Mechanical load regulates bone growth via periosteal Osteocrin

Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 36; no. 2; p. 109380
Main Authors Watanabe-Takano, Haruko, Ochi, Hiroki, Chiba, Ayano, Matsuo, Ayaka, Kanai, Yugo, Fukuhara, Shigetomo, Ito, Naoki, Sako, Keisuke, Miyazaki, Takahiro, Tainaka, Kazuki, Harada, Ichiro, Sato, Shingo, Sawada, Yasuhiro, Minamino, Naoto, Takeda, Shu, Ueda, Hiroki R., Yasoda, Akihiro, Mochizuki, Naoki
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 13.07.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation. [Display omitted] •OSTN from periosteum regulates endochondral and intramembranous ossification•OSTN enhances osteogenesis through potentiation of CNP signaling•FoxO1 suppresses periosteal expression of OSTN under unloading condition•OSTN is required for physiological load-induced bone gain Watanabe-Takano et al. demonstrate that physiological loading induces Osteocrin (OSTN) expression in the periosteal osteoblasts of long bones through suppression of the Forkhead box protein O1 transcription factor. OSTN promotes bone growth through enhancement of C-type natriuretic peptide signaling, leading to elongation and appositional growth of long bones.
AbstractList Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation. [Display omitted] •OSTN from periosteum regulates endochondral and intramembranous ossification•OSTN enhances osteogenesis through potentiation of CNP signaling•FoxO1 suppresses periosteal expression of OSTN under unloading condition•OSTN is required for physiological load-induced bone gain Watanabe-Takano et al. demonstrate that physiological loading induces Osteocrin (OSTN) expression in the periosteal osteoblasts of long bones through suppression of the Forkhead box protein O1 transcription factor. OSTN promotes bone growth through enhancement of C-type natriuretic peptide signaling, leading to elongation and appositional growth of long bones.
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to regulate bone growth. Here, we identified a periosteal-osteoblast-derived secretory peptide, Osteocrin (OSTN), as a mechanotransducer involved in load-induced long bone growth. OSTN produced by periosteal osteoblasts regulates growth plate growth by enhancing C-type natriuretic peptide (CNP)-dependent proliferation and maturation of chondrocytes, leading to elongation of long bones. Additionally, OSTN cooperates with CNP to regulate bone formation. CNP stimulates osteogenic differentiation of periosteal osteoprogenitors to induce bone formation. OSTN binds to natriuretic peptide receptor 3 (NPR3) in periosteal osteoprogenitors, thereby preventing NPR3-mediated clearance of CNP and consequently facilitating CNP-signal-mediated bone growth. Importantly, physiological loading induces Ostn expression in periosteal osteoblasts by suppressing Forkhead box protein O1 (FoxO1) transcription factor. Thus, this study reveals a crucial role of OSTN as a mechanotransducer converting mechanical loading to CNP-dependent bone formation.
ArticleNumber 109380
Author Tainaka, Kazuki
Yasoda, Akihiro
Mochizuki, Naoki
Sato, Shingo
Watanabe-Takano, Haruko
Matsuo, Ayaka
Kanai, Yugo
Takeda, Shu
Sako, Keisuke
Harada, Ichiro
Ueda, Hiroki R.
Miyazaki, Takahiro
Minamino, Naoto
Chiba, Ayano
Ochi, Hiroki
Fukuhara, Shigetomo
Sawada, Yasuhiro
Ito, Naoki
Author_xml – sequence: 1
  givenname: Haruko
  surname: Watanabe-Takano
  fullname: Watanabe-Takano, Haruko
  email: takano_h@ncvc.go.jp
  organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
– sequence: 2
  givenname: Hiroki
  surname: Ochi
  fullname: Ochi, Hiroki
  organization: Department of Clinical Research, National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
– sequence: 3
  givenname: Ayano
  surname: Chiba
  fullname: Chiba, Ayano
  organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
– sequence: 4
  givenname: Ayaka
  surname: Matsuo
  fullname: Matsuo, Ayaka
  organization: Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
– sequence: 5
  givenname: Yugo
  surname: Kanai
  fullname: Kanai, Yugo
  organization: Department of Diabetes, Endocrinology and Nutrition, Graduate School of Medicine and Faculty of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
– sequence: 6
  givenname: Shigetomo
  surname: Fukuhara
  fullname: Fukuhara, Shigetomo
  organization: Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
– sequence: 7
  givenname: Naoki
  surname: Ito
  fullname: Ito, Naoki
  organization: Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 6-7-6 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
– sequence: 8
  givenname: Keisuke
  surname: Sako
  fullname: Sako, Keisuke
  organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
– sequence: 9
  givenname: Takahiro
  surname: Miyazaki
  fullname: Miyazaki, Takahiro
  organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
– sequence: 10
  givenname: Kazuki
  surname: Tainaka
  fullname: Tainaka, Kazuki
  organization: Department of System Pathology for Neurological Disorders, Center for Bioresources, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata 951-8585, Japan
– sequence: 11
  givenname: Ichiro
  surname: Harada
  fullname: Harada, Ichiro
  organization: Medical Products Technology, Development Center, R&D headquarters, Canon Inc., 3-30-2, Shimomaruko, Ohta-ku, Tokyo 146-8501, Japan
– sequence: 12
  givenname: Shingo
  surname: Sato
  fullname: Sato, Shingo
  organization: Center for Innovative Cancer Treatment, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
– sequence: 13
  givenname: Yasuhiro
  surname: Sawada
  fullname: Sawada, Yasuhiro
  organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
– sequence: 14
  givenname: Naoto
  surname: Minamino
  fullname: Minamino, Naoto
  organization: Omics Research Center, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shinmachi, Suita, Osaka 564-8565, Japan
– sequence: 15
  givenname: Shu
  surname: Takeda
  fullname: Takeda, Shu
  organization: Division of Endocrinology, Toranomon Hospital Endocrine Center, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan
– sequence: 16
  givenname: Hiroki R.
  surname: Ueda
  fullname: Ueda, Hiroki R.
  organization: CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
– sequence: 17
  givenname: Akihiro
  surname: Yasoda
  fullname: Yasoda, Akihiro
  organization: Clinical Research Center, National Hospital Organization Kyoto Medical Center, 1-1 Fukakusa-Mukaihatacho, Fushimi-ku, Kyoto 612-8555, Japan
– sequence: 18
  givenname: Naoki
  surname: Mochizuki
  fullname: Mochizuki, Naoki
  email: mochizuki@ncvc.go.jp
  organization: Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-shimmachi, Suita, Osaka 564-8565, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34260913$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtvGyEUhVGVqnk0_6CqZpmNHcAMDF1EiqLmIaXKpl2jC9xxsMaDC9hR_n1JJqmiLlIWgK7OOVf6ziHZG-OIhHxhdM4ok6erucMh4WbOKWd1pBcd_UAOOGdsxrhQe2_---Q45xWtR1LGtPhE9heCS6rZ4oCc_UB3D2NwMDRDBN8kXG4HKJgbW1c2yxQfyn2zC9BsMIWYC1blXX2iS2H8TD72MGQ8fnmPyK_L7z8vrme3d1c3F-e3M9cKWmaeMd9J9B1IKTrhW8-htVayXluPSvWt81pLpwERgHIhRL1R61ZwzbxaHJGbKddHWJlNCmtIjyZCMM-DmJYGUgluQNMrq4S0rZC6F8wLq5jqNe-tU9BJ0DXrZMrapPh7i7mYdcgV5wAjxm02vG15RVUJVenXF-nWrtH_XfzKrwq-TQKXYs4Je-NCgRLiWBKEwTBqnvoyKzP1ZZ76MlNf1Sz-Mb_m_8d2NtmwAt8FTCa7gKNDHxK6UomE9wP-ABD0r2g
CitedBy_id crossref_primary_10_1016_j_cdev_2023_203878
crossref_primary_10_1093_ndt_gfab286
crossref_primary_10_1186_s12902_024_01575_8
crossref_primary_10_1186_s13287_022_02992_z
crossref_primary_10_14814_phy2_15674
crossref_primary_10_1016_j_cej_2024_150990
crossref_primary_10_1016_j_rvsc_2023_03_006
crossref_primary_10_1007_s00018_025_05597_w
crossref_primary_10_1016_j_isci_2022_105019
crossref_primary_10_1097_GOX_0000000000004968
crossref_primary_10_1002_alz_13864
crossref_primary_10_1186_s13075_023_03220_6
crossref_primary_10_3390_ijms241814326
crossref_primary_10_3390_ijms251810102
crossref_primary_10_1002_jbm4_10732
crossref_primary_10_1038_s41467_021_26571_7
crossref_primary_10_1142_S2424835523500121
crossref_primary_10_21272_eumj_2024_12_3__476_491
crossref_primary_10_1172_jci_insight_179963
crossref_primary_10_1007_s12079_023_00760_z
crossref_primary_10_1038_s41574_022_00641_2
crossref_primary_10_1038_s41598_024_84873_4
crossref_primary_10_1242_dmm_050724
crossref_primary_10_1021_acsnano_4c08442
crossref_primary_10_3389_fbioe_2024_1524133
crossref_primary_10_1007_s11914_022_00737_8
crossref_primary_10_47836_mjmhs_19_3_46
crossref_primary_10_1038_s41413_024_00361_5
crossref_primary_10_1038_s41467_023_39710_z
crossref_primary_10_1093_lifemeta_loae006
crossref_primary_10_3390_biology11060911
crossref_primary_10_3390_nu15071720
crossref_primary_10_1016_j_cbi_2024_110955
crossref_primary_10_1038_s41467_024_50809_9
crossref_primary_10_1016_j_ydbio_2023_07_005
crossref_primary_10_1002_smsc_202400061
crossref_primary_10_1016_j_xpro_2022_101127
crossref_primary_10_1016_j_bonr_2023_101664
crossref_primary_10_1152_ajpcell_00544_2022
crossref_primary_10_1038_s41598_021_01095_8
Cites_doi 10.1359/jbmr.090411
10.1038/nature11581
10.1038/srep10554
10.1172/JCI35243E1
10.1038/s42255-018-0016-5
10.1073/pnas.96.18.10278
10.1073/pnas.1514250112
10.1016/j.ab.2014.05.022
10.2353/ajpath.2010.100060
10.1038/nm971
10.1002/jbmr.2278
10.1172/JCI98857
10.1002/stem.1210
10.1210/en.2014-1801
10.1016/j.bone.2004.05.023
10.1530/JOE-11-0048
10.1016/j.cell.2014.10.034
10.1016/j.bone.2014.10.011
10.1359/jbmr.081210
10.1016/j.stem.2019.11.003
10.1016/j.bbrc.2007.10.013
10.1007/s40520-013-0101-2
10.1210/en.2008-0369
10.11005/jbm.2020.27.2.97
10.1359/jbmr.2002.17.10.1843
10.1002/ar.a.10119
10.1038/s41598-018-26968-3
10.1677/JOE-08-0551
10.1016/j.cmet.2007.05.001
10.1016/j.cell.2007.07.025
10.1172/JCI94912
10.1038/s41413-020-0099-y
10.1101/cshperspect.a008334
10.1016/j.ejcb.2008.03.009
10.1038/s41467-018-03124-z
10.1074/jbc.M708596200
10.1016/j.actbio.2014.11.021
10.1074/jbc.M307310200
10.1074/jbc.C400066200
10.1002/art.38868
10.1073/pnas.071389098
10.1073/pnas.96.13.7403
10.1002/jbmr.2803
10.1114/1.1376696
10.1186/1471-213X-1-4
10.1359/jbmr.2002.17.2.284
10.1155/2017/5046953
10.1359/jbmr.070802
10.1210/er.2005-0014
10.1530/JOE-18-0286
10.1038/ncomms4773
10.1242/dev.105536
10.1074/jbc.C500024200
10.1152/ajpcell.1996.270.5.C1311
10.1161/CIRCRESAHA.117.312624
10.1038/s41586-018-0554-8
10.1002/jbmr.1599
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2021.109380
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_f7b746b5469f41d4b717f92fbc7a86a9
34260913
10_1016_j_celrep_2021_109380
S2211124721007786
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-d11d86ed8a66484d5d2a5bb61f9bde77f5cd996c9aeeaa02444a02e9954291d73
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:10:17 EDT 2025
Thu Jul 10 22:59:42 EDT 2025
Thu Apr 03 07:00:32 EDT 2025
Tue Jul 01 02:59:20 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Tue Jul 25 21:00:21 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Osteocrin
Bone growth
CNP
Chondrocyte
Periosteum
Osteoblast
Mechanical load
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-d11d86ed8a66484d5d2a5bb61f9bde77f5cd996c9aeeaa02444a02e9954291d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124721007786
PMID 34260913
PQID 2552060260
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_f7b746b5469f41d4b717f92fbc7a86a9
proquest_miscellaneous_2552060260
pubmed_primary_34260913
crossref_citationtrail_10_1016_j_celrep_2021_109380
crossref_primary_10_1016_j_celrep_2021_109380
elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-07-13
PublicationDateYYYYMMDD 2021-07-13
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-13
  day: 13
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Sugiyama, Meakin, Browne, Galea, Price, Lanyon (bib49) 2012; 27
Subbotina, Sierra, Zhu, Gao, Koganti, Reyes, Stepniak, Walsh, Acevedo, Perez-Terzic (bib48) 2015; 112
Yasui, Nishizawa, Okuno, Morita, Kobayashi, Kawai, Matsuda, Kishida, Kihara, Kamei (bib60) 2007; 364
Lin, Jiang, Dai, Guo, Weng, Wang, Li, Feng, Gao, He (bib25) 2009; 24
Elder, Goldstein, Kimura, Soslowsky, Spengler (bib10) 2001; 29
Potter, Abbey-Hosch, Dickey (bib40) 2006; 27
Kawasaki, Kugimiya, Chikuda, Kamekura, Ikeda, Kawamura, Saito, Shinoda, Higashikawa, Yano (bib20) 2008; 118
Bartell, Kim, Ambrogini, Han, Iyer, Serra Ucer, Rabinovitch, Jilka, Weinstein, Zhao (bib3) 2014; 5
Kozhemyakina, Lassar, Zelzer (bib24) 2015; 142
Frost (bib11) 2003; 275
Cardoso, Herman, Verborgt, Laudier, Majeska, Schaffler (bib4) 2009; 24
Gao, Deng, Chai, Chen, Hu, Wang, Zhu, Cao, Ni, Wan (bib12) 2019; 129
Wang, Mao (bib56) 2002; 17
Xu, Ochi, Fukuda, Sato, Sunamura, Takarada, Hinoi, Okawa, Takeda (bib58) 2016; 31
Razi, Birkhold, Zaslansky, Weinkamer, Duda, Willie, Checa (bib45) 2015; 13
Akasaki, Alvarez-Garcia, Saito, Caramés, Iwamoto, Lotz (bib1) 2014; 66
Ramdani, Schall, Kalyanaraman, Wahwah, Moheize, Lee, Sah, Pfeifer, Casteel, Pilz (bib43) 2018; 238
Stich, Loch, Leinhase, Neumann, Kaps, Sittinger, Ringe (bib47) 2008; 87
Qin, Liu, Cao, Xiao (bib41) 2020; 8
Ramasamy (bib42) 2017; 2017
van Gastel, Torrekens, Roberts, Moermans, Schrooten, Carmeliet, Luttun, Luyten, Carmeliet (bib55) 2012; 30
Chiba, Watanabe-Takano, Terai, Fukui, Miyazaki, Uemura, Hashimoto, Hibi, Fukuhara, Mochizuki (bib5) 2017; 144
Hagiwara, Inoue, Yamaguchi, Yokose, Furuya, Tanaka, Hirose (bib15) 1996; 270
Baek, Jung, Kim, Park, Hah, Kim, Yoo (bib2) 2020; 27
Long, Ornitz (bib26) 2013; 5
Ouyang, Liao, Luo, Yin, Huse, Kim, Peng, Chan, Ma, Mo (bib39) 2012; 491
Ohashi, Robling, Burr, Turner (bib37) 2002; 17
Kim, Leucht, Lam, Luppen, Ten Berge, Nusse, Helms (bib21) 2007; 22
Grüneboom, Hawwari, Weidner, Culemann, Müller, Henneberg, Brenzel, Merz, Bornemann, Zec (bib14) 2019; 1
Ortinau, Wang, Lei, Deveza, Jeong, Hara, Grafe, Rosenfeld, Lee, Lee (bib38) 2019; 25
Jaubert, Jaubert, Martin, Washburn, Lee, Eicher, Guénet (bib18) 1999; 96
Kita, Nishizawa, Okuno, Tanaka, Yasui, Matsuda, Yamada, Shimomura (bib22) 2009; 201
Rauch (bib44) 2005; 5
Hart, Nimphius, Rantalainen, Ireland, Siafarikas, Newton (bib16) 2017; 17
Sutherland, Geoghegan, Yu, Turcott, Skonier, Winkler, Latham (bib50) 2004; 35
Chiefari, Arcidiacono, Palmieri, Corigliano, Morittu, Britti, Armoni, Foti, Brunetti (bib6) 2018; 8
Matsukawa, Grzesik, Takahashi, Pandey, Pang, Yamauchi, Smithies (bib28) 1999; 96
Nishizawa, Matsuda, Yamada, Kawai, Suzuki, Makishima, Kitamura, Shimomura (bib35) 2004; 279
Yasoda, Komatsu, Chusho, Miyazawa, Ozasa, Miura, Kurihara, Rogi, Tanaka, Suda (bib59) 2004; 10
Chusho, Tamura, Ogawa, Yasoda, Suda, Miyazawa, Nakamura, Nakao, Kurihara, Komatsu (bib7) 2001; 98
Kondo, Yasoda, Fujii, Nakao, Yamashita, Ueda-Sakane, Kanamoto, Miura, Arai, Mukoyama (bib23) 2015; 156
Morse, McDonald, Kelly, Melville, Schindeler, Kramer, Kneissel, van der Meulen, Little (bib31) 2014; 29
Mackie, Tatarczuch, Mirams (bib27) 2011; 211
Thomas, Moffatt, Salois, Gaumond, Gingras, Godin, Miao, Goltzman, Lanctôt (bib53) 2003; 278
Tainaka, Kubota, Suyama, Susaki, Perrin, Ukai-Tadenuma, Ukai, Ueda (bib51) 2014; 159
Nagai, Minamino (bib32) 2014; 461
Nakao, Osawa, Yasoda, Yamanaka, Fujii, Kondo, Koyama, Kanamoto, Miura, Kuwahara (bib34) 2015; 5
Tsuji, Kunieda (bib54) 2005; 280
Duchamp de Lageneste, Julien, Abou-Khalil, Frangi, Carvalho, Cagnard, Cordier, Conway, Colnot (bib9) 2018; 9
Moffatt, Thomas, Sellin, Bessette, Lafrenière, Akhouayri, St-Arnaud, Lanctôt (bib30) 2007; 282
Nakamura, Imai, Matsumoto, Sato, Takeuchi, Igarashi, Harada, Azuma, Krust, Yamamoto (bib33) 2007; 130
Kanai, Yasoda, Mori, Watanabe-Takano, Nagai-Okatani, Yamashita, Hirota, Ueda, Yamauchi, Kondo (bib19) 2017; 127
Wang, Huang, Zeng, Xue, Zhang (bib57) 2010; 177
Ogita, Rached, Dworakowski, Bilezikian, Kousteni (bib36) 2008; 149
Tatsumi, Ishii, Amizuka, Li, Kobayashi, Kohno, Ito, Takeshita, Ikeda (bib52) 2007; 5
Iolascon, Resmini, Tarantino (bib17) 2013; 25
Gerbaix, Vico, Ferrari, Bonnet (bib13) 2015; 71
Debnath, Yallowitz, McCormick, Lalani, Zhang, Xu, Li, Liu, Yang, Eiseman (bib8) 2018; 562
Srinivas, Watanabe, Lin, William, Tanabe, Jessell, Costantini (bib46) 2001; 1
Miyazaki, Otani, Chiba, Nishimura, Tokudome, Takano-Watanabe, Matsuo, Ishikawa, Shimamoto, Fukui (bib29) 2018; 122
Nishizawa (10.1016/j.celrep.2021.109380_bib35) 2004; 279
Matsukawa (10.1016/j.celrep.2021.109380_bib28) 1999; 96
Sutherland (10.1016/j.celrep.2021.109380_bib50) 2004; 35
Tatsumi (10.1016/j.celrep.2021.109380_bib52) 2007; 5
Thomas (10.1016/j.celrep.2021.109380_bib53) 2003; 278
Kondo (10.1016/j.celrep.2021.109380_bib23) 2015; 156
Morse (10.1016/j.celrep.2021.109380_bib31) 2014; 29
Tsuji (10.1016/j.celrep.2021.109380_bib54) 2005; 280
Kawasaki (10.1016/j.celrep.2021.109380_bib20) 2008; 118
Lin (10.1016/j.celrep.2021.109380_bib25) 2009; 24
Wang (10.1016/j.celrep.2021.109380_bib57) 2010; 177
Grüneboom (10.1016/j.celrep.2021.109380_bib14) 2019; 1
Ohashi (10.1016/j.celrep.2021.109380_bib37) 2002; 17
Razi (10.1016/j.celrep.2021.109380_bib45) 2015; 13
Potter (10.1016/j.celrep.2021.109380_bib40) 2006; 27
Gao (10.1016/j.celrep.2021.109380_bib12) 2019; 129
Nakao (10.1016/j.celrep.2021.109380_bib34) 2015; 5
Qin (10.1016/j.celrep.2021.109380_bib41) 2020; 8
Miyazaki (10.1016/j.celrep.2021.109380_bib29) 2018; 122
Debnath (10.1016/j.celrep.2021.109380_bib8) 2018; 562
Hart (10.1016/j.celrep.2021.109380_bib16) 2017; 17
Sugiyama (10.1016/j.celrep.2021.109380_bib49) 2012; 27
Subbotina (10.1016/j.celrep.2021.109380_bib48) 2015; 112
Chiefari (10.1016/j.celrep.2021.109380_bib6) 2018; 8
Hagiwara (10.1016/j.celrep.2021.109380_bib15) 1996; 270
Ogita (10.1016/j.celrep.2021.109380_bib36) 2008; 149
Nakamura (10.1016/j.celrep.2021.109380_bib33) 2007; 130
Gerbaix (10.1016/j.celrep.2021.109380_bib13) 2015; 71
Cardoso (10.1016/j.celrep.2021.109380_bib4) 2009; 24
Nagai (10.1016/j.celrep.2021.109380_bib32) 2014; 461
van Gastel (10.1016/j.celrep.2021.109380_bib55) 2012; 30
Chiba (10.1016/j.celrep.2021.109380_bib5) 2017; 144
Ramdani (10.1016/j.celrep.2021.109380_bib43) 2018; 238
Duchamp de Lageneste (10.1016/j.celrep.2021.109380_bib9) 2018; 9
Moffatt (10.1016/j.celrep.2021.109380_bib30) 2007; 282
Kim (10.1016/j.celrep.2021.109380_bib21) 2007; 22
Stich (10.1016/j.celrep.2021.109380_bib47) 2008; 87
Yasoda (10.1016/j.celrep.2021.109380_bib59) 2004; 10
Tainaka (10.1016/j.celrep.2021.109380_bib51) 2014; 159
Ortinau (10.1016/j.celrep.2021.109380_bib38) 2019; 25
Kanai (10.1016/j.celrep.2021.109380_bib19) 2017; 127
Kita (10.1016/j.celrep.2021.109380_bib22) 2009; 201
Rauch (10.1016/j.celrep.2021.109380_bib44) 2005; 5
Bartell (10.1016/j.celrep.2021.109380_bib3) 2014; 5
Mackie (10.1016/j.celrep.2021.109380_bib27) 2011; 211
Yasui (10.1016/j.celrep.2021.109380_bib60) 2007; 364
Elder (10.1016/j.celrep.2021.109380_bib10) 2001; 29
Akasaki (10.1016/j.celrep.2021.109380_bib1) 2014; 66
Ramasamy (10.1016/j.celrep.2021.109380_bib42) 2017; 2017
Kozhemyakina (10.1016/j.celrep.2021.109380_bib24) 2015; 142
Iolascon (10.1016/j.celrep.2021.109380_bib17) 2013; 25
Wang (10.1016/j.celrep.2021.109380_bib56) 2002; 17
Long (10.1016/j.celrep.2021.109380_bib26) 2013; 5
Ouyang (10.1016/j.celrep.2021.109380_bib39) 2012; 491
Srinivas (10.1016/j.celrep.2021.109380_bib46) 2001; 1
Chusho (10.1016/j.celrep.2021.109380_bib7) 2001; 98
Xu (10.1016/j.celrep.2021.109380_bib58) 2016; 31
Jaubert (10.1016/j.celrep.2021.109380_bib18) 1999; 96
Baek (10.1016/j.celrep.2021.109380_bib2) 2020; 27
Frost (10.1016/j.celrep.2021.109380_bib11) 2003; 275
References_xml – volume: 35
  start-page: 828
  year: 2004
  end-page: 835
  ident: bib50
  article-title: Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation
  publication-title: Bone
– volume: 275
  start-page: 1081
  year: 2003
  end-page: 1101
  ident: bib11
  article-title: Bone’s mechanostat: a 2003 update
  publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
– volume: 5
  start-page: 10554
  year: 2015
  ident: bib34
  article-title: The Local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth
  publication-title: Sci. Rep.
– volume: 98
  start-page: 4016
  year: 2001
  end-page: 4021
  ident: bib7
  article-title: Dwarfism and early death in mice lacking C-type natriuretic peptide
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 112
  start-page: 16042
  year: 2015
  end-page: 16047
  ident: bib48
  article-title: Musclin is an activity-stimulated myokine that enhances physical endurance
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 364
  start-page: 358
  year: 2007
  end-page: 365
  ident: bib60
  article-title: Foxo1 represses expression of musclin, a skeletal muscle-derived secretory factor
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 66
  start-page: 3349
  year: 2014
  end-page: 3358
  ident: bib1
  article-title: FoxO transcription factors support oxidative stress resistance in human chondrocytes
  publication-title: Arthritis Rheumatol.
– volume: 238
  start-page: 203
  year: 2018
  end-page: 219
  ident: bib43
  article-title: cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss
  publication-title: J. Endocrinol.
– volume: 491
  start-page: 554
  year: 2012
  end-page: 559
  ident: bib39
  article-title: Novel Foxo1-dependent transcriptional programs control T(reg) cell function
  publication-title: Nature
– volume: 177
  start-page: 3100
  year: 2010
  end-page: 3111
  ident: bib57
  article-title: Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair
  publication-title: Am. J. Pathol.
– volume: 31
  start-page: 1344
  year: 2016
  end-page: 1355
  ident: bib58
  article-title: Circadian Clock Regulates Bone Resorption in Mice
  publication-title: J. Bone Miner. Res.
– volume: 71
  start-page: 94
  year: 2015
  end-page: 100
  ident: bib13
  article-title: Periostin expression contributes to cortical bone loss during unloading
  publication-title: Bone
– volume: 22
  start-page: 1913
  year: 2007
  end-page: 1923
  ident: bib21
  article-title: Bone regeneration is regulated by wnt signaling
  publication-title: J. Bone Miner. Res.
– volume: 10
  start-page: 80
  year: 2004
  end-page: 86
  ident: bib59
  article-title: Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway
  publication-title: Nat. Med.
– volume: 461
  start-page: 10
  year: 2014
  end-page: 16
  ident: bib32
  article-title: Direct chemiluminescent enzyme immunoassay for atrial natriuretic peptide in mammalian plasma using a PEGylated antibody
  publication-title: Anal. Biochem.
– volume: 17
  start-page: 1843
  year: 2002
  end-page: 1850
  ident: bib56
  article-title: Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli
  publication-title: J. Bone Miner. Res.
– volume: 156
  start-page: 2518
  year: 2015
  end-page: 2529
  ident: bib23
  article-title: Increased Bone Turnover and Possible Accelerated Fracture Healing in a Murine Model With an Increased Circulating C-Type Natriuretic Peptide
  publication-title: Endocrinology
– volume: 24
  start-page: 1651
  year: 2009
  end-page: 1661
  ident: bib25
  article-title: Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling
  publication-title: J. Bone Miner. Res.
– volume: 122
  start-page: 742
  year: 2018
  end-page: 751
  ident: bib29
  article-title: A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction
  publication-title: Circ. Res.
– volume: 144
  start-page: 334
  year: 2017
  end-page: 344
  ident: bib5
  article-title: Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish
  publication-title: Development
– volume: 129
  start-page: 2578
  year: 2019
  end-page: 2594
  ident: bib12
  article-title: Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration
  publication-title: J. Clin. Invest.
– volume: 25
  start-page: 784
  year: 2019
  end-page: 796.e5
  ident: bib38
  article-title: Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells
  publication-title: Cell Stem Cell
– volume: 17
  start-page: 114
  year: 2017
  end-page: 139
  ident: bib16
  article-title: Mechanical basis of bone strength: influence of bone material, bone structure and muscle action
  publication-title: J. Musculoskelet. Neuronal Interact.
– volume: 8
  start-page: 8540
  year: 2018
  ident: bib6
  article-title: Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling
  publication-title: Sci. Rep.
– volume: 1
  start-page: 4
  year: 2001
  ident: bib46
  article-title: Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
  publication-title: BMC Dev. Biol.
– volume: 280
  start-page: 14288
  year: 2005
  end-page: 14292
  ident: bib54
  article-title: A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 236
  year: 2019
  end-page: 250
  ident: bib14
  article-title: A network of trans-cortical capillaries as mainstay for blood circulation in long bones
  publication-title: Nat. Metab.
– volume: 29
  start-page: 476
  year: 2001
  end-page: 482
  ident: bib10
  article-title: Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading
  publication-title: Ann. Biomed. Eng.
– volume: 17
  start-page: 284
  year: 2002
  end-page: 292
  ident: bib37
  article-title: The effects of dynamic axial loading on the rat growth plate
  publication-title: J. Bone Miner. Res.
– volume: 149
  start-page: 5713
  year: 2008
  end-page: 5723
  ident: bib36
  article-title: Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration
  publication-title: Endocrinology
– volume: 30
  start-page: 2460
  year: 2012
  end-page: 2471
  ident: bib55
  article-title: Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells
  publication-title: Stem Cells
– volume: 562
  start-page: 133
  year: 2018
  end-page: 139
  ident: bib8
  article-title: Discovery of a periosteal stem cell mediating intramembranous bone formation
  publication-title: Nature
– volume: 142
  start-page: 817
  year: 2015
  end-page: 831
  ident: bib24
  article-title: A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation
  publication-title: Development
– volume: 130
  start-page: 811
  year: 2007
  end-page: 823
  ident: bib33
  article-title: Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts
  publication-title: Cell
– volume: 29
  start-page: 2456
  year: 2014
  end-page: 2467
  ident: bib31
  article-title: Mechanical load increases in bone formation via a sclerostin-independent pathway
  publication-title: J. Bone Miner. Res.
– volume: 5
  start-page: 464
  year: 2007
  end-page: 475
  ident: bib52
  article-title: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction
  publication-title: Cell Metab.
– volume: 159
  start-page: 911
  year: 2014
  end-page: 924
  ident: bib51
  article-title: Whole-body imaging with single-cell resolution by tissue decolorization
  publication-title: Cell
– volume: 278
  start-page: 50563
  year: 2003
  end-page: 50571
  ident: bib53
  article-title: Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype
  publication-title: J. Biol. Chem.
– volume: 9
  start-page: 773
  year: 2018
  ident: bib9
  article-title: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin
  publication-title: Nat. Commun.
– volume: 127
  start-page: 4136
  year: 2017
  end-page: 4147
  ident: bib19
  article-title: Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance
  publication-title: J. Clin. Invest.
– volume: 13
  start-page: 301
  year: 2015
  end-page: 310
  ident: bib45
  article-title: Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study
  publication-title: Acta Biomater.
– volume: 211
  start-page: 109
  year: 2011
  end-page: 121
  ident: bib27
  article-title: The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification
  publication-title: J. Endocrinol.
– volume: 5
  start-page: 3773
  year: 2014
  ident: bib3
  article-title: FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation
  publication-title: Nat. Commun.
– volume: 27
  start-page: 47
  year: 2006
  end-page: 72
  ident: bib40
  article-title: Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions
  publication-title: Endocr. Rev.
– volume: 27
  start-page: 1784
  year: 2012
  end-page: 1793
  ident: bib49
  article-title: Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition
  publication-title: J. Bone Miner. Res.
– volume: 5
  start-page: 194
  year: 2005
  end-page: 201
  ident: bib44
  article-title: Bone growth in length and width: the Yin and Yang of bone stability
  publication-title: J. Musculoskelet. Neuronal Interact.
– volume: 87
  start-page: 365
  year: 2008
  end-page: 376
  ident: bib47
  article-title: Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13
  publication-title: Eur. J. Cell Biol.
– volume: 25
  start-page: S3
  year: 2013
  end-page: S7
  ident: bib17
  article-title: Mechanobiology of bone
  publication-title: Aging Clin. Exp. Res.
– volume: 282
  start-page: 36454
  year: 2007
  end-page: 36462
  ident: bib30
  article-title: Osteocrin is a specific ligand of the natriuretic Peptide clearance receptor that modulates bone growth
  publication-title: J. Biol. Chem.
– volume: 96
  start-page: 10278
  year: 1999
  end-page: 10283
  ident: bib18
  article-title: Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3)
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 201
  start-page: 287
  year: 2009
  end-page: 295
  ident: bib22
  article-title: Competitive binding of musclin to natriuretic peptide receptor 3 with atrial natriuretic peptide
  publication-title: J. Endocrinol.
– volume: 279
  start-page: 19391
  year: 2004
  end-page: 19395
  ident: bib35
  article-title: Musclin, a novel skeletal muscle-derived secretory factor
  publication-title: J. Biol. Chem.
– volume: 96
  start-page: 7403
  year: 1999
  end-page: 7408
  ident: bib28
  article-title: The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 23
  year: 2020
  end-page: 24
  ident: bib41
  article-title: Molecular mechanosensors in osteocytes
  publication-title: Bone Res.
– volume: 5
  start-page: a008334
  year: 2013
  ident: bib26
  article-title: Development of the endochondral skeleton
  publication-title: Cold Spring Harb. Perspect. Biol.
– volume: 27
  start-page: 97
  year: 2020
  end-page: 110
  ident: bib2
  article-title: Rodent Model of Muscular Atrophy for Sarcopenia Study
  publication-title: J. Bone Metab.
– volume: 2017
  start-page: 5046953
  year: 2017
  ident: bib42
  article-title: Structure and Functions of Blood Vessels and Vascular Niches in Bone
  publication-title: Stem Cells Int.
– volume: 270
  start-page: C1311
  year: 1996
  end-page: C1318
  ident: bib15
  article-title: cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells
  publication-title: Am. J. Physiol.
– volume: 118
  start-page: 2506
  year: 2008
  end-page: 2515
  ident: bib20
  article-title: Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes
  publication-title: J. Clin. Invest.
– volume: 24
  start-page: 597
  year: 2009
  end-page: 605
  ident: bib4
  article-title: Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue
  publication-title: J. Bone Miner. Res.
– volume: 24
  start-page: 1651
  year: 2009
  ident: 10.1016/j.celrep.2021.109380_bib25
  article-title: Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.090411
– volume: 491
  start-page: 554
  year: 2012
  ident: 10.1016/j.celrep.2021.109380_bib39
  article-title: Novel Foxo1-dependent transcriptional programs control T(reg) cell function
  publication-title: Nature
  doi: 10.1038/nature11581
– volume: 5
  start-page: 10554
  year: 2015
  ident: 10.1016/j.celrep.2021.109380_bib34
  article-title: The Local CNP/GC-B system in growth plate is responsible for physiological endochondral bone growth
  publication-title: Sci. Rep.
  doi: 10.1038/srep10554
– volume: 118
  start-page: 2506
  year: 2008
  ident: 10.1016/j.celrep.2021.109380_bib20
  article-title: Phosphorylation of GSK-3beta by cGMP-dependent protein kinase II promotes hypertrophic differentiation of murine chondrocytes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI35243E1
– volume: 1
  start-page: 236
  year: 2019
  ident: 10.1016/j.celrep.2021.109380_bib14
  article-title: A network of trans-cortical capillaries as mainstay for blood circulation in long bones
  publication-title: Nat. Metab.
  doi: 10.1038/s42255-018-0016-5
– volume: 144
  start-page: 334
  year: 2017
  ident: 10.1016/j.celrep.2021.109380_bib5
  article-title: Osteocrin, a peptide secreted from the heart and other tissues, contributes to cranial osteogenesis and chondrogenesis in zebrafish
  publication-title: Development
– volume: 96
  start-page: 10278
  year: 1999
  ident: 10.1016/j.celrep.2021.109380_bib18
  article-title: Three new allelic mouse mutations that cause skeletal overgrowth involve the natriuretic peptide receptor C gene (Npr3)
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.18.10278
– volume: 112
  start-page: 16042
  year: 2015
  ident: 10.1016/j.celrep.2021.109380_bib48
  article-title: Musclin is an activity-stimulated myokine that enhances physical endurance
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1514250112
– volume: 461
  start-page: 10
  year: 2014
  ident: 10.1016/j.celrep.2021.109380_bib32
  article-title: Direct chemiluminescent enzyme immunoassay for atrial natriuretic peptide in mammalian plasma using a PEGylated antibody
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2014.05.022
– volume: 177
  start-page: 3100
  year: 2010
  ident: 10.1016/j.celrep.2021.109380_bib57
  article-title: Activation of the Hh pathway in periosteum-derived mesenchymal stem cells induces bone formation in vivo: implication for postnatal bone repair
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2010.100060
– volume: 10
  start-page: 80
  year: 2004
  ident: 10.1016/j.celrep.2021.109380_bib59
  article-title: Overexpression of CNP in chondrocytes rescues achondroplasia through a MAPK-dependent pathway
  publication-title: Nat. Med.
  doi: 10.1038/nm971
– volume: 29
  start-page: 2456
  year: 2014
  ident: 10.1016/j.celrep.2021.109380_bib31
  article-title: Mechanical load increases in bone formation via a sclerostin-independent pathway
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2278
– volume: 129
  start-page: 2578
  year: 2019
  ident: 10.1016/j.celrep.2021.109380_bib12
  article-title: Macrophage-lineage TRAP+ cells recruit periosteum-derived cells for periosteal osteogenesis and regeneration
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI98857
– volume: 30
  start-page: 2460
  year: 2012
  ident: 10.1016/j.celrep.2021.109380_bib55
  article-title: Engineering vascularized bone: osteogenic and proangiogenic potential of murine periosteal cells
  publication-title: Stem Cells
  doi: 10.1002/stem.1210
– volume: 156
  start-page: 2518
  year: 2015
  ident: 10.1016/j.celrep.2021.109380_bib23
  article-title: Increased Bone Turnover and Possible Accelerated Fracture Healing in a Murine Model With an Increased Circulating C-Type Natriuretic Peptide
  publication-title: Endocrinology
  doi: 10.1210/en.2014-1801
– volume: 35
  start-page: 828
  year: 2004
  ident: 10.1016/j.celrep.2021.109380_bib50
  article-title: Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation
  publication-title: Bone
  doi: 10.1016/j.bone.2004.05.023
– volume: 211
  start-page: 109
  year: 2011
  ident: 10.1016/j.celrep.2021.109380_bib27
  article-title: The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-11-0048
– volume: 159
  start-page: 911
  year: 2014
  ident: 10.1016/j.celrep.2021.109380_bib51
  article-title: Whole-body imaging with single-cell resolution by tissue decolorization
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.034
– volume: 71
  start-page: 94
  year: 2015
  ident: 10.1016/j.celrep.2021.109380_bib13
  article-title: Periostin expression contributes to cortical bone loss during unloading
  publication-title: Bone
  doi: 10.1016/j.bone.2014.10.011
– volume: 24
  start-page: 597
  year: 2009
  ident: 10.1016/j.celrep.2021.109380_bib4
  article-title: Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.081210
– volume: 25
  start-page: 784
  year: 2019
  ident: 10.1016/j.celrep.2021.109380_bib38
  article-title: Identification of Functionally Distinct Mx1+αSMA+ Periosteal Skeletal Stem Cells
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2019.11.003
– volume: 364
  start-page: 358
  year: 2007
  ident: 10.1016/j.celrep.2021.109380_bib60
  article-title: Foxo1 represses expression of musclin, a skeletal muscle-derived secretory factor
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2007.10.013
– volume: 25
  start-page: S3
  year: 2013
  ident: 10.1016/j.celrep.2021.109380_bib17
  article-title: Mechanobiology of bone
  publication-title: Aging Clin. Exp. Res.
  doi: 10.1007/s40520-013-0101-2
– volume: 149
  start-page: 5713
  year: 2008
  ident: 10.1016/j.celrep.2021.109380_bib36
  article-title: Differentiation and proliferation of periosteal osteoblast progenitors are differentially regulated by estrogens and intermittent parathyroid hormone administration
  publication-title: Endocrinology
  doi: 10.1210/en.2008-0369
– volume: 27
  start-page: 97
  year: 2020
  ident: 10.1016/j.celrep.2021.109380_bib2
  article-title: Rodent Model of Muscular Atrophy for Sarcopenia Study
  publication-title: J. Bone Metab.
  doi: 10.11005/jbm.2020.27.2.97
– volume: 17
  start-page: 1843
  year: 2002
  ident: 10.1016/j.celrep.2021.109380_bib56
  article-title: Accelerated chondrogenesis of the rabbit cranial base growth plate by oscillatory mechanical stimuli
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.10.1843
– volume: 17
  start-page: 114
  year: 2017
  ident: 10.1016/j.celrep.2021.109380_bib16
  article-title: Mechanical basis of bone strength: influence of bone material, bone structure and muscle action
  publication-title: J. Musculoskelet. Neuronal Interact.
– volume: 275
  start-page: 1081
  year: 2003
  ident: 10.1016/j.celrep.2021.109380_bib11
  article-title: Bone’s mechanostat: a 2003 update
  publication-title: Anat. Rec. A Discov. Mol. Cell. Evol. Biol.
  doi: 10.1002/ar.a.10119
– volume: 8
  start-page: 8540
  year: 2018
  ident: 10.1016/j.celrep.2021.109380_bib6
  article-title: Cross-talk among HMGA1 and FoxO1 in control of nuclear insulin signaling
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26968-3
– volume: 201
  start-page: 287
  year: 2009
  ident: 10.1016/j.celrep.2021.109380_bib22
  article-title: Competitive binding of musclin to natriuretic peptide receptor 3 with atrial natriuretic peptide
  publication-title: J. Endocrinol.
  doi: 10.1677/JOE-08-0551
– volume: 5
  start-page: 464
  year: 2007
  ident: 10.1016/j.celrep.2021.109380_bib52
  article-title: Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2007.05.001
– volume: 130
  start-page: 811
  year: 2007
  ident: 10.1016/j.celrep.2021.109380_bib33
  article-title: Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts
  publication-title: Cell
  doi: 10.1016/j.cell.2007.07.025
– volume: 127
  start-page: 4136
  year: 2017
  ident: 10.1016/j.celrep.2021.109380_bib19
  article-title: Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI94912
– volume: 8
  start-page: 23
  year: 2020
  ident: 10.1016/j.celrep.2021.109380_bib41
  article-title: Molecular mechanosensors in osteocytes
  publication-title: Bone Res.
  doi: 10.1038/s41413-020-0099-y
– volume: 5
  start-page: a008334
  year: 2013
  ident: 10.1016/j.celrep.2021.109380_bib26
  article-title: Development of the endochondral skeleton
  publication-title: Cold Spring Harb. Perspect. Biol.
  doi: 10.1101/cshperspect.a008334
– volume: 87
  start-page: 365
  year: 2008
  ident: 10.1016/j.celrep.2021.109380_bib47
  article-title: Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13
  publication-title: Eur. J. Cell Biol.
  doi: 10.1016/j.ejcb.2008.03.009
– volume: 9
  start-page: 773
  year: 2018
  ident: 10.1016/j.celrep.2021.109380_bib9
  article-title: Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03124-z
– volume: 282
  start-page: 36454
  year: 2007
  ident: 10.1016/j.celrep.2021.109380_bib30
  article-title: Osteocrin is a specific ligand of the natriuretic Peptide clearance receptor that modulates bone growth
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M708596200
– volume: 13
  start-page: 301
  year: 2015
  ident: 10.1016/j.celrep.2021.109380_bib45
  article-title: Skeletal maturity leads to a reduction in the strain magnitudes induced within the bone: a murine tibia study
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.11.021
– volume: 278
  start-page: 50563
  year: 2003
  ident: 10.1016/j.celrep.2021.109380_bib53
  article-title: Osteocrin, a novel bone-specific secreted protein that modulates the osteoblast phenotype
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M307310200
– volume: 279
  start-page: 19391
  year: 2004
  ident: 10.1016/j.celrep.2021.109380_bib35
  article-title: Musclin, a novel skeletal muscle-derived secretory factor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C400066200
– volume: 66
  start-page: 3349
  year: 2014
  ident: 10.1016/j.celrep.2021.109380_bib1
  article-title: FoxO transcription factors support oxidative stress resistance in human chondrocytes
  publication-title: Arthritis Rheumatol.
  doi: 10.1002/art.38868
– volume: 98
  start-page: 4016
  year: 2001
  ident: 10.1016/j.celrep.2021.109380_bib7
  article-title: Dwarfism and early death in mice lacking C-type natriuretic peptide
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.071389098
– volume: 96
  start-page: 7403
  year: 1999
  ident: 10.1016/j.celrep.2021.109380_bib28
  article-title: The natriuretic peptide clearance receptor locally modulates the physiological effects of the natriuretic peptide system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.96.13.7403
– volume: 31
  start-page: 1344
  year: 2016
  ident: 10.1016/j.celrep.2021.109380_bib58
  article-title: Circadian Clock Regulates Bone Resorption in Mice
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.2803
– volume: 29
  start-page: 476
  year: 2001
  ident: 10.1016/j.celrep.2021.109380_bib10
  article-title: Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading
  publication-title: Ann. Biomed. Eng.
  doi: 10.1114/1.1376696
– volume: 1
  start-page: 4
  year: 2001
  ident: 10.1016/j.celrep.2021.109380_bib46
  article-title: Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus
  publication-title: BMC Dev. Biol.
  doi: 10.1186/1471-213X-1-4
– volume: 17
  start-page: 284
  year: 2002
  ident: 10.1016/j.celrep.2021.109380_bib37
  article-title: The effects of dynamic axial loading on the rat growth plate
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.2002.17.2.284
– volume: 2017
  start-page: 5046953
  year: 2017
  ident: 10.1016/j.celrep.2021.109380_bib42
  article-title: Structure and Functions of Blood Vessels and Vascular Niches in Bone
  publication-title: Stem Cells Int.
  doi: 10.1155/2017/5046953
– volume: 5
  start-page: 194
  year: 2005
  ident: 10.1016/j.celrep.2021.109380_bib44
  article-title: Bone growth in length and width: the Yin and Yang of bone stability
  publication-title: J. Musculoskelet. Neuronal Interact.
– volume: 22
  start-page: 1913
  year: 2007
  ident: 10.1016/j.celrep.2021.109380_bib21
  article-title: Bone regeneration is regulated by wnt signaling
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.070802
– volume: 27
  start-page: 47
  year: 2006
  ident: 10.1016/j.celrep.2021.109380_bib40
  article-title: Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions
  publication-title: Endocr. Rev.
  doi: 10.1210/er.2005-0014
– volume: 238
  start-page: 203
  year: 2018
  ident: 10.1016/j.celrep.2021.109380_bib43
  article-title: cGMP-dependent protein kinase-2 regulates bone mass and prevents diabetic bone loss
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-18-0286
– volume: 5
  start-page: 3773
  year: 2014
  ident: 10.1016/j.celrep.2021.109380_bib3
  article-title: FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4773
– volume: 142
  start-page: 817
  year: 2015
  ident: 10.1016/j.celrep.2021.109380_bib24
  article-title: A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation
  publication-title: Development
  doi: 10.1242/dev.105536
– volume: 280
  start-page: 14288
  year: 2005
  ident: 10.1016/j.celrep.2021.109380_bib54
  article-title: A loss-of-function mutation in natriuretic peptide receptor 2 (Npr2) gene is responsible for disproportionate dwarfism in cn/cn mouse
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C500024200
– volume: 270
  start-page: C1311
  year: 1996
  ident: 10.1016/j.celrep.2021.109380_bib15
  article-title: cGMP produced in response to ANP and CNP regulates proliferation and differentiation of osteoblastic cells
  publication-title: Am. J. Physiol.
  doi: 10.1152/ajpcell.1996.270.5.C1311
– volume: 122
  start-page: 742
  year: 2018
  ident: 10.1016/j.celrep.2021.109380_bib29
  article-title: A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.312624
– volume: 562
  start-page: 133
  year: 2018
  ident: 10.1016/j.celrep.2021.109380_bib8
  article-title: Discovery of a periosteal stem cell mediating intramembranous bone formation
  publication-title: Nature
  doi: 10.1038/s41586-018-0554-8
– volume: 27
  start-page: 1784
  year: 2012
  ident: 10.1016/j.celrep.2021.109380_bib49
  article-title: Bones’ adaptive response to mechanical loading is essentially linear between the low strains associated with disuse and the high strains associated with the lamellar/woven bone transition
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.1599
SSID ssj0000601194
Score 2.4966316
Snippet Mechanical stimuli including loading after birth promote bone growth. However, little is known about how mechanical force triggers biochemical signals to...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109380
SubjectTerms Animals
Bone Development
Bone growth
Cell Differentiation
Chondrocyte
CNP
Mechanical load
Mice
Mice, Knockout
Muscle Proteins - metabolism
Natriuretic Peptide, C-Type - metabolism
Osteoblast
Osteoblasts - metabolism
Osteocrin
Osteogenesis
Periosteum
Periosteum - growth & development
Periosteum - metabolism
Receptors, Atrial Natriuretic Factor - metabolism
Signal Transduction
Stress, Mechanical
Transcription Factors - metabolism
Weight-Bearing
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS-QwEA8iCL6I5_mx9yEVfC2aNG2Sl4NTFBE8XxR8C5l8-MHSld314P77m2naZX2QffGlhTJthskkM9PM_IaxY107b1wNJZcgSyliLHUdTSmcQ_MElfGJaodv_jRX9_L6oX5YavVFOWEZHjgL7iQpULKBGsO4JHmQgPFHMiKBV043rivdQ5u3FEzlPZiwzOhIWQjK2RJSDXVzXXKXj-NpJLhKwTtAJUKFXLJLHXz_O_P0kfvZmaHLbbbV-4_F78z3F7YW2x22kTtK_vvKft1EKuUlyRfjiQvFNPeaj7MCJm0sHjHqnj8Vf59dQRDHVOGBlLd4m-D20e6y-8uLu_Orsm-RUHp0teZl4DzoJgbtmkZqGeogUPDQ8GQgRKVS7QNGNDgdMTqH9lhKvEYCgROGB1XtsfUWhz9gRQJc2uC9OvWAPpIGo4XUwEEpZ5RJI1YNArK-xw-nNhZjOySKvdgsVktitVmsI1Yu3nrN-Bkr6M9I9gtaQr_uHqBO2F4n7CqdGDE1zJztHYnsIOCnnlcMfzRMtMV1Rocnro2Tt5nF0EucUr8upNnPGrBgsiKYf8Orb5_B_He2SQzR_2Ne_WDr8-lb_ImOzxwOOx3_D4oT_bM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9KRfBF1Fa9-kEKvqZ0N5vs7oOKiqUUTl886Nuysx-1ciRt7ir2v3cmm5wULIW-JCRssmFmZ-c32Z3fMPZO184bV0PJJchSihhLXUdTCufQPUFlfKLc4fm35nghT07r0y021WwdBbj6b2hH9aQW_fLgz-X1RzT49__2avm47COxTwo-8CNpDOIfoG9SZKrzEfDnuZk4zmipWQjayyWkmvLpbnnRDX810PrfcFu3wdLBPR09YY9HXFl8ygPhKduK7TP2MFeavN5hH-aRUnxJI8Wyc6Hocw36uCqga2NxhtH4-mfx-9wVRH1MmR_Y8jueOpxW2l22OPr648txOZZOKD1CsHUZOA-6iUG7ppFahjoIVAg0PBkIUalU-4CRDqopRufQT0uJx0jkcMLwoKrnbLvF7l-yIgGaPHivDj0gdtJgtJAaOCjljDJpxqpJQNaPvOJU3mJppw1kv2wWqyWx2izWGSs3T11kXo072n8m2W_aEiv2cKPrz-xoZDYpULKBGkP-JHmQgLFqMiKBV043zsyYmjRnR4CRgQO-6vyO7vcnRVu0P1pUcW3srlYWQzJxSHW8sM2LPAI2H1kR_b_h1d69-33FHtEV_Uzm1Wu2ve6v4htEQWt4OwzsvxykAxI
  priority: 102
  providerName: Scholars Portal
Title Mechanical load regulates bone growth via periosteal Osteocrin
URI https://dx.doi.org/10.1016/j.celrep.2021.109380
https://www.ncbi.nlm.nih.gov/pubmed/34260913
https://www.proquest.com/docview/2552060260
https://doaj.org/article/f7b746b5469f41d4b717f92fbc7a86a9
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOilNH1u0gYXehUbybIlXQpNSAiFbQ9tYG9Co0e6ZbHDZlPov--MbC_NoQR6kbEYWWJG0szImm8Y-2AaH6xvgAsFiiuZEjdNslx6j-oJahsyxQ4vvrRX1-rzslnusfMpFoauVY57_7Cnl916rJmP3JzfrlbzbxJ9F9RO6MIQJo0h2O1amRLEtzzbnbMQ3ogo-RCJnlODKYKuXPMKab1JBFwpRYFWInzIvzRUAfJ_oKj-ZYgWhXT5jD0dLcnq0zDYQ7aXuufsYMgt-fsF-7hIFNRLMqjWvY_VZsg6n-4q6LtU3aD_vf1R_Vr5isCOKdYDKb_io8eNpHvJri8vvp9f8TFZAg9odG15FCKaNkXj21YZFZsoUQTQimwhJq1zEyL6NiiYlLxHzawUlong4KQVUdev2H6H3b9hVQZc5BCCPg2A1pIBa6QyIEBrb7XNM1ZPDHJhRBKnhBZrN10Z--kGtjpiqxvYOmN81-p2QNJ4hP6MeL-jJRzsUtFvbtw4EVzWoFULDTr5WYmoAL3TbGWGoL1pvZ0xPUnOPZhW-KnVI92_nwTtcMXRbxTfpf7-zqETJk8pcxfSvB5mwG6QNQH-W1Ef_Xe_x-wJvdHxsajfsv3t5j69Q7tnCyflvOCkTG8sF8r8ASKBAFI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SlNJeSt_dPl3oVWwky5Z0KTShYdNm00MT2JvQM9my2GGzKfTfd8aPpTmUQC822CNLzIw0M7LmG4CPunLBuMozLr1kUqTEdJUME86hefKlCZlyh-cn9exMfl1Uix04GHNh6FjlsPb3a3q3Wg9PpgM3p5fL5fSHwNgFrROGMIRJo-s7cBe9AUX1G44W-9uNFgIc4V1BRGrAqMWYQted8wpptU6EXCl4h61EAJF_magOyf-GpfqXJ9pZpMNH8HBwJYvP_Wgfw05qnsC9vrjk76fwaZ4oq5eEUKxaF4t1X3Y-XRW-bVJxjgH45qL4tXQFoR1TsgdSfsdbiytJ8wzODr-cHszYUC2BBfS6NixyHnWdonZ1LbWMVRQoA1_zbHxMSuUqRAxuUDIpOYemWUq8JsKDE4ZHVT6H3Qa7fwlF9jjLfQhqL3h0l7Q3WkjtuVfKGWXyBMqRQTYMUOJU0WJlxzNjP23PVktstT1bJ8C2rS57KI1b6PeJ91taAsLuHrTrcztogs3KK1n7CqP8LHmUHsPTbET2QTldOzMBNUrO3tAr_NTylu4_jIK2OOXoP4prUnt9ZTEKE3tUugtpXvQasB1kSYj_hpev_rvf93B_djo_tsdHJ99ewwN6Q3vJvHwDu5v1dXqLTtDGv-uU_A_4KAGi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+load+regulates+bone+growth+via+periosteal+Osteocrin&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Watanabe-Takano%2C+Haruko&rft.au=Ochi%2C+Hiroki&rft.au=Chiba%2C+Ayano&rft.au=Matsuo%2C+Ayaka&rft.date=2021-07-13&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=36&rft.issue=2&rft_id=info:doi/10.1016%2Fj.celrep.2021.109380&rft.externalDocID=S2211124721007786
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon