root's ability to retain K⁺ correlates with salt tolerance in wheat

Most work on wheat breeding for salt tolerance has focused mainly on excluding Na⁺ from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na⁺ content and wheat salt tolerance. Thus, it appears that excluding Na⁺ by itself is not alway...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 59; no. 10; pp. 2697 - 2706
Main Authors Cuin, Tracey Ann, Betts, Stewart A, Chalmandrier, Rémi, Shabala, Sergey
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.07.2008
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most work on wheat breeding for salt tolerance has focused mainly on excluding Na⁺ from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na⁺ content and wheat salt tolerance. Thus, it appears that excluding Na⁺ by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K⁺ may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K⁺ flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K⁺ flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K⁺ homeostasis in plant salt tolerance and suggests that using NaCl-induced K⁺ flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.
AbstractList Most work on wheat breeding for salt tolerance has focused mainly on excluding Na(+) from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na(+) content and wheat salt tolerance. Thus, it appears that excluding Na(+) by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K(+) may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K(+) flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K(+) flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K(+) homeostasis in plant salt tolerance and suggests that using NaCl-induced K(+) flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.Most work on wheat breeding for salt tolerance has focused mainly on excluding Na(+) from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na(+) content and wheat salt tolerance. Thus, it appears that excluding Na(+) by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K(+) may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K(+) flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K(+) flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K(+) homeostasis in plant salt tolerance and suggests that using NaCl-induced K(+) flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na + from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na + content and wheat salt tolerance. Thus, it appears that excluding Na + by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K + may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCI-induced kinetics of K + flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K + flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K + homeostasis in plant salt tolerance and suggests that using NaCI-induced K + flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na⁺ from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na⁺ content and wheat salt tolerance. Thus, it appears that excluding Na⁺ by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K⁺ may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K⁺ flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K⁺ flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K⁺ homeostasis in plant salt tolerance and suggests that using NaCl-induced K⁺ flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na + from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na + content and wheat salt tolerance. Thus, it appears that excluding Na + by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K + may be such a trait, and whether our previous findings for barley can be extrapolated to species following a ‘salt exclusion’ strategy. NaCl-induced kinetics of K + flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K + flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K + homeostasis in plant salt tolerance and suggests that using NaCl-induced K + flux measurements as a physiological ‘marker’ for salt tolerance may benefit wheat-breeding programmes.
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na[sup]+ from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na[sup]+ content and wheat salt tolerance. Thus, it appears that excluding Na[sup]+ by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K[sup]+ may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K[sup]+ flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K[sup]+ flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K[sup]+ homeostasis in plant salt tolerance and suggests that using NaCl-induced K[sup]+ flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na(+) from uptake and transport to the shoot. However, some recent findings have reported no apparent correlation between leaf Na(+) content and wheat salt tolerance. Thus, it appears that excluding Na(+) by itself is not always sufficient to increase plant salt tolerance and other physiological traits should also be considered. In this work, it was investigated whether a root's ability to retain K(+) may be such a trait, and whether our previous findings for barley can be extrapolated to species following a 'salt exclusion' strategy. NaCl-induced kinetics of K(+) flux from roots of two bread and two durum wheat genotypes, contrasting in their salt tolerance, were measured under laboratory conditions using non-invasive ion flux measuring (the MIFE) technique. These measurements were compared with whole-plant physiological characteristics and yield responses from plants grown under greenhouse conditions. The results show that K(+) flux from the root surface of 6-d-old wheat seedlings in response to salt treatment was highly correlated with major plant physiological characteristics and yield of greenhouse-grown plants. This emphasizes the critical role of K(+) homeostasis in plant salt tolerance and suggests that using NaCl-induced K(+) flux measurements as a physiological 'marker' for salt tolerance may benefit wheat-breeding programmes.
Author Shabala, Sergey
Betts, Stewart A.
Chalmandrier, Rémi
Cuin, Tracey Ann
AuthorAffiliation School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
AuthorAffiliation_xml – name: School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tasmania 7001, Australia
Author_xml – sequence: 1
  fullname: Cuin, Tracey Ann
– sequence: 2
  fullname: Betts, Stewart A
– sequence: 3
  fullname: Chalmandrier, Rémi
– sequence: 4
  fullname: Shabala, Sergey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20501306$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/18495637$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1rFTEUhoNU7G11414dBBWEa0--ZzaClPqBBRfadchkMr255E6uScbapX_Ln-MvMcNcWy2iq0DOk4f3nJwDtDeEwSJ0H8MLDA09Wn9tj2wcMKlvoQVmApaEUbyHFgCELKHhch8dpLQGAA6c30H7uGYNF1Qu0EkMIT9LlW6dd_myyqGKNms3VO9_fPtemRCj9TrbVF24vKqS9rkw3kY9GFsV7GJldb6LbvfaJ3tvdx6is9cnn47fLk8_vHl3_Op0aTiDvDSdtaSVWoJhvOksEzWTmgFrcU3aTvay6Qm1suOUdy0Abaw0tJOtptTgcnuIXs7e7dhubGfskKP2ahvdRsdLFbRTf1YGt1Ln4YsirBZMTIKnO0EMn0ebstq4ZKz3erBhTEo0pK6FEP8FmRSNkKwu4OMb4DqMcShTUIRywJLiyfbw99xXgX_9QwGe7ACdjPb9NF6XrjhSPg5TmETPZ87EkFK0_bUK1LQMqiyDmpehwHADNi7r7MI0G-f__mSXI4zbf6sfzNw65RCvczKgkjdQ6o_meq-D0uex9HL2kUw9QIOx4DX9CbBp2JQ
CODEN JEBOA6
CitedBy_id crossref_primary_10_1016_j_scienta_2018_04_023
crossref_primary_10_3389_fpls_2024_1364826
crossref_primary_10_1071_CP16365
crossref_primary_10_1016_j_jplph_2013_11_013
crossref_primary_10_1093_pcp_pcu105
crossref_primary_10_33581_2957_5060_2022_2_4_18
crossref_primary_10_1007_s11738_012_1128_2
crossref_primary_10_1016_j_ocsci_2023_09_003
crossref_primary_10_1016_j_jplph_2014_01_015
crossref_primary_10_1016_j_plaphy_2021_09_031
crossref_primary_10_1007_s11105_011_0390_6
crossref_primary_10_1080_00103624_2013_832289
crossref_primary_10_1371_journal_pone_0124032
crossref_primary_10_1016_j_agwat_2015_09_027
crossref_primary_10_1016_j_plaphy_2016_10_011
crossref_primary_10_3389_fpls_2019_01361
crossref_primary_10_1007_s11105_012_0549_9
crossref_primary_10_1007_s11104_010_0395_1
crossref_primary_10_1007_s00425_014_2117_z
crossref_primary_10_1111_plb_13123
crossref_primary_10_1016_j_envexpbot_2015_11_010
crossref_primary_10_1134_S1021443710050134
crossref_primary_10_1007_s11738_019_2948_0
crossref_primary_10_1080_00103624_2015_1018527
crossref_primary_10_1016_j_jplph_2014_01_009
crossref_primary_10_1007_s00122_018_3146_y
crossref_primary_10_1080_09064710_2020_1843701
crossref_primary_10_3390_f9100601
crossref_primary_10_1111_j_1399_3054_2009_01305_x
crossref_primary_10_3390_su11174558
crossref_primary_10_1007_s11104_012_1366_5
crossref_primary_10_3390_plants12020370
crossref_primary_10_1007_s10265_023_01487_z
crossref_primary_10_3389_fphys_2017_00509
crossref_primary_10_1007_s10725_025_01304_8
crossref_primary_10_1007_s00122_023_04267_4
crossref_primary_10_1016_j_cj_2018_01_003
crossref_primary_10_3389_fpls_2016_02035
crossref_primary_10_1139_cjfr_2016_0460
crossref_primary_10_1093_jxb_erz328
crossref_primary_10_1038_s41598_017_15726_6
crossref_primary_10_1016_j_envexpbot_2010_08_006
crossref_primary_10_1002_jpln_201200230
crossref_primary_10_1071_FP17049
crossref_primary_10_1007_s11738_008_0215_x
crossref_primary_10_1111_tpj_12159
crossref_primary_10_3389_fpls_2021_646175
crossref_primary_10_32604_phyton_2022_017365
crossref_primary_10_3389_fpls_2019_00048
crossref_primary_10_12974_2311_858X_2023_11_7
crossref_primary_10_1016_j_cj_2022_03_004
crossref_primary_10_1371_journal_pone_0174170
crossref_primary_10_1093_jxb_eru004
crossref_primary_10_1007_s11738_012_0970_6
crossref_primary_10_1111_ppl_12818
crossref_primary_10_1016_j_jplph_2021_153432
crossref_primary_10_1071_FP09229
crossref_primary_10_1016_j_plantsci_2017_09_010
crossref_primary_10_1007_s13205_018_1553_z
crossref_primary_10_1371_journal_pone_0134822
crossref_primary_10_1016_j_envexpbot_2020_104136
crossref_primary_10_1016_j_envexpbot_2021_104499
crossref_primary_10_1093_jxb_erv465
crossref_primary_10_1007_s10681_019_2533_z
crossref_primary_10_3390_ijms20174111
crossref_primary_10_1590_0103_8478cr20180351
crossref_primary_10_3389_fpls_2016_01787
crossref_primary_10_3389_fpls_2021_760863
crossref_primary_10_1007_s00425_015_2317_1
crossref_primary_10_1007_s10535_013_0349_6
crossref_primary_10_1016_j_plaphy_2018_05_022
crossref_primary_10_1007_s11103_014_0278_6
crossref_primary_10_1007_s12892_017_0037_0
crossref_primary_10_1007_s11240_017_1263_y
crossref_primary_10_1093_aob_mcq027
crossref_primary_10_1007_s00122_010_1357_y
crossref_primary_10_1007_s40415_016_0335_2
crossref_primary_10_1007_s00468_015_1324_y
crossref_primary_10_3389_fpls_2016_02070
crossref_primary_10_1007_s10725_015_0079_1
crossref_primary_10_1111_nph_15864
crossref_primary_10_1016_j_envexpbot_2023_105585
crossref_primary_10_1007_s11240_009_9665_0
crossref_primary_10_1080_09670262_2015_1070437
crossref_primary_10_1111_ppl_12165
crossref_primary_10_1093_pcp_pcx026
crossref_primary_10_3390_ijms24010805
crossref_primary_10_1186_s40529_014_0070_6
crossref_primary_10_1016_j_plaphy_2021_01_029
crossref_primary_10_1080_15226514_2021_1951655
crossref_primary_10_15302_J_FASE_2014016
crossref_primary_10_1080_15592324_2020_1735755
crossref_primary_10_1071_FP14132
crossref_primary_10_1111_tpj_12352
crossref_primary_10_1111_nph_15852
crossref_primary_10_1071_FP10215
crossref_primary_10_1111_ppl_12056
crossref_primary_10_1016_j_envexpbot_2020_104169
crossref_primary_10_4161_psb_4_4_7918
crossref_primary_10_1002_jsfa_10822
crossref_primary_10_1016_j_plaphy_2016_04_033
crossref_primary_10_1080_15592324_2015_1013793
crossref_primary_10_1016_j_hpj_2018_10_001
crossref_primary_10_1071_FP15391
crossref_primary_10_1093_jxb_erq004
crossref_primary_10_1007_s11104_015_2601_7
crossref_primary_10_1007_s11105_014_0748_7
crossref_primary_10_1007_s10725_017_0262_7
crossref_primary_10_1007_s44154_022_00065_y
crossref_primary_10_1016_j_cj_2024_01_005
crossref_primary_10_1093_treephys_tps119
crossref_primary_10_1093_jxb_erw236
crossref_primary_10_1016_j_plantsci_2014_06_006
crossref_primary_10_1093_jxb_ert085
crossref_primary_10_1016_j_envexpbot_2016_03_011
crossref_primary_10_1007_s00299_016_1935_9
crossref_primary_10_1007_s00709_016_0946_2
crossref_primary_10_3390_agriculture12111765
crossref_primary_10_1007_s11103_010_9612_9
crossref_primary_10_1104_pp_111_179671
crossref_primary_10_1007_s00122_021_03996_8
crossref_primary_10_1007_s10725_024_01257_4
crossref_primary_10_1016_j_ceca_2015_03_001
crossref_primary_10_1007_s11104_019_04140_8
crossref_primary_10_3389_fpls_2015_00071
crossref_primary_10_3389_fpls_2015_00873
crossref_primary_10_1007_s11104_016_2922_1
crossref_primary_10_1371_journal_pone_0057767
crossref_primary_10_1111_j_1438_8677_2009_00301_x
crossref_primary_10_1007_s11104_010_0616_7
crossref_primary_10_3389_fpls_2020_01192
crossref_primary_10_1093_pcp_pcq036
crossref_primary_10_3389_fpls_2015_01055
crossref_primary_10_1155_2020_4827045
crossref_primary_10_1093_jxb_ery194
crossref_primary_10_1093_jxb_erac224
crossref_primary_10_1371_journal_pone_0098287
crossref_primary_10_1111_j_1438_8677_2011_00526_x
crossref_primary_10_1007_s11738_015_1881_0
crossref_primary_10_3934_biophy_2016_3_380
crossref_primary_10_1093_jxb_erx429
crossref_primary_10_3390_horticulturae7100342
crossref_primary_10_1007_s11240_015_0725_3
crossref_primary_10_1111_plb_12337
crossref_primary_10_5511_plantbiotechnology_18_0308a
crossref_primary_10_1007_s10265_015_0764_1
crossref_primary_10_1093_jxb_ert072
crossref_primary_10_2134_agronj2018_12_0795
crossref_primary_10_1007_s10725_015_0028_z
crossref_primary_10_3390_plants13071036
crossref_primary_10_21769_BioProtoc_4778
crossref_primary_10_3389_fpls_2016_01716
crossref_primary_10_1007_s13562_021_00741_6
crossref_primary_10_1016_j_envexpbot_2012_09_006
crossref_primary_10_1016_j_scienta_2018_07_034
crossref_primary_10_1371_journal_pone_0049800
crossref_primary_10_1093_jxb_eraa191
crossref_primary_10_1016_j_febslet_2011_03_055
crossref_primary_10_1007_s11240_018_1476_8
crossref_primary_10_1007_s12892_023_00229_w
crossref_primary_10_1016_j_envexpbot_2016_07_007
crossref_primary_10_1007_s00299_011_1169_9
crossref_primary_10_1016_j_scienta_2019_03_011
crossref_primary_10_1093_treephys_tpp048
crossref_primary_10_1007_s11104_018_3770_y
crossref_primary_10_1111_nph_18501
crossref_primary_10_1093_jxb_erw034
crossref_primary_10_1111_jipb_12238
crossref_primary_10_1071_FP23266
crossref_primary_10_1105_tpc_113_115659
crossref_primary_10_3389_fpls_2022_936747
crossref_primary_10_34016_pjbt_2023_20_02_792
crossref_primary_10_3389_fpls_2016_01272
crossref_primary_10_1071_FP09051
crossref_primary_10_1007_s11738_017_2379_8
crossref_primary_10_1111_pce_13154
crossref_primary_10_3389_fpls_2024_1378738
crossref_primary_10_1093_jxb_ery461
crossref_primary_10_1016_j_scienta_2023_112509
crossref_primary_10_1111_pce_12180
crossref_primary_10_3389_fpls_2014_00605
crossref_primary_10_1111_j_1365_3040_2011_02296_x
crossref_primary_10_3390_agronomy11050848
crossref_primary_10_5338_KJEA_2019_38_1_8
crossref_primary_10_1016_j_jplph_2014_08_016
crossref_primary_10_1016_j_jplph_2016_06_010
crossref_primary_10_1016_j_jplph_2021_153379
crossref_primary_10_1142_S2737599424500099
crossref_primary_10_1111_jac_12122
crossref_primary_10_1111_ppl_12447
crossref_primary_10_1111_ppl_12325
crossref_primary_10_1371_journal_pone_0060183
crossref_primary_10_1071_FP16385
crossref_primary_10_1016_j_envexpbot_2015_12_006
crossref_primary_10_1007_s11738_019_3004_9
crossref_primary_10_1007_s00203_021_02226_5
crossref_primary_10_3389_fpls_2014_00631
crossref_primary_10_1016_j_foreco_2021_119275
crossref_primary_10_1371_journal_pone_0084359
crossref_primary_10_1007_s10725_018_0431_3
crossref_primary_10_3390_f14081651
crossref_primary_10_1007_s12041_023_01429_7
crossref_primary_10_3389_fpls_2018_00256
crossref_primary_10_3390_ijms23105732
crossref_primary_10_3390_ijms231810739
crossref_primary_10_1007_s10722_020_00981_w
Cites_doi 10.1104/pp.122.3.823
10.1111/j.1469-8137.1984.tb04103.x
10.1111/j.1439-037X.1988.tb01160.x
10.1073/pnas.93.19.10510
10.1071/EA04162
10.1093/aob/mcg058
10.1046/j.1365-3040.2000.00606.x
10.1071/AR9880759
10.1007/BF02411458
10.1093/jxb/eri229
10.1016/S0168-9452(00)00404-0
10.1007/s00425-004-1425-0
10.1061/JRCEA4.0001137
10.1146/annurev.arplant.54.031902.134831
10.1139/g91-149
10.1093/jxb/erj124
10.1002/1522-2624(200104)164:2<193::AID-JPLN193>3.0.CO;2-7
10.1007/BF00221141
10.1111/j.1365-3040.2006.01592.x
10.1071/AR99057
10.1046/j.1365-3040.2001.00661.x
10.2134/agronj1986.00021962007800060023x
10.1023/A:1024553303144
10.1071/FP06237
10.1016/j.plantsci.2004.05.034
10.1007/BF00288856
10.1016/j.eja.2004.03.002
10.1093/pcp/pci205
10.1007/s00425-005-0074-2
10.1104/pp.011445
10.1104/pp.109.3.743
10.1111/j.1365-3040.2005.01364.x
10.1006/anbo.1999.0912
10.1093/jxb/erj100
10.1104/pp.124.3.941
10.1104/pp.107.110262
10.1139/g92-096
10.1093/jxb/erm284
10.2135/cropsci1990.0011183X003000060031x
10.1111/j.1439-037X.1997.tb00349.x
10.1071/FP03016
10.1007/s00425-006-0386-x
10.1093/jxb/erg072
10.1007/BF00196667
10.1104/pp.020005
10.1104/pp.113.1.111
10.2136/sssaj2000.641359x
10.1093/jxb/erh003
10.1111/j.1365-3040.2007.01726.x
10.1093/jxb/32.3.479
10.1104/pp.106.082388
ContentType Journal Article
Copyright Society for Experimental Biology 2008
2008 The Author(s). 2008
2008 INIST-CNRS
2008 The Author(s).
Copyright_xml – notice: Society for Experimental Biology 2008
– notice: 2008 The Author(s). 2008
– notice: 2008 INIST-CNRS
– notice: 2008 The Author(s).
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
K9.
P64
RC3
7S9
L.6
7X8
5PM
DOI 10.1093/jxb/ern128
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA

Genetics Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 2706
ExternalDocumentID PMC2486465
1508350321
18495637
20501306
10_1093_jxb_ern128
10.1093/jxb/ern128
24037590
US201300911658
Genre Research Support, Non-U.S. Gov't
Journal Article
Comparative Study
Feature
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
3O-
4.4
482
48X
53G
5GY
5VS
5WA
5WD
6.Y
70D
AABJS
AABMN
AAESY
AAIMJ
AAIYJ
AAJKP
AAJQQ
AAMDB
AAMVS
AANRK
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAWDT
AAXTN
ABBHK
ABEUO
ABIXL
ABJNI
ABLJU
ABNKS
ABPPZ
ABPTD
ABPTK
ABQLI
ABQTQ
ABSAR
ABSMQ
ABWST
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPQN
ACPRK
ACUFI
ACUTJ
ADBBV
ADEIU
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADOCK
ADORX
ADQLU
ADRIX
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKPW
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFXEN
AFYAG
AGINJ
AGKEF
AGKRT
AGQXC
AGSYK
AHMBA
AHXPO
AI.
AIAGR
AIJHB
AIKOY
AJEEA
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APJGH
APWMN
AQDSO
ARIXL
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AXUDD
AYOIW
AZFZN
AZQFJ
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
BYORX
C1A
CAG
CASEJ
CDBKE
COF
CS3
CXTWN
CZ4
D-I
DAKXR
DATOO
DFEDG
DFGAJ
DIK
DILTD
DPORF
DPPUQ
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
ELUNK
ESX
F20
F5P
F9B
FBQ
FEDTE
FHSFR
FLUFQ
FOEOM
FQBLK
G8K
GAUVT
GJXCC
GX1
H5~
HAR
HVGLF
HW0
HZ~
H~9
IOX
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
KAQDR
KBUDW
KC5
KOP
KQ8
KSI
KSN
M-Z
M49
MBTAY
ML0
MVM
N9A
NEJ
NGC
NLBLG
NOMLY
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OHT
OJQWA
OJZSN
OK1
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RIG
RNI
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TLC
TN5
TR2
UHB
UKR
UPT
VH1
W8F
WH7
WOQ
X7H
XOL
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
AAHBH
AARHZ
AAUAY
ABDFA
ABEJV
ABGNP
ABMNT
ABNGD
ABPQP
ABVGC
ABXSQ
ABXVV
ACHIC
ACUKT
ADNBA
ADQBN
AGORE
AGQPQ
AJBYB
AJNCP
AQVQM
ATGXG
H13
IPSME
JXSIZ
AASNB
ACMRT
ACZBC
ADACV
AFSHK
AGMDO
AAYXX
CITATION
ABDPE
ABIME
ABPIB
ABZEO
ACVCV
AEHUL
AHGBF
AJDVS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7QP
8FD
FR3
K9.
P64
RC3
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c540t-cdee2b7a70c459de46847a404b182bd7f79f23e7d535db0039e7c3d7ba33c1d53
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 18:16:09 EDT 2025
Fri Jul 11 12:01:51 EDT 2025
Fri Jul 11 16:05:48 EDT 2025
Mon Jun 30 08:32:51 EDT 2025
Mon Jul 21 05:54:01 EDT 2025
Mon Jul 21 09:11:10 EDT 2025
Thu Apr 24 22:53:54 EDT 2025
Tue Jul 01 03:39:29 EDT 2025
Wed Aug 28 03:26:33 EDT 2024
Sun Aug 24 12:10:37 EDT 2025
Wed Dec 27 19:18:12 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords salinity
sodium
screening
wheat
potassium
Microelectrode ion flux
Root
Tolerance
Salinity
Language English
License CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c540t-cdee2b7a70c459de46847a404b182bd7f79f23e7d535db0039e7c3d7ba33c1d53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
Present address: Department of Agriculture, Fisheries and Forestry, 18 Marcus Clarke Street, Canberra City, Australia Capital Territory 2601, Australia.
Present address: Institut Polytechnique, LaSalle Beauvais, BP 30313, 60026 Beauvais, France
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC2486465
PMID 18495637
PQID 235017316
PQPubID 40603
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2486465
proquest_miscellaneous_69288666
proquest_miscellaneous_47696748
proquest_journals_235017316
pubmed_primary_18495637
pascalfrancis_primary_20501306
crossref_primary_10_1093_jxb_ern128
crossref_citationtrail_10_1093_jxb_ern128
oup_primary_10_1093_jxb_ern128
jstor_primary_24037590
fao_agris_US201300911658
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-01
PublicationDateYYYYMMDD 2008-07-01
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2008
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References (17_31149637) 1994; 87
Walker (53_19177997) 1995; 108
(1_31149635) 1997; 178
(2_31149636) 1988; 160
Maas (30_24320592) 1990; 30
(9_29192004) 2007; 34
Shabala (43_19710824) 2005; 222
Shabala (46_18817797) 2005; 221
CAKIRLAR (3_21301411) 1981; 32
Genc (22_29521247) 2007; 30
Walker (52_14653018) 1996; 93
(5_30235037) 2007; 58
MAATHUIS (32_20066591) 1999; 84
James (26_22940108) 2006; 29
Rascio (40_19209205) 2001; 160
(45_22320331) 2006; 141
Newman (38_11431657) 2001; 24
(51_17822310) 2003; 54
Shabala (48_17054590) 2002; 129
(18_31149638) 2005; 22
(29_28612572) 1984; 97
Cuin (14_23601494) 2007; 225
(13_21065361) 2005; 46
(21_19326646) 2005; 56
(36_26201344) 2003; 253
Maathuis (33_16111984) 1995; 197
(11_26201332) 2005; 45
(19_18008456) 2004; 55
Royo (42_19887503) 2000; 64
(28_31149640) 2001; 164
Zhu (55_10552077) 2000; 124
Cuin (12_17483058) 2003; 54
(37_21677035) 2006; 57
Davenport (15_6506484) 2000; 122
(31_26201342) 1977; 103
(41_25948432) 1988; 39
(44_28918061) 2000; 23
(10_21686618) 2006; 57
(50_17546109) 2003; 91
(39_28285617) 1991; 34
(24_23879965) 1990; 180
(47_25793622) 2003; 30
(35_28260491) 2000; 51
(7_29780701) 2007; 145
Francois (20_25050735) 1986; 78
Shabala (49_19178789) 1997; 113
(27_31149639) 1982; 52
(54_28627890) 2004; 167
(4_17502473) 2003; 131
(23_25750191) 1987; 74
(6_29308559) 2005; 28
(16_28260489) 1992; 35
References_xml – volume: 122
  start-page: 823
  issn: 0032-0889
  issue: 3
  year: 2000
  ident: 15_6506484
  publication-title: Plant Physiology
  doi: 10.1104/pp.122.3.823
– volume: 97
  start-page: 1
  issn: 0028-646X
  year: 1984
  ident: 29_28612572
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.1984.tb04103.x
– volume: 160
  start-page: 14
  year: 1988
  ident: 2_31149636
  publication-title: JOURNAL OF AGRONOMY AND CROP SCIENCEZEITSCHRIFT FUR ACKER UND PFLANZENBAU
  doi: 10.1111/j.1439-037X.1988.tb01160.x
– volume: 93
  start-page: 10510
  issn: 0027-8424
  issue: 19
  year: 1996
  ident: 52_14653018
  publication-title: PNAS
  doi: 10.1073/pnas.93.19.10510
– volume: 45
  start-page: 1425
  year: 2005
  ident: 11_26201332
  publication-title: AUSTRALIAN JOURNAL OF EXPERIMENTAL AGRICULTURE
  doi: 10.1071/EA04162
– volume: 91
  start-page: 503
  issn: 0305-7364
  issue: 5
  year: 2003
  ident: 50_17546109
  publication-title: Annals of Botany
  doi: 10.1093/aob/mcg058
– volume: 23
  start-page: 825
  issn: 0140-7791
  year: 2000
  ident: 44_28918061
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1046/j.1365-3040.2000.00606.x
– volume: 39
  start-page: 759
  issn: 0004-9409
  year: 1988
  ident: 41_25948432
  doi: 10.1071/AR9880759
– volume: 180
  start-page: 590
  issn: 0032-0935
  year: 1990
  ident: 24_23879965
  publication-title: Planta
  doi: 10.1007/BF02411458
– volume: 56
  start-page: 2365
  issn: 0022-0957
  issue: 419
  year: 2005
  ident: 21_19326646
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/eri229
– volume: 160
  start-page: 441
  issn: 0168-9452
  issue: 3
  year: 2001
  ident: 40_19209205
  doi: 10.1016/S0168-9452(00)00404-0
– volume: 221
  start-page: 56
  issn: 0032-0935
  issue: 1
  year: 2005
  ident: 46_18817797
  publication-title: Planta
  doi: 10.1007/s00425-004-1425-0
– volume: 103
  start-page: 115
  year: 1977
  ident: 31_26201342
  publication-title: JOURNAL OF THE IRRIGATION AND DRAINAGE DIVISION OF THE AMERICAN SOCIETY OF CIVIL ENGINEERING
  doi: 10.1061/JRCEA4.0001137
– volume: 54
  start-page: 575
  issn: 0066-4294
  issue: 1
  year: 2003
  ident: 51_17822310
  publication-title: Annual review of plant biology
  doi: 10.1146/annurev.arplant.54.031902.134831
– volume: 34
  start-page: 961
  issn: 0831-2796
  year: 1991
  ident: 39_28285617
  publication-title: Genome (Ottawa. Print)
  doi: 10.1139/g91-149
– volume: 57
  start-page: 1059
  issn: 0022-0957
  issue: 5
  year: 2006
  ident: 10_21686618
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erj124
– volume: 164
  start-page: 193
  year: 2001
  ident: 28_31149640
  publication-title: JOURNAL OF PLANT NUTRITION AND SOIL SCIENCEZEITSCHRIFT FUR PFLANZENERNAHRUNG UND BODENKUNDE
  doi: 10.1002/1522-2624(200104)164:2<193::AID-JPLN193>3.0.CO;2-7
– volume: 87
  start-page: 872
  issn: 0040-5752
  year: 1994
  ident: 17_31149637
  publication-title: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
  doi: 10.1007/BF00221141
– volume: 29
  start-page: 2185
  issn: 0140-7791
  issue: 12
  year: 2006
  ident: 26_22940108
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2006.01592.x
– volume: 52
  start-page: 351
  year: 1982
  ident: 27_31149639
  publication-title: INDIAN JOURNAL OF AGRICULTURAL SCIENCES
– volume: 51
  start-page: 69
  issn: 0004-9409
  year: 2000
  ident: 35_28260491
  doi: 10.1071/AR99057
– volume: 24
  start-page: 1
  issn: 0140-7791
  issue: 1
  year: 2001
  ident: 38_11431657
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1046/j.1365-3040.2001.00661.x
– volume: 78
  start-page: 1053
  issn: 0002-1962
  issue: 6
  year: 1986
  ident: 20_25050735
  publication-title: Agronomy Journal
  doi: 10.2134/agronj1986.00021962007800060023x
– volume: 253
  start-page: 201
  issn: 0032-079X
  year: 2003
  ident: 36_26201344
  publication-title: Plant and Soil
  doi: 10.1023/A:1024553303144
– volume: 34
  start-page: 150
  year: 2007
  ident: 9_29192004
  publication-title: FUNCTIONAL PLANT BIOLOGY
  doi: 10.1071/FP06237
– volume: 167
  start-page: 849
  issn: 0168-9452
  year: 2004
  ident: 54_28627890
  doi: 10.1016/j.plantsci.2004.05.034
– volume: 74
  start-page: 584
  issn: 0040-5752
  year: 1987
  ident: 23_25750191
  publication-title: TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
  doi: 10.1007/BF00288856
– volume: 22
  start-page: 243
  year: 2005
  ident: 18_31149638
  publication-title: EUROPEAN JOURNAL OF AGRONOMY
  doi: 10.1016/j.eja.2004.03.002
– volume: 46
  start-page: 1924
  issn: 0032-0781
  issue: 12
  year: 2005
  ident: 13_21065361
  publication-title: Plant and Cell Physiology
  doi: 10.1093/pcp/pci205
– volume: 222
  start-page: 1041
  issn: 0032-0935
  issue: 6
  year: 2005
  ident: 43_19710824
  publication-title: Planta
  doi: 10.1007/s00425-005-0074-2
– volume: 131
  start-page: 676
  issn: 0032-0889
  issue: 2
  year: 2003
  ident: 4_17502473
  publication-title: Plant Physiology
  doi: 10.1104/pp.011445
– volume: 108
  start-page: 743
  issn: 0032-0889
  issue: 2
  year: 1995
  ident: 53_19177997
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.3.743
– volume: 28
  start-page: 1230
  issn: 0140-7791
  year: 2005
  ident: 6_29308559
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2005.01364.x
– volume: 84
  start-page: 123
  issn: 0305-7364
  issue: 2
  year: 1999
  ident: 32_20066591
  publication-title: Annals of Botany
  doi: 10.1006/anbo.1999.0912
– volume: 57
  start-page: 1025
  issn: 0022-0957
  issue: 5
  year: 2006
  ident: 37_21677035
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erj100
– volume: 124
  start-page: 941
  issn: 0032-0889
  issue: 3
  year: 2000
  ident: 55_10552077
  publication-title: Plant Physiology
  doi: 10.1104/pp.124.3.941
– volume: 145
  start-page: 1714
  issn: 0032-0889
  issue: 4
  year: 2007
  ident: 7_29780701
  publication-title: Plant Physiology
  doi: 10.1104/pp.107.110262
– volume: 35
  start-page: 639
  issn: 0831-2796
  year: 1992
  ident: 16_28260489
  publication-title: Genome (Ottawa. Print)
  doi: 10.1139/g92-096
– volume: 58
  start-page: 4245
  issn: 0022-0957
  issue: 15-16
  year: 2007
  ident: 5_30235037
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erm284
– volume: 30
  start-page: 1309
  issn: 0011-183X
  issue: 6
  year: 1990
  ident: 30_24320592
  publication-title: Crop Science
  doi: 10.2135/cropsci1990.0011183X003000060031x
– volume: 178
  start-page: 39
  year: 1997
  ident: 1_31149635
  publication-title: JOURNAL OF AGRONOMY AND CROP SCIENCEZEITSCHRIFT FUR ACKER UND PFLANZENBAU
  doi: 10.1111/j.1439-037X.1997.tb00349.x
– volume: 30
  start-page: 507
  year: 2003
  ident: 47_25793622
  publication-title: FUNCTIONAL PLANT BIOLOGY
  doi: 10.1071/FP03016
– volume: 225
  start-page: 753
  issn: 0032-0935
  issue: 3
  year: 2007
  ident: 14_23601494
  publication-title: Planta
  doi: 10.1007/s00425-006-0386-x
– volume: 54
  start-page: 657
  issn: 0022-0957
  issue: 383
  year: 2003
  ident: 12_17483058
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erg072
– volume: 197
  start-page: 456
  issn: 0032-0935
  issue: 3
  year: 1995
  ident: 33_16111984
  publication-title: Planta
  doi: 10.1007/BF00196667
– volume: 129
  start-page: 290
  issn: 0032-0889
  issue: 1
  year: 2002
  ident: 48_17054590
  publication-title: Plant Physiology
  doi: 10.1104/pp.020005
– volume: 113
  start-page: 111
  issn: 0032-0889
  issue: 1
  year: 1997
  ident: 49_19178789
  publication-title: Plant Physiology
  doi: 10.1104/pp.113.1.111
– volume: 64
  start-page: 359
  issn: 0361-5995
  issue: 1
  year: 2000
  ident: 42_19887503
  publication-title: Soil Science Society of America Journal
  doi: 10.2136/sssaj2000.641359x
– volume: 55
  start-page: 307
  issn: 0022-0957
  issue: 396
  year: 2004
  ident: 19_18008456
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erh003
– volume: 30
  start-page: 1486
  issn: 0140-7791
  issue: 11
  year: 2007
  ident: 22_29521247
  publication-title: Plant, Cell, and Environment (Print)
  doi: 10.1111/j.1365-3040.2007.01726.x
– volume: 32
  start-page: 479
  issn: 0022-0957
  issue: 3
  year: 1981
  ident: 3_21301411
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/32.3.479
– volume: 141
  start-page: 1653
  issn: 0032-0889
  issue: 4
  year: 2006
  ident: 45_22320331
  publication-title: Plant Physiology
  doi: 10.1104/pp.106.082388
SSID ssj0005055
Score 2.40553
Snippet Most work on wheat breeding for salt tolerance has focused mainly on excluding Na⁺ from uptake and transport to the shoot. However, some recent findings have...
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na + from uptake and transport to the shoot. However, some recent findings have...
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na+ from uptake and transport to the shoot. However, some recent findings have...
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na(+) from uptake and transport to the shoot. However, some recent findings have...
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na[sup]+ from uptake and transport to the shoot. However, some recent findings...
Most work on wheat breeding for salt tolerance has focused mainly on excluding Na + from uptake and transport to the shoot. However, some recent findings have...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2697
SubjectTerms Adaptation to environment and cultivation conditions
Agronomy. Soil science and plant productions
Barley
Biological and medical sciences
Biomass
Cell Membrane - physiology
Depolarization
durum wheat
Ears
Flag leaf
Fluctuations
Fundamental and applied biological sciences. Psychology
Genetics and breeding of economic plants
genotype
Genotypes
Greenhouses
homeostasis
ions
leaves
Phenotype
Physiology
Plant breeding
plant response
Plant roots
Plant Roots - genetics
Plant Roots - physiology
Plants
Potassium - metabolism
Research Papers
roots
Salinity
Salt tolerance
salts
Seedlings
shoots
Sodium chloride
Sodium Chloride - metabolism
Triticum - genetics
Triticum - physiology
Varietal selection. Specialized plant breeding, plant breeding aims
Wheat
Title root's ability to retain K⁺ correlates with salt tolerance in wheat
URI https://www.jstor.org/stable/24037590
https://www.ncbi.nlm.nih.gov/pubmed/18495637
https://www.proquest.com/docview/235017316
https://www.proquest.com/docview/47696748
https://www.proquest.com/docview/69288666
https://pubmed.ncbi.nlm.nih.gov/PMC2486465
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbY4AEJIW7bwqBYAoRQlS5NHDt57MbQoIKXdtLeIjtx6FBIpzYTiF_POXaSNluHBi9R5VvbfMfHn-1zIeSNBI4BrIC5ItPMZSz2XRlHzA2Y9pTKZJprdE7-8pWfnLLPZ-HZ6lTJeJdUapD-3uhX8j-oQhngil6y_4BsOygUwGfAF56AMDxvhfGoD7y3MkfuNty2oZJoQXhe9sdv_cN-isk3CuSTtTG6LCpoU-iFcRWAZj9RG99AUTvh_9W8ahSHMam2wQemg_5o0O7pdVUZuZislx7NZPFDlhnmxjOItjWTmVSykLZH5_wham1V1_0BgKjZZVNbNcq45_qs1u-1nq0jf9fy5K1rTR6LtRXYFyYIwXXtbiNfff-lEO1FOazdyjtBtK8sbq3Job1sDxLondi-W-SuD3sLTHvx4dN4ZRfkhWETYh7_VhPTNg4OoO-B7dthMVu5nDfmrI2f5IMLuYRJltvsKJu2L1etcNdozfQReViDTUdWuB6TO7p8Qu4dGqyfkuMRRQl7t6S1fNFqTq180XGfrqSLonRRlC7aSheFRka6npHTj8fToxO3TrzhpkDgKzfNtPaVkMJLWRjDJObAYSTzmILdqMpELuLcD7TIwiDMcF2ItUiDTCgZBOkQSnfIdjkv9R6hLNIenrPnGXBfXF2DSMEugfFMhsKLcoe8b15kktZR6TE5SpFcB8whr9u2FzYWy8ZWe4BHIr_BIpmcTny8mgdSPASq7ZAdA1LbG4NRijD2HNID1P46aK8D6GoEkBf4Au6Q_QbhpNYQy8THW3tMDeeQV20tqG-8k5Olnl8uEyZ4jPl-bm7BYz-KOIcxdq28rH5mhKcbgXCI6EhS2wBDx3dryvOZCSHvs4gzHj6_1RvdJ_dXE_8F2a4Wl_olUPFK9czU-QNcZ9yc
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+root%27s+ability+to+retain+K%2B+correlates+with+salt+tolerance+in+wheat&rft.jtitle=Journal+of+experimental+botany&rft.au=Cuin%2C+T.+A.&rft.au=Betts%2C+S.+A.&rft.au=Chalmandrier%2C+R.&rft.au=Shabala%2C+S.&rft.date=2008-07-01&rft.issn=0022-0957&rft.eissn=1460-2431&rft.volume=59&rft.issue=10&rft.spage=2697&rft.epage=2706&rft_id=info:doi/10.1093%2Fjxb%2Fern128&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jxb_ern128
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon