Mechanical load regulates bone growth via periosteal Osteocrin
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in...
Saved in:
Published in | Cell reports (Cambridge) Vol. 36; no. 2; p. 109380 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
13.07.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
[Display omitted]
•OSTN from periosteum regulates endochondral and intramembranous ossification•OSTN enhances osteogenesis through potentiation of CNP signaling•FoxO1 suppresses periosteal expression of OSTN under unloading condition•OSTN is required for physiological load-induced bone gain
Watanabe-Takano et al. demonstrate that physiological loading induces Osteocrin (OSTN) expression in the periosteal osteoblasts of long bones through suppression of the Forkhead box protein O1 transcription factor. OSTN promotes bone growth through enhancement of C-type natriuretic peptide signaling, leading to elongation and appositional growth of long bones. |
---|---|
AbstractList | Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
[Display omitted]
•OSTN from periosteum regulates endochondral and intramembranous ossification•OSTN enhances osteogenesis through potentiation of CNP signaling•FoxO1 suppresses periosteal expression of OSTN under unloading condition•OSTN is required for physiological load-induced bone gain
Watanabe-Takano et al. demonstrate that physiological loading induces Osteocrin (OSTN) expression in the periosteal osteoblasts of long bones through suppression of the Forkhead box protein O1 transcription factor. OSTN promotes bone growth through enhancement of C-type natriuretic peptide signaling, leading to elongation and appositional growth of long bones. Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation. Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation. |
ArticleNumber | 109380 |
Author | Tainaka, Kazuki Yasoda, Akihiro Mochizuki, Naoki Sato, Shingo Watanabe-Takano, Haruko Matsuo, Ayaka Kanai, Yugo Takeda, Shu Sako, Keisuke Harada, Ichiro Ueda, Hiroki R. Miyazaki, Takahiro Minamino, Naoto Chiba, Ayano Ochi, Hiroki Fukuhara, Shigetomo Sawada, Yasuhiro Ito, Naoki |
Author_xml | – sequence: 1 givenname: Haruko surname: Watanabe-Takano fullname: Watanabe-Takano, Haruko email: takano_h@ncvc.go.jp organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan – sequence: 2 givenname: Hiroki surname: Ochi fullname: Ochi, Hiroki organization: Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan – sequence: 3 givenname: Ayano surname: Chiba fullname: Chiba, Ayano organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan – sequence: 4 givenname: Ayaka surname: Matsuo fullname: Matsuo, Ayaka organization: Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan – sequence: 5 givenname: Yugo surname: Kanai fullname: Kanai, Yugo organization: Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan – sequence: 6 givenname: Shigetomo surname: Fukuhara fullname: Fukuhara, Shigetomo organization: Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan – sequence: 7 givenname: Naoki surname: Ito fullname: Ito, Naoki organization: Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan – sequence: 8 givenname: Keisuke surname: Sako fullname: Sako, Keisuke organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan – sequence: 9 givenname: Takahiro surname: Miyazaki fullname: Miyazaki, Takahiro organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan – sequence: 10 givenname: Kazuki surname: Tainaka fullname: Tainaka, Kazuki organization: Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan – sequence: 11 givenname: Ichiro surname: Harada fullname: Harada, Ichiro organization: Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan – sequence: 12 givenname: Shingo surname: Sato fullname: Sato, Shingo organization: Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan – sequence: 13 givenname: Yasuhiro surname: Sawada fullname: Sawada, Yasuhiro organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan – sequence: 14 givenname: Naoto surname: Minamino fullname: Minamino, Naoto organization: Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan – sequence: 15 givenname: Shu surname: Takeda fullname: Takeda, Shu organization: Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan – sequence: 16 givenname: Hiroki R. surname: Ueda fullname: Ueda, Hiroki R. organization: CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan – sequence: 17 givenname: Akihiro surname: Yasoda fullname: Yasoda, Akihiro organization: Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan – sequence: 18 givenname: Naoki surname: Mochizuki fullname: Mochizuki, Naoki email: mochizuki@ncvc.go.jp organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34260913$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtvGyEUhVGVqnk0_6CqZpmNHcAMDF1EiqLmIaXKpl2jC9xxsMaDC9hR_n1JJqmiLlIWgK7OOVf6ziHZG-OIhHxhdM4ok6erucMh4WbOKWd1pBcd_UAOOGdsxrhQe2_---Q45xWtR1LGtPhE9heCS6rZ4oCc_UB3D2NwMDRDBN8kXG4HKJgbW1c2yxQfyn2zC9BsMIWYC1blXX2iS2H8TD72MGQ8fnmPyK_L7z8vrme3d1c3F-e3M9cKWmaeMd9J9B1IKTrhW8-htVayXluPSvWt81pLpwERgHIhRL1R61ZwzbxaHJGbKddHWJlNCmtIjyZCMM-DmJYGUgluQNMrq4S0rZC6F8wLq5jqNe-tU9BJ0DXrZMrapPh7i7mYdcgV5wAjxm02vG15RVUJVenXF-nWrtH_XfzKrwq-TQKXYs4Je-NCgRLiWBKEwTBqnvoyKzP1ZZ76MlNf1Sz-Mb_m_8d2NtmwAt8FTCa7gKNDHxK6UomE9wP-ABD0r2g |
CitedBy_id | crossref_primary_10_1016_j_cdev_2023_203878 crossref_primary_10_1093_ndt_gfab286 crossref_primary_10_1186_s12902_024_01575_8 crossref_primary_10_1186_s13287_022_02992_z crossref_primary_10_14814_phy2_15674 crossref_primary_10_1016_j_cej_2024_150990 crossref_primary_10_1016_j_rvsc_2023_03_006 crossref_primary_10_1007_s00018_025_05597_w crossref_primary_10_1016_j_isci_2022_105019 crossref_primary_10_1097_GOX_0000000000004968 crossref_primary_10_1002_alz_13864 crossref_primary_10_1186_s13075_023_03220_6 crossref_primary_10_3390_ijms241814326 crossref_primary_10_3390_ijms251810102 crossref_primary_10_1002_jbm4_10732 crossref_primary_10_1038_s41467_021_26571_7 crossref_primary_10_1142_S2424835523500121 crossref_primary_10_21272_eumj_2024_12_3__476_491 crossref_primary_10_1172_jci_insight_179963 crossref_primary_10_1007_s12079_023_00760_z crossref_primary_10_1038_s41574_022_00641_2 crossref_primary_10_1038_s41598_024_84873_4 crossref_primary_10_1242_dmm_050724 crossref_primary_10_1021_acsnano_4c08442 crossref_primary_10_3389_fbioe_2024_1524133 crossref_primary_10_1007_s11914_022_00737_8 crossref_primary_10_47836_mjmhs_19_3_46 crossref_primary_10_1038_s41413_024_00361_5 crossref_primary_10_1038_s41467_023_39710_z crossref_primary_10_1093_lifemeta_loae006 crossref_primary_10_3390_biology11060911 crossref_primary_10_3390_nu15071720 crossref_primary_10_1016_j_cbi_2024_110955 crossref_primary_10_1038_s41467_024_50809_9 crossref_primary_10_1016_j_ydbio_2023_07_005 crossref_primary_10_1002_smsc_202400061 crossref_primary_10_1016_j_xpro_2022_101127 crossref_primary_10_1016_j_bonr_2023_101664 crossref_primary_10_1152_ajpcell_00544_2022 crossref_primary_10_1038_s41598_021_01095_8 |
Cites_doi | 10.1359/jbmr.090411 10.1038/nature11581 10.1038/srep10554 10.1172/JCI35243E1 10.1038/s42255-018-0016-5 10.1073/pnas.96.18.10278 10.1073/pnas.1514250112 10.1016/j.ab.2014.05.022 10.2353/ajpath.2010.100060 10.1038/nm971 10.1002/jbmr.2278 10.1172/JCI98857 10.1002/stem.1210 10.1210/en.2014-1801 10.1016/j.bone.2004.05.023 10.1530/JOE-11-0048 10.1016/j.cell.2014.10.034 10.1016/j.bone.2014.10.011 10.1359/jbmr.081210 10.1016/j.stem.2019.11.003 10.1016/j.bbrc.2007.10.013 10.1007/s40520-013-0101-2 10.1210/en.2008-0369 10.11005/jbm.2020.27.2.97 10.1359/jbmr.2002.17.10.1843 10.1002/ar.a.10119 10.1038/s41598-018-26968-3 10.1677/JOE-08-0551 10.1016/j.cmet.2007.05.001 10.1016/j.cell.2007.07.025 10.1172/JCI94912 10.1038/s41413-020-0099-y 10.1101/cshperspect.a008334 10.1016/j.ejcb.2008.03.009 10.1038/s41467-018-03124-z 10.1074/jbc.M708596200 10.1016/j.actbio.2014.11.021 10.1074/jbc.M307310200 10.1074/jbc.C400066200 10.1002/art.38868 10.1073/pnas.071389098 10.1073/pnas.96.13.7403 10.1002/jbmr.2803 10.1114/1.1376696 10.1186/1471-213X-1-4 10.1359/jbmr.2002.17.2.284 10.1155/2017/5046953 10.1359/jbmr.070802 10.1210/er.2005-0014 10.1530/JOE-18-0286 10.1038/ncomms4773 10.1242/dev.105536 10.1074/jbc.C500024200 10.1152/ajpcell.1996.270.5.C1311 10.1161/CIRCRESAHA.117.312624 10.1038/s41586-018-0554-8 10.1002/jbmr.1599 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Author(s) – notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2021.109380 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_f7b746b5469f41d4b717f92fbc7a86a9 34260913 10_1016_j_celrep_2021_109380 S2211124721007786 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c540t-d11d86ed8a66484d5d2a5bb61f9bde77f5cd996c9aeeaa02444a02e9954291d73 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:10:17 EDT 2025 Thu Jul 10 22:59:42 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Jul 01 02:59:20 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Tue Jul 25 21:00:21 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Osteocrin Bone growth CNP Chondrocyte Periosteum Osteoblast Mechanical load |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-d11d86ed8a66484d5d2a5bb61f9bde77f5cd996c9aeeaa02444a02e9954291d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124721007786 |
PMID | 34260913 |
PQID | 2552060260 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f7b746b5469f41d4b717f92fbc7a86a9 proquest_miscellaneous_2552060260 pubmed_primary_34260913 crossref_citationtrail_10_1016_j_celrep_2021_109380 crossref_primary_10_1016_j_celrep_2021_109380 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-13 |
PublicationDateYYYYMMDD | 2021-07-13 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Sugiyama, Meakin, Browne, Galea, Price, Lanyon (bib49) 2012; 27 Subbotina, Sierra, Zhu, Gao, Koganti, Reyes, Stepniak, Walsh, Acevedo, Perez-Terzic (bib48) 2015; 112 Yasui, Nishizawa, Okuno, Morita, Kobayashi, Kawai, Matsuda, Kishida, Kihara, Kamei (bib60) 2007; 364 Lin, Jiang, Dai, Guo, Weng, Wang, Li, Feng, Gao, He (bib25) 2009; 24 Elder, Goldstein, Kimura, Soslowsky, Spengler (bib10) 2001; 29 Potter, Abbey-Hosch, Dickey (bib40) 2006; 27 Kawasaki, Kugimiya, Chikuda, Kamekura, Ikeda, Kawamura, Saito, Shinoda, Higashikawa, Yano (bib20) 2008; 118 Bartell, Kim, Ambrogini, Han, Iyer, Serra Ucer, Rabinovitch, Jilka, Weinstein, Zhao (bib3) 2014; 5 Kozhemyakina, Lassar, Zelzer (bib24) 2015; 142 Frost (bib11) 2003; 275 Cardoso, Herman, Verborgt, Laudier, Majeska, Schaffler (bib4) 2009; 24 Gao, Deng, Chai, Chen, Hu, Wang, Zhu, Cao, Ni, Wan (bib12) 2019; 129 Wang, Mao (bib56) 2002; 17 Xu, Ochi, Fukuda, Sato, Sunamura, Takarada, Hinoi, Okawa, Takeda (bib58) 2016; 31 Razi, Birkhold, Zaslansky, Weinkamer, Duda, Willie, Checa (bib45) 2015; 13 Akasaki, Alvarez-Garcia, Saito, Caramés, Iwamoto, Lotz (bib1) 2014; 66 Ramdani, Schall, Kalyanaraman, Wahwah, Moheize, Lee, Sah, Pfeifer, Casteel, Pilz (bib43) 2018; 238 Stich, Loch, Leinhase, Neumann, Kaps, Sittinger, Ringe (bib47) 2008; 87 Qin, Liu, Cao, Xiao (bib41) 2020; 8 Ramasamy (bib42) 2017; 2017 van Gastel, Torrekens, Roberts, Moermans, Schrooten, Carmeliet, Luttun, Luyten, Carmeliet (bib55) 2012; 30 Chiba, Watanabe-Takano, Terai, Fukui, Miyazaki, Uemura, Hashimoto, Hibi, Fukuhara, Mochizuki (bib5) 2017; 144 Hagiwara, Inoue, Yamaguchi, Yokose, Furuya, Tanaka, Hirose (bib15) 1996; 270 Baek, Jung, Kim, Park, Hah, Kim, Yoo (bib2) 2020; 27 Long, Ornitz (bib26) 2013; 5 Ouyang, Liao, Luo, Yin, Huse, Kim, Peng, Chan, Ma, Mo (bib39) 2012; 491 Ohashi, Robling, Burr, Turner (bib37) 2002; 17 Kim, Leucht, Lam, Luppen, Ten Berge, Nusse, Helms (bib21) 2007; 22 Grüneboom, Hawwari, Weidner, Culemann, Müller, Henneberg, Brenzel, Merz, Bornemann, Zec (bib14) 2019; 1 Ortinau, Wang, Lei, Deveza, Jeong, Hara, Grafe, Rosenfeld, Lee, Lee (bib38) 2019; 25 Jaubert, Jaubert, Martin, Washburn, Lee, Eicher, Guénet (bib18) 1999; 96 Kita, Nishizawa, Okuno, Tanaka, Yasui, Matsuda, Yamada, Shimomura (bib22) 2009; 201 Rauch (bib44) 2005; 5 Hart, Nimphius, Rantalainen, Ireland, Siafarikas, Newton (bib16) 2017; 17 Sutherland, Geoghegan, Yu, Turcott, Skonier, Winkler, Latham (bib50) 2004; 35 Chiefari, Arcidiacono, Palmieri, Corigliano, Morittu, Britti, Armoni, Foti, Brunetti (bib6) 2018; 8 Matsukawa, Grzesik, Takahashi, Pandey, Pang, Yamauchi, Smithies (bib28) 1999; 96 Nishizawa, Matsuda, Yamada, Kawai, Suzuki, Makishima, Kitamura, Shimomura (bib35) 2004; 279 Yasoda, Komatsu, Chusho, Miyazawa, Ozasa, Miura, Kurihara, Rogi, Tanaka, Suda (bib59) 2004; 10 Chusho, Tamura, Ogawa, Yasoda, Suda, Miyazawa, Nakamura, Nakao, Kurihara, Komatsu (bib7) 2001; 98 Kondo, Yasoda, Fujii, Nakao, Yamashita, Ueda-Sakane, Kanamoto, Miura, Arai, Mukoyama (bib23) 2015; 156 Morse, McDonald, Kelly, Melville, Schindeler, Kramer, Kneissel, van der Meulen, Little (bib31) 2014; 29 Mackie, Tatarczuch, Mirams (bib27) 2011; 211 Thomas, Moffatt, Salois, Gaumond, Gingras, Godin, Miao, Goltzman, Lanctôt (bib53) 2003; 278 Tainaka, Kubota, Suyama, Susaki, Perrin, Ukai-Tadenuma, Ukai, Ueda (bib51) 2014; 159 Nagai, Minamino (bib32) 2014; 461 Nakao, Osawa, Yasoda, Yamanaka, Fujii, Kondo, Koyama, Kanamoto, Miura, Kuwahara (bib34) 2015; 5 Tsuji, Kunieda (bib54) 2005; 280 Duchamp de Lageneste, Julien, Abou-Khalil, Frangi, Carvalho, Cagnard, Cordier, Conway, Colnot (bib9) 2018; 9 Moffatt, Thomas, Sellin, Bessette, Lafrenière, Akhouayri, St-Arnaud, Lanctôt (bib30) 2007; 282 Nakamura, Imai, Matsumoto, Sato, Takeuchi, Igarashi, Harada, Azuma, Krust, Yamamoto (bib33) 2007; 130 Kanai, Yasoda, Mori, Watanabe-Takano, Nagai-Okatani, Yamashita, Hirota, Ueda, Yamauchi, Kondo (bib19) 2017; 127 Wang, Huang, Zeng, Xue, Zhang (bib57) 2010; 177 Ogita, Rached, Dworakowski, Bilezikian, Kousteni (bib36) 2008; 149 Tatsumi, Ishii, Amizuka, Li, Kobayashi, Kohno, Ito, Takeshita, Ikeda (bib52) 2007; 5 Iolascon, Resmini, Tarantino (bib17) 2013; 25 Gerbaix, Vico, Ferrari, Bonnet (bib13) 2015; 71 Debnath, Yallowitz, McCormick, Lalani, Zhang, Xu, Li, Liu, Yang, Eiseman (bib8) 2018; 562 Srinivas, Watanabe, Lin, William, Tanabe, Jessell, Costantini (bib46) 2001; 1 Miyazaki, Otani, Chiba, Nishimura, Tokudome, Takano-Watanabe, Matsuo, Ishikawa, Shimamoto, Fukui (bib29) 2018; 122 Nishizawa (10.1016/j.celrep.2021.109380_bib35) 2004; 279 Matsukawa (10.1016/j.celrep.2021.109380_bib28) 1999; 96 Sutherland (10.1016/j.celrep.2021.109380_bib50) 2004; 35 Tatsumi (10.1016/j.celrep.2021.109380_bib52) 2007; 5 Thomas (10.1016/j.celrep.2021.109380_bib53) 2003; 278 Kondo (10.1016/j.celrep.2021.109380_bib23) 2015; 156 Morse (10.1016/j.celrep.2021.109380_bib31) 2014; 29 Tsuji (10.1016/j.celrep.2021.109380_bib54) 2005; 280 Kawasaki (10.1016/j.celrep.2021.109380_bib20) 2008; 118 Lin (10.1016/j.celrep.2021.109380_bib25) 2009; 24 Wang (10.1016/j.celrep.2021.109380_bib57) 2010; 177 Grüneboom (10.1016/j.celrep.2021.109380_bib14) 2019; 1 Ohashi (10.1016/j.celrep.2021.109380_bib37) 2002; 17 Razi (10.1016/j.celrep.2021.109380_bib45) 2015; 13 Potter (10.1016/j.celrep.2021.109380_bib40) 2006; 27 Gao (10.1016/j.celrep.2021.109380_bib12) 2019; 129 Nakao (10.1016/j.celrep.2021.109380_bib34) 2015; 5 Qin (10.1016/j.celrep.2021.109380_bib41) 2020; 8 Miyazaki (10.1016/j.celrep.2021.109380_bib29) 2018; 122 Debnath (10.1016/j.celrep.2021.109380_bib8) 2018; 562 Hart (10.1016/j.celrep.2021.109380_bib16) 2017; 17 Sugiyama (10.1016/j.celrep.2021.109380_bib49) 2012; 27 Subbotina (10.1016/j.celrep.2021.109380_bib48) 2015; 112 Chiefari (10.1016/j.celrep.2021.109380_bib6) 2018; 8 Hagiwara (10.1016/j.celrep.2021.109380_bib15) 1996; 270 Ogita (10.1016/j.celrep.2021.109380_bib36) 2008; 149 Nakamura (10.1016/j.celrep.2021.109380_bib33) 2007; 130 Gerbaix (10.1016/j.celrep.2021.109380_bib13) 2015; 71 Cardoso (10.1016/j.celrep.2021.109380_bib4) 2009; 24 Nagai (10.1016/j.celrep.2021.109380_bib32) 2014; 461 van Gastel (10.1016/j.celrep.2021.109380_bib55) 2012; 30 Chiba (10.1016/j.celrep.2021.109380_bib5) 2017; 144 Ramdani (10.1016/j.celrep.2021.109380_bib43) 2018; 238 Duchamp de Lageneste (10.1016/j.celrep.2021.109380_bib9) 2018; 9 Moffatt (10.1016/j.celrep.2021.109380_bib30) 2007; 282 Kim (10.1016/j.celrep.2021.109380_bib21) 2007; 22 Stich (10.1016/j.celrep.2021.109380_bib47) 2008; 87 Yasoda (10.1016/j.celrep.2021.109380_bib59) 2004; 10 Tainaka (10.1016/j.celrep.2021.109380_bib51) 2014; 159 Ortinau (10.1016/j.celrep.2021.109380_bib38) 2019; 25 Kanai (10.1016/j.celrep.2021.109380_bib19) 2017; 127 Kita (10.1016/j.celrep.2021.109380_bib22) 2009; 201 Rauch (10.1016/j.celrep.2021.109380_bib44) 2005; 5 Bartell (10.1016/j.celrep.2021.109380_bib3) 2014; 5 Mackie (10.1016/j.celrep.2021.109380_bib27) 2011; 211 Yasui (10.1016/j.celrep.2021.109380_bib60) 2007; 364 Elder (10.1016/j.celrep.2021.109380_bib10) 2001; 29 Akasaki (10.1016/j.celrep.2021.109380_bib1) 2014; 66 Ramasamy (10.1016/j.celrep.2021.109380_bib42) 2017; 2017 Kozhemyakina (10.1016/j.celrep.2021.109380_bib24) 2015; 142 Iolascon (10.1016/j.celrep.2021.109380_bib17) 2013; 25 Wang (10.1016/j.celrep.2021.109380_bib56) 2002; 17 Long (10.1016/j.celrep.2021.109380_bib26) 2013; 5 Ouyang (10.1016/j.celrep.2021.109380_bib39) 2012; 491 Srinivas (10.1016/j.celrep.2021.109380_bib46) 2001; 1 Chusho (10.1016/j.celrep.2021.109380_bib7) 2001; 98 Xu (10.1016/j.celrep.2021.109380_bib58) 2016; 31 Jaubert (10.1016/j.celrep.2021.109380_bib18) 1999; 96 Baek (10.1016/j.celrep.2021.109380_bib2) 2020; 27 Frost (10.1016/j.celrep.2021.109380_bib11) 2003; 275 |
References_xml | – volume: 35 start-page: 828 year: 2004 end-page: 835 ident: bib50 article-title: Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation publication-title: Bone – volume: 275 start-page: 1081 year: 2003 end-page: 1101 ident: bib11 article-title: Bone’s mechanostat: a 2003 update publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. – volume: 5 start-page: 10554 year: 2015 ident: bib34 article-title: The Local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth publication-title: Sci. Rep. – volume: 98 start-page: 4016 year: 2001 end-page: 4021 ident: bib7 article-title: Dwarfism and early death in mice lacking C-type natriuretic peptide publication-title: Proc. Natl. Acad. Sci. USA – volume: 112 start-page: 16042 year: 2015 end-page: 16047 ident: bib48 article-title: Musclin is an activity-stimulated myokine that enhances physical endurance publication-title: Proc. Natl. Acad. Sci. USA – volume: 364 start-page: 358 year: 2007 end-page: 365 ident: bib60 article-title: Foxo1 represses expression of musclin, a skeletal muscle-derived secretory factor publication-title: Biochem. Biophys. Res. Commun. – volume: 66 start-page: 3349 year: 2014 end-page: 3358 ident: bib1 article-title: FoxO transcription factors support oxidative stress resistance in human chondrocytes publication-title: Arthritis Rheumatol. – volume: 238 start-page: 203 year: 2018 end-page: 219 ident: bib43 article-title: cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss publication-title: J. Endocrinol. – volume: 491 start-page: 554 year: 2012 end-page: 559 ident: bib39 article-title: Novel Foxo1-dependent transcriptional programs control T(reg) cell function publication-title: Nature – volume: 177 start-page: 3100 year: 2010 end-page: 3111 ident: bib57 article-title: Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair publication-title: Am. J. Pathol. – volume: 31 start-page: 1344 year: 2016 end-page: 1355 ident: bib58 article-title: Circadian Clock Regulates Bone Resorption in Mice publication-title: J. Bone Miner. Res. – volume: 71 start-page: 94 year: 2015 end-page: 100 ident: bib13 article-title: Periostin expression contributes to cortical bone loss during unloading publication-title: Bone – volume: 22 start-page: 1913 year: 2007 end-page: 1923 ident: bib21 article-title: Bone regeneration is regulated by wnt signaling publication-title: J. Bone Miner. Res. – volume: 10 start-page: 80 year: 2004 end-page: 86 ident: bib59 article-title: Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway publication-title: Nat. Med. – volume: 461 start-page: 10 year: 2014 end-page: 16 ident: bib32 article-title: Direct chemiluminescent enzyme immunoassay for atrial natriuretic peptide in mammalian plasma using a PEGylated antibody publication-title: Anal. Biochem. – volume: 17 start-page: 1843 year: 2002 end-page: 1850 ident: bib56 article-title: Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli publication-title: J. Bone Miner. Res. – volume: 156 start-page: 2518 year: 2015 end-page: 2529 ident: bib23 article-title: Increased Bone Turnover and Possible Accelerated Fracture Healing in a Murine Model With an Increased Circulating C-Type Natriuretic Peptide publication-title: Endocrinology – volume: 24 start-page: 1651 year: 2009 end-page: 1661 ident: bib25 article-title: Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling publication-title: J. Bone Miner. Res. – volume: 122 start-page: 742 year: 2018 end-page: 751 ident: bib29 article-title: A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction publication-title: Circ. Res. – volume: 144 start-page: 334 year: 2017 end-page: 344 ident: bib5 article-title: Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish publication-title: Development – volume: 129 start-page: 2578 year: 2019 end-page: 2594 ident: bib12 article-title: Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration publication-title: J. Clin. Invest. – volume: 25 start-page: 784 year: 2019 end-page: 796.e5 ident: bib38 article-title: Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells publication-title: Cell Stem Cell – volume: 17 start-page: 114 year: 2017 end-page: 139 ident: bib16 article-title: Mechanical basis of bone strength: influence of bone material, bone structure and muscle action publication-title: J. Musculoskelet. Neuronal Interact. – volume: 8 start-page: 8540 year: 2018 ident: bib6 article-title: Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling publication-title: Sci. Rep. – volume: 1 start-page: 4 year: 2001 ident: bib46 article-title: Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus publication-title: BMC Dev. Biol. – volume: 280 start-page: 14288 year: 2005 end-page: 14292 ident: bib54 article-title: A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse publication-title: J. Biol. Chem. – volume: 1 start-page: 236 year: 2019 end-page: 250 ident: bib14 article-title: A network of trans-cortical capillaries as mainstay for blood circulation in long bones publication-title: Nat. Metab. – volume: 29 start-page: 476 year: 2001 end-page: 482 ident: bib10 article-title: Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading publication-title: Ann. Biomed. Eng. – volume: 17 start-page: 284 year: 2002 end-page: 292 ident: bib37 article-title: The effects of dynamic axial loading on the rat growth plate publication-title: J. Bone Miner. Res. – volume: 149 start-page: 5713 year: 2008 end-page: 5723 ident: bib36 article-title: Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration publication-title: Endocrinology – volume: 30 start-page: 2460 year: 2012 end-page: 2471 ident: bib55 article-title: Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells publication-title: Stem Cells – volume: 562 start-page: 133 year: 2018 end-page: 139 ident: bib8 article-title: Discovery of a periosteal stem cell mediating intramembranous bone formation publication-title: Nature – volume: 142 start-page: 817 year: 2015 end-page: 831 ident: bib24 article-title: A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation publication-title: Development – volume: 130 start-page: 811 year: 2007 end-page: 823 ident: bib33 article-title: Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts publication-title: Cell – volume: 29 start-page: 2456 year: 2014 end-page: 2467 ident: bib31 article-title: Mechanical load increases in bone formation via a sclerostin-independent pathway publication-title: J. Bone Miner. Res. – volume: 5 start-page: 464 year: 2007 end-page: 475 ident: bib52 article-title: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction publication-title: Cell Metab. – volume: 159 start-page: 911 year: 2014 end-page: 924 ident: bib51 article-title: Whole-body imaging with single-cell resolution by tissue decolorization publication-title: Cell – volume: 278 start-page: 50563 year: 2003 end-page: 50571 ident: bib53 article-title: Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype publication-title: J. Biol. Chem. – volume: 9 start-page: 773 year: 2018 ident: bib9 article-title: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin publication-title: Nat. Commun. – volume: 127 start-page: 4136 year: 2017 end-page: 4147 ident: bib19 article-title: Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance publication-title: J. Clin. Invest. – volume: 13 start-page: 301 year: 2015 end-page: 310 ident: bib45 article-title: Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study publication-title: Acta Biomater. – volume: 211 start-page: 109 year: 2011 end-page: 121 ident: bib27 article-title: The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification publication-title: J. Endocrinol. – volume: 5 start-page: 3773 year: 2014 ident: bib3 article-title: FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation publication-title: Nat. Commun. – volume: 27 start-page: 47 year: 2006 end-page: 72 ident: bib40 article-title: Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions publication-title: Endocr. Rev. – volume: 27 start-page: 1784 year: 2012 end-page: 1793 ident: bib49 article-title: Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition publication-title: J. Bone Miner. Res. – volume: 5 start-page: 194 year: 2005 end-page: 201 ident: bib44 article-title: Bone growth in length and width: the Yin and Yang of bone stability publication-title: J. Musculoskelet. Neuronal Interact. – volume: 87 start-page: 365 year: 2008 end-page: 376 ident: bib47 article-title: Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13 publication-title: Eur. J. Cell Biol. – volume: 25 start-page: S3 year: 2013 end-page: S7 ident: bib17 article-title: Mechanobiology of bone publication-title: Aging Clin. Exp. Res. – volume: 282 start-page: 36454 year: 2007 end-page: 36462 ident: bib30 article-title: Osteocrin is a specific ligand of the natriuretic Peptide clearance receptor that modulates bone growth publication-title: J. Biol. Chem. – volume: 96 start-page: 10278 year: 1999 end-page: 10283 ident: bib18 article-title: Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3) publication-title: Proc. Natl. Acad. Sci. USA – volume: 201 start-page: 287 year: 2009 end-page: 295 ident: bib22 article-title: Competitive binding of musclin to natriuretic peptide receptor 3 with atrial natriuretic peptide publication-title: J. Endocrinol. – volume: 279 start-page: 19391 year: 2004 end-page: 19395 ident: bib35 article-title: Musclin, a novel skeletal muscle-derived secretory factor publication-title: J. Biol. Chem. – volume: 96 start-page: 7403 year: 1999 end-page: 7408 ident: bib28 article-title: The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system publication-title: Proc. Natl. Acad. Sci. USA – volume: 8 start-page: 23 year: 2020 end-page: 24 ident: bib41 article-title: Molecular mechanosensors in osteocytes publication-title: Bone Res. – volume: 5 start-page: a008334 year: 2013 ident: bib26 article-title: Development of the endochondral skeleton publication-title: Cold Spring Harb. Perspect. Biol. – volume: 27 start-page: 97 year: 2020 end-page: 110 ident: bib2 article-title: Rodent Model of Muscular Atrophy for Sarcopenia Study publication-title: J. Bone Metab. – volume: 2017 start-page: 5046953 year: 2017 ident: bib42 article-title: Structure and Functions of Blood Vessels and Vascular Niches in Bone publication-title: Stem Cells Int. – volume: 270 start-page: C1311 year: 1996 end-page: C1318 ident: bib15 article-title: cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells publication-title: Am. J. Physiol. – volume: 118 start-page: 2506 year: 2008 end-page: 2515 ident: bib20 article-title: Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes publication-title: J. Clin. Invest. – volume: 24 start-page: 597 year: 2009 end-page: 605 ident: bib4 article-title: Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue publication-title: J. Bone Miner. Res. – volume: 24 start-page: 1651 year: 2009 ident: 10.1016/j.celrep.2021.109380_bib25 article-title: Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.090411 – volume: 491 start-page: 554 year: 2012 ident: 10.1016/j.celrep.2021.109380_bib39 article-title: Novel Foxo1-dependent transcriptional programs control T(reg) cell function publication-title: Nature doi: 10.1038/nature11581 – volume: 5 start-page: 10554 year: 2015 ident: 10.1016/j.celrep.2021.109380_bib34 article-title: The Local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth publication-title: Sci. Rep. doi: 10.1038/srep10554 – volume: 118 start-page: 2506 year: 2008 ident: 10.1016/j.celrep.2021.109380_bib20 article-title: Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes publication-title: J. Clin. Invest. doi: 10.1172/JCI35243E1 – volume: 1 start-page: 236 year: 2019 ident: 10.1016/j.celrep.2021.109380_bib14 article-title: A network of trans-cortical capillaries as mainstay for blood circulation in long bones publication-title: Nat. Metab. doi: 10.1038/s42255-018-0016-5 – volume: 144 start-page: 334 year: 2017 ident: 10.1016/j.celrep.2021.109380_bib5 article-title: Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish publication-title: Development – volume: 96 start-page: 10278 year: 1999 ident: 10.1016/j.celrep.2021.109380_bib18 article-title: Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3) publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.18.10278 – volume: 112 start-page: 16042 year: 2015 ident: 10.1016/j.celrep.2021.109380_bib48 article-title: Musclin is an activity-stimulated myokine that enhances physical endurance publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1514250112 – volume: 461 start-page: 10 year: 2014 ident: 10.1016/j.celrep.2021.109380_bib32 article-title: Direct chemiluminescent enzyme immunoassay for atrial natriuretic peptide in mammalian plasma using a PEGylated antibody publication-title: Anal. Biochem. doi: 10.1016/j.ab.2014.05.022 – volume: 177 start-page: 3100 year: 2010 ident: 10.1016/j.celrep.2021.109380_bib57 article-title: Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair publication-title: Am. J. Pathol. doi: 10.2353/ajpath.2010.100060 – volume: 10 start-page: 80 year: 2004 ident: 10.1016/j.celrep.2021.109380_bib59 article-title: Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway publication-title: Nat. Med. doi: 10.1038/nm971 – volume: 29 start-page: 2456 year: 2014 ident: 10.1016/j.celrep.2021.109380_bib31 article-title: Mechanical load increases in bone formation via a sclerostin-independent pathway publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2278 – volume: 129 start-page: 2578 year: 2019 ident: 10.1016/j.celrep.2021.109380_bib12 article-title: Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration publication-title: J. Clin. Invest. doi: 10.1172/JCI98857 – volume: 30 start-page: 2460 year: 2012 ident: 10.1016/j.celrep.2021.109380_bib55 article-title: Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells publication-title: Stem Cells doi: 10.1002/stem.1210 – volume: 156 start-page: 2518 year: 2015 ident: 10.1016/j.celrep.2021.109380_bib23 article-title: Increased Bone Turnover and Possible Accelerated Fracture Healing in a Murine Model With an Increased Circulating C-Type Natriuretic Peptide publication-title: Endocrinology doi: 10.1210/en.2014-1801 – volume: 35 start-page: 828 year: 2004 ident: 10.1016/j.celrep.2021.109380_bib50 article-title: Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation publication-title: Bone doi: 10.1016/j.bone.2004.05.023 – volume: 211 start-page: 109 year: 2011 ident: 10.1016/j.celrep.2021.109380_bib27 article-title: The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification publication-title: J. Endocrinol. doi: 10.1530/JOE-11-0048 – volume: 159 start-page: 911 year: 2014 ident: 10.1016/j.celrep.2021.109380_bib51 article-title: Whole-body imaging with single-cell resolution by tissue decolorization publication-title: Cell doi: 10.1016/j.cell.2014.10.034 – volume: 71 start-page: 94 year: 2015 ident: 10.1016/j.celrep.2021.109380_bib13 article-title: Periostin expression contributes to cortical bone loss during unloading publication-title: Bone doi: 10.1016/j.bone.2014.10.011 – volume: 24 start-page: 597 year: 2009 ident: 10.1016/j.celrep.2021.109380_bib4 article-title: Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.081210 – volume: 25 start-page: 784 year: 2019 ident: 10.1016/j.celrep.2021.109380_bib38 article-title: Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.11.003 – volume: 364 start-page: 358 year: 2007 ident: 10.1016/j.celrep.2021.109380_bib60 article-title: Foxo1 represses expression of musclin, a skeletal muscle-derived secretory factor publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2007.10.013 – volume: 25 start-page: S3 year: 2013 ident: 10.1016/j.celrep.2021.109380_bib17 article-title: Mechanobiology of bone publication-title: Aging Clin. Exp. Res. doi: 10.1007/s40520-013-0101-2 – volume: 149 start-page: 5713 year: 2008 ident: 10.1016/j.celrep.2021.109380_bib36 article-title: Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration publication-title: Endocrinology doi: 10.1210/en.2008-0369 – volume: 27 start-page: 97 year: 2020 ident: 10.1016/j.celrep.2021.109380_bib2 article-title: Rodent Model of Muscular Atrophy for Sarcopenia Study publication-title: J. Bone Metab. doi: 10.11005/jbm.2020.27.2.97 – volume: 17 start-page: 1843 year: 2002 ident: 10.1016/j.celrep.2021.109380_bib56 article-title: Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.10.1843 – volume: 17 start-page: 114 year: 2017 ident: 10.1016/j.celrep.2021.109380_bib16 article-title: Mechanical basis of bone strength: influence of bone material, bone structure and muscle action publication-title: J. Musculoskelet. Neuronal Interact. – volume: 275 start-page: 1081 year: 2003 ident: 10.1016/j.celrep.2021.109380_bib11 article-title: Bone’s mechanostat: a 2003 update publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol. doi: 10.1002/ar.a.10119 – volume: 8 start-page: 8540 year: 2018 ident: 10.1016/j.celrep.2021.109380_bib6 article-title: Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling publication-title: Sci. Rep. doi: 10.1038/s41598-018-26968-3 – volume: 201 start-page: 287 year: 2009 ident: 10.1016/j.celrep.2021.109380_bib22 article-title: Competitive binding of musclin to natriuretic peptide receptor 3 with atrial natriuretic peptide publication-title: J. Endocrinol. doi: 10.1677/JOE-08-0551 – volume: 5 start-page: 464 year: 2007 ident: 10.1016/j.celrep.2021.109380_bib52 article-title: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction publication-title: Cell Metab. doi: 10.1016/j.cmet.2007.05.001 – volume: 130 start-page: 811 year: 2007 ident: 10.1016/j.celrep.2021.109380_bib33 article-title: Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts publication-title: Cell doi: 10.1016/j.cell.2007.07.025 – volume: 127 start-page: 4136 year: 2017 ident: 10.1016/j.celrep.2021.109380_bib19 article-title: Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance publication-title: J. Clin. Invest. doi: 10.1172/JCI94912 – volume: 8 start-page: 23 year: 2020 ident: 10.1016/j.celrep.2021.109380_bib41 article-title: Molecular mechanosensors in osteocytes publication-title: Bone Res. doi: 10.1038/s41413-020-0099-y – volume: 5 start-page: a008334 year: 2013 ident: 10.1016/j.celrep.2021.109380_bib26 article-title: Development of the endochondral skeleton publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a008334 – volume: 87 start-page: 365 year: 2008 ident: 10.1016/j.celrep.2021.109380_bib47 article-title: Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13 publication-title: Eur. J. Cell Biol. doi: 10.1016/j.ejcb.2008.03.009 – volume: 9 start-page: 773 year: 2018 ident: 10.1016/j.celrep.2021.109380_bib9 article-title: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin publication-title: Nat. Commun. doi: 10.1038/s41467-018-03124-z – volume: 282 start-page: 36454 year: 2007 ident: 10.1016/j.celrep.2021.109380_bib30 article-title: Osteocrin is a specific ligand of the natriuretic Peptide clearance receptor that modulates bone growth publication-title: J. Biol. Chem. doi: 10.1074/jbc.M708596200 – volume: 13 start-page: 301 year: 2015 ident: 10.1016/j.celrep.2021.109380_bib45 article-title: Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.11.021 – volume: 278 start-page: 50563 year: 2003 ident: 10.1016/j.celrep.2021.109380_bib53 article-title: Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype publication-title: J. Biol. Chem. doi: 10.1074/jbc.M307310200 – volume: 279 start-page: 19391 year: 2004 ident: 10.1016/j.celrep.2021.109380_bib35 article-title: Musclin, a novel skeletal muscle-derived secretory factor publication-title: J. Biol. Chem. doi: 10.1074/jbc.C400066200 – volume: 66 start-page: 3349 year: 2014 ident: 10.1016/j.celrep.2021.109380_bib1 article-title: FoxO transcription factors support oxidative stress resistance in human chondrocytes publication-title: Arthritis Rheumatol. doi: 10.1002/art.38868 – volume: 98 start-page: 4016 year: 2001 ident: 10.1016/j.celrep.2021.109380_bib7 article-title: Dwarfism and early death in mice lacking C-type natriuretic peptide publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.071389098 – volume: 96 start-page: 7403 year: 1999 ident: 10.1016/j.celrep.2021.109380_bib28 article-title: The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.96.13.7403 – volume: 31 start-page: 1344 year: 2016 ident: 10.1016/j.celrep.2021.109380_bib58 article-title: Circadian Clock Regulates Bone Resorption in Mice publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.2803 – volume: 29 start-page: 476 year: 2001 ident: 10.1016/j.celrep.2021.109380_bib10 article-title: Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading publication-title: Ann. Biomed. Eng. doi: 10.1114/1.1376696 – volume: 1 start-page: 4 year: 2001 ident: 10.1016/j.celrep.2021.109380_bib46 article-title: Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-1-4 – volume: 17 start-page: 284 year: 2002 ident: 10.1016/j.celrep.2021.109380_bib37 article-title: The effects of dynamic axial loading on the rat growth plate publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.2002.17.2.284 – volume: 2017 start-page: 5046953 year: 2017 ident: 10.1016/j.celrep.2021.109380_bib42 article-title: Structure and Functions of Blood Vessels and Vascular Niches in Bone publication-title: Stem Cells Int. doi: 10.1155/2017/5046953 – volume: 5 start-page: 194 year: 2005 ident: 10.1016/j.celrep.2021.109380_bib44 article-title: Bone growth in length and width: the Yin and Yang of bone stability publication-title: J. Musculoskelet. Neuronal Interact. – volume: 22 start-page: 1913 year: 2007 ident: 10.1016/j.celrep.2021.109380_bib21 article-title: Bone regeneration is regulated by wnt signaling publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.070802 – volume: 27 start-page: 47 year: 2006 ident: 10.1016/j.celrep.2021.109380_bib40 article-title: Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions publication-title: Endocr. Rev. doi: 10.1210/er.2005-0014 – volume: 238 start-page: 203 year: 2018 ident: 10.1016/j.celrep.2021.109380_bib43 article-title: cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss publication-title: J. Endocrinol. doi: 10.1530/JOE-18-0286 – volume: 5 start-page: 3773 year: 2014 ident: 10.1016/j.celrep.2021.109380_bib3 article-title: FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation publication-title: Nat. Commun. doi: 10.1038/ncomms4773 – volume: 142 start-page: 817 year: 2015 ident: 10.1016/j.celrep.2021.109380_bib24 article-title: A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation publication-title: Development doi: 10.1242/dev.105536 – volume: 280 start-page: 14288 year: 2005 ident: 10.1016/j.celrep.2021.109380_bib54 article-title: A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse publication-title: J. Biol. Chem. doi: 10.1074/jbc.C500024200 – volume: 270 start-page: C1311 year: 1996 ident: 10.1016/j.celrep.2021.109380_bib15 article-title: cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells publication-title: Am. J. Physiol. doi: 10.1152/ajpcell.1996.270.5.C1311 – volume: 122 start-page: 742 year: 2018 ident: 10.1016/j.celrep.2021.109380_bib29 article-title: A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.117.312624 – volume: 562 start-page: 133 year: 2018 ident: 10.1016/j.celrep.2021.109380_bib8 article-title: Discovery of a periosteal stem cell mediating intramembranous bone formation publication-title: Nature doi: 10.1038/s41586-018-0554-8 – volume: 27 start-page: 1784 year: 2012 ident: 10.1016/j.celrep.2021.109380_bib49 article-title: Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition publication-title: J. Bone Miner. Res. doi: 10.1002/jbmr.1599 |
SSID | ssj0000601194 |
Score | 2.4966316 |
Snippet | Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109380 |
SubjectTerms | Animals Bone Development Bone growth Cell Differentiation Chondrocyte CNP Mechanical load Mice Mice, Knockout Muscle Proteins - metabolism Natriuretic Peptide, C-Type - metabolism Osteoblast Osteoblasts - metabolism Osteocrin Osteogenesis Periosteum Periosteum - growth & development Periosteum - metabolism Receptors, Atrial Natriuretic Factor - metabolism Signal Transduction Stress, Mechanical Transcription Factors - metabolism Weight-Bearing |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA8iCL6I5_mx9yEVfC2aNG2Sl4NTFBE8XxR8C5l8-MHSld314P77m2naZX2QffGlhTJthskkM9PM_IaxY107b1wNJZcgSyliLHUdTSmcQ_MElfGJaodv_jRX9_L6oX5YavVFOWEZHjgL7iQpULKBGsO4JHmQgPFHMiKBV043rivdQ5u3FEzlPZiwzOhIWQjK2RJSDXVzXXKXj-NpJLhKwTtAJUKFXLJLHXz_O_P0kfvZmaHLbbbV-4_F78z3F7YW2x22kTtK_vvKft1EKuUlyRfjiQvFNPeaj7MCJm0sHjHqnj8Vf59dQRDHVOGBlLd4m-D20e6y-8uLu_Orsm-RUHp0teZl4DzoJgbtmkZqGeogUPDQ8GQgRKVS7QNGNDgdMTqH9lhKvEYCgROGB1XtsfUWhz9gRQJc2uC9OvWAPpIGo4XUwEEpZ5RJI1YNArK-xw-nNhZjOySKvdgsVktitVmsI1Yu3nrN-Bkr6M9I9gtaQr_uHqBO2F4n7CqdGDE1zJztHYnsIOCnnlcMfzRMtMV1Rocnro2Tt5nF0EucUr8upNnPGrBgsiKYf8Orb5_B_He2SQzR_2Ne_WDr8-lb_ImOzxwOOx3_D4oT_bM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfBF1Fa9-kEKvqZ0N5vs7oOKiqUUTl886Nuysx-1ciRt7ir2v3cmm5wULIW-JCRssmFmZ-c32Z3fMPZO184bV0PJJchSihhLXUdTCufQPUFlfKLc4fm35nghT07r0y021WwdBbj6b2hH9aQW_fLgz-X1RzT49__2avm47COxTwo-8CNpDOIfoG9SZKrzEfDnuZk4zmipWQjayyWkmvLpbnnRDX810PrfcFu3wdLBPR09YY9HXFl8ygPhKduK7TP2MFeavN5hH-aRUnxJI8Wyc6Hocw36uCqga2NxhtH4-mfx-9wVRH1MmR_Y8jueOpxW2l22OPr648txOZZOKD1CsHUZOA-6iUG7ppFahjoIVAg0PBkIUalU-4CRDqopRufQT0uJx0jkcMLwoKrnbLvF7l-yIgGaPHivDj0gdtJgtJAaOCjljDJpxqpJQNaPvOJU3mJppw1kv2wWqyWx2izWGSs3T11kXo072n8m2W_aEiv2cKPrz-xoZDYpULKBGkP-JHmQgLFqMiKBV043zsyYmjRnR4CRgQO-6vyO7vcnRVu0P1pUcW3srlYWQzJxSHW8sM2LPAI2H1kR_b_h1d69-33FHtEV_Uzm1Wu2ve6v4htEQWt4OwzsvxykAxI priority: 102 providerName: Scholars Portal |
Title | Mechanical load regulates bone growth via periosteal Osteocrin |
URI | https://dx.doi.org/10.1016/j.celrep.2021.109380 https://www.ncbi.nlm.nih.gov/pubmed/34260913 https://www.proquest.com/docview/2552060260 https://doaj.org/article/f7b746b5469f41d4b717f92fbc7a86a9 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOilNH1u0gYXehUbybIlXQpNSAiFbQ9tYG9Co0e6ZbHDZlPov--MbC_NoQR6kbEYWWJG0szImm8Y-2AaH6xvgAsFiiuZEjdNslx6j-oJahsyxQ4vvrRX1-rzslnusfMpFoauVY57_7Cnl916rJmP3JzfrlbzbxJ9F9RO6MIQJo0h2O1amRLEtzzbnbMQ3ogo-RCJnlODKYKuXPMKab1JBFwpRYFWInzIvzRUAfJ_oKj-ZYgWhXT5jD0dLcnq0zDYQ7aXuufsYMgt-fsF-7hIFNRLMqjWvY_VZsg6n-4q6LtU3aD_vf1R_Vr5isCOKdYDKb_io8eNpHvJri8vvp9f8TFZAg9odG15FCKaNkXj21YZFZsoUQTQimwhJq1zEyL6NiiYlLxHzawUlong4KQVUdev2H6H3b9hVQZc5BCCPg2A1pIBa6QyIEBrb7XNM1ZPDHJhRBKnhBZrN10Z--kGtjpiqxvYOmN81-p2QNJ4hP6MeL-jJRzsUtFvbtw4EVzWoFULDTr5WYmoAL3TbGWGoL1pvZ0xPUnOPZhW-KnVI92_nwTtcMXRbxTfpf7-zqETJk8pcxfSvB5mwG6QNQH-W1Ef_Xe_x-wJvdHxsajfsv3t5j69Q7tnCyflvOCkTG8sF8r8ASKBAFI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJeSt_dPl3oVWwky5Z0KTShYdNm00MT2JvQM9my2GGzKfTfd8aPpTmUQC822CNLzIw0M7LmG4CPunLBuMozLr1kUqTEdJUME86hefKlCZlyh-cn9exMfl1Uix04GHNh6FjlsPb3a3q3Wg9PpgM3p5fL5fSHwNgFrROGMIRJo-s7cBe9AUX1G44W-9uNFgIc4V1BRGrAqMWYQted8wpptU6EXCl4h61EAJF_magOyf-GpfqXJ9pZpMNH8HBwJYvP_Wgfw05qnsC9vrjk76fwaZ4oq5eEUKxaF4t1X3Y-XRW-bVJxjgH45qL4tXQFoR1TsgdSfsdbiytJ8wzODr-cHszYUC2BBfS6NixyHnWdonZ1LbWMVRQoA1_zbHxMSuUqRAxuUDIpOYemWUq8JsKDE4ZHVT6H3Qa7fwlF9jjLfQhqL3h0l7Q3WkjtuVfKGWXyBMqRQTYMUOJU0WJlxzNjP23PVktstT1bJ8C2rS57KI1b6PeJ91taAsLuHrTrcztogs3KK1n7CqP8LHmUHsPTbET2QTldOzMBNUrO3tAr_NTylu4_jIK2OOXoP4prUnt9ZTEKE3tUugtpXvQasB1kSYj_hpev_rvf93B_djo_tsdHJ99ewwN6Q3vJvHwDu5v1dXqLTtDGv-uU_A_4KAGi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+load+regulates+bone+growth+via+periosteal+Osteocrin&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Watanabe-Takano%2C+Haruko&rft.au=Ochi%2C+Hiroki&rft.au=Chiba%2C+Ayano&rft.au=Matsuo%2C+Ayaka&rft.date=2021-07-13&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1016%2Fj.celrep.2021.109380&rft.externalDocID=S2211124721007786 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |