Erosion reduces soil microbial diversity, network complexity and multifunctionality

While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the e...

Full description

Saved in:
Bibliographic Details
Published inThe ISME Journal Vol. 15; no. 8; pp. 2474 - 2489
Main Authors Qiu, Liping, Zhang, Qian, Zhu, Hansong, Reich, Peter B., Banerjee, Samiran, van der Heijden, Marcel G. A., Sadowsky, Michael J., Ishii, Satoshi, Jia, Xiaoxu, Shao, Mingan, Liu, Baoyuan, Jiao, Huan, Li, Haiqiang, Wei, Xiaorong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2021
Oxford University Press
Subjects
Online AccessGet full text

Cover

Loading…
Abstract While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
AbstractList While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
Author Wei, Xiaorong
Sadowsky, Michael J.
Ishii, Satoshi
Shao, Mingan
Zhang, Qian
Qiu, Liping
Banerjee, Samiran
Zhu, Hansong
van der Heijden, Marcel G. A.
Jia, Xiaoxu
Reich, Peter B.
Liu, Baoyuan
Jiao, Huan
Li, Haiqiang
Author_xml – sequence: 1
  givenname: Liping
  surname: Qiu
  fullname: Qiu, Liping
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, CAS Center for Excellence in Quaternary Science and Global Change, College of Natural Resources and Environment, Northwest A&F University
– sequence: 2
  givenname: Qian
  orcidid: 0000-0002-1222-308X
  surname: Zhang
  fullname: Zhang, Qian
  organization: BioTechnology Institute, University of Minnesota, College of the Environment and Ecology, Xiamen University, Xiamen
– sequence: 3
  givenname: Hansong
  surname: Zhu
  fullname: Zhu, Hansong
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 4
  givenname: Peter B.
  orcidid: 0000-0003-4424-662X
  surname: Reich
  fullname: Reich, Peter B.
  organization: Department of Forest Resources, University of Minnesota, Hawkesbury Institute for the Environment, Western Sydney University
– sequence: 5
  givenname: Samiran
  surname: Banerjee
  fullname: Banerjee, Samiran
  organization: Department of Microbiological Sciences, North Dakota State University
– sequence: 6
  givenname: Marcel G. A.
  orcidid: 0000-0001-7040-1924
  surname: van der Heijden
  fullname: van der Heijden, Marcel G. A.
  organization: Agroscope, Department of Agroecology & Environment, Department of Plant and Microbial Biology, University of Zürich
– sequence: 7
  givenname: Michael J.
  orcidid: 0000-0001-8779-2781
  surname: Sadowsky
  fullname: Sadowsky, Michael J.
  organization: BioTechnology Institute, University of Minnesota, Department of Soil, Water, and Climate, University of Minnesota
– sequence: 8
  givenname: Satoshi
  orcidid: 0000-0003-3600-9165
  surname: Ishii
  fullname: Ishii, Satoshi
  organization: BioTechnology Institute, University of Minnesota, Department of Soil, Water, and Climate, University of Minnesota
– sequence: 9
  givenname: Xiaoxu
  surname: Jia
  fullname: Jia, Xiaoxu
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
– sequence: 10
  givenname: Mingan
  surname: Shao
  fullname: Shao, Mingan
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
– sequence: 11
  givenname: Baoyuan
  surname: Liu
  fullname: Liu, Baoyuan
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University
– sequence: 12
  givenname: Huan
  surname: Jiao
  fullname: Jiao, Huan
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 13
  givenname: Haiqiang
  surname: Li
  fullname: Li, Haiqiang
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, College of Natural Resources and Environment, Northwest A&F University
– sequence: 14
  givenname: Xiaorong
  orcidid: 0000-0002-0359-0339
  surname: Wei
  fullname: Wei, Xiaorong
  email: weixr@nwsuaf.edu.cn
  organization: State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, CAS Center for Excellence in Quaternary Science and Global Change, University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33712698$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1PHSEYhUmjqZ9_oItmkm5cdCofA8xsmhij1cTEhe2aMPCORRm4hZmr_nu5vWqrC1eQl-c9OZyzgzZCDIDQJ4K_Eczaw9wQ1okaU1Jj3BFWkw9om0hOaskk3ni5C7qFdnK-wZhLIeRHtMWYJFR07Ta6OkkxuxiqBHY2kKscna9GZ1LsnfaVdUtI2U0PX6sA011Mt5WJ48LDfZlVOthqnP3khjmYqchoX8Z7aHPQPsP-07mLfp2e_Dw-qy8uf5wfH13Uhjd4qi21vLXWsJ7SFmvK7WA7bJjFgnfGDJhYsJR1sgcKjWREtL3UIPQgtG24Zrvo-1p3MfcjWANhStqrRXKjTg8qaqdevwT3W13HpWoZ6RpCisDBk0CKf2bIkxpdNuC9DhDnrCjHJSYiO1bQL2_Qmzin8t8VxbmUreCyUJ__d_Ri5TnvArRroOSbc4JBGTfpVXLFoPOKYLWqVq2rVaVa9bdatTJL36w-q7-7xNZLucDhGtI_2-9sPQLSn7io
CitedBy_id crossref_primary_10_1016_j_watres_2024_121930
crossref_primary_10_3390_agronomy14112631
crossref_primary_10_3390_agriculture13122247
crossref_primary_10_1016_j_scitotenv_2024_177424
crossref_primary_10_1016_j_cej_2023_143649
crossref_primary_10_1016_j_jhazmat_2024_136043
crossref_primary_10_1128_spectrum_02483_22
crossref_primary_10_1093_hr_uhae290
crossref_primary_10_3390_bacteria3040018
crossref_primary_10_18307_2024_0513
crossref_primary_10_1111_ejss_13447
crossref_primary_10_3390_microorganisms12091756
crossref_primary_10_1002_ldr_4260
crossref_primary_10_1007_s11104_024_06489_x
crossref_primary_10_1016_j_jhazmat_2022_129186
crossref_primary_10_1016_j_apsoil_2024_105376
crossref_primary_10_2139_ssrn_4100320
crossref_primary_10_1016_j_watres_2023_120330
crossref_primary_10_1016_j_envres_2024_120027
crossref_primary_10_1016_j_jenvman_2023_119688
crossref_primary_10_1016_j_apsoil_2025_105993
crossref_primary_10_1016_j_scitotenv_2024_176586
crossref_primary_10_1016_j_envres_2024_119152
crossref_primary_10_1016_j_apsoil_2022_104725
crossref_primary_10_1007_s42773_024_00376_5
crossref_primary_10_1016_j_catena_2022_106430
crossref_primary_10_1016_j_foreco_2024_121744
crossref_primary_10_1186_s40168_021_01224_5
crossref_primary_10_1007_s11356_023_30273_6
crossref_primary_10_1007_s40333_022_0064_2
crossref_primary_10_1016_j_catena_2024_108298
crossref_primary_10_1093_jpe_rtad040
crossref_primary_10_1007_s11356_022_20325_8
crossref_primary_10_1016_j_ecolind_2024_111660
crossref_primary_10_1007_s00374_023_01716_6
crossref_primary_10_3390_microorganisms12101972
crossref_primary_10_1016_j_apsoil_2022_104735
crossref_primary_10_1016_j_jwpe_2025_107046
crossref_primary_10_3390_microorganisms10081620
crossref_primary_10_1016_j_envpol_2021_117660
crossref_primary_10_1016_j_chemosphere_2023_138832
crossref_primary_10_1016_j_apsoil_2021_104323
crossref_primary_10_1016_j_micres_2024_127931
crossref_primary_10_1016_j_pedsph_2022_06_044
crossref_primary_10_3390_plants13030393
crossref_primary_10_2139_ssrn_4111357
crossref_primary_10_1016_j_micres_2024_127936
crossref_primary_10_1186_s40538_022_00372_6
crossref_primary_10_1016_j_jenvman_2023_118135
crossref_primary_10_1016_j_bcab_2023_102872
crossref_primary_10_1016_j_eja_2023_127058
crossref_primary_10_1016_j_catena_2024_108195
crossref_primary_10_1128_aem_01443_24
crossref_primary_10_1016_j_envint_2024_108823
crossref_primary_10_1007_s42729_024_01749_2
crossref_primary_10_1038_s41559_024_02437_1
crossref_primary_10_1016_j_micres_2025_128075
crossref_primary_10_1016_j_gecco_2024_e03379
crossref_primary_10_1111_sum_12790
crossref_primary_10_1016_j_envres_2025_121432
crossref_primary_10_3390_w14040614
crossref_primary_10_1016_j_envres_2023_116847
crossref_primary_10_1016_j_pedsph_2024_10_010
crossref_primary_10_3390_land10060605
crossref_primary_10_1007_s00374_023_01719_3
crossref_primary_10_3389_fmicb_2023_1198808
crossref_primary_10_1111_1462_2920_16185
crossref_primary_10_1016_j_jclepro_2025_144963
crossref_primary_10_1007_s00374_022_01675_4
crossref_primary_10_1016_j_envint_2024_108611
crossref_primary_10_1016_j_jece_2024_113624
crossref_primary_10_1016_j_foreco_2021_119877
crossref_primary_10_1016_j_soilbio_2022_108698
crossref_primary_10_1016_j_ecoleng_2024_107501
crossref_primary_10_3390_d14010014
crossref_primary_10_1016_j_catena_2023_107737
crossref_primary_10_1016_j_jes_2025_03_009
crossref_primary_10_3390_agronomy13122950
crossref_primary_10_1007_s10123_023_00388_4
crossref_primary_10_1016_j_baae_2023_05_008
crossref_primary_10_3390_su16020795
crossref_primary_10_1016_j_apsoil_2023_104900
crossref_primary_10_3389_fmicb_2025_1513944
crossref_primary_10_1021_acs_est_4c02082
crossref_primary_10_1016_j_jhazmat_2023_131525
crossref_primary_10_1016_j_ecolind_2024_112227
crossref_primary_10_1016_j_jenvman_2024_122604
crossref_primary_10_1128_spectrum_03683_23
crossref_primary_10_1016_j_rhisph_2022_100649
crossref_primary_10_1016_j_envres_2024_120258
crossref_primary_10_3390_soilsystems8020039
crossref_primary_10_1016_j_jenvman_2023_118182
crossref_primary_10_1016_j_scitotenv_2024_177564
crossref_primary_10_1016_j_jenvman_2023_119390
crossref_primary_10_3390_agronomy14030594
crossref_primary_10_3390_su16156381
crossref_primary_10_1016_j_jece_2024_113646
crossref_primary_10_1002_ldr_4562
crossref_primary_10_1002_imt2_106
crossref_primary_10_1002_jpln_202300372
crossref_primary_10_1002_ldr_4682
crossref_primary_10_1002_ldr_5411
crossref_primary_10_1016_j_catena_2022_106588
crossref_primary_10_1111_gcb_70057
crossref_primary_10_3389_fpls_2024_1460462
crossref_primary_10_1186_s40793_024_00608_y
crossref_primary_10_1016_j_scitotenv_2024_176489
crossref_primary_10_1016_j_envint_2024_108508
crossref_primary_10_1128_msystems_00100_21
crossref_primary_10_1016_j_scitotenv_2022_160654
crossref_primary_10_1021_acs_jafc_4c06528
crossref_primary_10_3390_plants11091164
crossref_primary_10_1016_j_agee_2021_107636
crossref_primary_10_1016_j_ibiod_2022_105493
crossref_primary_10_1016_j_apsoil_2023_105247
crossref_primary_10_1002_ldr_4305
crossref_primary_10_1002_ldr_4547
crossref_primary_10_1007_s11104_023_05983_y
crossref_primary_10_1016_j_still_2023_105950
crossref_primary_10_1111_nph_20118
crossref_primary_10_1016_j_scitotenv_2022_160824
crossref_primary_10_3389_fmicb_2024_1372403
crossref_primary_10_1016_j_catena_2024_108106
crossref_primary_10_1111_1462_2920_70074
crossref_primary_10_1002_ps_8509
crossref_primary_10_1016_j_scitotenv_2022_156334
crossref_primary_10_1016_j_foreco_2023_121632
crossref_primary_10_1016_j_catena_2024_108464
crossref_primary_10_1016_j_catena_2024_108223
crossref_primary_10_1038_s41598_024_57690_y
crossref_primary_10_1016_j_envres_2023_117675
crossref_primary_10_3389_fpls_2024_1411073
crossref_primary_10_3390_f14050955
crossref_primary_10_1016_j_scitotenv_2024_173354
crossref_primary_10_3389_fpls_2022_928367
crossref_primary_10_1016_j_scitotenv_2024_172263
crossref_primary_10_1016_j_geoderma_2023_116340
crossref_primary_10_1093_jpe_rtae096
crossref_primary_10_1016_j_scitotenv_2023_165559
crossref_primary_10_1007_s10123_023_00379_5
crossref_primary_10_1016_j_jenvman_2024_123152
crossref_primary_10_3390_agriculture13122188
crossref_primary_10_1016_j_scitotenv_2024_176957
crossref_primary_10_1016_j_psep_2024_12_004
crossref_primary_10_1016_j_biortech_2024_130548
crossref_primary_10_1016_j_biortech_2024_131758
crossref_primary_10_1016_j_geoderma_2024_116852
crossref_primary_10_1002_ppp3_10575
crossref_primary_10_1016_j_ecolind_2022_108695
crossref_primary_10_3389_fmicb_2023_1125564
crossref_primary_10_1016_j_micres_2024_127651
crossref_primary_10_1016_j_scitotenv_2023_167969
crossref_primary_10_3390_d14121095
crossref_primary_10_1016_j_jhazmat_2024_136227
crossref_primary_10_2139_ssrn_4011783
crossref_primary_10_1007_s11104_023_05897_9
crossref_primary_10_1016_j_envres_2024_118922
crossref_primary_10_1016_j_geoderma_2023_116562
crossref_primary_10_1016_j_ecoenv_2024_116783
crossref_primary_10_3389_fpls_2024_1440951
crossref_primary_10_3390_toxics13010020
crossref_primary_10_1016_j_agee_2021_107686
crossref_primary_10_7717_peerj_17221
crossref_primary_10_3389_fmicb_2022_890712
crossref_primary_10_1007_s00248_024_02390_3
crossref_primary_10_1021_acs_jafc_3c06972
crossref_primary_10_1186_s40793_025_00675_9
crossref_primary_10_1016_j_soilbio_2022_108865
crossref_primary_10_1080_13416979_2023_2265006
crossref_primary_10_1016_j_chemosphere_2023_140067
crossref_primary_10_1016_j_apsoil_2025_105934
crossref_primary_10_1016_j_watres_2023_120955
crossref_primary_10_1016_j_apsoil_2025_105935
crossref_primary_10_1016_j_pedsph_2024_06_011
crossref_primary_10_1016_j_envpol_2022_120953
crossref_primary_10_1016_j_agee_2021_107677
crossref_primary_10_1016_j_envpol_2024_125528
crossref_primary_10_1016_j_catena_2024_108231
crossref_primary_10_1016_j_scitotenv_2022_157459
crossref_primary_10_1016_j_catena_2025_108894
crossref_primary_10_1186_s12870_024_06011_6
crossref_primary_10_3390_microorganisms11030754
crossref_primary_10_1016_j_apsoil_2024_105441
crossref_primary_10_3389_fmicb_2022_971437
crossref_primary_10_1186_s12870_025_06266_7
crossref_primary_10_1016_j_apsoil_2024_105685
crossref_primary_10_1016_j_catena_2023_106914
crossref_primary_10_1016_j_jhazmat_2024_135792
crossref_primary_10_1016_j_envres_2025_121448
crossref_primary_10_1016_j_jece_2024_114435
crossref_primary_10_1016_j_jclepro_2022_133305
crossref_primary_10_1016_j_soilbio_2024_109388
crossref_primary_10_1016_j_scitotenv_2022_156893
crossref_primary_10_1016_j_scitotenv_2023_165486
crossref_primary_10_1016_j_catena_2024_108023
crossref_primary_10_1016_j_jenvman_2023_118553
crossref_primary_10_1016_j_still_2024_106174
crossref_primary_10_3389_fmicb_2023_1167353
crossref_primary_10_1016_j_catena_2025_108790
crossref_primary_10_1016_j_soilbio_2022_108604
crossref_primary_10_1016_j_jhazmat_2024_134450
crossref_primary_10_1016_j_agee_2021_107388
crossref_primary_10_1093_nsr_nwae281
crossref_primary_10_1016_j_marenvres_2023_106233
crossref_primary_10_1016_j_scitotenv_2023_165239
crossref_primary_10_1016_j_scitotenv_2023_164147
crossref_primary_10_1016_j_gecco_2023_e02641
crossref_primary_10_1002_imt2_49
crossref_primary_10_3390_w17050714
crossref_primary_10_1111_1365_2435_14542
crossref_primary_10_3390_biology12071023
crossref_primary_10_3389_fmicb_2022_972300
crossref_primary_10_1111_1462_2920_16236
crossref_primary_10_1016_j_agsy_2023_103768
crossref_primary_10_1016_j_resconrec_2024_107754
crossref_primary_10_1016_j_scitotenv_2024_173128
crossref_primary_10_1016_j_envres_2023_117602
crossref_primary_10_1016_j_scitotenv_2024_173367
crossref_primary_10_1016_j_scitotenv_2024_174572
crossref_primary_10_3390_agriculture13061189
crossref_primary_10_1016_j_apsoil_2025_105869
crossref_primary_10_1016_j_soilbio_2022_108836
crossref_primary_10_1002_imt2_79
crossref_primary_10_1016_j_scitotenv_2023_164377
crossref_primary_10_1073_pnas_2307519120
crossref_primary_10_3390_biology12050693
crossref_primary_10_1016_j_apsoil_2025_105974
crossref_primary_10_3390_plants10081533
crossref_primary_10_1007_s00253_025_13415_3
crossref_primary_10_1016_j_ecolind_2022_109639
crossref_primary_10_1038_s41598_024_65646_5
crossref_primary_10_1016_j_scitotenv_2023_166666
crossref_primary_10_1002_sae2_12059
crossref_primary_10_1016_j_jhazmat_2022_129507
crossref_primary_10_1016_j_hal_2024_102782
crossref_primary_10_1007_s11427_023_2432_9
crossref_primary_10_1016_j_still_2024_106000
crossref_primary_10_1016_j_scitotenv_2023_163416
crossref_primary_10_1016_j_still_2024_106244
crossref_primary_10_1007_s11356_021_15894_z
crossref_primary_10_1016_j_catena_2023_107251
crossref_primary_10_1016_j_scitotenv_2023_163663
crossref_primary_10_1016_j_jhazmat_2024_134301
crossref_primary_10_1016_j_agee_2024_109190
crossref_primary_10_3390_land11122231
crossref_primary_10_1016_j_jes_2024_12_008
crossref_primary_10_1038_s43705_023_00286_w
crossref_primary_10_1016_j_soilbio_2023_109182
crossref_primary_10_1016_j_jenvman_2024_122339
crossref_primary_10_1080_03067319_2024_2401620
crossref_primary_10_1016_j_ijdrr_2024_105015
crossref_primary_10_1016_j_scitotenv_2024_172788
crossref_primary_10_56430_japro_1279830
crossref_primary_10_1016_j_jhazmat_2021_128127
crossref_primary_10_3390_agronomy14071456
crossref_primary_10_1016_j_agee_2024_109189
crossref_primary_10_3389_fmicb_2022_858125
crossref_primary_10_1016_j_agee_2024_109186
crossref_primary_10_1016_j_jhazmat_2024_133567
crossref_primary_10_1016_j_catena_2025_108912
crossref_primary_10_1016_j_scitotenv_2023_163412
crossref_primary_10_1016_j_indic_2023_100332
crossref_primary_10_1016_j_geoderma_2024_116801
crossref_primary_10_1016_j_scitotenv_2022_156868
crossref_primary_10_1016_j_jhazmat_2022_129727
crossref_primary_10_1016_j_scitotenv_2024_174812
crossref_primary_10_1016_j_ecoenv_2024_117468
crossref_primary_10_1007_s00248_023_02173_2
crossref_primary_10_1128_spectrum_00101_22
crossref_primary_10_1002_ldr_4926
crossref_primary_10_1002_ldr_4925
crossref_primary_10_1016_j_soilbio_2024_109366
crossref_primary_10_1016_j_soilbio_2023_109167
crossref_primary_10_3389_fpls_2023_1238056
crossref_primary_10_1021_acs_est_4c01418
crossref_primary_10_3389_fpls_2022_930069
crossref_primary_10_1016_j_jclepro_2024_142836
crossref_primary_10_1016_j_jhazmat_2021_127258
crossref_primary_10_1016_j_still_2024_106159
crossref_primary_10_1016_j_catena_2024_108634
crossref_primary_10_3390_microorganisms12071254
crossref_primary_10_1016_j_jenvman_2024_121395
crossref_primary_10_1016_j_scitotenv_2024_174935
crossref_primary_10_1016_j_geoderma_2023_116607
crossref_primary_10_1016_j_envres_2024_118715
crossref_primary_10_1016_j_biortech_2023_128889
crossref_primary_10_1016_j_catena_2024_108303
crossref_primary_10_1016_j_ecoleng_2023_106933
crossref_primary_10_3390_agronomy14102348
crossref_primary_10_1016_j_catena_2023_107176
crossref_primary_10_1029_2021JG006742
crossref_primary_10_1016_j_catena_2024_108549
crossref_primary_10_1016_j_jenvman_2025_124851
crossref_primary_10_1016_j_jenvman_2024_121188
crossref_primary_10_1016_j_agee_2023_108618
crossref_primary_10_3390_land13101621
crossref_primary_10_3390_agronomy13051392
crossref_primary_10_1186_s40168_023_01484_3
crossref_primary_10_1002_wer_10841
crossref_primary_10_1016_j_anifeedsci_2024_116007
crossref_primary_10_1007_s00253_023_12696_w
crossref_primary_10_1007_s11104_023_06231_z
crossref_primary_10_1016_j_jece_2025_115770
crossref_primary_10_1016_j_ecss_2025_109163
crossref_primary_10_1016_j_apsoil_2024_105733
crossref_primary_10_1016_j_foreco_2022_120734
crossref_primary_10_1007_s11356_024_32390_2
crossref_primary_10_1016_j_catena_2024_108418
crossref_primary_10_1016_j_jhydrol_2024_132155
crossref_primary_10_1007_s10661_023_11593_z
crossref_primary_10_1016_j_anifeedsci_2023_115606
crossref_primary_10_1016_j_ecoenv_2025_117991
crossref_primary_10_1016_j_envpol_2022_119276
crossref_primary_10_1016_j_scitotenv_2024_171007
crossref_primary_10_1016_j_geoderma_2024_116849
crossref_primary_10_1016_j_jhazmat_2021_127470
crossref_primary_10_1016_j_chemosphere_2024_142850
crossref_primary_10_1016_j_jhazmat_2021_127223
crossref_primary_10_3103_S0147687422050039
crossref_primary_10_1016_j_jhydrol_2024_131158
crossref_primary_10_1016_j_apsoil_2024_105827
crossref_primary_10_3389_fmicb_2023_1188229
crossref_primary_10_1016_j_jhazmat_2024_133556
crossref_primary_10_1016_j_jhazmat_2024_134647
crossref_primary_10_1111_1365_2664_14228
crossref_primary_10_1016_j_desal_2023_117228
crossref_primary_10_1016_j_scitotenv_2023_162472
crossref_primary_10_3389_fagro_2023_1134514
crossref_primary_10_3389_fmicb_2024_1391193
crossref_primary_10_1080_13416979_2023_2235499
crossref_primary_10_3390_microorganisms12071322
crossref_primary_10_1016_j_scitotenv_2024_174744
crossref_primary_10_1016_j_foreco_2025_122545
crossref_primary_10_1016_j_catena_2024_108315
crossref_primary_10_1016_j_soilbio_2025_109732
crossref_primary_10_1007_s42832_023_0176_4
crossref_primary_10_3390_microorganisms10061206
crossref_primary_10_1016_j_catena_2025_108732
crossref_primary_10_1016_j_scitotenv_2022_154944
crossref_primary_10_1016_j_agee_2024_109356
crossref_primary_10_1016_j_apsoil_2022_104792
crossref_primary_10_1016_j_agee_2025_109515
crossref_primary_10_1016_j_catena_2024_107806
crossref_primary_10_3390_microorganisms12081546
crossref_primary_10_1016_j_jenvman_2023_119052
crossref_primary_10_3390_agronomy13122984
crossref_primary_10_3390_microorganisms10010042
crossref_primary_10_1016_j_apsoil_2023_104956
crossref_primary_10_1016_j_envint_2024_108655
crossref_primary_10_1016_j_copbio_2024_103254
crossref_primary_10_1016_j_scitotenv_2023_162972
crossref_primary_10_1016_j_ecolind_2025_113185
crossref_primary_10_3390_ijms25010448
crossref_primary_10_3389_fmicb_2023_1068595
crossref_primary_10_1016_j_jece_2025_116130
crossref_primary_10_1016_j_ecolind_2023_110342
crossref_primary_10_1016_j_scitotenv_2023_169351
crossref_primary_10_1002_imt2_161
crossref_primary_10_1016_j_apsoil_2022_104446
crossref_primary_10_1007_s11104_024_06860_y
crossref_primary_10_1016_j_envpol_2023_122616
crossref_primary_10_1016_j_eja_2024_127188
crossref_primary_10_1016_j_jes_2024_10_002
crossref_primary_10_1029_2021EF002588
crossref_primary_10_1016_j_foreco_2023_121086
crossref_primary_10_1021_acs_est_2c08004
crossref_primary_10_3390_land12030638
crossref_primary_10_1016_j_catena_2021_105805
crossref_primary_10_1111_mec_17238
crossref_primary_10_1186_s13717_024_00510_y
crossref_primary_10_1007_s11368_023_03687_5
crossref_primary_10_3389_fenvs_2024_1307631
crossref_primary_10_1016_j_conbuildmat_2024_137230
crossref_primary_10_3389_fmicb_2023_1327523
crossref_primary_10_3390_min13010012
crossref_primary_10_3389_fmicb_2024_1413973
crossref_primary_10_1016_j_ejsobi_2024_103684
crossref_primary_10_1016_j_scitotenv_2022_161029
crossref_primary_10_1016_j_still_2024_106435
crossref_primary_10_1038_s43247_024_01765_1
crossref_primary_10_1016_j_apsoil_2023_104924
crossref_primary_10_1016_j_envres_2024_119330
crossref_primary_10_1038_s41561_024_01440_2
crossref_primary_10_1002_imt2_138
crossref_primary_10_1007_s00248_024_02462_4
crossref_primary_10_1016_j_pedsph_2022_07_007
crossref_primary_10_1016_j_soilbio_2024_109515
crossref_primary_10_3389_fmicb_2024_1430059
crossref_primary_10_1002_ldr_5163
crossref_primary_10_3389_frwa_2024_1374081
crossref_primary_10_1016_j_jenvman_2024_122428
crossref_primary_10_1016_j_jenvman_2024_122668
crossref_primary_10_1128_msystems_00147_24
crossref_primary_10_3389_fmicb_2025_1533839
crossref_primary_10_1016_j_apsoil_2022_104631
crossref_primary_10_1186_s12866_025_03750_w
crossref_primary_10_1007_s42729_023_01504_z
crossref_primary_10_1016_j_geoderma_2024_117088
crossref_primary_10_1016_j_catena_2023_107452
crossref_primary_10_1016_j_chemosphere_2022_134811
crossref_primary_10_3389_fevo_2023_1154787
crossref_primary_10_1002_advs_202307793
crossref_primary_10_1016_j_jclepro_2023_139888
crossref_primary_10_1002_ldr_5031
crossref_primary_10_1016_j_scitotenv_2024_172724
crossref_primary_10_1016_j_catena_2023_107335
crossref_primary_10_1016_j_catena_2023_107698
crossref_primary_10_1016_j_scitotenv_2024_172983
crossref_primary_10_1016_j_indcrop_2024_119000
crossref_primary_10_1007_s11104_023_06380_1
crossref_primary_10_1016_j_ejsobi_2024_103660
crossref_primary_10_3390_microorganisms12050949
crossref_primary_10_3390_plants13081091
crossref_primary_10_1016_j_agee_2023_108470
crossref_primary_10_1016_j_jenvman_2024_120119
crossref_primary_10_2139_ssrn_4135990
crossref_primary_10_1111_pce_15215
crossref_primary_10_1002_ldr_5267
crossref_primary_10_1016_j_fcr_2025_109834
crossref_primary_10_3389_fmicb_2023_1132875
crossref_primary_10_1016_j_scitotenv_2022_153517
crossref_primary_10_1007_s00253_023_12519_y
crossref_primary_10_1177_03091333231216595
crossref_primary_10_1016_j_envint_2023_108151
crossref_primary_10_1016_j_geoderma_2022_115880
crossref_primary_10_1016_j_jclepro_2024_144022
crossref_primary_10_1016_j_scitotenv_2023_163837
crossref_primary_10_1016_j_scitotenv_2023_164932
crossref_primary_10_1016_j_catena_2024_108604
crossref_primary_10_1016_j_ecolecon_2023_108103
crossref_primary_10_1016_j_scitotenv_2024_170648
crossref_primary_10_1016_j_jclepro_2023_139989
crossref_primary_10_3390_su16219481
crossref_primary_10_1016_j_catena_2023_107675
crossref_primary_10_1016_j_jenvman_2024_120379
crossref_primary_10_1016_j_pedobi_2025_151035
crossref_primary_10_1002_imt2_187
crossref_primary_10_3389_fmicb_2022_1013408
crossref_primary_10_1016_j_agee_2023_108372
crossref_primary_10_1128_spectrum_01081_22
crossref_primary_10_1016_j_catena_2023_107329
crossref_primary_10_1016_j_fmre_2025_02_008
crossref_primary_10_1002_ldr_5362
Cites_doi 10.1016/j.soilbio.2019.107686
10.1038/nrmicro.2017.87
10.1016/j.apsoil.2014.06.005
10.1126/science.319.5866.1040
10.1111/gcb.14557
10.1016/j.agee.2020.107081
10.1038/nature10386
10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
10.1126/science.267.5201.1117
10.1016/j.ejsobi.2015.10.003
10.1038/nclimate1781
10.1016/0038-0717(85)90144-0
10.1038/nclimate1951
10.1128/mSystems.00202-17
10.1093/femsec/fix146
10.1016/j.foreco.2019.117805
10.1038/s41579-018-0024-1
10.1371/journal.pcbi.1004658
10.1038/ngeo838
10.1002/ldr.607
10.1126/science.aav0550
10.1038/ncomms7936
10.1016/j.agee.2020.107232
10.1128/AEM.00162-19
10.1126/science.aaf4507
10.1016/j.physleta.2006.04.076
10.1073/pnas.1516684112
10.1111/gcb.14113
10.1111/nph.16345
10.1038/ismej.2013.141
10.1007/s00374-018-01336-5
10.1038/ismej.2011.159
10.1111/1462-2920.14257
10.1016/j.soilbio.2016.02.013
10.1186/2049-2618-1-28
10.2136/sssaj2000.6441285x
10.1128/AEM.05005-11
10.1038/ismej.2013.253
10.1128/AEM.03414-13
10.1186/s40168-019-0757-8
10.1038/ismej.2008.113
10.1186/1471-2105-13-113
10.2136/sssaj2000.641286x
10.1038/nature15744
10.1111/j.1365-2745.2011.01918.x
10.1016/j.soilbio.2020.108013
10.1038/ismej.2017.118
10.1038/ismej.2015.261
10.1128/mBio.00122-11
10.1016/j.apsoil.2020.103544
10.1098/rstb.2013.0119
10.1038/nmeth.1923
10.1038/s41559-019-1084-y
10.1007/s00374-018-1328-z
10.1038/s41467-018-05516-7
10.1128/AEM.72.3.1719-1728.2006
10.1126/sciadv.aat1808
10.1609/icwsm.v3i1.13937
10.1038/ismej.2011.139
10.1038/s41559-017-0415-0
10.1038/ismej.2011.119
10.1007/s00284-017-1195-0
10.1016/j.ecolind.2018.05.033
10.1038/nature08058
10.1002/ecy.2137
10.1002/ldr.3189
10.1016/S1002-0160(06)60071-4
10.1016/j.apsoil.2019.03.001
10.1126/science.1215442
10.1146/annurev-ecolsys-110617-062605
10.1038/s41396-019-0383-2
10.1038/s41467-017-01789-6
10.1038/s41564-019-0631-2
10.1128/mBio.00764-17
10.1038/ncomms12083
10.1016/j.soilbio.2016.03.017
10.1038/s41559-019-0954-7
10.1016/j.chnaes.2014.10.001
10.1111/mec.13172
10.1093/biomet/93.3.491
10.1038/s41598-017-18922-6
10.1038/ismej.2009.43
10.1038/nature16069
10.1128/AEM.01015-06
10.1038/ncomms10541
10.2307/1942268
10.1038/srep04062
10.1038/s41467-019-12798-y
10.1093/acprof:oso/9780199575923.003.0027
10.1038/ismej.2012.113
10.1002/ecy.2142
10.1016/j.apsoil.2017.06.009
10.1111/j.1461-0248.2007.01139.x
10.1016/j.soilbio.2011.04.020
10.1093/femsec/fiaa047
10.1186/1471-2105-9-559
10.1038/ngeo2421
10.3389/fmicb.2014.00219
10.1038/s41467-017-02142-7
10.1073/pnas.0801925105
10.1126/science.1145724
10.1111/ele.12567
10.1038/s41558-018-0254-2
10.1002/ecy.2482
10.1126/science.aap9516
10.1038/nature13855
10.1016/j.soilbio.2016.05.005
10.1111/gcb.12788
10.1038/nmeth.f.303
10.1073/pnas.1502956112
ContentType Journal Article
Copyright The Author(s), under exclusive licence to International Society for Microbial Ecology 2021
2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.
The Author(s), under exclusive licence to International Society for Microbial Ecology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2021
– notice: 2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.
– notice: The Author(s), under exclusive licence to International Society for Microbial Ecology 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7SN
7ST
7T7
7TM
7X7
7XB
88E
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M7N
M7P
P64
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PYCSY
SOI
7X8
5PM
DOI 10.1038/s41396-021-00913-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Ecology Abstracts
Environment Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Health & Medical Research Collection
Agricultural & Environmental Science Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
ProQuest Central Student
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1751-7370
EndPage 2489
ExternalDocumentID PMC8319411
33712698
10_1038_s41396_021_00913_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 41977068
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 41977068
GroupedDBID ---
-Q-
0R~
123
29J
39C
3V.
4.4
406
53G
70F
7X7
7XC
88E
8FE
8FH
8FI
8FJ
AAHBH
AANZL
AAZLF
ABAKF
ABAWZ
ABDBF
ABEJV
ABGNP
ABJNI
ABLJU
ABUWG
ABXVV
ACGFS
ACKTT
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AENEX
AEUYN
AEVLU
AEXYK
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMNDL
AMYLF
AOIJS
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
DNIVK
DPUIP
DU5
EBS
EDH
EE.
EIOEI
EJD
EMOBN
ESX
F5P
FDQFY
FEDTE
FERAY
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HYE
HZ~
I-F
IWAJR
JSO
KQ8
LK8
M1P
M7P
MM.
NAO
NQJWS
O9-
OK1
PATMY
PQQKQ
PROAC
PSQYO
PYCSY
RNT
RNTTT
ROX
RPM
SNX
SNYQT
SOHCF
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TOX
TR2
TSG
TUS
UKHRP
~02
~8M
AAYXX
ACSTC
AYFIA
CITATION
JZLTJ
PHGZM
PHGZT
CGR
CUY
CVF
ECGQY
ECM
EIF
GROUPED_DOAJ
NPM
PJZUB
PPXIY
PQGLB
7QL
7SN
7ST
7T7
7TM
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
K9.
M7N
P64
PKEHL
PQEST
PQUKI
PRINS
SOI
7X8
5PM
ID FETCH-LOGICAL-c540t-d2d58ddc3b2280a25dfd90c3d0659ccf01ded2397be2e473168b7ae6af6ad45a3
IEDL.DBID C6C
ISSN 1751-7362
1751-7370
IngestDate Thu Aug 21 14:01:15 EDT 2025
Thu Jul 10 22:29:46 EDT 2025
Fri Jul 25 10:49:38 EDT 2025
Mon Jul 21 05:44:27 EDT 2025
Tue Jul 01 01:04:28 EDT 2025
Thu Apr 24 22:58:04 EDT 2025
Fri Feb 21 02:40:14 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://creativecommons.org/licenses/by/4.0
2021. The Author(s), under exclusive licence to International Society for Microbial Ecology.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d2d58ddc3b2280a25dfd90c3d0659ccf01ded2397be2e473168b7ae6af6ad45a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3600-9165
0000-0002-1222-308X
0000-0001-8779-2781
0000-0002-0359-0339
0000-0001-7040-1924
0000-0003-4424-662X
OpenAccessLink https://www.nature.com/articles/s41396-021-00913-1
PMID 33712698
PQID 2555778657
PQPubID 536304
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8319411
proquest_miscellaneous_2501261793
proquest_journals_2555778657
pubmed_primary_33712698
crossref_citationtrail_10_1038_s41396_021_00913_1
crossref_primary_10_1038_s41396_021_00913_1
springer_journals_10_1038_s41396_021_00913_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle Multidisciplinary Journal of Microbial Ecology
PublicationTitle The ISME Journal
PublicationTitleAbbrev ISME J
PublicationTitleAlternate ISME J
PublicationYear 2021
Publisher Nature Publishing Group UK
Oxford University Press
Publisher_xml – name: Nature Publishing Group UK
– name: Oxford University Press
References Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.3-1. 2015, http://CRAN.R-project.org/package=vegan.
Al-GhalithGAHillmannBAngKShields-CutlerRKnightsDSHI7 is a self-learning pipeline for multipurpose short-read DNA quality controlmSystems.20183e00202171:CAS:528:DC%2BC1MXisVentLnF29719872591569910.1128/mSystems.00202-17
BrayJRCurtisJTAn ordination of the upland forest communities of southern WisconsinEcol Monogr.1957273264910.2307/1942268
ZhangCLiuGXueSWangGSoil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess PlateauSoil Biol Biochem.20169740491:CAS:528:DC%2BC28XjsFKjtLs%3D10.1016/j.soilbio.2016.02.013
FaninNGundaleMJFarrellMCiobanuMBaldockJANilssonMCConsistent effects of biodiversity loss on multifunctionality across contrasting ecosystemsNat Ecol Evol20182269782925529910.1038/s41559-017-0415-0
WeiXShaoMGaleWLiLGlobal pattern of soil carbon losses due to the conversion of forests to agricultural landSci Rep.2014424513580392027110.1038/srep040621:CAS:528:DC%2BC2cXmvVKnu78%3D
HartmannMNiklausPAZimmermannSSchmutzSKremerJAbarenkovKResistance and resilience of the forest soil microbiome to logging-associated compactionISME J20148226441:CAS:528:DC%2BC3sXhvFOksrrL2403059410.1038/ismej.2013.141
GuoXFengJShiZZhouXYuanMTaoXClimate warming leads to divergent succession of grassland microbial communitiesNat Clim Change.20188813810.1038/s41558-018-0254-2
Santos-MedellinCEdwardsJLiechtyZNguyenBSundaresanVDrought stress results in a compartment-specific restructuring of the rice root-associated microbiomesmBio.20178e007641728720730551625310.1128/mBio.00764-17
WiederWRBonanGBAllisonSDGlobal soil carbon projections are improved by modelling microbial processesNat Clim Change.20133909121:CAS:528:DC%2BC3sXhsVShtrvO10.1038/nclimate1951
LoucaSParfreyLWDoebeliMDecoupling function and taxonomy in the global ocean microbiomeScience.2016353127271:CAS:528:DC%2BC28XhsV2ksbjM2763453210.1126/science.aaf4507
WangZZhangQStaleyCGaoHIshiiSWeiXImpact of long-term grazing exclusion on soil microbial community composition and nutrient availabilityBiol Fertil Soils201955121341:CAS:528:DC%2BC1MXhtVCjt7rF10.1007/s00374-018-01336-5
McDonaldDPriceMNGoodrichJNawrockiEPDeSantisTZProbstAAn improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaeaISME J.2012661081:CAS:528:DC%2BC38XisVGgsbs%3D2213464610.1038/ismej.2011.139
FAO. 2019.Soil erosion: the greatest challenge for sustainable soil management.2019RomeFood and Agriculture Organization of the United Nations104
CrowtherTWVan Den HoogenJWanJMayesMAKeiserADMoLThe global soil community and its influence on biogeochemistryScience.2019365eaav05501:CAS:528:DC%2BC1MXhs1CjtLbI3143976110.1126/science.aav0550
GuoJLingNChenZXueCLiLLiuLSoil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processesN Phytol.20202262324310.1111/nph.16345
MarcosMSBertillerMBOliveraNLMicrobial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle sizeAppl Soil Ecol.20191382233210.1016/j.apsoil.2019.03.001
Delgado-BaquerizoMReichPBTrivediCEldridgeDJAbadesSAlfaroFDMultiple elements of soil biodiversity drive ecosystem functions across biomesNat Ecol Evol20204210203201542710.1038/s41559-019-1084-y
LehmannJKleberMThe contentious nature of soil organic matterNature.201552860681:CAS:528:DC%2BC2MXhvVOqs7fE2659527110.1038/nature16069
BrookesPLandmanAPrudenGJenkinsonDChloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soilSoil Biol Biochem.198517837421:CAS:528:DyaL28XhvFSgug%3D%3D10.1016/0038-0717(85)90144-0
PengMJiaHWangQThe effect of land use on bacterial communities in Saline-Alkali soilCurr Microbiol201774325331:CAS:528:DC%2BC2sXht1Cmtr8%3D2810244110.1007/s00284-017-1195-0
BorrelliPRobinsonDAFleischerLRLugatoEBallabioCAlewellCAn assessment of the global impact of 21st century land use change on soil erosionNat Commun.201781131:CAS:528:DC%2BC1cXpsVWht7w%3D10.1038/s41467-017-02142-7
García-PalaciosPVandegehuchteMLShawEADamMPostKHRamirezKSAre there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspectiveGlob Change Biol.2015211590160010.1111/gcb.12788
BaiYXSheWWMiaoLQinSGZhangYQSoil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern ChinaSoil Biol Biochem.20201501080131:CAS:528:DC%2BB3cXitVGgtLbJ10.1016/j.soilbio.2020.108013
BanerjeeSMisraASarAPalSChaudhurySDamBPoor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profilesAppl Soil Ecol.202015210354410.1016/j.apsoil.2020.103544
QuintonJNGoversGVan OostKBardgettRDThe impact of agricultural soil erosion on biogeochemical cyclingNat Geosci2010331141:CAS:528:DC%2BC3cXlsFSksbg%3D10.1038/ngeo838
BenjaminiYKriegerAMYekutieliDAdaptive linear step-up procedures that control the false discovery rateBiometrika.20069349150710.1093/biomet/93.3.491
MabuhayJANakagoshiNIsagiYInfluence of erosion on soil microbial biomass, abundance and community diversityLand Degrad Dev.2004151839510.1002/ldr.607
VitousekPMMengeDNLReedSCClevelandCCBiological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystemsPhilos Trans R Soc B Biol Sci2013368162110.1098/rstb.2013.01191:CAS:528:DC%2BC3sXht1WktrfM
RyuMHZhangJTothTKhokhaniDGeddesBAMusFControl of nitrogen fixation in bacteria that associate with cerealsNat Microbiol20205314301:CAS:528:DC%2BC1MXisVSktb3P3184429810.1038/s41564-019-0631-2
Abu-HamdehNHReederRCSoil thermal conductivity: effects of density, moisture, salt concentration, and organic matterSoil Sci Soc Am J2000641285901:CAS:528:DC%2BD3cXmsF2iurw%3D10.2136/sssaj2000.6441285x
LangfelderPHorvathSWGCNA: an R package for weighted correlation network analysisBMC Bioinforma.2008910.1186/1471-2105-9-5591:CAS:528:DC%2BD1MXht1Khsbw%3D
BanerjeeSKirkbyCASchmutterDBissettAKirkegaardJARichardsonAENetwork analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soilSoil Biol Biochem.201697188981:CAS:528:DC%2BC28XlsVajt7o%3D10.1016/j.soilbio.2016.03.017
Van Oost K, Bakker MM. Soil productivity and erosion. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, et al. (eds.). Soil ecology and ecosystem services. Oxford, UK: Oxford University Press; 2012. 301–14.
LiZXiaoHTangZHuangJNieXHuangBMicrobial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern ChinaEur J Soil Biol20157137441:CAS:528:DC%2BC2MXhslantrnO10.1016/j.ejsobi.2015.10.003
FAO, ITPS. Status of the World’s Soil Resources - Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. Rome, Italy. https://www.fao.org/3/a-i5199e.pdf.
XueLRenHBrodribbTJWangJYaoXLiSLong term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantationFor Ecol Manag202045911780510.1016/j.foreco.2019.117805
Ochoa-HuesoRCollinsSLDelgado-BaquerizoMHamontsKPockmanWTSinsabaughRLDrought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continentsGlob Change Biol20182428182710.1111/gcb.14113
ZhengFEffect of vegetation changes on soil erosion on the Loess PlateauPedosphere200616420710.1016/S1002-0160(06)60071-4
JanssenPHIdentifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genesAppl Environ Microb.2006721719281:CAS:528:DC%2BD28XjsFCmsrs%3D10.1128/AEM.72.3.1719-1728.2006
ChowdhuryTRLeeJYBottosEMBrislawnCJWhiteRABramerLMMetaphenomic responses of a native prairie soil microbiome to moisture perturbationsmSystems.20194e0006119
Crits-ChristophARobinsonCKBarnumTFrickeWFDavilaAFJedynakBColonization patterns of soil microbial communities in the Atacama DesertMicrobiome.2013124451153397161310.1186/2049-2618-1-28
CrowtherTWThomasSMMaynardDSBaldrianPCoveyKFreySDBiotic interactions mediate soil microbial feedbacks to climate changeProc Natl Acad Sci USA.2015112703381:CAS:528:DC%2BC2MXosVKrurY%3D26038557446046910.1073/pnas.1502956112
NottinghamATFiererNTurnerBLWhitakerJOstleNJMcNamaraNPMicrobes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the AndesEcology.2018992455663007659210.1002/ecy.2482
FiererNEmbracing the unknown: disentangling the complexities of the soil microbiomeNat Rev Microbiol.201715579901:CAS:528:DC%2BC2sXhtlGktbfN2882417710.1038/nrmicro.2017.87
Page A, Miller R, Keeney D. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, Wisconsin, American Society of Agronomy, Inc., Soil Science Society of America, Inc, 1982.
SaleemMHuJJoussetAMore than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil healthAnnu Rev Ecol Evol Syst.2019501456810.1146/annurev-ecolsys-110617-062605
LingNZhuCXueCChenHDuanYHPengCInsight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysisSoil Biol Biochem201699137491:CAS:528:DC%2BC28Xot1Shsrc%3D10.1016/j.soilbio.2016.05.005
ByersAKCondronLDonavanTO’CallaghanMPatuawaTWaiparaNSoil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forestFEMS Microbiol Ecol.202096fiaa0471:CAS:528:DC%2BB3cXisFyis7jL32179899716173710.1093/femsec/fiaa047
PimentelDHarveyCResosudarmoPSinclairKKurzDMcNairMEnvironmental and economic costs of soil erosion and conservation bene
Nottingham (2024011007174092200_CR118) 2018; 99
Zhang (2024011007174092200_CR82) 2016; 97
Janssen (2024011007174092200_CR80) 2006; 72
García-Palacios (2024011007174092200_CR78) 2015; 21
Berry (2024011007174092200_CR67) 2014; 5
2024011007174092200_CR17
Delgado-Baquerizo (2024011007174092200_CR116) 2018; 99
Acosta-Martínez (2024011007174092200_CR108) 2014; 84
Bastian (2024011007174092200_CR68) 2009; 8
Wang (2024011007174092200_CR52) 2019; 55
Hamamura (2024011007174092200_CR107) 2006; 72
Zhou (2024011007174092200_CR119) 2016; 7
Ochoa-Hueso (2024011007174092200_CR41) 2018; 24
Delgado-Baquerizo (2024011007174092200_CR15) 2016; 7
Van Horn (2024011007174092200_CR90) 2014; 80
Banerjee (2024011007174092200_CR98) 2016; 97
Wagg (2024011007174092200_CR33) 2019; 10
Chowdhury (2024011007174092200_CR88) 2019; 4
DeBruyn (2024011007174092200_CR84) 2011; 77
Santos-Medellin (2024011007174092200_CR87) 2017; 8
Banerjee (2024011007174092200_CR39) 2018; 16
Van Oost (2024011007174092200_CR7) 2012
Langfelder (2024011007174092200_CR62) 2008; 9
Van Der Voort (2024011007174092200_CR77) 2016; 19
Lehmann (2024011007174092200_CR113) 2015; 528
de Vries (2024011007174092200_CR23) 2018; 9
Fanin (2024011007174092200_CR16) 2018; 2
Crowther (2024011007174092200_CR22) 2019; 365
Mickan (2024011007174092200_CR89) 2019; 55
Wolińska (2024011007174092200_CR93) 2018; 93
Fierer (2024011007174092200_CR19) 2017; 15
Mabuhay (2024011007174092200_CR42) 2004; 15
Bragazza (2024011007174092200_CR25) 2013; 3
Luo (2024011007174092200_CR63) 2006; 357
Crits-Christoph (2024011007174092200_CR71) 2013; 1
Li (2024011007174092200_CR29) 2019; 25
Bardgett (2024011007174092200_CR18) 2014; 515
Saleem (2024011007174092200_CR21) 2019; 50
Hou (2024011007174092200_CR44) 2014; 34
Qi (2024011007174092200_CR100) 2019; 85
Benjamini (2024011007174092200_CR64) 2006; 93
Van Oost (2024011007174092200_CR13) 2007; 318
McDonald (2024011007174092200_CR58) 2012; 6
Barberán (2024011007174092200_CR35) 2012; 6
Ling (2024011007174092200_CR102) 2016; 99
Bai (2024011007174092200_CR104) 2020; 150
Bray (2024011007174092200_CR59) 1957; 27
Allison (2024011007174092200_CR120) 2008; 105
Zhou (2024011007174092200_CR24) 2011; 2
Spain (2024011007174092200_CR81) 2009; 3
Kielak (2024011007174092200_CR91) 2009; 3
Zheng (2024011007174092200_CR47) 2006; 16
Pimentel (2024011007174092200_CR4) 1995; 267
FAO. 2019. (2024011007174092200_CR3) 2019
Fuhrman (2024011007174092200_CR38) 2009; 459
Abu-Hamdeh (2024011007174092200_CR74) 2000; 64
Herren (2024011007174092200_CR40) 2018; 20
Wei (2024011007174092200_CR115) 2014; 4
Delgado-Baquerizo (2024011007174092200_CR117) 2018; 359
Chen (2024011007174092200_CR31) 2020; 141
Mendonça (2024011007174092200_CR10) 2017; 8
Freilich (2024011007174092200_CR37) 2018; 99
Guo (2024011007174092200_CR99) 2020; 226
Wieder (2024011007174092200_CR30) 2013; 3
Van der Heijden (2024011007174092200_CR34) 2008; 11
2024011007174092200_CR61
2024011007174092200_CR6
Al-Ghalith (2024011007174092200_CR55) 2018; 3
FAO, ITPS (2024011007174092200_CR1) 2015
Anderson (2024011007174092200_CR60) 2003; 84
Wolińska (2024011007174092200_CR83) 2017; 119
Ryu (2024011007174092200_CR97) 2020; 5
2024011007174092200_CR2
Bouskill (2024011007174092200_CR85) 2013; 7
Quinton (2024011007174092200_CR11) 2010; 3
Yang (2024011007174092200_CR94) 2019; 30
Lal (2024011007174092200_CR9) 2008; 319
Tiemann (2024011007174092200_CR72) 2011; 43
Liang (2024011007174092200_CR76) 2018; 8
Schmidt (2024011007174092200_CR112) 2011; 478
Buzzard (2024011007174092200_CR114) 2019; 3
Li (2024011007174092200_CR46) 2020; 302
Delgado-Baquerizo (2024011007174092200_CR32) 2020; 4
Banerjee (2024011007174092200_CR36) 2019; 13
Langmead (2024011007174092200_CR57) 2012; 9
Fierer (2024011007174092200_CR92) 2012; 6
Maestre (2024011007174092200_CR27) 2015; 112
Vitousek (2024011007174092200_CR95) 2013; 368
Ma (2024011007174092200_CR66) 2016; 10
Smith (2024011007174092200_CR12) 2015; 8
Guo (2024011007174092200_CR28) 2018; 8
Maestre (2024011007174092200_CR51) 2012; 100
Bajracharya (2024011007174092200_CR75) 2000; 64
Navarrete (2024011007174092200_CR110) 2015; 24
Byers (2024011007174092200_CR111) 2020; 96
Zhang (2024011007174092200_CR45) 2007; 96
Li (2024011007174092200_CR43) 2015; 71
Lefcheck (2024011007174092200_CR50) 2015; 6
Marcos (2024011007174092200_CR106) 2019; 138
Caporaso (2024011007174092200_CR53) 2010; 7
Csardi (2024011007174092200_CR65) 2006; 1695
Wall (2024011007174092200_CR20) 2015; 528
Page (2024011007174092200_CR48) 1982
Mueller (2024011007174092200_CR54) 2014; 8
Maestre (2024011007174092200_CR14) 2012; 335
Al-Ghalith (2024011007174092200_CR56) 2016; 12
Xue (2024011007174092200_CR101) 2020; 459
Qiu (2024011007174092200_CR70) 2021; 307
Gregorich (2024011007174092200_CR8) 1998; 47
Brookes (2024011007174092200_CR49) 1985; 17
Crowther (2024011007174092200_CR26) 2015; 112
Banerjee (2024011007174092200_CR73) 2020; 152
Karimi (2024011007174092200_CR79) 2018; 4
Hartmann (2024011007174092200_CR121) 2014; 8
Peng (2024011007174092200_CR109) 2017; 74
Fan (2024011007174092200_CR96) 2019; 7
Louca (2024011007174092200_CR69) 2016; 353
Borrelli (2024011007174092200_CR5) 2017; 8
Szoboszlay (2024011007174092200_CR105) 2017; 93
Deng (2024011007174092200_CR103) 2012; 13
Naylor (2024011007174092200_CR86) 2017; 11
References_xml – reference: Acosta‐MartínezVCottonJGardnerTMoore‐KuceraJZakJWesterDPredominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cyclingAppl Soil Ecol.201484698210.1016/j.apsoil.2014.06.005
– reference: Delgado‐BaquerizoMReithFDennisPGHamontsKPowellJRYoungAEcological drivers of soil microbial diversity and soil biological networks in the Southern HemisphereEcology.201899583962931553010.1002/ecy.2137
– reference: MaestreFTDelgado-BaquerizoMJeffriesTCEldridgeDJOchoaVGozaloBIncreasing aridity reduces soil microbial diversity and abundance in global drylandsProc Natl Acad Sci USA.20151121568491:CAS:528:DC%2BC2MXhvFKqsb%2FE26647180469738510.1073/pnas.1516684112
– reference: YangFNiuKCCollinsCGYanXBJiYGLingNGrazing practices affect the soil microbial community composition in a Tibetan alpine meadowLand Degrad Dev.201930495910.1002/ldr.3189
– reference: UN (United Nations). Sustainable Development Goals [online]. 2015. https://www.un.org/sustainabledevelopment/sustainabledevelopment-goals/.
– reference: ZhouJDengYShenLWenCYanQNingDTemperature mediates continental-scale diversity of microbes in forest soilsNat Commun.201671:CAS:528:DC%2BC28XhtFCrsL3N27377774493597010.1038/ncomms12083
– reference: BouskillNJLimHCBorglinSSalveRWoodTESilverWLPre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended droughtISME J20137384941:CAS:528:DC%2BC3sXhsVansrc%3D2315164110.1038/ismej.2012.113
– reference: WeiXShaoMGaleWLiLGlobal pattern of soil carbon losses due to the conversion of forests to agricultural landSci Rep.2014424513580392027110.1038/srep040621:CAS:528:DC%2BC2cXmvVKnu78%3D
– reference: Van OostKQuineTAGoversGDe GryzeSSixJHardenJWThe impact of agricultural soil erosion on the global carbon cycleScience.200731862691796255910.1126/science.11457241:CAS:528:DC%2BD2sXhtF2rsbnF
– reference: NavarreteAATsaiSMMendesLWFaustKde HollanderMCassmanNASoil microbiome responses to the short-term effects of Amazonian deforestationMol Ecol.2015242433481:CAS:528:DC%2BC2MXntFGltr0%3D2580978810.1111/mec.13172
– reference: BrayJRCurtisJTAn ordination of the upland forest communities of southern WisconsinEcol Monogr.1957273264910.2307/1942268
– reference: FiererNLauberCLRamirezKSZaneveldJBradfordMAKnightRComparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradientsISME J.201261007171:CAS:528:DC%2BC38XlvVGktLg%3D2213464210.1038/ismej.2011.159
– reference: NaylorDDeGraafSPurdomEColeman-DerrDDrought and host selection influence bacterial community dynamics in the grass root microbiomeISME J201711269170428753209570272510.1038/ismej.2017.118
– reference: KielakAPijlASVan VeenJAKowalchukGAPhylogenetic diversity of Acidobacteria in a former agricultural soilISME J.20093378821:CAS:528:DC%2BD1MXms12gsLs%3D1902055810.1038/ismej.2008.113
– reference: MendonçaRMüllerRAClowDVerpoorterCRaymondPTranvikLJOrganic carbon burial in global lakes and reservoirsNat Commun2017829162815569849710.1038/s41467-017-01789-61:CAS:528:DC%2BC1cXhtV2ktrrO
– reference: de VriesFTGriffithsRIBaileyMCraigHGirlandaMGweonHSSoil bacterial networks are less stable under drought than fungal networksNat Commun.2018930072764607279410.1038/s41467-018-05516-71:CAS:528:DC%2BC1cXhsVersrjI
– reference: Crits-ChristophARobinsonCKBarnumTFrickeWFDavilaAFJedynakBColonization patterns of soil microbial communities in the Atacama DesertMicrobiome.2013124451153397161310.1186/2049-2618-1-28
– reference: TiemannLKBillingsSAChanges in variability of soil moisture alter microbial community C and N resource useSoil Biol Biochem2011431837471:CAS:528:DC%2BC3MXhtVWrt7fJ10.1016/j.soilbio.2011.04.020
– reference: BanerjeeSSchlaeppiKVan Der HeijdenMGAKeystone taxa as drivers of microbiome structure and functioningNat Rev Microbiol201816567761:CAS:528:DC%2BC1cXhtVSlu73F10.1038/s41579-018-0024-129789680
– reference: LiZXiaoHTangZHuangJNieXHuangBMicrobial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern ChinaEur J Soil Biol20157137441:CAS:528:DC%2BC2MXhslantrnO10.1016/j.ejsobi.2015.10.003
– reference: ChowdhuryTRLeeJYBottosEMBrislawnCJWhiteRABramerLMMetaphenomic responses of a native prairie soil microbiome to moisture perturbationsmSystems.20194e0006119
– reference: PimentelDHarveyCResosudarmoPSinclairKKurzDMcNairMEnvironmental and economic costs of soil erosion and conservation benefitsScience.19952671117231:CAS:528:DyaK2MXktVKjsL4%3D1778919310.1126/science.267.5201.1117
– reference: NottinghamATFiererNTurnerBLWhitakerJOstleNJMcNamaraNPMicrobes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the AndesEcology.2018992455663007659210.1002/ecy.2482
– reference: Garland G, Banerjee S, Edlinger A, Oliveira EM, Herzog C, Wittwer R, et al. A closer look at the functions behind ecosystem multifunctionality: a review. J Ecol. 2020, https://doi.org/10.1111/1365-2745.13511.
– reference: HartmannMNiklausPAZimmermannSSchmutzSKremerJAbarenkovKResistance and resilience of the forest soil microbiome to logging-associated compactionISME J20148226441:CAS:528:DC%2BC3sXhvFOksrrL2403059410.1038/ismej.2013.141
– reference: JanssenPHIdentifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genesAppl Environ Microb.2006721719281:CAS:528:DC%2BD28XjsFCmsrs%3D10.1128/AEM.72.3.1719-1728.2006
– reference: LingNZhuCXueCChenHDuanYHPengCInsight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysisSoil Biol Biochem201699137491:CAS:528:DC%2BC28Xot1Shsrc%3D10.1016/j.soilbio.2016.05.005
– reference: WiederWRBonanGBAllisonSDGlobal soil carbon projections are improved by modelling microbial processesNat Clim Change.20133909121:CAS:528:DC%2BC3sXhsVShtrvO10.1038/nclimate1951
– reference: SchmidtMWITornMSAbivenSDittmarTGuggenbergerGJanssensIATrumbore, Persistence of soil organic matter as an ecosystem propertyNature.201147849561:CAS:528:DC%2BC3MXht1yltrnF2197904510.1038/nature10386
– reference: BajracharyaRMLalRKimbleJMDiurnal and seasonal CO2-C flux from soil as related to erosion phases in central OhioSoil Sci Soc Am J200064286931:CAS:528:DC%2BD3cXmslyhtLo%3D10.2136/sssaj2000.641286x
– reference: LangfelderPHorvathSWGCNA: an R package for weighted correlation network analysisBMC Bioinforma.2008910.1186/1471-2105-9-5591:CAS:528:DC%2BD1MXht1Khsbw%3D
– reference: Abu-HamdehNHReederRCSoil thermal conductivity: effects of density, moisture, salt concentration, and organic matterSoil Sci Soc Am J2000641285901:CAS:528:DC%2BD3cXmsF2iurw%3D10.2136/sssaj2000.6441285x
– reference: Delgado-BaquerizoMMaestreFTReichPBJeffriesTCGaitanJJEncinarDMicrobial diversity drives multifunctionality in terrestrial ecosystemsNat Commun.201671:CAS:528:DC%2BC28XhslOntb0%3D26817514473835910.1038/ncomms10541
– reference: BaiYXSheWWMiaoLQinSGZhangYQSoil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern ChinaSoil Biol Biochem.20201501080131:CAS:528:DC%2BB3cXitVGgtLbJ10.1016/j.soilbio.2020.108013
– reference: ByersAKCondronLDonavanTO’CallaghanMPatuawaTWaiparaNSoil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forestFEMS Microbiol Ecol.202096fiaa0471:CAS:528:DC%2BB3cXisFyis7jL32179899716173710.1093/femsec/fiaa047
– reference: QiuLZhuHLiuJYaoYWangXRongGSoil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experimentAgr Ecosyst Environ.20213071072321:CAS:528:DC%2BB3cXisFSlsr7N10.1016/j.agee.2020.107232
– reference: BastianMHeymannSJacomyMGephi: an open source software for exploring and manipulating networksICWSM Conf20098361210.1609/icwsm.v3i1.13937
– reference: LiangYLalRGuoSLiuRHuYImpacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central OhioSci Rep.2018829323288576496710.1038/s41598-017-18922-61:CAS:528:DC%2BC1cXhsFOhu7rN
– reference: QuintonJNGoversGVan OostKBardgettRDThe impact of agricultural soil erosion on biogeochemical cyclingNat Geosci2010331141:CAS:528:DC%2BC3cXlsFSksbg%3D10.1038/ngeo838
– reference: LiZTianDWangBWangJWangSChenHMicrobes drive global soil nitrogen mineralization and availabilityGlob Change Biol20192510788810.1111/gcb.14557
– reference: FanKKDelgado-BaquerizoMGuoXSWangDZWuYYZhuMSuppressed N fixation and diazotrophs after four decades of fertilizationMicrobiome.2019731672173682402310.1186/s40168-019-0757-8
– reference: BorrelliPRobinsonDAFleischerLRLugatoEBallabioCAlewellCAn assessment of the global impact of 21st century land use change on soil erosionNat Commun.201781131:CAS:528:DC%2BC1cXpsVWht7w%3D10.1038/s41467-017-02142-7
– reference: HamamuraNOlsonSHWardDMInskeepWPMicrobial population dynamics associated with crude-oil biodegradation in diverse soilsAppl Environ Microb2006726316241:CAS:528:DC%2BD28XpvVKjtbY%3D10.1128/AEM.01015-06
– reference: LehmannJKleberMThe contentious nature of soil organic matterNature.201552860681:CAS:528:DC%2BC2MXhvVOqs7fE2659527110.1038/nature16069
– reference: WaggCSchlaeppiKBanerjeeSKuramaeEEVan Der HeijdenMGAFungal-bacterial diversity and microbiome complexity predict ecosystem functioningNat Commun20191031649246681333110.1038/s41467-019-12798-y1:CAS:528:DC%2BC1MXitVGmtL%2FJ
– reference: FAO, ITPS. Status of the World’s Soil Resources - Main report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, 2015. Rome, Italy. https://www.fao.org/3/a-i5199e.pdf.
– reference: MaestreFTCastillo-MonroyAPBowkerMAOchoa-HuesoRSpecies richness effects on ecosystem multifunctionality depend on evenness, composition and spatial patternJ Ecol2012100317301:CAS:528:DC%2BC38Xlt1Gksbc%3D10.1111/j.1365-2745.2011.01918.x
– reference: LalRPimentelDSoil erosion: a carbon sink or source?Science.2008319104021:CAS:528:DC%2BD1cXis1Kksrc%3D1829232410.1126/science.319.5866.1040
– reference: FreilichMAWietersEBroitmanBRMarquetPANavarreteSASpecies co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?Ecology.20189969092933648010.1002/ecy.2142
– reference: ChenQDongJZhuDHuHDelgado-BaquerizoMMaYRare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soilsSoil Biol Biochem.20201411076861:CAS:528:DC%2BC1MXit12jt7zO10.1016/j.soilbio.2019.107686
– reference: MaestreFTQueroJLGotelliNJEscuderoAOchoaVDelgado-BaquerizoMPlant species richness and ecosystem multifunctionality in global drylandsScience.201233521481:CAS:528:DC%2BC38XksVSgtA%3D%3D22246775355873910.1126/science.1215442
– reference: DeBruynLMNixonLTFawazMNJohnsonAMRadosevichMGlobal biogeography and quantitative seasonal dynamics of gemmatimonadetes in soilAppl Environ Microb.201177629563001:CAS:528:DC%2BC3MXht1Oju77E10.1128/AEM.05005-11
– reference: MabuhayJANakagoshiNIsagiYInfluence of erosion on soil microbial biomass, abundance and community diversityLand Degrad Dev.2004151839510.1002/ldr.607
– reference: KarimiBTerratSDequiedtSSabyNPAHorriguelWLelievreMBiogeography of soil bacteria and archaea across FranceSci Adv.20184eaat180829978046603137010.1126/sciadv.aat1808
– reference: ZhengFEffect of vegetation changes on soil erosion on the Loess PlateauPedosphere200616420710.1016/S1002-0160(06)60071-4
– reference: Ochoa-HuesoRCollinsSLDelgado-BaquerizoMHamontsKPockmanWTSinsabaughRLDrought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continentsGlob Change Biol20182428182710.1111/gcb.14113
– reference: LuoFZhongJYangYScheuermannRHZhouJApplication of random matrix theory to biological networksPhys Lett A.200635742031:CAS:528:DC%2BD28XnsFyhur8%3D10.1016/j.physleta.2006.04.076
– reference: BrookesPLandmanAPrudenGJenkinsonDChloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soilSoil Biol Biochem.198517837421:CAS:528:DyaL28XhvFSgug%3D%3D10.1016/0038-0717(85)90144-0
– reference: LoucaSParfreyLWDoebeliMDecoupling function and taxonomy in the global ocean microbiomeScience.2016353127271:CAS:528:DC%2BC28XhsV2ksbjM2763453210.1126/science.aaf4507
– reference: Delgado-BaquerizoMOliverioAMBrewerTEBenavent-GonzálezAEldridgeDJBardgettRDA global atlas of the dominant bacteria found in soilScience.201835932051:CAS:528:DC%2BC1cXhtFKntr4%3D2934823610.1126/science.aap9516
– reference: XueLRenHBrodribbTJWangJYaoXLiSLong term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantationFor Ecol Manag202045911780510.1016/j.foreco.2019.117805
– reference: Van Der VoortMKempenaarMVan DrielMRaaijmakersJMMendesRImpact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppressionEcol Lett.201619375822683354710.1111/ele.12567
– reference: BarberánABatesSTCasamayorEOFiererNUsing network analysis to explore co-occurrence patterns in soil microbial communitiesISME J20126343512190096810.1038/ismej.2011.1191:CAS:528:DC%2BC38XhtVCgtb8%3D
– reference: MarcosMSBertillerMBOliveraNLMicrobial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle sizeAppl Soil Ecol.20191382233210.1016/j.apsoil.2019.03.001
– reference: BragazzaLParisodJButtlerABardgettRDBiogeochemical plant–soil microbe feedback in response to climate warming in peatlandsNat Clim Change.2013327371:CAS:528:DC%2BC3sXjtVWqu70%3D10.1038/nclimate1781
– reference: LiHZhuHQiuLWeiXLiuBShaoMResponse of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast ChinaAgr Ecosyst Environ.20203021070811:CAS:528:DC%2BB3cXhsFehs7rF10.1016/j.agee.2020.107081
– reference: Van HornDJOkieJGBuelowHNGooseffMNBarrettJETakacs-VesbachCDSoil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desertAppl Environ Microb.20148030344310.1128/AEM.03414-131:CAS:528:DC%2BC2cXovV2kt7c%3D
– reference: QiGMaGChenSLinCZhaoXMicrobial network and soil properties are changed in bacterial wilt-susceptible soilAppl Environ Microb.201985e00162191:CAS:528:DC%2BC1MXhs1Oks7vI10.1128/AEM.00162-19
– reference: Page A, Miller R, Keeney D. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties. Madison, Wisconsin, American Society of Agronomy, Inc., Soil Science Society of America, Inc, 1982.
– reference: GuoXFengJShiZZhouXYuanMTaoXClimate warming leads to divergent succession of grassland microbial communitiesNat Clim Change.20188813810.1038/s41558-018-0254-2
– reference: ZhouJDengYLuoFHeZYangYPhylogenetic molecular ecological network of soil microbial communities in response to elevated CO2MBio.20112e001221121791581314384310.1128/mBio.00122-11
– reference: LefcheckJSByrnesJEKIsbellFGamfeldtLGriffinJNEisenhauerNBiodiversity enhances ecosystem multifunctionality across trophic levels and habitatsNat Commun.201561:CAS:528:DC%2BC2MXhtF2lurvI2590711510.1038/ncomms7936
– reference: BanerjeeSKirkbyCASchmutterDBissettAKirkegaardJARichardsonAENetwork analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soilSoil Biol Biochem.201697188981:CAS:528:DC%2BC28XlsVajt7o%3D10.1016/j.soilbio.2016.03.017
– reference: Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, et al. Vegan: community ecology package. R package version 2.3-1. 2015, http://CRAN.R-project.org/package=vegan.
– reference: ZhangYWuYLiuBZhengQYinJCharacteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast ChinaSoil Res.2007962841
– reference: GregorichEGGreerKJAndersonDWLiangBCCarbon distribution and losses: erosion and deposition effectsSoil Res199847291302
– reference: Van der HeijdenMGABardgettRDVan StraalenNMThe unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystemsEcol Lett2008112963101804758710.1111/j.1461-0248.2007.01139.x
– reference: FuhrmanJAMicrobial community structure and its functional implicationsNature.200945919391:CAS:528:DC%2BD1MXlvFShu70%3D1944420510.1038/nature08058
– reference: WallHNielsenUNSixJSoil biodiversity and human healthNature.201552869761:CAS:528:DC%2BC2MXhvVOqs7fP2659527610.1038/nature15744
– reference: Santos-MedellinCEdwardsJLiechtyZNguyenBSundaresanVDrought stress results in a compartment-specific restructuring of the rice root-associated microbiomesmBio.20178e007641728720730551625310.1128/mBio.00764-17
– reference: WolińskaAKuzniarAZielenkiewiczUBanachABlaszczykMIndicators of arable soils fatigue Bacterial - families and genera: a metagenomic approachEcol Indic.20189349050010.1016/j.ecolind.2018.05.033
– reference: García-PalaciosPVandegehuchteMLShawEADamMPostKHRamirezKSAre there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspectiveGlob Change Biol.2015211590160010.1111/gcb.12788
– reference: BenjaminiYKriegerAMYekutieliDAdaptive linear step-up procedures that control the false discovery rateBiometrika.20069349150710.1093/biomet/93.3.491
– reference: BanerjeeSMisraASarAPalSChaudhurySDamBPoor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profilesAppl Soil Ecol.202015210354410.1016/j.apsoil.2020.103544
– reference: FaninNGundaleMJFarrellMCiobanuMBaldockJANilssonMCConsistent effects of biodiversity loss on multifunctionality across contrasting ecosystemsNat Ecol Evol20182269782925529910.1038/s41559-017-0415-0
– reference: LangmeadBSalzbergSLFast gapped-read alignment with Bowtie 2Nat Methods.2012935791:CAS:528:DC%2BC38Xjt1Oqt7c%3D22388286332238110.1038/nmeth.1923
– reference: ZhangCLiuGXueSWangGSoil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess PlateauSoil Biol Biochem.20169740491:CAS:528:DC%2BC28XjsFKjtLs%3D10.1016/j.soilbio.2016.02.013
– reference: CaporasoJGKuczynskiJStombaughJBittingerKBushmanFDCostelloEKQIIME allows analysis of high-throughput community sequencing dataNat Methods2010733561:CAS:528:DC%2BC3cXksFalurg%3D20383131315657310.1038/nmeth.f.303
– reference: FiererNEmbracing the unknown: disentangling the complexities of the soil microbiomeNat Rev Microbiol.201715579901:CAS:528:DC%2BC2sXhtlGktbfN2882417710.1038/nrmicro.2017.87
– reference: Al-GhalithGAHillmannBAngKShields-CutlerRKnightsDSHI7 is a self-learning pipeline for multipurpose short-read DNA quality controlmSystems.20183e00202171:CAS:528:DC%2BC1MXisVentLnF29719872591569910.1128/mSystems.00202-17
– reference: FAO. 2019.Soil erosion: the greatest challenge for sustainable soil management.2019RomeFood and Agriculture Organization of the United Nations104
– reference: Delgado-BaquerizoMReichPBTrivediCEldridgeDJAbadesSAlfaroFDMultiple elements of soil biodiversity drive ecosystem functions across biomesNat Ecol Evol20204210203201542710.1038/s41559-019-1084-y
– reference: McDonaldDPriceMNGoodrichJNawrockiEPDeSantisTZProbstAAn improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaeaISME J.2012661081:CAS:528:DC%2BC38XisVGgsbs%3D2213464610.1038/ismej.2011.139
– reference: DengYJiangYHYangYFHeZLLuoFZhouJZMolecular ecological network analysesBMC Bioinforma.20121310.1186/1471-2105-13-113
– reference: CrowtherTWVan Den HoogenJWanJMayesMAKeiserADMoLThe global soil community and its influence on biogeochemistryScience.2019365eaav05501:CAS:528:DC%2BC1MXhs1CjtLbI3143976110.1126/science.aav0550
– reference: VitousekPMMengeDNLReedSCClevelandCCBiological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystemsPhilos Trans R Soc B Biol Sci2013368162110.1098/rstb.2013.01191:CAS:528:DC%2BC3sXht1WktrfM
– reference: Al-GhalithGAMontassierEWardHNKnightsDNINJA-OPS: fast accurate marker gene alignment using concatenated ribosomesPLoS Comput Biol.201612e100465826820746473146410.1371/journal.pcbi.10046581:CAS:528:DC%2BC28XhtF2lur3O
– reference: GuoJLingNChenZXueCLiLLiuLSoil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processesN Phytol.20202262324310.1111/nph.16345
– reference: AndersonMJWillisTJCanonical analysis of principal coordinates: a useful method of constrained ordination for ecologyEcology.2003845112510.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
– reference: BerryDWidderSDeciphering microbial interactions and detecting keystone species with co-occurrence networksFront Microbiol2014521924904535403304110.3389/fmicb.2014.00219
– reference: BuzzardVMichaletzSTDengYHeZNingDShenLContinental scale structuring of forest and soil diversity via functional traitsNat Ecol Evol2019312983083142773210.1038/s41559-019-0954-7
– reference: MaBWangHZDsouzaMLouJHeYDaiZMGeographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern ChinaISME J20161018919011:CAS:528:DC%2BC28Xht12ls7fK26771927502915810.1038/ismej.2015.261
– reference: SpainAMKrumholzLRElshahedMSAbundance, composition, diversity and novelty of soil ProteobacteriaISME J.2009399210001:CAS:528:DC%2BD1MXovFOgurs%3D1940432610.1038/ismej.2009.43
– reference: SzoboszlayMDohrmannABPoeplauCDonATebbeCCImpact of land-use change and soil organic carbon quality on microbial diversity in soils across EuropeFEMS Microbiol Ecol.201793fix14610.1093/femsec/fix1461:CAS:528:DC%2BC1cXhvVWku73I
– reference: WolińskaAKuzniarAZielenkiewiczUIzakDSzafranek-NakoniecznaABanachABacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approachAppl Soil Ecol20171191283710.1016/j.apsoil.2017.06.009
– reference: AllisonSDMartinyJBHResistance resilience, and redundancy in microbial communitiesProc Natl Acad Sci USA.20081051151291:CAS:528:DC%2BD1cXhtVSjtrzO18695234255642110.1073/pnas.0801925105
– reference: SmithRWBianchiTSAllisonMSavageCGalyVHigh rates of organic carbon burial in fjord sediments globallyNat Geosci.20158450U461:CAS:528:DC%2BC2MXnvFShsLs%3D10.1038/ngeo2421
– reference: RyuMHZhangJTothTKhokhaniDGeddesBAMusFControl of nitrogen fixation in bacteria that associate with cerealsNat Microbiol20205314301:CAS:528:DC%2BC1MXisVSktb3P3184429810.1038/s41564-019-0631-2
– reference: HerrenCMMcMahonKDKeystone taxa predict compositional change in microbial communitiesEnviron Microbiol.2018202207172970864510.1111/1462-2920.14257
– reference: WangZZhangQStaleyCGaoHIshiiSWeiXImpact of long-term grazing exclusion on soil microbial community composition and nutrient availabilityBiol Fertil Soils201955121341:CAS:528:DC%2BC1MXhtVCjt7rF10.1007/s00374-018-01336-5
– reference: MickanBSAbbottLKSolaimanZMMathesFSiddiqueKHMJenkinsSNSoil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soilBiol Fert Soils.20195553661:CAS:528:DC%2BC1cXitFejs7zM10.1007/s00374-018-1328-z
– reference: CsardiGNepuszTThe igraph software package for complex network research. InterJournalComplex Syst2006169519
– reference: MuellerRCPaulaFSMirzaBSRodriguesJLMNuessleinKBohannanBJMLinks between plant and fungal communities across a deforestation chronosequence in the Amazon rainforestISME J.201481548501:CAS:528:DC%2BC2cXhtVKmtrbM24451208406939510.1038/ismej.2013.253
– reference: Van Oost K, Bakker MM. Soil productivity and erosion. In: Wall DH, Bardgett RD, Behan-Pelletier V, Herrick JE, Jones H, Ritz K, et al. (eds.). Soil ecology and ecosystem services. Oxford, UK: Oxford University Press; 2012. 301–14.
– reference: UN (United Nations). World Soil Day [online]. 2019. https://www.un.org/en/observances/world-soil-day.
– reference: BardgettRDVan Der PuttenWHBelowground biodiversity and ecosystem functioningNature.2014515505111:CAS:528:DC%2BC2cXitFamsrnM2542849810.1038/nature13855
– reference: HouSXinMWangLLJiangHLiNWangZThe effects of erosion on the microbial populations and enzyme activity in black soil of northeastern ChinaActa Ecologica Sin20143429530110.1016/j.chnaes.2014.10.001
– reference: SaleemMHuJJoussetAMore than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil healthAnnu Rev Ecol Evol Syst.2019501456810.1146/annurev-ecolsys-110617-062605
– reference: CrowtherTWThomasSMMaynardDSBaldrianPCoveyKFreySDBiotic interactions mediate soil microbial feedbacks to climate changeProc Natl Acad Sci USA.2015112703381:CAS:528:DC%2BC2MXosVKrurY%3D26038557446046910.1073/pnas.1502956112
– reference: PengMJiaHWangQThe effect of land use on bacterial communities in Saline-Alkali soilCurr Microbiol201774325331:CAS:528:DC%2BC2sXht1Cmtr8%3D2810244110.1007/s00284-017-1195-0
– reference: BanerjeeSWalderFBüchiLMeyerMHeldAYGattingerAAgricultural intensification reduces microbial network complexity and the abundance of keystone taxa in rootsISME J.20191317223630850707659112610.1038/s41396-019-0383-2
– volume: 141
  start-page: 107686
  year: 2020
  ident: 2024011007174092200_CR31
  article-title: Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils
  publication-title: Soil Biol Biochem.
  doi: 10.1016/j.soilbio.2019.107686
– volume: 15
  start-page: 579
  year: 2017
  ident: 2024011007174092200_CR19
  article-title: Embracing the unknown: disentangling the complexities of the soil microbiome
  publication-title: Nat Rev Microbiol.
  doi: 10.1038/nrmicro.2017.87
– volume: 84
  start-page: 69
  year: 2014
  ident: 2024011007174092200_CR108
  article-title: Predominant bacterial and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme activities of biogeochemical cycling
  publication-title: Appl Soil Ecol.
  doi: 10.1016/j.apsoil.2014.06.005
– volume: 319
  start-page: 1040
  year: 2008
  ident: 2024011007174092200_CR9
  article-title: Soil erosion: a carbon sink or source?
  publication-title: Science.
  doi: 10.1126/science.319.5866.1040
– volume: 25
  start-page: 1078
  year: 2019
  ident: 2024011007174092200_CR29
  article-title: Microbes drive global soil nitrogen mineralization and availability
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.14557
– volume: 302
  start-page: 107081
  year: 2020
  ident: 2024011007174092200_CR46
  article-title: Response of soil OC, N and P to land-use change and erosion in the black soil region of the Northeast China
  publication-title: Agr Ecosyst Environ.
  doi: 10.1016/j.agee.2020.107081
– volume: 478
  start-page: 49
  year: 2011
  ident: 2024011007174092200_CR112
  article-title: Trumbore, Persistence of soil organic matter as an ecosystem property
  publication-title: Nature.
  doi: 10.1038/nature10386
– volume: 84
  start-page: 511
  year: 2003
  ident: 2024011007174092200_CR60
  article-title: Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology
  publication-title: Ecology.
  doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
– volume: 267
  start-page: 1117
  year: 1995
  ident: 2024011007174092200_CR4
  article-title: Environmental and economic costs of soil erosion and conservation benefits
  publication-title: Science.
  doi: 10.1126/science.267.5201.1117
– volume: 71
  start-page: 37
  year: 2015
  ident: 2024011007174092200_CR43
  article-title: Microbial responses to erosion-induced soil physico-chemical property changes in the hilly red soil region of southern China
  publication-title: Eur J Soil Biol
  doi: 10.1016/j.ejsobi.2015.10.003
– volume: 3
  start-page: 273
  year: 2013
  ident: 2024011007174092200_CR25
  article-title: Biogeochemical plant–soil microbe feedback in response to climate warming in peatlands
  publication-title: Nat Clim Change.
  doi: 10.1038/nclimate1781
– volume: 96
  start-page: 28
  year: 2007
  ident: 2024011007174092200_CR45
  article-title: Characteristics and factors controlling the development of ephemeral gullies in cultivated catchments of black soil region, Northeast China
  publication-title: Soil Res.
– volume: 17
  start-page: 837
  year: 1985
  ident: 2024011007174092200_CR49
  article-title: Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil
  publication-title: Soil Biol Biochem.
  doi: 10.1016/0038-0717(85)90144-0
– volume: 3
  start-page: 909
  year: 2013
  ident: 2024011007174092200_CR30
  article-title: Global soil carbon projections are improved by modelling microbial processes
  publication-title: Nat Clim Change.
  doi: 10.1038/nclimate1951
– volume: 3
  start-page: e00202
  year: 2018
  ident: 2024011007174092200_CR55
  article-title: SHI7 is a self-learning pipeline for multipurpose short-read DNA quality control
  publication-title: mSystems.
  doi: 10.1128/mSystems.00202-17
– volume: 93
  start-page: fix146
  year: 2017
  ident: 2024011007174092200_CR105
  article-title: Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe
  publication-title: FEMS Microbiol Ecol.
  doi: 10.1093/femsec/fix146
– volume: 459
  start-page: 117805
  year: 2020
  ident: 2024011007174092200_CR101
  article-title: Long term effects of management practice intensification on soil microbial community structure and co-occurrence network in a non-timber plantation
  publication-title: For Ecol Manag
  doi: 10.1016/j.foreco.2019.117805
– volume: 16
  start-page: 567
  year: 2018
  ident: 2024011007174092200_CR39
  article-title: Keystone taxa as drivers of microbiome structure and functioning
  publication-title: Nat Rev Microbiol
  doi: 10.1038/s41579-018-0024-1
– volume: 12
  start-page: e1004658
  year: 2016
  ident: 2024011007174092200_CR56
  article-title: NINJA-OPS: fast accurate marker gene alignment using concatenated ribosomes
  publication-title: PLoS Comput Biol.
  doi: 10.1371/journal.pcbi.1004658
– volume: 3
  start-page: 311
  year: 2010
  ident: 2024011007174092200_CR11
  article-title: The impact of agricultural soil erosion on biogeochemical cycling
  publication-title: Nat Geosci
  doi: 10.1038/ngeo838
– volume: 15
  start-page: 183
  year: 2004
  ident: 2024011007174092200_CR42
  article-title: Influence of erosion on soil microbial biomass, abundance and community diversity
  publication-title: Land Degrad Dev.
  doi: 10.1002/ldr.607
– volume: 365
  start-page: eaav0550
  year: 2019
  ident: 2024011007174092200_CR22
  article-title: The global soil community and its influence on biogeochemistry
  publication-title: Science.
  doi: 10.1126/science.aav0550
– volume: 6
  start-page: 6936
  year: 2015
  ident: 2024011007174092200_CR50
  article-title: Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats
  publication-title: Nat Commun.
  doi: 10.1038/ncomms7936
– volume: 307
  start-page: 107232
  year: 2021
  ident: 2024011007174092200_CR70
  article-title: Soil erosion significantly reduces organic carbon and nitrogen mineralization in a simulated experiment
  publication-title: Agr Ecosyst Environ.
  doi: 10.1016/j.agee.2020.107232
– volume: 85
  start-page: e00162
  year: 2019
  ident: 2024011007174092200_CR100
  article-title: Microbial network and soil properties are changed in bacterial wilt-susceptible soil
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.00162-19
– volume: 353
  start-page: 1272
  year: 2016
  ident: 2024011007174092200_CR69
  article-title: Decoupling function and taxonomy in the global ocean microbiome
  publication-title: Science.
  doi: 10.1126/science.aaf4507
– volume: 357
  start-page: 420
  year: 2006
  ident: 2024011007174092200_CR63
  article-title: Application of random matrix theory to biological networks
  publication-title: Phys Lett A.
  doi: 10.1016/j.physleta.2006.04.076
– volume: 112
  start-page: 15684
  year: 2015
  ident: 2024011007174092200_CR27
  article-title: Increasing aridity reduces soil microbial diversity and abundance in global drylands
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1516684112
– volume: 24
  start-page: 2818
  year: 2018
  ident: 2024011007174092200_CR41
  article-title: Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents
  publication-title: Glob Change Biol
  doi: 10.1111/gcb.14113
– volume: 226
  start-page: 232
  year: 2020
  ident: 2024011007174092200_CR99
  article-title: Soil fungal assemblage complexity is dependent on soil fertility and dominated by deterministic processes
  publication-title: N Phytol.
  doi: 10.1111/nph.16345
– volume: 8
  start-page: 226
  year: 2014
  ident: 2024011007174092200_CR121
  article-title: Resistance and resilience of the forest soil microbiome to logging-associated compaction
  publication-title: ISME J
  doi: 10.1038/ismej.2013.141
– volume: 55
  start-page: 121
  year: 2019
  ident: 2024011007174092200_CR52
  article-title: Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability
  publication-title: Biol Fertil Soils
  doi: 10.1007/s00374-018-01336-5
– volume: 6
  start-page: 1007
  year: 2012
  ident: 2024011007174092200_CR92
  article-title: Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.159
– volume: 20
  start-page: 2207
  year: 2018
  ident: 2024011007174092200_CR40
  article-title: Keystone taxa predict compositional change in microbial communities
  publication-title: Environ Microbiol.
  doi: 10.1111/1462-2920.14257
– volume: 97
  start-page: 40
  year: 2016
  ident: 2024011007174092200_CR82
  article-title: Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau
  publication-title: Soil Biol Biochem.
  doi: 10.1016/j.soilbio.2016.02.013
– volume: 1
  start-page: 28
  year: 2013
  ident: 2024011007174092200_CR71
  article-title: Colonization patterns of soil microbial communities in the Atacama Desert
  publication-title: Microbiome.
  doi: 10.1186/2049-2618-1-28
– volume: 64
  start-page: 1285
  year: 2000
  ident: 2024011007174092200_CR74
  article-title: Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2000.6441285x
– volume: 77
  start-page: 6295
  year: 2011
  ident: 2024011007174092200_CR84
  article-title: Global biogeography and quantitative seasonal dynamics of gemmatimonadetes in soil
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.05005-11
– volume: 8
  start-page: 1548
  year: 2014
  ident: 2024011007174092200_CR54
  article-title: Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest
  publication-title: ISME J.
  doi: 10.1038/ismej.2013.253
– volume: 80
  start-page: 3034
  year: 2014
  ident: 2024011007174092200_CR90
  article-title: Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.03414-13
– volume: 7
  start-page: 143
  year: 2019
  ident: 2024011007174092200_CR96
  article-title: Suppressed N fixation and diazotrophs after four decades of fertilization
  publication-title: Microbiome.
  doi: 10.1186/s40168-019-0757-8
– volume: 3
  start-page: 378
  year: 2009
  ident: 2024011007174092200_CR91
  article-title: Phylogenetic diversity of Acidobacteria in a former agricultural soil
  publication-title: ISME J.
  doi: 10.1038/ismej.2008.113
– volume: 13
  start-page: 113
  year: 2012
  ident: 2024011007174092200_CR103
  article-title: Molecular ecological network analyses
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-13-113
– volume: 64
  start-page: 286
  year: 2000
  ident: 2024011007174092200_CR75
  article-title: Diurnal and seasonal CO2-C flux from soil as related to erosion phases in central Ohio
  publication-title: Soil Sci Soc Am J
  doi: 10.2136/sssaj2000.641286x
– volume: 528
  start-page: 69
  year: 2015
  ident: 2024011007174092200_CR20
  article-title: Soil biodiversity and human health
  publication-title: Nature.
  doi: 10.1038/nature15744
– volume: 100
  start-page: 317
  year: 2012
  ident: 2024011007174092200_CR51
  article-title: Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern
  publication-title: J Ecol
  doi: 10.1111/j.1365-2745.2011.01918.x
– volume: 150
  start-page: 108013
  year: 2020
  ident: 2024011007174092200_CR104
  article-title: Soil microbial interactions modulate the effect of Artemisia ordosica on herbaceous species in a desert ecosystem, northern China
  publication-title: Soil Biol Biochem.
  doi: 10.1016/j.soilbio.2020.108013
– volume: 11
  start-page: 2691
  year: 2017
  ident: 2024011007174092200_CR86
  article-title: Drought and host selection influence bacterial community dynamics in the grass root microbiome
  publication-title: ISME J
  doi: 10.1038/ismej.2017.118
– volume: 10
  start-page: 1891
  year: 2016
  ident: 2024011007174092200_CR66
  article-title: Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China
  publication-title: ISME J
  doi: 10.1038/ismej.2015.261
– start-page: 104
  volume-title: Soil erosion: the greatest challenge for sustainable soil management.
  year: 2019
  ident: 2024011007174092200_CR3
– volume: 2
  start-page: e00122
  year: 2011
  ident: 2024011007174092200_CR24
  article-title: Phylogenetic molecular ecological network of soil microbial communities in response to elevated CO2
  publication-title: MBio.
  doi: 10.1128/mBio.00122-11
– volume: 152
  start-page: 103544
  year: 2020
  ident: 2024011007174092200_CR73
  article-title: Poor nutrient availability in opencast coalmine influences microbial community composition and diversity in exposed and underground soil profiles
  publication-title: Appl Soil Ecol.
  doi: 10.1016/j.apsoil.2020.103544
– volume: 368
  start-page: 1621
  year: 2013
  ident: 2024011007174092200_CR95
  article-title: Biological nitrogen fixation: rates, patterns and ecological controls in terrestrial ecosystems
  publication-title: Philos Trans R Soc B Biol Sci
  doi: 10.1098/rstb.2013.0119
– ident: 2024011007174092200_CR6
– volume: 9
  start-page: 357
  year: 2012
  ident: 2024011007174092200_CR57
  article-title: Fast gapped-read alignment with Bowtie 2
  publication-title: Nat Methods.
  doi: 10.1038/nmeth.1923
– volume: 4
  start-page: 210
  year: 2020
  ident: 2024011007174092200_CR32
  article-title: Multiple elements of soil biodiversity drive ecosystem functions across biomes
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-019-1084-y
– volume: 55
  start-page: 53
  year: 2019
  ident: 2024011007174092200_CR89
  article-title: Soil disturbance and water stress interact to influence arbuscular mycorrhizal fungi, rhizosphere bacteria and potential for N and C cycling in an agricultural soil
  publication-title: Biol Fert Soils.
  doi: 10.1007/s00374-018-1328-z
– volume: 9
  start-page: 3033
  year: 2018
  ident: 2024011007174092200_CR23
  article-title: Soil bacterial networks are less stable under drought than fungal networks
  publication-title: Nat Commun.
  doi: 10.1038/s41467-018-05516-7
– volume: 72
  start-page: 1719
  year: 2006
  ident: 2024011007174092200_CR80
  article-title: Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes
  publication-title: Appl Environ Microb.
  doi: 10.1128/AEM.72.3.1719-1728.2006
– volume: 4
  start-page: eaat1808
  year: 2018
  ident: 2024011007174092200_CR79
  article-title: Biogeography of soil bacteria and archaea across France
  publication-title: Sci Adv.
  doi: 10.1126/sciadv.aat1808
– volume: 8
  start-page: 361
  year: 2009
  ident: 2024011007174092200_CR68
  article-title: Gephi: an open source software for exploring and manipulating networks
  publication-title: ICWSM Conf
  doi: 10.1609/icwsm.v3i1.13937
– volume: 6
  start-page: 610
  year: 2012
  ident: 2024011007174092200_CR58
  article-title: An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea
  publication-title: ISME J.
  doi: 10.1038/ismej.2011.139
– volume: 2
  start-page: 269
  year: 2018
  ident: 2024011007174092200_CR16
  article-title: Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-017-0415-0
– volume: 6
  start-page: 343
  year: 2012
  ident: 2024011007174092200_CR35
  article-title: Using network analysis to explore co-occurrence patterns in soil microbial communities
  publication-title: ISME J
  doi: 10.1038/ismej.2011.119
– volume: 47
  start-page: 291
  year: 1998
  ident: 2024011007174092200_CR8
  article-title: Carbon distribution and losses: erosion and deposition effects
  publication-title: Soil Res
– volume: 74
  start-page: 325
  year: 2017
  ident: 2024011007174092200_CR109
  article-title: The effect of land use on bacterial communities in Saline-Alkali soil
  publication-title: Curr Microbiol
  doi: 10.1007/s00284-017-1195-0
– volume: 93
  start-page: 490
  year: 2018
  ident: 2024011007174092200_CR93
  article-title: Indicators of arable soils fatigue Bacterial - families and genera: a metagenomic approach
  publication-title: Ecol Indic.
  doi: 10.1016/j.ecolind.2018.05.033
– volume: 459
  start-page: 193
  year: 2009
  ident: 2024011007174092200_CR38
  article-title: Microbial community structure and its functional implications
  publication-title: Nature.
  doi: 10.1038/nature08058
– volume: 99
  start-page: 583
  year: 2018
  ident: 2024011007174092200_CR116
  article-title: Ecological drivers of soil microbial diversity and soil biological networks in the Southern Hemisphere
  publication-title: Ecology.
  doi: 10.1002/ecy.2137
– ident: 2024011007174092200_CR17
– volume: 30
  start-page: 49
  year: 2019
  ident: 2024011007174092200_CR94
  article-title: Grazing practices affect the soil microbial community composition in a Tibetan alpine meadow
  publication-title: Land Degrad Dev.
  doi: 10.1002/ldr.3189
– volume: 16
  start-page: 420
  year: 2006
  ident: 2024011007174092200_CR47
  article-title: Effect of vegetation changes on soil erosion on the Loess Plateau
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(06)60071-4
– volume: 138
  start-page: 223
  year: 2019
  ident: 2024011007174092200_CR106
  article-title: Microbial community composition and network analyses in arid soils of the Patagonian Monte under grazing disturbance reveal an important response of the community to soil particle size
  publication-title: Appl Soil Ecol.
  doi: 10.1016/j.apsoil.2019.03.001
– volume: 335
  start-page: 214
  year: 2012
  ident: 2024011007174092200_CR14
  article-title: Plant species richness and ecosystem multifunctionality in global drylands
  publication-title: Science.
  doi: 10.1126/science.1215442
– volume: 50
  start-page: 145
  year: 2019
  ident: 2024011007174092200_CR21
  article-title: More than the sum of its parts: microbiome biodiversity as a driver of plant growth and soil health
  publication-title: Annu Rev Ecol Evol Syst.
  doi: 10.1146/annurev-ecolsys-110617-062605
– volume: 13
  start-page: 1722
  year: 2019
  ident: 2024011007174092200_CR36
  article-title: Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots
  publication-title: ISME J.
  doi: 10.1038/s41396-019-0383-2
– volume: 8
  start-page: 1694
  year: 2017
  ident: 2024011007174092200_CR10
  article-title: Organic carbon burial in global lakes and reservoirs
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01789-6
– volume: 5
  start-page: 314
  year: 2020
  ident: 2024011007174092200_CR97
  article-title: Control of nitrogen fixation in bacteria that associate with cereals
  publication-title: Nat Microbiol
  doi: 10.1038/s41564-019-0631-2
– volume: 8
  start-page: e00764
  year: 2017
  ident: 2024011007174092200_CR87
  article-title: Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes
  publication-title: mBio.
  doi: 10.1128/mBio.00764-17
– volume: 4
  start-page: e00061
  year: 2019
  ident: 2024011007174092200_CR88
  article-title: Metaphenomic responses of a native prairie soil microbiome to moisture perturbations
  publication-title: mSystems.
– volume: 7
  start-page: 12083
  year: 2016
  ident: 2024011007174092200_CR119
  article-title: Temperature mediates continental-scale diversity of microbes in forest soils
  publication-title: Nat Commun.
  doi: 10.1038/ncomms12083
– volume: 97
  start-page: 188
  year: 2016
  ident: 2024011007174092200_CR98
  article-title: Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil
  publication-title: Soil Biol Biochem.
  doi: 10.1016/j.soilbio.2016.03.017
– volume: 3
  start-page: 1298
  year: 2019
  ident: 2024011007174092200_CR114
  article-title: Continental scale structuring of forest and soil diversity via functional traits
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-019-0954-7
– volume: 34
  start-page: 295
  year: 2014
  ident: 2024011007174092200_CR44
  article-title: The effects of erosion on the microbial populations and enzyme activity in black soil of northeastern China
  publication-title: Acta Ecologica Sin
  doi: 10.1016/j.chnaes.2014.10.001
– volume: 24
  start-page: 2433
  year: 2015
  ident: 2024011007174092200_CR110
  article-title: Soil microbiome responses to the short-term effects of Amazonian deforestation
  publication-title: Mol Ecol.
  doi: 10.1111/mec.13172
– volume: 93
  start-page: 491
  year: 2006
  ident: 2024011007174092200_CR64
  article-title: Adaptive linear step-up procedures that control the false discovery rate
  publication-title: Biometrika.
  doi: 10.1093/biomet/93.3.491
– volume: 8
  start-page: 520
  year: 2018
  ident: 2024011007174092200_CR76
  article-title: Impacts of simulated erosion and soil amendments on greenhouse gas fluxes and maize yield in Miamian soil of central Ohio
  publication-title: Sci Rep.
  doi: 10.1038/s41598-017-18922-6
– volume: 3
  start-page: 992
  year: 2009
  ident: 2024011007174092200_CR81
  article-title: Abundance, composition, diversity and novelty of soil Proteobacteria
  publication-title: ISME J.
  doi: 10.1038/ismej.2009.43
– ident: 2024011007174092200_CR61
– volume: 528
  start-page: 60
  year: 2015
  ident: 2024011007174092200_CR113
  article-title: The contentious nature of soil organic matter
  publication-title: Nature.
  doi: 10.1038/nature16069
– volume: 72
  start-page: 6316
  year: 2006
  ident: 2024011007174092200_CR107
  article-title: Microbial population dynamics associated with crude-oil biodegradation in diverse soils
  publication-title: Appl Environ Microb
  doi: 10.1128/AEM.01015-06
– volume: 7
  start-page: 10541
  year: 2016
  ident: 2024011007174092200_CR15
  article-title: Microbial diversity drives multifunctionality in terrestrial ecosystems
  publication-title: Nat Commun.
  doi: 10.1038/ncomms10541
– volume: 27
  start-page: 326
  year: 1957
  ident: 2024011007174092200_CR59
  article-title: An ordination of the upland forest communities of southern Wisconsin
  publication-title: Ecol Monogr.
  doi: 10.2307/1942268
– volume: 4
  start-page: 4062
  year: 2014
  ident: 2024011007174092200_CR115
  article-title: Global pattern of soil carbon losses due to the conversion of forests to agricultural land
  publication-title: Sci Rep.
  doi: 10.1038/srep04062
– volume-title: Chemical and Microbiological Properties
  year: 1982
  ident: 2024011007174092200_CR48
– volume: 10
  start-page: 4841
  year: 2019
  ident: 2024011007174092200_CR33
  article-title: Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-12798-y
– start-page: 301
  volume-title: Soil ecology and ecosystem services
  year: 2012
  ident: 2024011007174092200_CR7
  doi: 10.1093/acprof:oso/9780199575923.003.0027
– volume: 7
  start-page: 384
  year: 2013
  ident: 2024011007174092200_CR85
  article-title: Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought
  publication-title: ISME J
  doi: 10.1038/ismej.2012.113
– volume: 99
  start-page: 690
  year: 2018
  ident: 2024011007174092200_CR37
  article-title: Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities?
  publication-title: Ecology.
  doi: 10.1002/ecy.2142
– volume: 119
  start-page: 128
  year: 2017
  ident: 2024011007174092200_CR83
  article-title: Bacteroidetes as a sensitive biological indicator of agricultural soil usage revealed by a culture-independent approach
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2017.06.009
– volume: 11
  start-page: 296
  year: 2008
  ident: 2024011007174092200_CR34
  article-title: The unseen majority: Soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
  publication-title: Ecol Lett
  doi: 10.1111/j.1461-0248.2007.01139.x
– volume: 43
  start-page: 1837
  year: 2011
  ident: 2024011007174092200_CR72
  article-title: Changes in variability of soil moisture alter microbial community C and N resource use
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2011.04.020
– volume: 96
  start-page: fiaa047
  year: 2020
  ident: 2024011007174092200_CR111
  article-title: Soil microbial diversity in adjacent forest systems—contrasting native, old growth kauri (Agathis australis) forest with exotic pine (Pinus radiata) plantation forest
  publication-title: FEMS Microbiol Ecol.
  doi: 10.1093/femsec/fiaa047
– volume: 9
  start-page: 559
  year: 2008
  ident: 2024011007174092200_CR62
  article-title: WGCNA: an R package for weighted correlation network analysis
  publication-title: BMC Bioinforma.
  doi: 10.1186/1471-2105-9-559
– volume: 8
  start-page: 450
  year: 2015
  ident: 2024011007174092200_CR12
  article-title: High rates of organic carbon burial in fjord sediments globally
  publication-title: Nat Geosci.
  doi: 10.1038/ngeo2421
– volume: 5
  start-page: 219
  year: 2014
  ident: 2024011007174092200_CR67
  article-title: Deciphering microbial interactions and detecting keystone species with co-occurrence networks
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2014.00219
– volume: 8
  start-page: 1
  year: 2017
  ident: 2024011007174092200_CR5
  article-title: An assessment of the global impact of 21st century land use change on soil erosion
  publication-title: Nat Commun.
  doi: 10.1038/s41467-017-02142-7
– volume: 105
  start-page: 11512
  year: 2008
  ident: 2024011007174092200_CR120
  article-title: Resistance resilience, and redundancy in microbial communities
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.0801925105
– volume: 318
  start-page: 626
  year: 2007
  ident: 2024011007174092200_CR13
  article-title: The impact of agricultural soil erosion on the global carbon cycle
  publication-title: Science.
  doi: 10.1126/science.1145724
– volume: 19
  start-page: 375
  year: 2016
  ident: 2024011007174092200_CR77
  article-title: Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression
  publication-title: Ecol Lett.
  doi: 10.1111/ele.12567
– volume: 8
  start-page: 813
  year: 2018
  ident: 2024011007174092200_CR28
  article-title: Climate warming leads to divergent succession of grassland microbial communities
  publication-title: Nat Clim Change.
  doi: 10.1038/s41558-018-0254-2
– volume: 1695
  start-page: 1
  year: 2006
  ident: 2024011007174092200_CR65
  article-title: The igraph software package for complex network research. InterJournal
  publication-title: Complex Syst
– volume: 99
  start-page: 2455
  year: 2018
  ident: 2024011007174092200_CR118
  article-title: Microbes follow Humboldt: temperature drives plant and soil microbial diversity patterns from the Amazon to the Andes
  publication-title: Ecology.
  doi: 10.1002/ecy.2482
– volume: 359
  start-page: 320
  year: 2018
  ident: 2024011007174092200_CR117
  article-title: A global atlas of the dominant bacteria found in soil
  publication-title: Science.
  doi: 10.1126/science.aap9516
– volume: 515
  start-page: 505
  year: 2014
  ident: 2024011007174092200_CR18
  article-title: Belowground biodiversity and ecosystem functioning
  publication-title: Nature.
  doi: 10.1038/nature13855
– volume: 99
  start-page: 137
  year: 2016
  ident: 2024011007174092200_CR102
  article-title: Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2016.05.005
– volume: 21
  start-page: 1590
  year: 2015
  ident: 2024011007174092200_CR78
  article-title: Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective
  publication-title: Glob Change Biol.
  doi: 10.1111/gcb.12788
– volume-title: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils
  year: 2015
  ident: 2024011007174092200_CR1
– volume: 7
  start-page: 335
  year: 2010
  ident: 2024011007174092200_CR53
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat Methods
  doi: 10.1038/nmeth.f.303
– ident: 2024011007174092200_CR2
– volume: 112
  start-page: 7033
  year: 2015
  ident: 2024011007174092200_CR26
  article-title: Biotic interactions mediate soil microbial feedbacks to climate change
  publication-title: Proc Natl Acad Sci USA.
  doi: 10.1073/pnas.1502956112
SSID ssj0057667
Score 2.7147267
Snippet While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2474
SubjectTerms 631/326/171/1818
704/158/855
Abundance
Bacteria - genetics
Biodegradation
Biomedical and Life Sciences
Community composition
Complexity
Ecology
Ecosystem services
Evolutionary Biology
Humans
Land degradation
Life Sciences
Microbial activity
Microbial Consortia
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Microbiota
Microorganisms
Service restoration
Soil
Soil erosion
Soil Microbiology
Soil properties
Soil texture
Texture
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8QwEB58IHgR31ZXieBNg9umbepJRFxE0IsKeyt5FRe0u9oV9N87kz5kFb02CUknycwk8-UbgKO-djJxKuTSSMHRHqdco1nmSUzvQKUonEcT3t6l14_xzTAZNhduVQOrbHWiV9R2bOiO_BRd34S4zhJ5PnnllDWKoqtNCo15WCTqMoJ0yWF34EJX2meQRQuJY0FN3Tya6YvstELl7eG3eJgmakwezhqmX97mb9Dkj8ipN0iDVVhpPEl2UU_9Gsy5ch2W6tySnxtwf4XdoNDZG5GzuopV49Ezexl54iVsZ1tAxgkrayg48_By94HfmCot81hDsnv1dSF-3oTHwdXD5TVvMihwg57YlNvIJpm1RmhivVFRYgt71jfCUjTVmKIfWmcjdEm0i1zsk1hpqVyqilTZOFFiCxbKcel2gMWoDZTSNiWONaUyZTKlo0zHhY5kauIAwlZ8uWnoxSnLxXPuw9wiy2uR5yjy3Is8DwM47tpManKNf2v32lnJm41W5d_LIoDDrhi3CMU9VOnG71QHrXBKmiiA7XoSu-6EkFh2lgUgZ6a3q0D027Ml5ejJ03BnqL3iEId10i6E72H9_Re7___FHixHflESxLAHC9O3d7ePbs9UH_i1_QUzr_9q
  priority: 102
  providerName: ProQuest
Title Erosion reduces soil microbial diversity, network complexity and multifunctionality
URI https://link.springer.com/article/10.1038/s41396-021-00913-1
https://www.ncbi.nlm.nih.gov/pubmed/33712698
https://www.proquest.com/docview/2555778657
https://www.proquest.com/docview/2501261793
https://pubmed.ncbi.nlm.nih.gov/PMC8319411
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50RfBFvK3HEsE3LW6btqmPuqwsgiIesG8lV3Fh7coeoP_eybRdWS_wrSRpkk6SmUnz5RuA45ayIrYy8IUW3Ed7nPgKzbIfR-4eqOC5JTThzW3SfYque3FvAcL6LgyB9onSktR0jQ47G6OyJbgsbn4dlaWPO54lR93uZnU7adfaF91nihqLVhHbR-1cXZRp8fSHOuaN0TcP8ztQ8stpKRmhqzVYrbxHdlH2dx0WbLEBy2U8yXd86hAH9fsmPHSwQRQ5GzlqVjtm42F_wF76RLuENZgajnHKihIIzghcbt8wjcnCMEIaOqtX_izE5C14uuo8trt-FT_B1-iHTXwTmjg1RnPlOG9kGJvcnLc0N-4sVeu8FRhrQnRIlA1tRCGslJA2kXkiTRRLvg2NYljYXWAR6gIplUkcw5qUqdSpVGGqolyFItGRB0EtyExX5OIuxsUgo0Nunmal8DMUfkbCzwIPTmbvvJbUGn-WPqjHJ6uW2TjD_VDsCPBi4cHRLBsXiDv1kIUdTl0ZtMGJ00Me7JTDOWuOc4F556kHYm6gZwUc-fZ8TtF_JhLuFHVXFGC3Tusp8dmt379i73_F92ElpOnqAIcH0JiMpvYQnaCJasKi6IkmLF12bu_um7QGPgAJwAJ4
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ2p1YzuPHhDisdWWtisErdSb8StipZItzVbQP8VvZMZJtloqeus1dh4ej-cbZ8bfALwc2lBkwaS8cIXkiMc5twjLPFN0DrSQVYjZhHuTfHygPh1mhyvwpz8LQ2mVvU2MhtrPHP0j30DXNyOus6x4e_yTU9Uoiq72JTRatdgJZ79wy9a82f6I8_tKiK3R_ocx76oKcIfeyZx74bPSeyctMcEYkfnKbw6d9BRhdK4apj54gTBtgwgqFnayhQm5qXLjVWYkPvcarCqJW5kBrL4fTT5_6W0_Ou-xZi1iMo4esaE7pjOU5UaDcBETfnH7TmScPF2Gwgv-7cU0zX9itRECt27Drc53Ze9aZbsDK6G-C9fbapZn9-DrCF-D08xOiA42NKyZTY_Yj2mkesL7fJ8Css7qNvmcxYT28BuvMVN7FrMbCWnbH5R4-T4cXIl0H8CgntXhETCF9scY63NidTOmNK40VpRWVVYUuVMJpL34tOsIzamuxpGOgXVZ6lbkGkWuo8h1msDrxT3HLZ3Hpb3X-lnR3dJu9LkiJvBi0YyLkiItpg6zU-qDuJ-T7UvgYTuJi9dJWWDbZplAsTS9iw5E-L3cUk-_R-LvEu2lSvGz1ntFOP-s_4_i8eWjeA43xvt7u3p3e7LzBG6KqKCU4LgGg_nJaXiKTtfcPus0ncG3q15cfwEteT9E
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxRBEK4gRuPF4AtHUNtET9Jhp3tmejgQY4QNiBITJdlb26-Jm-AsMkuEv-avs6rnQVYiN67TPa96d9fXVQCvRzaoPJiUK6ckR39ccItumecZnQNVsgoRTfj5sNg7yj5O8skS_OnPwhCssreJ0VD7maM98k0MfXOqdYYL-KqDRXzZGb87-cWpgxRlWvt2Gq2IHISL37h8a7b3d5DXb4QY7377sMe7DgPcYaQy5174vPTeSUtVYYzIfeW3Rk56yjY6V41SH7xAl22DCFls8mSVCYWpCuOz3Eh87i24rWSeko6pybDYwzA-dq9F74x0QC_RHdgZyXKzQccRob-4kKeynDxddIpXIt2rgM1_srbRGY5X4H4XxbL3rdg9gKVQP4Q7bV_Li0fwdRdfgwxnp1QYNjSsmU2P2c9pLPqE9_keDLLB6haGziK0PZzjNWZqzyLOkXxuu1WJlx_D0Y3Q9gks17M6PAWWoSUyxvqC6rsZUxpXGitKm1VWqMJlCaQ9-bTrSptTh41jHVPsstQtyTWSXEeS6zSBt8M9J21hj2tnr_dc0Z2SN_pSJBN4NQyjelLOxdRhdkZzMAIoyAomsNoycXidlArHtsoE1AJ7hwlU-ntxpJ7-iCXAS7ScWYqftdELwuVn_f8vnl3_Fy_hLqqU_rR_eLAG90SUT0I6rsPy_PQsPMfoa25fRDFn8P2m9eovfX5CFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+reduces+soil+microbial+diversity%2C+network+complexity+and+multifunctionality&rft.jtitle=The+ISME+Journal&rft.au=Qiu%2C+Liping&rft.au=Zhang%2C+Qian&rft.au=Zhu%2C+Hansong&rft.au=Reich%2C+Peter+B.&rft.date=2021-08-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1751-7362&rft.eissn=1751-7370&rft.volume=15&rft.issue=8&rft.spage=2474&rft.epage=2489&rft_id=info:doi/10.1038%2Fs41396-021-00913-1&rft.externalDocID=10_1038_s41396_021_00913_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-7362&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-7362&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-7362&client=summon