Current-induced viscoelastic topological unwinding of metastable skyrmion strings

In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10–1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 1332 - 8
Main Authors Kagawa, Fumitaka, Oike, Hiroshi, Koshibae, Wataru, Kikkawa, Akiko, Okamura, Yoshihiro, Taguchi, Yasujiro, Nagaosa, Naoto, Tokura, Yoshinori
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.11.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10–1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3–5 × 10 6  A m –2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion. Understanding the dynamics of the skyrmion string lattice is the prerequisite for its potential application as next-generation information carriers. Here, the authors explore the topological unwinding of skyrmion string lattice under the application of current pulses.
AbstractList In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10–1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3–5 × 10 6  A m –2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion. Understanding the dynamics of the skyrmion string lattice is the prerequisite for its potential application as next-generation information carriers. Here, the authors explore the topological unwinding of skyrmion string lattice under the application of current pulses.
In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10–1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3–5 × 106 A m–2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.
Understanding the dynamics of the skyrmion string lattice is the prerequisite for its potential application as next-generation information carriers. Here, the authors explore the topological unwinding of skyrmion string lattice under the application of current pulses.
In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10–1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3–5 × 10 6  A m –2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.
In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10-1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3-5 × 106 A m-2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10-1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3-5 × 106 A m-2 rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.
In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10-1000 μm. Although such a bundle of skyrmion strings may exhibit complex soft-matter-like dynamics when starting to move under the influence of a random pinning potential, the details remain highly elusive. Here, we show that a metastable skyrmion-string lattice is subject to topological unwinding under the application of pulsed currents of 3-5 × 10  A m rather than being transported, as evidenced by measurements of the topological Hall effect. The critical current density above which the topological unwinding occurs is larger for a shorter pulse width, reminiscent of the viscoelastic characteristics accompanying the pinning-creep transition observed in domain-wall motion. Numerical simulations reveal that current-induced depinning of already segmented skyrmion strings initiates the topological unwinding. Thus, the skyrmion-string length is an element to consider when studying current-induced motion.
ArticleNumber 1332
Author Koshibae, Wataru
Oike, Hiroshi
Kikkawa, Akiko
Nagaosa, Naoto
Okamura, Yoshihiro
Taguchi, Yasujiro
Kagawa, Fumitaka
Tokura, Yoshinori
Author_xml – sequence: 1
  givenname: Fumitaka
  orcidid: 0000-0002-1763-6799
  surname: Kagawa
  fullname: Kagawa, Fumitaka
  email: fumitaka.kagawa@riken.jp
  organization: RIKEN Center for Emergent Matter Science (CEMS)
– sequence: 2
  givenname: Hiroshi
  orcidid: 0000-0001-6866-7774
  surname: Oike
  fullname: Oike, Hiroshi
  organization: RIKEN Center for Emergent Matter Science (CEMS)
– sequence: 3
  givenname: Wataru
  surname: Koshibae
  fullname: Koshibae, Wataru
  organization: RIKEN Center for Emergent Matter Science (CEMS)
– sequence: 4
  givenname: Akiko
  surname: Kikkawa
  fullname: Kikkawa, Akiko
  organization: RIKEN Center for Emergent Matter Science (CEMS)
– sequence: 5
  givenname: Yoshihiro
  surname: Okamura
  fullname: Okamura, Yoshihiro
  organization: Department of Applied Physics, The University of Tokyo
– sequence: 6
  givenname: Yasujiro
  surname: Taguchi
  fullname: Taguchi, Yasujiro
  organization: RIKEN Center for Emergent Matter Science (CEMS)
– sequence: 7
  givenname: Naoto
  surname: Nagaosa
  fullname: Nagaosa, Naoto
  organization: RIKEN Center for Emergent Matter Science (CEMS), Department of Applied Physics, The University of Tokyo
– sequence: 8
  givenname: Yoshinori
  surname: Tokura
  fullname: Tokura, Yoshinori
  organization: RIKEN Center for Emergent Matter Science (CEMS), Department of Applied Physics, The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29109474$$D View this record in MEDLINE/PubMed
BookMark eNp9kltrFDEYhoNUbK39A17IgDfejOY8kxtBFg-Fggh6HTKZL2vWbLImMy3992Z3atkWNBASkud9-U7P0UlMERB6SfBbgln_rnDCZddist9MsJY-QWcUc9KSjrKTo_spuihlg-tiivScP0OnVBGseMfP0LfVnDPEqfVxnC2MzbUvNkEwZfK2mdIuhbT21oRmjjeV8XHdJNdsYaqEGQI05ddt3voUmzLl-lteoKfOhAIXd-c5-vHp4_fVl_bq6-fL1Yer1gqOp9Y6xbjqLRGDEsChU9RQopwUCoQVrhuH0TDigPFRCGmpBDZKMWCBje2FZOfocvEdk9noXfZbk291Ml4fHlJea5NrEgE0ldhxRYWVBLjtejNgwgk11kllMHPV6_3itZuHLYy2FiSb8MD04U_0P_U6XWshO9arrhq8uTPI6fcMZdLbWkcIwURIc9FESSJZz4mq6OtH6CbNOdZSHShMBe55pV4dR3Qfyt_OVYAugM2plAzuHiFY7ydELxOi64Tow4RoWkX9I5H1k5lq92pWPvxfyhZp2e3bDPko7H-r_gB5_dAp
CitedBy_id crossref_primary_10_1063_1_5130423
crossref_primary_10_1063_5_0223004
crossref_primary_10_1103_PhysRevApplied_10_014021
crossref_primary_10_1103_PhysRevB_99_064437
crossref_primary_10_1103_PhysRevLett_131_066702
crossref_primary_10_1016_j_physrep_2020_10_001
crossref_primary_10_1103_PhysRevB_109_024418
crossref_primary_10_1016_j_physrep_2025_01_002
crossref_primary_10_1103_PhysRevB_100_024408
crossref_primary_10_1038_s41567_023_02175_4
crossref_primary_10_1021_acs_nanolett_0c02708
crossref_primary_10_1103_PhysRevB_98_014424
crossref_primary_10_1103_PhysRevB_97_085102
crossref_primary_10_1103_PhysRevB_109_104405
crossref_primary_10_1103_PhysRevB_100_094410
crossref_primary_10_1103_PhysRevB_103_174408
crossref_primary_10_1103_PhysRevB_99_174421
crossref_primary_10_1038_s41467_024_49288_9
crossref_primary_10_1103_PhysRevLett_126_017202
crossref_primary_10_1088_2053_1591_abbafb
crossref_primary_10_1103_PhysRevB_102_104424
crossref_primary_10_1038_s41598_020_76469_5
crossref_primary_10_1021_acs_nanolett_3c04181
crossref_primary_10_1103_PhysRevB_105_214402
crossref_primary_10_1103_PhysRevB_106_214404
crossref_primary_10_1103_PhysRevB_102_224407
crossref_primary_10_1021_acs_chemmater_7b05261
crossref_primary_10_1016_j_surfrep_2023_100605
crossref_primary_10_1103_PhysRevB_102_064408
crossref_primary_10_1038_s41467_022_31335_y
crossref_primary_10_1126_sciadv_aaz9744
crossref_primary_10_1002_advs_202202950
crossref_primary_10_1038_s41598_018_24693_5
crossref_primary_10_1038_s43246_024_00512_5
crossref_primary_10_1007_s11433_020_1619_8
crossref_primary_10_1103_PhysRevB_106_054414
crossref_primary_10_1103_PhysRevB_108_144412
crossref_primary_10_1038_s41563_021_01141_w
crossref_primary_10_1103_PhysRevB_106_094435
crossref_primary_10_1103_PhysRevB_109_195114
crossref_primary_10_1038_s41598_019_41441_5
crossref_primary_10_1038_s41467_020_15474_8
crossref_primary_10_1103_RevModPhys_94_035005
crossref_primary_10_1038_s42005_021_00675_4
crossref_primary_10_7566_JPSJ_91_101002
crossref_primary_10_1002_adfm_202008521
crossref_primary_10_1021_acs_nanolett_2c03142
crossref_primary_10_1038_s41467_019_13323_x
crossref_primary_10_1103_PhysRevB_100_014425
Cites_doi 10.1103/PhysRevB.85.220101
10.1103/PhysRevB.40.10501
10.1103/PhysRevLett.80.849
10.1103/PhysRevLett.102.186601
10.1103/RevModPhys.84.119
10.1126/science.1240573
10.1103/PhysRevLett.94.117601
10.1002/adma.201601979
10.1103/PhysRevB.38.13047
10.1038/nnano.2014.52
10.1016/0038-1098(87)90471-6
10.1038/nnano.2013.176
10.1103/PhysRevLett.93.096806
10.1126/sciadv.1602562
10.1103/RevModPhys.66.1125
10.1126/science.1195709
10.1103/PhysRevLett.102.186602
10.1103/PhysRevB.62.6241
10.1038/nnano.2013.243
10.1126/science.1234657
10.1038/nphys3506
10.1038/nmat4593
10.1063/1.1578165
10.1103/PhysRevB.88.195137
10.1063/1.1594841
10.1103/PhysRevB.70.075111
10.1103/RevModPhys.60.1129
10.1103/RevModPhys.66.1
10.1038/nature06165
10.1103/PhysRevB.70.224104
10.1103/PhysRevB.91.041101
10.1103/PhysRevB.90.174432
10.1063/1.2337356
10.1103/PhysRevLett.89.097601
10.1126/science.aaa1442
10.1016/0304-8853(94)90046-9
10.1038/ncomms9217
10.1103/PhysRevB.81.041203
10.1103/PhysRevLett.83.3737
10.1126/science.1166767
10.1146/annurev.matsci.37.052506.084243
10.1103/PhysRevB.79.184207
10.1038/nnano.2013.29
10.1103/PhysRevB.93.060401
10.1038/nature09124
10.1088/0953-8984/22/16/164207
10.1103/PhysRevLett.99.097203
10.1038/nphys2231
10.1103/PhysRev.112.755
10.1038/nnano.2013.210
10.1126/science.1145799
10.1201/9781439883570
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-017-01353-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Publicly Available Content Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_260f4925c61e4c78ab01412acf69a03f
PMC5673897
29109474
10_1038_s41467_017_01353_2
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-cf93498c15b95e4e792a219f659e5c5f7dbda31fe34d556c26e3d65b050ac8563
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:50:34 EDT 2025
Thu Aug 21 18:25:26 EDT 2025
Fri Jul 11 06:44:19 EDT 2025
Wed Aug 13 10:59:39 EDT 2025
Wed Feb 19 02:43:16 EST 2025
Tue Jul 01 02:21:06 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Fri Feb 21 02:41:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-cf93498c15b95e4e792a219f659e5c5f7dbda31fe34d556c26e3d65b050ac8563
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6866-7774
0000-0002-1763-6799
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-017-01353-2
PMID 29109474
PQID 1961025084
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_260f4925c61e4c78ab01412acf69a03f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5673897
proquest_miscellaneous_1961638419
proquest_journals_1961025084
pubmed_primary_29109474
crossref_primary_10_1038_s41467_017_01353_2
crossref_citationtrail_10_1038_s41467_017_01353_2
springer_journals_10_1038_s41467_017_01353_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-06
PublicationDateYYYYMMDD 2017-11-06
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-06
  day: 06
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Nagaosa, Tokura (CR12) 2013; 8
Kolton, Rosso, Giamarchi, Krauth (CR40) 2009; 79
Sampaio, Cros, Rohart, Thiaville, Fert (CR19) 2013; 8
Neubauer (CR32) 2009; 102
Park (CR13) 2014; 9
Kleemann (CR47) 2007; 99
Inui, Hall, Doniach, Zettl (CR50) 1988; 38
Nakajima (CR37) 2017; 3
Braun, Kleemann, Dec, Thomas (CR45) 2005; 94
Bogdanov, Yablonskii (CR6) 1989; 68
Strogatz, Westervelt (CR51) 1989; 40
Ogawa, Miyano (CR52) 2004; 70
Mühlbauer (CR8) 2009; 323
Ye (CR29) 1999; 83
Romming (CR24) 2013; 341
Catalan, Seidel, Ramesh, Scott (CR2) 2012; 84
Paruch, Giamarchi, Tybell, Triscone (CR44) 2006; 110
Kagawa, Hatahara, Horiuchi, Tokura (CR46) 2012; 85
Bruno, Dugaev, Taillefumier (CR30) 2004; 93
Blatter, Feigel’man, Geshkenbein, Larkin, Vinokur (CR3) 1994; 66
Grüner (CR5) 1994; 66
Jiang (CR22) 2015; 349
Grollier (CR16) 2003; 83
Milde (CR26) 2013; 340
Mihaly, Chen, Grüner (CR49) 1987; 61
Kleemann (CR1) 2007; 37
Yu (CR10) 2010; 465
Chauve, Giamarchi, Le Doussal (CR39) 2000; 62
Münzer (CR9) 2010; 81
Kagawa, Oike (CR36) 2017; 29
Lin, Saxena (CR28) 2016; 93
Bogdanov, Hubert (CR7) 1994; 138
Tsoi, Fontana, Parkin (CR17) 2003; 83
Woo (CR23) 2016; 15
Liang, DeGrave, Stolt, Tokura, Jin (CR33) 2015; 6
Fedorenko, Mueller, Stepanow (CR48) 2004; 70
Oike (CR34) 2016; 12
Lee, Kang, Onose, Tokura, Ong (CR31) 2009; 102
Shin, Grinberg, Chen, Rappe (CR41) 2007; 449
Pfleiderer (CR11) 2010; 22
Jonietz (CR14) 2010; 330
Tybell, Paruch, Giamarchi, Triscone (CR43) 2002; 89
Parkin, Hayashi, Thomas (CR21) 2008; 320
Miller, Savage (CR38) 1958; 112
Schütte, Rosch (CR27) 2014; 90
CR25
Schulz (CR15) 2012; 8
Buhrandt, Fritz (CR53) 2013; 88
Oike (CR35) 2015; 91
Grüner (CR4) 1988; 60
Iwasaki, Mochizuki, Nagaosa (CR20) 2013; 8
Lemerle (CR42) 1998; 80
Fert, Cros, Sampaio (CR18) 2013; 8
N Romming (1353_CR24) 2013; 341
H Oike (1353_CR35) 2015; 91
W Kleemann (1353_CR47) 2007; 99
A Bogdanov (1353_CR7) 1994; 138
J Grollier (1353_CR16) 2003; 83
M Tsoi (1353_CR17) 2003; 83
1353_CR25
AB Kolton (1353_CR40) 2009; 79
F Kagawa (1353_CR36) 2017; 29
Th Braun (1353_CR45) 2005; 94
H Oike (1353_CR34) 2016; 12
J Ye (1353_CR29) 1999; 83
S Mühlbauer (1353_CR8) 2009; 323
W Münzer (1353_CR9) 2010; 81
D Liang (1353_CR33) 2015; 6
L Mihaly (1353_CR49) 1987; 61
T Nakajima (1353_CR37) 2017; 3
C Pfleiderer (1353_CR11) 2010; 22
N Nagaosa (1353_CR12) 2013; 8
G Blatter (1353_CR3) 1994; 66
S Woo (1353_CR23) 2016; 15
S Lemerle (1353_CR42) 1998; 80
J Sampaio (1353_CR19) 2013; 8
S Buhrandt (1353_CR53) 2013; 88
P Bruno (1353_CR30) 2004; 93
SSP Parkin (1353_CR21) 2008; 320
A Bogdanov (1353_CR6) 1989; 68
F Jonietz (1353_CR14) 2010; 330
S-Z Lin (1353_CR28) 2016; 93
P Paruch (1353_CR44) 2006; 110
G Grüner (1353_CR4) 1988; 60
SH Strogatz (1353_CR51) 1989; 40
W Kleemann (1353_CR1) 2007; 37
G Grüner (1353_CR5) 1994; 66
T Tybell (1353_CR43) 2002; 89
F Kagawa (1353_CR46) 2012; 85
AA Fedorenko (1353_CR48) 2004; 70
M Lee (1353_CR31) 2009; 102
G Catalan (1353_CR2) 2012; 84
P Chauve (1353_CR39) 2000; 62
J Iwasaki (1353_CR20) 2013; 8
M Inui (1353_CR50) 1988; 38
C Schütte (1353_CR27) 2014; 90
A Neubauer (1353_CR32) 2009; 102
XZ Yu (1353_CR10) 2010; 465
RC Miller (1353_CR38) 1958; 112
Y-H Shin (1353_CR41) 2007; 449
T Schulz (1353_CR15) 2012; 8
W Jiang (1353_CR22) 2015; 349
N Ogawa (1353_CR52) 2004; 70
HS Park (1353_CR13) 2014; 9
A Fert (1353_CR18) 2013; 8
P Milde (1353_CR26) 2013; 340
References_xml – volume: 85
  year: 2012
  ident: CR46
  article-title: Domain-wall dynamics coupled to proton motion in a hydrogen-bonded organic ferroelectric
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.220101
– volume: 40
  start-page: 10501
  year: 1989
  end-page: 10508
  ident: CR51
  article-title: Predicted power laws for delayed switching of charge-density waves
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.10501
– volume: 80
  start-page: 849
  year: 1998
  end-page: 852
  ident: CR42
  article-title: Domain wall creep in an ising ultrathin magnetic film
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.849
– volume: 102
  year: 2009
  ident: CR31
  article-title: Unusual Hall effect anomaly in MnSi under pressure
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.186601
– volume: 84
  start-page: 119
  year: 2012
  end-page: 156
  ident: CR2
  article-title: Domain wall nanoelectronics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.119
– volume: 341
  start-page: 636
  year: 2013
  end-page: 639
  ident: CR24
  article-title: Writing and deleting single magnetic skyrmions
  publication-title: Science
  doi: 10.1126/science.1240573
– volume: 94
  year: 2005
  ident: CR45
  article-title: Creep and relaxation dynamics of domain walls in periodically poled KTiOPO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.117601
– volume: 29
  year: 2017
  ident: CR36
  article-title: Quenching of charge and spin degrees of freedom in condensed matter
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601979
– volume: 38
  start-page: 13047
  year: 1988
  end-page: 13060
  ident: CR50
  article-title: Phase slips and switching in charge-density-wave transport
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.38.13047
– volume: 9
  start-page: 337
  year: 2014
  end-page: 342
  ident: CR13
  article-title: Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.52
– ident: CR25
– volume: 61
  start-page: 751
  year: 1987
  end-page: 753
  ident: CR49
  article-title: Switching, hysteresis and time delay in charge-density-wave conduction
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(87)90471-6
– volume: 8
  start-page: 742
  year: 2013
  end-page: 747
  ident: CR20
  article-title: Current-induced skyrmion dynamics in constricted geometries
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.176
– volume: 93
  year: 2004
  ident: CR30
  article-title: Topological Hall effect and Berry phase in magnetic nanostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.096806
– volume: 3
  year: 2017
  ident: CR37
  article-title: Skyrmion-lattice structural transition in MnSi
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602562
– volume: 66
  start-page: 1125
  year: 1994
  end-page: 1388
  ident: CR3
  article-title: Vortices in high-temperature superconductors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.1125
– volume: 330
  start-page: 1648
  year: 2010
  end-page: 1651
  ident: CR14
  article-title: Spin transfer torques in MnSi at ultralow current densities
  publication-title: Science
  doi: 10.1126/science.1195709
– volume: 102
  year: 2009
  ident: CR32
  article-title: Topological Hall effect in the phase of MnSi
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.186602
– volume: 62
  start-page: 6241
  year: 2000
  end-page: 6267
  ident: CR39
  article-title: Creep and creep in disordered media
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.6241
– volume: 8
  start-page: 899
  year: 2013
  end-page: 911
  ident: CR12
  article-title: Topological properties and dynamics of magnetic skyrmions
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.243
– volume: 340
  start-page: 1076
  year: 2013
  end-page: 1080
  ident: CR26
  article-title: Unwinding of a skyrmion lattice by magnetic monopoles
  publication-title: Science
  doi: 10.1126/science.1234657
– volume: 12
  start-page: 62
  year: 2016
  end-page: 66
  ident: CR34
  article-title: Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3506
– volume: 15
  start-page: 501
  year: 2016
  end-page: 506
  ident: CR23
  article-title: Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
  publication-title: Nat. Mat.
  doi: 10.1038/nmat4593
– volume: 83
  start-page: 2617
  year: 2003
  end-page: 2619
  ident: CR17
  article-title: Magnetic domain wall motion triggered by an electric current
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1578165
– volume: 88
  year: 2013
  ident: CR53
  article-title: Skyrmion lattice phase in three-dimensional chiral magnets from Monte Carlo simulations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.195137
– volume: 83
  start-page: 509
  year: 2003
  end-page: 511
  ident: CR16
  article-title: Switching a spin valve back and forth by current-induced domain wall motion
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1594841
– volume: 70
  year: 2004
  ident: CR52
  article-title: Optical investigation of the origin of switching conduction in charge-density waves
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.075111
– volume: 60
  start-page: 1129
  year: 1988
  end-page: 1181
  ident: CR4
  article-title: The dynamics of charge-density waves
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.60.1129
– volume: 66
  start-page: 1
  year: 1994
  end-page: 24
  ident: CR5
  article-title: The dynamics of spin-density waves
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.1
– volume: 449
  start-page: 881
  year: 2007
  end-page: 884
  ident: CR41
  article-title: Nucleation and growth mechanism of ferroelectric domain-wall motion
  publication-title: Nature
  doi: 10.1038/nature06165
– volume: 70
  year: 2004
  ident: CR48
  article-title: Dielectric response due to stochastic motion of pinned domain walls
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.224104
– volume: 91
  year: 2015
  ident: CR35
  article-title: Phase-change memory function of correlated electrons in organic conductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.041101
– volume: 90
  year: 2014
  ident: CR27
  article-title: Dynamics and energetics of emergent magnetic monopoles in chiral magnets
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.174432
– volume: 110
  year: 2006
  ident: CR44
  article-title: Nanoscale studies of domain wall motion in epitaxial ferroelectric thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2337356
– volume: 89
  year: 2002
  ident: CR43
  article-title: Domain wall creep in epitaxial ferroelectric Pb(Zr Ti )O thin films
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.097601
– volume: 349
  start-page: 283
  year: 2015
  end-page: 286
  ident: CR22
  article-title: Blowing magnetic skyrmion bubbles
  publication-title: Science
  doi: 10.1126/science.aaa1442
– volume: 138
  start-page: 255
  year: 1994
  end-page: 269
  ident: CR7
  article-title: Thermodynamically stable magnetic vortex states in magnetic crystals
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(94)90046-9
– volume: 6
  year: 2015
  ident: CR33
  article-title: Current-driven dynamics of skyrmions stabilized in MnSi nanowires revealed by topological Hall effect
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9217
– volume: 81
  year: 2010
  ident: CR9
  article-title: Skyrmion lattice in the doped semiconductor Fe Co Si
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.041203
– volume: 83
  start-page: 3737
  year: 1999
  end-page: 3740
  ident: CR29
  article-title: Berry phase theory of the anomalous hall effect: application to colossal magnetoresistance manganites
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3737
– volume: 323
  start-page: 915
  year: 2009
  end-page: 919
  ident: CR8
  article-title: Skyrmion lattice in a chiral magnet
  publication-title: Science
  doi: 10.1126/science.1166767
– volume: 37
  start-page: 415
  year: 2007
  end-page: 448
  ident: CR1
  article-title: Universal domain wall dynamics in disordered ferroic materials
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.37.052506.084243
– volume: 79
  year: 2009
  ident: CR40
  article-title: Creep dynamics of elastic manifolds via exact transition pathways
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.184207
– volume: 8
  start-page: 152
  year: 2013
  end-page: 156
  ident: CR18
  article-title: Skyrmions on the track
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.29
– volume: 93
  year: 2016
  ident: CR28
  article-title: Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.060401
– volume: 68
  start-page: 101
  year: 1989
  end-page: 103
  ident: CR6
  article-title: Thermodynamically stable “vortices” in magnetically ordered crystals. The mixed state of magnets
  publication-title: Sov. Phys. JETP
– volume: 465
  start-page: 901
  year: 2010
  end-page: 904
  ident: CR10
  article-title: Real-space observation of a two-dimensional skyrmion crystal
  publication-title: Nature
  doi: 10.1038/nature09124
– volume: 22
  year: 2010
  ident: CR11
  article-title: Skyrmion lattices in metallic and semiconducting B20 transition metal compounds
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/16/164207
– volume: 99
  year: 2007
  ident: CR47
  article-title: Modes of periodic domain wall motion in ultrathin ferromagnetic layers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.097203
– volume: 8
  start-page: 301
  year: 2012
  end-page: 304
  ident: CR15
  article-title: Emergent electrodynamics of skyrmions in a chiral magnet
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2231
– volume: 112
  start-page: 755
  year: 1958
  end-page: 762
  ident: CR38
  article-title: Velocity of sidewise 180 domain-wall motion in BaTi 3 as a function of applied electric field
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.112.755
– volume: 8
  start-page: 839
  year: 2013
  end-page: 844
  ident: CR19
  article-title: Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.210
– volume: 320
  start-page: 190
  year: 2008
  end-page: 194
  ident: CR21
  article-title: Magnetic domain-wall racetrack memory
  publication-title: Science
  doi: 10.1126/science.1145799
– volume: 62
  start-page: 6241
  year: 2000
  ident: 1353_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.62.6241
– volume: 112
  start-page: 755
  year: 1958
  ident: 1353_CR38
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.112.755
– volume: 330
  start-page: 1648
  year: 2010
  ident: 1353_CR14
  publication-title: Science
  doi: 10.1126/science.1195709
– volume: 9
  start-page: 337
  year: 2014
  ident: 1353_CR13
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2014.52
– volume: 8
  start-page: 839
  year: 2013
  ident: 1353_CR19
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.210
– volume: 38
  start-page: 13047
  year: 1988
  ident: 1353_CR50
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.38.13047
– volume: 66
  start-page: 1125
  year: 1994
  ident: 1353_CR3
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.1125
– volume: 341
  start-page: 636
  year: 2013
  ident: 1353_CR24
  publication-title: Science
  doi: 10.1126/science.1240573
– volume: 8
  start-page: 301
  year: 2012
  ident: 1353_CR15
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2231
– volume: 85
  year: 2012
  ident: 1353_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.220101
– volume: 99
  year: 2007
  ident: 1353_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.097203
– volume: 66
  start-page: 1
  year: 1994
  ident: 1353_CR5
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.66.1
– volume: 61
  start-page: 751
  year: 1987
  ident: 1353_CR49
  publication-title: Solid State Commun.
  doi: 10.1016/0038-1098(87)90471-6
– volume: 91
  year: 2015
  ident: 1353_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.041101
– volume: 70
  year: 2004
  ident: 1353_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.224104
– volume: 102
  year: 2009
  ident: 1353_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.186601
– volume: 94
  year: 2005
  ident: 1353_CR45
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.117601
– volume: 37
  start-page: 415
  year: 2007
  ident: 1353_CR1
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev.matsci.37.052506.084243
– volume: 84
  start-page: 119
  year: 2012
  ident: 1353_CR2
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.119
– volume: 6
  year: 2015
  ident: 1353_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9217
– volume: 80
  start-page: 849
  year: 1998
  ident: 1353_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.849
– volume: 349
  start-page: 283
  year: 2015
  ident: 1353_CR22
  publication-title: Science
  doi: 10.1126/science.aaa1442
– volume: 93
  year: 2016
  ident: 1353_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.060401
– volume: 102
  year: 2009
  ident: 1353_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.186602
– volume: 3
  year: 2017
  ident: 1353_CR37
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602562
– volume: 110
  year: 2006
  ident: 1353_CR44
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2337356
– volume: 83
  start-page: 509
  year: 2003
  ident: 1353_CR16
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1594841
– volume: 340
  start-page: 1076
  year: 2013
  ident: 1353_CR26
  publication-title: Science
  doi: 10.1126/science.1234657
– volume: 8
  start-page: 152
  year: 2013
  ident: 1353_CR18
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.29
– volume: 320
  start-page: 190
  year: 2008
  ident: 1353_CR21
  publication-title: Science
  doi: 10.1126/science.1145799
– volume: 70
  year: 2004
  ident: 1353_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.075111
– volume: 40
  start-page: 10501
  year: 1989
  ident: 1353_CR51
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.40.10501
– volume: 15
  start-page: 501
  year: 2016
  ident: 1353_CR23
  publication-title: Nat. Mat.
  doi: 10.1038/nmat4593
– volume: 22
  year: 2010
  ident: 1353_CR11
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/16/164207
– volume: 8
  start-page: 742
  year: 2013
  ident: 1353_CR20
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.176
– ident: 1353_CR25
  doi: 10.1201/9781439883570
– volume: 89
  year: 2002
  ident: 1353_CR43
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.097601
– volume: 323
  start-page: 915
  year: 2009
  ident: 1353_CR8
  publication-title: Science
  doi: 10.1126/science.1166767
– volume: 83
  start-page: 2617
  year: 2003
  ident: 1353_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1578165
– volume: 138
  start-page: 255
  year: 1994
  ident: 1353_CR7
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(94)90046-9
– volume: 90
  year: 2014
  ident: 1353_CR27
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.174432
– volume: 449
  start-page: 881
  year: 2007
  ident: 1353_CR41
  publication-title: Nature
  doi: 10.1038/nature06165
– volume: 88
  year: 2013
  ident: 1353_CR53
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.195137
– volume: 81
  year: 2010
  ident: 1353_CR9
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.041203
– volume: 83
  start-page: 3737
  year: 1999
  ident: 1353_CR29
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.3737
– volume: 29
  year: 2017
  ident: 1353_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601979
– volume: 68
  start-page: 101
  year: 1989
  ident: 1353_CR6
  publication-title: Sov. Phys. JETP
– volume: 93
  year: 2004
  ident: 1353_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.096806
– volume: 60
  start-page: 1129
  year: 1988
  ident: 1353_CR4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.60.1129
– volume: 8
  start-page: 899
  year: 2013
  ident: 1353_CR12
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2013.243
– volume: 79
  year: 2009
  ident: 1353_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.79.184207
– volume: 465
  start-page: 901
  year: 2010
  ident: 1353_CR10
  publication-title: Nature
  doi: 10.1038/nature09124
– volume: 12
  start-page: 62
  year: 2016
  ident: 1353_CR34
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3506
SSID ssj0000391844
Score 2.478373
Snippet In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10–1000 μm....
In the MnSi bulk chiral magnet, magnetic skyrmion strings of 17 nm in diameter appear in the form of a lattice, penetrating the sample thickness, 10-1000 μm....
Understanding the dynamics of the skyrmion string lattice is the prerequisite for its potential application as next-generation information carriers. Here, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1332
SubjectTerms 639/301/119/1001
639/301/119/997
Computer simulation
Critical current density
Hall effect
Humanities and Social Sciences
multidisciplinary
Pulse duration
Science
Science (multidisciplinary)
Strings
Unwinding
Viscoelasticity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yIPgi3q2uUsE3Ddtc2zyquCyCguDCvoU0Fz2ordgel_33O5P0HM7x-uJrM4Fhrl-azAwhT3nyqZcsUdY6QWUMkjqmIm1F6hIA_CgCFgq_fadPTuWbM3W2M-oL34SV9sBFcEeAtxM20POaRenbzvX4NJE7n7RxjUgYfSHn7RymcgwWBo4ucqmSaUR3NMkcEzAoNzjrgfK9TJQb9v8OZf76WPKnG9OciI5vkOsLgqxfFM5vkitxuEWulpmSF7fJ-6XjEoXDNqgt1D9Wkx8jgGSgr-cyEwE1U6-H81WuaanHVH-NM1BgHVU9fb4A7Y9DjSM9ho_THXJ6_PrDqxO6zE2gHvDXTH0yQprOM9UbFWVsDXcQmJJWJiqvUhv64ARLUciglPZcg0a06hvVON8pLe6Sg2Ec4n1Si4AZjrvOOABOWhoWjHIsCThlJBP6irCNDK1fmorjbIsvNl9ui84WuVuQu81yt7wiz7Z7vpWWGn-lfomq2VJiO-z8AYzELkZi_2UkFTncKNYuPjpZiD0MEWAnK_JkuwzehVcmbojjutBAhJLMVOResYMtJxyQlpEt7G73LGSP1f2VYfUpd_BWOGvVtBV5vrGlHbb-KIoH_0MUD8k1jk6Af8b1ITmYv6_jI8BVc_84u9Al0MEdsA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66Ivgi3q2uUsE3Dds0t-ZJVFwWQUFw4byFNE3Wg9qu2x5l_70zaU71eNnXZgLpzGQySSbfR8jTOvrYChYp045TETpBHZOBah6bCAl-4B0-FH73Xh0di7crucoHbmMuq9zGxBSou8HjGfkBeArD9boRL06_UWSNwtvVTKFxmVxB6DIs6dIrvZyxIPp5I0R-K1Px5mAUKTJgaK6Q8YHWO-tRgu3_V675d8nkH_emaTk6vEGu5zyyfDkb_ia5FPpb5OrMLHl-m3zIuEsUttxgvK78vh79ECBVBvlympkR0D7lpv-xTi9byiGWX8MEEviaqhw_n4MPDH2JxB79yXiHHB---fj6iGb2BOohC5uoj4YL03gmWyODCNrUDsJTVNIE6WXUXds5zmLgopNS-VqBXZRsK1k530jF75K9fujDfVLyDte52jXGQfqkhGGdkY5FDnuNaLq2IGyrQ-sztDgyXHyx6YqbN3bWuwW926R3Wxfk2dLndAbWuFD6FZpmkURQ7PRhODuxeY5Z2JpFxFr0igXhdeNarGKtnY_KuIrHguxvDWvzTB3tL78qyJOlGeYYXpy4PgybWQbilGCmIPdmP1hGUkO-ZYSG3nrHQ3aGutvSrz8lHG-JjKtGF-T51pd-G9Z_VfHg4r94SK7V6N548q32yd50tgmPIG-a2sdpcvwEfEgViQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA6lIvgiWm-rtazgmy5uNpdNHvVgKYKCYKFvIZtLPWh3pbvH0n_fmewFj60FXzcTCDOTyZfNzDeEvK6iiw2nsaC1ZQUPnheWilDULKoIAD8wj4XCn7_Io2P-6USc7JBqroVJSfuJ0jKF6Tk77F3P05bGmFpiq4YCwu4dpG5Hr17J1fJfBRnPFedTfUzJ1A1Tt86gRNV_E768nib511tpOoIOH5D7E3bM34-rfUh2QrtH7o7dJC8fka8T11IB12wwmM9_r3vXBYDHIJ8PYzcEtEm-aS_WqZol72J-FgaQwAqqvP9xCXbv2hybebSn_WNyfPjx2-qomDomFA6Q11C4qBnXylHRaBF4qHVlISRFKXQQTsTaN94yGgPjXgjpKgm2kKIpRWmdEpI9Ibtt14ZnJGcez7bKKm0BMkmuqdfC0sjgfhG1bzJCZx0aN9GJY1eLnyY9azNlRr0b0LtJejdVRt4sc36NZBq3Sn9A0yySSISdPnTnp2ZyDAPXsYj8ik7SwF2tbIOZq5V1UWpbspiR_dmwZtqdvYGoQxH7KZ6RV8sw7Ct8LLFt6DajDMQmTnVGno5-sKykAoyleQ2z6y0P2Vrq9ki7_p64uwV2WdV1Rt7OvvTHsv6piuf_J_6C3KvQ3fHvt9wnu8P5JrwE7DQ0B2mzXAHGnBNN
  priority: 102
  providerName: Springer Nature
Title Current-induced viscoelastic topological unwinding of metastable skyrmion strings
URI https://link.springer.com/article/10.1038/s41467-017-01353-2
https://www.ncbi.nlm.nih.gov/pubmed/29109474
https://www.proquest.com/docview/1961025084
https://www.proquest.com/docview/1961638419
https://pubmed.ncbi.nlm.nih.gov/PMC5673897
https://doaj.org/article/260f4925c61e4c78ab01412acf69a03f
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am5B4QdwJjCpIvEGgjm_xA0JdtTJV2sStUt8ix7FHxZaMXoD-e46dpKJQeOAlkeJjxfK5xznnA3iWOuMKRlxCpKYJsyVLNOE2kdRlDgN8S0tfKHx6Jk4mbDzl0z3o4I7aDVzsTO08ntRkfvHyx9f1G1T4103JePZqwYK6e3vb9zAOCZrkA_RM0ivqaRvuB8tMFSY0rK2d2T3VdwdGF6qYZFuuKnT03xWG_vk35W9HqsFTjW7BzTbEjAeNTNyGPVvdgesN6OT6LrxvWzIlmI0jX8v422xhaotRNNLHywY0wbMuXlXfZ6HoJa5dfGmXSOELreLFlzWKR13FHvOjOl_cg8no-NPwJGmBFRKDAdoyMU5RpjJDeKG4ZVaqVKPlcoIryw13sixKTYmzlJWcC5MKZJngRZ_3tcm4oPdhv6or-xBiWnoXmOpMaYysBFOkVFwTRzENcaosIiDdHuam7TruwS8u8nD6TbO8YUGOLMgDC_I0guebOVdNz41_Uh951mwofb_s8KCen-et-uWYtTnfhtEIYpmRmS78D66pNk4o3acugsOOsXkngzkaJ-JDxIxF8HQzjOrnz1R0ZetVQ4MmjBEVwYNGDjYr6eQoArklIVtL3R6pZp9Di2_uwViVjOBFJ0u_LOuvW_Hov1_0GG6kXgn893JxCPvL-co-wWhrWfTgmpxKvGajtz04GAzGH8d4Pzo-e_cBnw7FsBe-Y_SCqv0ERG0s3w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYIXxE2gQJDgCaLGZ-IHhLiqLT0kpFbaN-M4dlkBSWmyVPun-I3M5FhYjr71dTOJvONvDh8zHyFPWHChEDQkNLM8Eb4UiaXSJxkPeYAE3_MSC4X39tXkULyfyuka-THWwuC1ytEndo66rB3ukW8CUijG61y8PP6WIGsUnq6OFBo9LHb84hSWbM2L7bcwv08Z23p38GaSDKwCiYPspE1c0Fzo3FFZaOmFzzSzYLZBSe2lkyEri9JyGjwXpZTKMQXjVbJIZWpdLhWH714gFyHwpmhR2TRb7ulgt_VciKE2J-X5ZiM6T4ShIEWGiYStxL-OJuBfue3fVzT_OKftwt_WNXJ1yFvjVz3QrpM1X90gl3omy8VN8mHo85TAEh_AUsbfZ42rPaTmIB-3PRMD4iGeV6ezrpImrkP81bcggdVbcfN5AZirqxiJRKqj5hY5PBe93ibrVV35uyTmJcZVZnNtIV1TQtNSS0sDh7VN0GURETrq0LihlTkyanwx3ZE6z02vdwN6N53eDYvIs-U7x30jjzOlX-PULCWxCXf3Q31yZAabNrAUDNjb0SnqhctyW-CtWWZdUNqmPERkY5xYM3iGxvzCcUQeLx-DTeNBja18Pe9lwC8KqiNyp8fBciQM8jstMng7W0HIylBXn1SzT13fcIkMrzqLyPMRS78N67-quHf2v3hELk8O9nbN7vb-zn1yhSHUcdddbZD19mTuH0DO1hYPO0OJycfztsyfaudSVA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYgXxE2gQJDgCaKNrzh-QAgoq5ZCBRKV9s11HLusWpLS7FLtX-PXMZNjYTn61tfNJPKOvzl8zHyEPGHBhULQkFBleSJ8KRJLpU8UD3mABN_zEguFP-xmW3vi3URO1siPoRYGr1UOPrF11GXtcI98BEihGK9zMQr9tYiPm-OXx98SZJDCk9aBTqODyI5fnMLyrXmxvQlz_ZSx8dvPb7aSnmEgcZCpzBIXNBc6d1QWWnrhlWYWTDhkUnvpZFBlUVpOg-eilDJzLIOxZ7JIZWpdLjMO371ALiouKdqYmqjl_g52Xs-F6Ot0Up6PGtF6JQwLKbJNJGwlFraUAf_Kc_--rvnHmW0bCsfXyNU-h41fdaC7TtZ8dYNc6lgtFzfJp77nUwLLfQBOGX-fNq72kKaDfDzrWBkQG_G8Op22VTVxHeKvfgYSWMkVN4cLwF9dxUgqUh00t8jeuej1Nlmv6srfJTEvMcYym2sLqVsmNC21tDRwWOcEXRYRoYMOjevbmiO7xpFpj9d5bjq9G9C7afVuWESeLd857pp6nCn9GqdmKYkNudsf6pMD09u3gWVhwD6PLqNeOJXbAm_QMutCpm3KQ0Q2hok1vZdozC9MR-Tx8jHYNx7a2MrX804GfKSgOiJ3OhwsR8Ig19NCwdtqBSErQ119Uk2_tD3EJbK9ahWR5wOWfhvWf1Vx7-x_8YhcBps077d3d-6TKwyRjhvw2QZZn53M_QNI32bFw9ZOYrJ_3ob5E0S0Voo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Current-induced+viscoelastic+topological+unwinding+of+metastable+skyrmion+strings&rft.jtitle=Nature+communications&rft.au=Kagawa%2C+Fumitaka&rft.au=Oike%2C+Hiroshi&rft.au=Koshibae%2C+Wataru&rft.au=Kikkawa%2C+Akiko&rft.date=2017-11-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=8&rft_id=info:doi/10.1038%2Fs41467-017-01353-2&rft_id=info%3Apmid%2F29109474&rft.externalDocID=PMC5673897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon