.261 – start-page: 104 volume-title: Soil erosion: the greatest challenge for sustainable soil management. year: 2019 ident: 2024011007174092200_CR3 – volume: 2 start-page: e00122 year: 2011 ident: 2024011007174092200_CR24 article-title: Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2 publication-title: MBio. doi: 10.1128/mBio.00122-11 – volume: 152 start-page: 103544 year: 2020 ident: 2024011007174092200_CR73 article-title: Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles publication-title: Appl Soil Ecol. doi: 10.1016/j.apsoil.2020.103544 – volume: 368 start-page: 1621 year: 2013 ident: 2024011007174092200_CR95 article-title: Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems publication-title: Philos Trans R Soc B Biol Sci doi: 10.1098/rstb.2013.0119 – ident: 2024011007174092200_CR6 – volume: 9 start-page: 357 year: 2012 ident: 2024011007174092200_CR57 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat Methods. doi: 10.1038/nmeth.1923 – volume: 4 start-page: 210 year: 2020 ident: 2024011007174092200_CR32 article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes publication-title: Nat Ecol Evol doi: 10.1038/s41559-019-1084-y – volume: 55 start-page: 53 year: 2019 ident: 2024011007174092200_CR89 article-title: Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil publication-title: Biol Fert Soils. doi: 10.1007/s00374-018-1328-z – volume: 9 start-page: 3033 year: 2018 ident: 2024011007174092200_CR23 article-title: Soil bacterial networks are less stable under drought than fungal networks publication-title: Nat Commun. doi: 10.1038/s41467-018-05516-7 – volume: 72 start-page: 1719 year: 2006 ident: 2024011007174092200_CR80 article-title: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes publication-title: Appl Environ Microb. doi: 10.1128/AEM.72.3.1719-1728.2006 – volume: 4 start-page: eaat1808 year: 2018 ident: 2024011007174092200_CR79 article-title: Biogeography of soil bacteria and archaea across France publication-title: Sci Adv. doi: 10.1126/sciadv.aat1808 – volume: 8 start-page: 361 year: 2009 ident: 2024011007174092200_CR68 article-title: Gephi: an open source software for exploring and manipulating networks publication-title: ICWSM Conf doi: 10.1609/icwsm.v3i1.13937 – volume: 6 start-page: 610 year: 2012 ident: 2024011007174092200_CR58 article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea publication-title: ISME J. doi: 10.1038/ismej.2011.139 – volume: 2 start-page: 269 year: 2018 ident: 2024011007174092200_CR16 article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems publication-title: Nat Ecol Evol doi: 10.1038/s41559-017-0415-0 – volume: 6 start-page: 343 year: 2012 ident: 2024011007174092200_CR35 article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities publication-title: ISME J doi: 10.1038/ismej.2011.119 – volume: 47 start-page: 291 year: 1998 ident: 2024011007174092200_CR8 article-title: Carbon distribution and losses: erosion and deposition effects publication-title: Soil Res – volume: 74 start-page: 325 year: 2017 ident: 2024011007174092200_CR109 article-title: The effect of land use on bacterial communities in Saline-Alkali soil publication-title: Curr Microbiol doi: 10.1007/s00284-017-1195-0 – volume: 93 start-page: 490 year: 2018 ident: 2024011007174092200_CR93 article-title: Indicators of arable soils fatigue Bacterial - families and genera: a metagenomic approach publication-title: Ecol Indic. doi: 10.1016/j.ecolind.2018.05.033 – volume: 459 start-page: 193 year: 2009 ident: 2024011007174092200_CR38 article-title: Microbial community structure and its functional implications publication-title: Nature. doi: 10.1038/nature08058 – volume: 99 start-page: 583 year: 2018 ident: 2024011007174092200_CR116 article-title: Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere publication-title: Ecology. doi: 10.1002/ecy.2137 – ident: 2024011007174092200_CR17 – volume: 30 start-page: 49 year: 2019 ident: 2024011007174092200_CR94 article-title: Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow publication-title: Land Degrad Dev. doi: 10.1002/ldr.3189 – volume: 16 start-page: 420 year: 2006 ident: 2024011007174092200_CR47 article-title: Effect of vegetation changes on soil erosion on the Loess Plateau publication-title: Pedosphere doi: 10.1016/S1002-0160(06)60071-4 – volume: 138 start-page: 223 year: 2019 ident: 2024011007174092200_CR106 article-title: Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size publication-title: Appl Soil Ecol. doi: 10.1016/j.apsoil.2019.03.001 – volume: 335 start-page: 214 year: 2012 ident: 2024011007174092200_CR14 article-title: Plant species richness and ecosystem multifunctionality in global drylands publication-title: Science. doi: 10.1126/science.1215442 – volume: 50 start-page: 145 year: 2019 ident: 2024011007174092200_CR21 article-title: More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health publication-title: Annu Rev Ecol Evol Syst. doi: 10.1146/annurev-ecolsys-110617-062605 – volume: 13 start-page: 1722 year: 2019 ident: 2024011007174092200_CR36 article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots publication-title: ISME J. doi: 10.1038/s41396-019-0383-2 – volume: 8 start-page: 1694 year: 2017 ident: 2024011007174092200_CR10 article-title: Organic carbon burial in global lakes and reservoirs publication-title: Nat Commun doi: 10.1038/s41467-017-01789-6 – volume: 5 start-page: 314 year: 2020 ident: 2024011007174092200_CR97 article-title: Control of nitrogen fixation in bacteria that associate with cereals publication-title: Nat Microbiol doi: 10.1038/s41564-019-0631-2 – volume: 8 start-page: e00764 year: 2017 ident: 2024011007174092200_CR87 article-title: Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes publication-title: mBio. doi: 10.1128/mBio.00764-17 – volume: 4 start-page: e00061 year: 2019 ident: 2024011007174092200_CR88 article-title: Metaphenomic responses of a native prairie soil microbiome to moisture perturbations publication-title: mSystems. – volume: 7 start-page: 12083 year: 2016 ident: 2024011007174092200_CR119 article-title: Temperature mediates continental-scale diversity of microbes in forest soils publication-title: Nat Commun. doi: 10.1038/ncomms12083 – volume: 97 start-page: 188 year: 2016 ident: 2024011007174092200_CR98 article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil publication-title: Soil Biol Biochem. doi: 10.1016/j.soilbio.2016.03.017 – volume: 3 start-page: 1298 year: 2019 ident: 2024011007174092200_CR114 article-title: Continental scale structuring of forest and soil diversity via functional traits publication-title: Nat Ecol Evol doi: 10.1038/s41559-019-0954-7 – volume: 34 start-page: 295 year: 2014 ident: 2024011007174092200_CR44 article-title: The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China publication-title: Acta Ecologica Sin doi: 10.1016/j.chnaes.2014.10.001 – volume: 24 start-page: 2433 year: 2015 ident: 2024011007174092200_CR110 article-title: Soil microbiome responses to the short-term effects of Amazonian deforestation publication-title: Mol Ecol. doi: 10.1111/mec.13172 – volume: 93 start-page: 491 year: 2006 ident: 2024011007174092200_CR64 article-title: Adaptive linear step-up procedures that control the false discovery rate publication-title: Biometrika. doi: 10.1093/biomet/93.3.491 – volume: 8 start-page: 520 year: 2018 ident: 2024011007174092200_CR76 article-title: Impacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central Ohio publication-title: Sci Rep. doi: 10.1038/s41598-017-18922-6 – volume: 3 start-page: 992 year: 2009 ident: 2024011007174092200_CR81 article-title: Abundance, composition, diversity and novelty of soil Proteobacteria publication-title: ISME J. doi: 10.1038/ismej.2009.43 – ident: 2024011007174092200_CR61 – volume: 528 start-page: 60 year: 2015 ident: 2024011007174092200_CR113 article-title: The contentious nature of soil organic matter publication-title: Nature. doi: 10.1038/nature16069 – volume: 72 start-page: 6316 year: 2006 ident: 2024011007174092200_CR107 article-title: Microbial population dynamics associated with crude-oil biodegradation in diverse soils publication-title: Appl Environ Microb doi: 10.1128/AEM.01015-06 – volume: 7 start-page: 10541 year: 2016 ident: 2024011007174092200_CR15 article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems publication-title: Nat Commun. doi: 10.1038/ncomms10541 – volume: 27 start-page: 326 year: 1957 ident: 2024011007174092200_CR59 article-title: An ordination of the upland forest communities of southern Wisconsin publication-title: Ecol Monogr. doi: 10.2307/1942268 – volume: 4 start-page: 4062 year: 2014 ident: 2024011007174092200_CR115 article-title: Global pattern of soil carbon losses due to the conversion of forests to agricultural land publication-title: Sci Rep. doi: 10.1038/srep04062 – volume-title: Chemical and Microbiological Properties year: 1982 ident: 2024011007174092200_CR48 – volume: 10 start-page: 4841 year: 2019 ident: 2024011007174092200_CR33 article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning publication-title: Nat Commun doi: 10.1038/s41467-019-12798-y – start-page: 301 volume-title: Soil ecology and ecosystem services year: 2012 ident: 2024011007174092200_CR7 doi: 10.1093/acprof:oso/9780199575923.003.0027 – volume: 7 start-page: 384 year: 2013 ident: 2024011007174092200_CR85 article-title: Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought publication-title: ISME J doi: 10.1038/ismej.2012.113 – volume: 99 start-page: 690 year: 2018 ident: 2024011007174092200_CR37 article-title: Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? publication-title: Ecology. doi: 10.1002/ecy.2142 – volume: 119 start-page: 128 year: 2017 ident: 2024011007174092200_CR83 article-title: Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2017.06.009 – volume: 11 start-page: 296 year: 2008 ident: 2024011007174092200_CR34 article-title: The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems publication-title: Ecol Lett doi: 10.1111/j.1461-0248.2007.01139.x – volume: 43 start-page: 1837 year: 2011 ident: 2024011007174092200_CR72 article-title: Changes in variability of soil moisture alter microbial community C and N resource use publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2011.04.020 – volume: 96 start-page: fiaa047 year: 2020 ident: 2024011007174092200_CR111 article-title: Soil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forest publication-title: FEMS Microbiol Ecol. doi: 10.1093/femsec/fiaa047 – volume: 9 start-page: 559 year: 2008 ident: 2024011007174092200_CR62 article-title: WGCNA: an R package for weighted correlation network analysis publication-title: BMC Bioinforma. doi: 10.1186/1471-2105-9-559 – volume: 8 start-page: 450 year: 2015 ident: 2024011007174092200_CR12 article-title: High rates of organic carbon burial in fjord sediments globally publication-title: Nat Geosci. doi: 10.1038/ngeo2421 – volume: 5 start-page: 219 year: 2014 ident: 2024011007174092200_CR67 article-title: Deciphering microbial interactions and detecting keystone species with co-occurrence networks publication-title: Front Microbiol doi: 10.3389/fmicb.2014.00219 – volume: 8 start-page: 1 year: 2017 ident: 2024011007174092200_CR5 article-title: An assessment of the global impact of 21st century land use change on soil erosion publication-title: Nat Commun. doi: 10.1038/s41467-017-02142-7 – volume: 105 start-page: 11512 year: 2008 ident: 2024011007174092200_CR120 article-title: Resistance resilience, and redundancy in microbial communities publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.0801925105 – volume: 318 start-page: 626 year: 2007 ident: 2024011007174092200_CR13 article-title: The impact of agricultural soil erosion on the global carbon cycle publication-title: Science. doi: 10.1126/science.1145724 – volume: 19 start-page: 375 year: 2016 ident: 2024011007174092200_CR77 article-title: Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression publication-title: Ecol Lett. doi: 10.1111/ele.12567 – volume: 8 start-page: 813 year: 2018 ident: 2024011007174092200_CR28 article-title: Climate warming leads to divergent succession of grassland microbial communities publication-title: Nat Clim Change. doi: 10.1038/s41558-018-0254-2 – volume: 1695 start-page: 1 year: 2006 ident: 2024011007174092200_CR65 article-title: The igraph software package for complex network research. InterJournal publication-title: Complex Syst – volume: 99 start-page: 2455 year: 2018 ident: 2024011007174092200_CR118 article-title: Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes publication-title: Ecology. doi: 10.1002/ecy.2482 – volume: 359 start-page: 320 year: 2018 ident: 2024011007174092200_CR117 article-title: A global atlas of the dominant bacteria found in soil publication-title: Science. doi: 10.1126/science.aap9516 – volume: 515 start-page: 505 year: 2014 ident: 2024011007174092200_CR18 article-title: Belowground biodiversity and ecosystem functioning publication-title: Nature. doi: 10.1038/nature13855 – volume: 99 start-page: 137 year: 2016 ident: 2024011007174092200_CR102 article-title: Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2016.05.005 – volume: 21 start-page: 1590 year: 2015 ident: 2024011007174092200_CR78 article-title: Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective publication-title: Glob Change Biol. doi: 10.1111/gcb.12788 – volume-title: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils year: 2015 ident: 2024011007174092200_CR1 – volume: 7 start-page: 335 year: 2010 ident: 2024011007174092200_CR53 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat Methods doi: 10.1038/nmeth.f.303 – ident: 2024011007174092200_CR2 – volume: 112 start-page: 7033 year: 2015 ident: 2024011007174092200_CR26 article-title: Biotic interactions mediate soil microbial feedbacks to climate change publication-title: Proc Natl Acad Sci USA. doi: 10.1073/pnas.1502956112 |
SSID | ssj0057667 |
Score | 2.7147267 |
Snippet | While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2474 |
SubjectTerms | 631/326/171/1818 704/158/855 Abundance Bacteria - genetics Biodegradation Biomedical and Life Sciences Community composition Complexity Ecology Ecosystem services Evolutionary Biology Humans Land degradation Life Sciences Microbial activity Microbial Consortia Microbial Ecology Microbial Genetics and Genomics Microbiology Microbiota Microorganisms Service restoration Soil Soil erosion Soil Microbiology Soil properties Soil texture Texture |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR31ZXieBNg9umbepJRFxE0IsKeyt5FRe0u9oV9N87kz5kFb02CUknycwk8-UbgKO-djJxKuTSSMHRHqdco1nmSUzvQKUonEcT3t6l14_xzTAZNhduVQOrbHWiV9R2bOiO_BRd34S4zhJ5PnnllDWKoqtNCo15WCTqMoJ0yWF34EJX2meQRQuJY0FN3Tya6YvstELl7eG3eJgmakwezhqmX97mb9Dkj8ipN0iDVVhpPEl2UU_9Gsy5ch2W6tySnxtwf4XdoNDZG5GzuopV49Ezexl54iVsZ1tAxgkrayg48_By94HfmCot81hDsnv1dSF-3oTHwdXD5TVvMihwg57YlNvIJpm1RmhivVFRYgt71jfCUjTVmKIfWmcjdEm0i1zsk1hpqVyqilTZOFFiCxbKcel2gMWoDZTSNiWONaUyZTKlo0zHhY5kauIAwlZ8uWnoxSnLxXPuw9wiy2uR5yjy3Is8DwM47tpManKNf2v32lnJm41W5d_LIoDDrhi3CMU9VOnG71QHrXBKmiiA7XoSu-6EkFh2lgUgZ6a3q0D027Ml5ejJ03BnqL3iEId10i6E72H9_Re7___FHixHflESxLAHC9O3d7ePbs9UH_i1_QUzr_9q priority: 102 providerName: ProQuest |
Title | Erosion reduces soil microbial diversity, network complexity and multifunctionality |
URI | https://link.springer.com/article/10.1038/s41396-021-00913-1 https://www.ncbi.nlm.nih.gov/pubmed/33712698 https://www.proquest.com/docview/2555778657 https://www.proquest.com/docview/2501261793 https://pubmed.ncbi.nlm.nih.gov/PMC8319411 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50RfBFvK3HEsE3LW6btqmPuqwsgiIesG8lV3Fh7coeoP_eybRdWS_wrSRpkk6SmUnz5RuA45ayIrYy8IUW3Ed7nPgKzbIfR-4eqOC5JTThzW3SfYque3FvAcL6LgyB9onSktR0jQ47G6OyJbgsbn4dlaWPO54lR93uZnU7adfaF91nihqLVhHbR-1cXZRp8fSHOuaN0TcP8ztQ8stpKRmhqzVYrbxHdlH2dx0WbLEBy2U8yXd86hAH9fsmPHSwQRQ5GzlqVjtm42F_wF76RLuENZgajnHKihIIzghcbt8wjcnCMEIaOqtX_izE5C14uuo8trt-FT_B1-iHTXwTmjg1RnPlOG9kGJvcnLc0N-4sVeu8FRhrQnRIlA1tRCGslJA2kXkiTRRLvg2NYljYXWAR6gIplUkcw5qUqdSpVGGqolyFItGRB0EtyExX5OIuxsUgo0Nunmal8DMUfkbCzwIPTmbvvJbUGn-WPqjHJ6uW2TjD_VDsCPBi4cHRLBsXiDv1kIUdTl0ZtMGJ00Me7JTDOWuOc4F556kHYm6gZwUc-fZ8TtF_JhLuFHVXFGC3Tusp8dmt379i73_F92ElpOnqAIcH0JiMpvYQnaCJasKi6IkmLF12bu_um7QGPgAJwAJ4 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ2p1YzuPHhDisdWWtisErdSb8StipZItzVbQP8VvZMZJtloqeus1dh4ej-cbZ8bfALwc2lBkwaS8cIXkiMc5twjLPFN0DrSQVYjZhHuTfHygPh1mhyvwpz8LQ2mVvU2MhtrPHP0j30DXNyOus6x4e_yTU9Uoiq72JTRatdgJZ79wy9a82f6I8_tKiK3R_ocx76oKcIfeyZx74bPSeyctMcEYkfnKbw6d9BRhdK4apj54gTBtgwgqFnayhQm5qXLjVWYkPvcarCqJW5kBrL4fTT5_6W0_Ou-xZi1iMo4esaE7pjOU5UaDcBETfnH7TmScPF2Gwgv-7cU0zX9itRECt27Drc53Ze9aZbsDK6G-C9fbapZn9-DrCF-D08xOiA42NKyZTY_Yj2mkesL7fJ8Css7qNvmcxYT28BuvMVN7FrMbCWnbH5R4-T4cXIl0H8CgntXhETCF9scY63NidTOmNK40VpRWVVYUuVMJpL34tOsIzamuxpGOgXVZ6lbkGkWuo8h1msDrxT3HLZ3Hpb3X-lnR3dJu9LkiJvBi0YyLkiItpg6zU-qDuJ-T7UvgYTuJi9dJWWDbZplAsTS9iw5E-L3cUk-_R-LvEu2lSvGz1ntFOP-s_4_i8eWjeA43xvt7u3p3e7LzBG6KqKCU4LgGg_nJaXiKTtfcPus0ncG3q15cfwEteT9E |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRuPF4AtHUNtET9Jhp3tmejgQY4QNiBITJdlb26-Jm-AsMkuEv-avs6rnQVYiN67TPa96d9fXVQCvRzaoPJiUK6ckR39ccItumecZnQNVsgoRTfj5sNg7yj5O8skS_OnPwhCssreJ0VD7maM98k0MfXOqdYYL-KqDRXzZGb87-cWpgxRlWvt2Gq2IHISL37h8a7b3d5DXb4QY7377sMe7DgPcYaQy5174vPTeSUtVYYzIfeW3Rk56yjY6V41SH7xAl22DCFls8mSVCYWpCuOz3Eh87i24rWSeko6pybDYwzA-dq9F74x0QC_RHdgZyXKzQccRob-4kKeynDxddIpXIt2rgM1_srbRGY5X4H4XxbL3rdg9gKVQP4Q7bV_Li0fwdRdfgwxnp1QYNjSsmU2P2c9pLPqE9_keDLLB6haGziK0PZzjNWZqzyLOkXxuu1WJlx_D0Y3Q9gks17M6PAWWoSUyxvqC6rsZUxpXGitKm1VWqMJlCaQ9-bTrSptTh41jHVPsstQtyTWSXEeS6zSBt8M9J21hj2tnr_dc0Z2SN_pSJBN4NQyjelLOxdRhdkZzMAIoyAomsNoycXidlArHtsoE1AJ7hwlU-ntxpJ7-iCXAS7ScWYqftdELwuVn_f8vnl3_Fy_hLqqU_rR_eLAG90SUT0I6rsPy_PQsPMfoa25fRDFn8P2m9eovfX5CFA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+reduces+soil+microbial+diversity%2C+network+complexity+and+multifunctionality&rft.jtitle=The+ISME+Journal&rft.au=Qiu%2C+Liping&rft.au=Zhang%2C+Qian&rft.au=Zhu%2C+Hansong&rft.au=Reich%2C+Peter+B.&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=15&rft.issue=8&rft.spage=2474&rft.epage=2489&rft_id=info:doi/10.1038%2Fs41396-021-00913-1&rft.externalDocID=10_1038_s41396_021_00913_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon |