The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation

Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 27; no. 2; pp. 343 - 358.e5
Main Authors Li, Dongfang, Zhao, Yan G., Li, Di, Zhao, Hongyu, Huang, Jie, Miao, Guangyan, Feng, Du, Liu, Pingsheng, Li, Dong, Zhang, Hong
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 09.04.2019
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. [Display omitted] •The ER protein DFCP1 redistributes from the ER to LDs upon induction of LD formation•Fusion of DFCP1-labeled nascent structures contributes to initial LD growth•BSCL2 regulates the dynamics and maturation of DFCP1-labeled structures•DFCP1 interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation Li et al. used super-resolution GI-SIM imaging to reveal that during LD biogenesis, the ER-localized protein DFCP1 redistributes to nascent LD structures, which further fuse to form expanding LDs. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation.
AbstractList Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion.
Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. [Display omitted] •The ER protein DFCP1 redistributes from the ER to LDs upon induction of LD formation•Fusion of DFCP1-labeled nascent structures contributes to initial LD growth•BSCL2 regulates the dynamics and maturation of DFCP1-labeled structures•DFCP1 interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation Li et al. used super-resolution GI-SIM imaging to reveal that during LD biogenesis, the ER-localized protein DFCP1 redistributes to nascent LD structures, which further fuse to form expanding LDs. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation.
Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion.Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion.
Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. : Li et al. used super-resolution GI-SIM imaging to reveal that during LD biogenesis, the ER-localized protein DFCP1 redistributes to nascent LD structures, which further fuse to form expanding LDs. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Keywords: DFCP1, BSCL2, Rab18, membrane contact, lipid droplets
Author Zhao, Yan G.
Feng, Du
Li, Dongfang
Miao, Guangyan
Li, Dong
Zhao, Hongyu
Zhang, Hong
Huang, Jie
Li, Di
Liu, Pingsheng
Author_xml – sequence: 1
  givenname: Dongfang
  surname: Li
  fullname: Li, Dongfang
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 2
  givenname: Yan G.
  surname: Zhao
  fullname: Zhao, Yan G.
  organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
– sequence: 3
  givenname: Di
  surname: Li
  fullname: Li, Di
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 4
  givenname: Hongyu
  surname: Zhao
  fullname: Zhao, Hongyu
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 5
  givenname: Jie
  surname: Huang
  fullname: Huang, Jie
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 6
  givenname: Guangyan
  surname: Miao
  fullname: Miao, Guangyan
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 7
  givenname: Du
  surname: Feng
  fullname: Feng, Du
  organization: School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
– sequence: 8
  givenname: Pingsheng
  surname: Liu
  fullname: Liu, Pingsheng
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 9
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  email: lidong@ibp.ac.cn
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
– sequence: 10
  givenname: Hong
  surname: Zhang
  fullname: Zhang, Hong
  email: hongzhang@ibp.ac.cn
  organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30970241$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9v1DAQxS1UREvpN0AoRy4J4z-JEw5IaNuFikVUqJwtx56AV9k42N5K8OnxblqEOMBcZmS99yz93lNyMvkJCXlOoaJAm1fbyuAYcK4Y0K4CXgGrH5EzxigtKRPy5I_7lFzEuIU8DVDaiSfklEMngQl6Rj7cfsPi6nO58UaP7ifa4ib4hG4qLterG1p89HY_6oTxKHKzs8Vl8POIqVj5KWmTirUPO52cn56Rx4MeI17c73PyZX11u3pfbj69u1693ZSmFpBKY7ATLRMc2n5oTAP9YFhrbc173g6sNk2jzdAPADUzaAWXA2W9qW1vaYOU8XNyveRar7dqDm6nww_ltVPHBx--Kh2SMyMqgdIybiTtZSbRsZZZwLwbqlspgOasl0vWHPz3Pcakdi5mtqOe0O-jYgxkxyWVB-mLe-m-36H9_fEDzCx4vQhM8DEGHJRx6UgmBe1GRUEdylNbtZSnDuUp4CqXl83iL_ND_n9sbxYbZuB3DoOKxuGUubmAJmUi7t8BvwBQ3rIl
CitedBy_id crossref_primary_10_1016_j_omtn_2024_102335
crossref_primary_10_1080_15548627_2020_1732713
crossref_primary_10_1146_annurev_cellbio_012624_031419
crossref_primary_10_1021_acs_analchem_2c00964
crossref_primary_10_1016_j_antiviral_2022_105398
crossref_primary_10_1016_j_isci_2020_101252
crossref_primary_10_3389_fcell_2021_650186
crossref_primary_10_3389_fcell_2023_1112954
crossref_primary_10_1016_j_mcpro_2021_100051
crossref_primary_10_1177_2515256420908142
crossref_primary_10_3390_cancers14184526
crossref_primary_10_1016_j_theriogenology_2024_03_002
crossref_primary_10_1016_j_dyepig_2020_108884
crossref_primary_10_1016_j_antiviral_2023_105590
crossref_primary_10_3390_cells10050970
crossref_primary_10_1016_j_celrep_2021_110049
crossref_primary_10_1039_D2TB01536F
crossref_primary_10_1002_1873_3468_14899
crossref_primary_10_1016_j_bbalip_2021_158923
crossref_primary_10_1038_s42003_025_07717_5
crossref_primary_10_1016_j_semcdb_2020_02_013
crossref_primary_10_1016_j_jbc_2023_105295
crossref_primary_10_1016_j_neuron_2022_04_020
crossref_primary_10_1016_j_bbrc_2025_151673
crossref_primary_10_1016_j_devcel_2023_05_009
crossref_primary_10_1038_s41586_022_04835_6
crossref_primary_10_1038_s44319_024_00266_8
crossref_primary_10_1080_13813455_2024_2388779
crossref_primary_10_1016_j_biopha_2024_116812
crossref_primary_10_1134_S0022093020050026
crossref_primary_10_1177_2515256420934671
crossref_primary_10_1038_s41467_024_53750_z
crossref_primary_10_1002_cbin_11199
crossref_primary_10_3389_fnmol_2020_00042
crossref_primary_10_1002_1873_3468_14581
crossref_primary_10_3389_fcell_2021_726261
crossref_primary_10_3390_ijms22052776
crossref_primary_10_3389_fnins_2019_01051
crossref_primary_10_1016_j_bbamcr_2019_118603
crossref_primary_10_1021_acsnano_4c06138
crossref_primary_10_1177_2515256420945820
crossref_primary_10_3389_fnins_2022_900338
crossref_primary_10_1002_smtd_202201712
crossref_primary_10_3390_ijms24032096
crossref_primary_10_1016_j_jmb_2019_12_031
crossref_primary_10_1016_j_tcb_2021_01_004
crossref_primary_10_1038_s41467_020_18153_w
crossref_primary_10_1016_j_plipres_2023_101233
crossref_primary_10_1083_jcb_201809020
crossref_primary_10_3390_ijms242417177
crossref_primary_10_1080_14789450_2021_1995356
crossref_primary_10_1007_s00216_023_05010_0
crossref_primary_10_1172_JCI162836
crossref_primary_10_1016_j_jlr_2024_100700
crossref_primary_10_1038_s41420_023_01493_z
crossref_primary_10_1177_25152564221135748
crossref_primary_10_1016_j_jbc_2022_102830
crossref_primary_10_1016_j_saa_2022_120946
crossref_primary_10_1177_25152564241304196
crossref_primary_10_1177_2515256420912090
crossref_primary_10_1142_S1793545825300010
crossref_primary_10_1016_j_ceb_2025_102466
crossref_primary_10_1016_j_heliyon_2023_e17493
crossref_primary_10_3390_cells11071067
crossref_primary_10_1016_j_yexcr_2023_113756
crossref_primary_10_1002_bies_202400038
crossref_primary_10_1091_mbc_E20_09_0590
crossref_primary_10_1142_S1793545824300064
crossref_primary_10_1016_j_addr_2023_114977
crossref_primary_10_1016_j_omtn_2022_04_003
crossref_primary_10_1128_jvi_00695_24
crossref_primary_10_3389_fcell_2024_1483902
crossref_primary_10_1016_j_plipres_2021_101141
crossref_primary_10_1038_s41574_023_00845_0
crossref_primary_10_1093_plcell_koac239
crossref_primary_10_1091_mbc_E22_07_0279
crossref_primary_10_1146_annurev_cellbio_031320_101827
crossref_primary_10_2174_0929867329666220727113129
crossref_primary_10_1093_plphys_kiad525
Cites_doi 10.4161/auto.6.6.12709
10.1083/jcb.201201139
10.1016/j.tcb.2016.02.007
10.7554/eLife.16582
10.1038/ncb3579
10.15252/embj.201695170
10.1091/mbc.E14-08-1303
10.1083/jcb.201104142
10.1083/jcb.200803137
10.1016/j.devcel.2013.01.013
10.1038/nrm.2015.8
10.1016/j.cmet.2011.07.013
10.1016/j.bbalip.2017.06.016
10.1016/j.bbalip.2015.08.003
10.1083/jcb.201505067
10.1371/journal.pgen.1002201
10.1242/jcs.02401
10.1016/j.devcel.2017.11.020
10.1016/j.devcel.2017.05.012
10.1126/science.aaf3928
10.7554/eLife.01607
10.1016/j.ceb.2018.04.003
10.1083/jcb.201305142
10.1083/jcb.201704184
10.1016/j.cub.2018.02.020
10.1038/nmeth.3179
10.1016/j.molcel.2017.08.005
10.1146/annurev-cellbio-100616-060608
10.1073/pnas.1307685110
10.1016/j.ceb.2012.05.012
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2019 The Author(s)
– notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1016/j.celrep.2019.03.025
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
PubMed
MEDLINE - Academic
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 358.e5
ExternalDocumentID oai_doaj_org_article_4e7d23c71b72479282d0e79261a87401
30970241
10_1016_j_celrep_2019_03_025
S2211124719303419
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
NPM
7X8
ID FETCH-LOGICAL-c540t-cce94824308bf6c60bfc28dd53b38f25c66acfbf0052ced437f12bc5dbd16e123
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:30:46 EDT 2025
Fri Jul 11 02:53:11 EDT 2025
Thu Jan 02 23:00:17 EST 2025
Thu Apr 24 23:12:46 EDT 2025
Tue Jul 01 02:59:01 EDT 2025
Wed May 17 00:03:08 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords BSCL2
membrane contact
Rab18
lipid droplets
DFCP1
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-cce94824308bf6c60bfc28dd53b38f25c66acfbf0052ced437f12bc5dbd16e123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124719303419
PMID 30970241
PQID 2207937171
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_4e7d23c71b72479282d0e79261a87401
proquest_miscellaneous_2207937171
pubmed_primary_30970241
crossref_citationtrail_10_1016_j_celrep_2019_03_025
crossref_primary_10_1016_j_celrep_2019_03_025
elsevier_sciencedirect_doi_10_1016_j_celrep_2019_03_025
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-09
PublicationDateYYYYMMDD 2019-04-09
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Yang, Galea, Sytnyk, Crossley (bib28) 2012; 24
Salo, Belevich, Li, Karhinen, Vihinen, Vigouroux, Magré, Thiele, Hölttä-Vuori, Jokitalo, Ikonen (bib19) 2016; 35
Cartwright, Binns, Hilton, Han, Gao, Goodman (bib4) 2015; 26
Lam, Martell, Kamer, Deerinck, Ellisman, Mootha, Ting (bib14) 2015; 12
Nixon-Abell, Obara, Weigel, Li, Legant, Xu, Pasolli, Harvey, Hess, Betzig (bib15) 2016; 354
Wilfling, Wang, Haas, Krahmer, Gould, Uchida, Cheng, Graham, Christiano, Fröhlich (bib23) 2013; 24
Xu, Li, Wu, Li, Zhao, Yu, Huang, Ferguson, Parton, Yang, Li (bib27) 2018; 217
Krahmer, Guo, Wilfling, Hilger, Lingrell, Heger, Newman, Schmidt-Supprian, Vance, Mann (bib13) 2011; 14
Joshi, Zhang, Prinz (bib10) 2017; 19
Bersuker, Peterson, To, Sahl, Savikhin, Grossman, Nomura, Olzmann (bib3) 2018; 44
Ozeki, Cheng, Tauchi-Sato, Hatano, Taniguchi, Fujimoto (bib16) 2005; 118
Walther, Chung, Farese (bib21) 2017; 33
Ben M’barek, Ajjaji, Chorlay, Vanni, Forêt, Thiam (bib2) 2017; 41
Wang, Becuwe, Housden, Chitraju, Porras, Graham, Liu, Thiam, Savage, Agarwal (bib22) 2016; 5
Axe, Walker, Manifava, Chandra, Roderick, Habermann, Griffiths, Ktistakis (bib1) 2008; 182
Fei, Shui, Zhang, Krahmer, Ferguson, Kapterian, Lin, Dawes, Brown, Li (bib7) 2011; 7
Phillips, Voeltz (bib17) 2016; 17
Xu, Zhang, Cole, McKinney, Guo, Haas, Bobba, Farese, Mak (bib26) 2012; 198
Zhao, Zhang (bib29) 2018; 53
Itakura, Mizushima (bib9) 2010; 6
Kory, Farese, Walther (bib12) 2016; 26
Qi, Sun, Yang (bib18) 2017; 1862
Wolinski, Hofbauer, Hellauer, Cristobal-Sarramian, Kolb, Radulovic, Knittelfelder, Rechberger, Kohlwein (bib25) 2015; 1851
Thiam, Antonny, Wang, Delacotte, Wilfling, Walther, Beck, Rothman, Pincet (bib20) 2013; 110
Gong, Sun, Wu, Xu, Schieber, Xu, Shui, Yang, Parton, Li (bib8) 2011; 195
Kassan, Herms, Fernández-Vidal, Bosch, Schieber, Reddy, Fajardo, Gelabert-Baldrich, Tebar, Enrich (bib11) 2013; 203
Wilfling, Thiam, Olarte, Wang, Beck, Gould, Allgeyer, Pincet, Bewersdorf, Farese, Walther (bib24) 2014; 3
Choudhary, Ojha, Golden, Prinz (bib5) 2015; 211
Choudhary, Golani, Joshi, Cottier, Schneiter, Prinz, Kozlov (bib6) 2018; 28
Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (bib30) 2017; 67
Joshi (10.1016/j.celrep.2019.03.025_bib10) 2017; 19
Kassan (10.1016/j.celrep.2019.03.025_bib11) 2013; 203
Xu (10.1016/j.celrep.2019.03.025_bib26) 2012; 198
Cartwright (10.1016/j.celrep.2019.03.025_bib4) 2015; 26
Wilfling (10.1016/j.celrep.2019.03.025_bib24) 2014; 3
Zhao (10.1016/j.celrep.2019.03.025_bib30) 2017; 67
Itakura (10.1016/j.celrep.2019.03.025_bib9) 2010; 6
Thiam (10.1016/j.celrep.2019.03.025_bib20) 2013; 110
Wolinski (10.1016/j.celrep.2019.03.025_bib25) 2015; 1851
Yang (10.1016/j.celrep.2019.03.025_bib28) 2012; 24
Ben M’barek (10.1016/j.celrep.2019.03.025_bib2) 2017; 41
Fei (10.1016/j.celrep.2019.03.025_bib7) 2011; 7
Wilfling (10.1016/j.celrep.2019.03.025_bib23) 2013; 24
Bersuker (10.1016/j.celrep.2019.03.025_bib3) 2018; 44
Gong (10.1016/j.celrep.2019.03.025_bib8) 2011; 195
Kory (10.1016/j.celrep.2019.03.025_bib12) 2016; 26
Krahmer (10.1016/j.celrep.2019.03.025_bib13) 2011; 14
Zhao (10.1016/j.celrep.2019.03.025_bib29) 2018; 53
Phillips (10.1016/j.celrep.2019.03.025_bib17) 2016; 17
Wang (10.1016/j.celrep.2019.03.025_bib22) 2016; 5
Nixon-Abell (10.1016/j.celrep.2019.03.025_bib15) 2016; 354
Qi (10.1016/j.celrep.2019.03.025_bib18) 2017; 1862
Walther (10.1016/j.celrep.2019.03.025_bib21) 2017; 33
Choudhary (10.1016/j.celrep.2019.03.025_bib5) 2015; 211
Xu (10.1016/j.celrep.2019.03.025_bib27) 2018; 217
Salo (10.1016/j.celrep.2019.03.025_bib19) 2016; 35
Lam (10.1016/j.celrep.2019.03.025_bib14) 2015; 12
Choudhary (10.1016/j.celrep.2019.03.025_bib6) 2018; 28
Ozeki (10.1016/j.celrep.2019.03.025_bib16) 2005; 118
Axe (10.1016/j.celrep.2019.03.025_bib1) 2008; 182
References_xml – volume: 354
  start-page: aaf3928
  year: 2016
  ident: bib15
  article-title: Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER
  publication-title: Science
– volume: 217
  start-page: 975
  year: 2018
  end-page: 995
  ident: bib27
  article-title: Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions
  publication-title: J. Cell Biol.
– volume: 211
  start-page: 261
  year: 2015
  end-page: 271
  ident: bib5
  article-title: A conserved family of proteins facilitates nascent lipid droplet budding from the ER
  publication-title: J. Cell Biol.
– volume: 198
  start-page: 895
  year: 2012
  end-page: 911
  ident: bib26
  article-title: The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface
  publication-title: J. Cell Biol.
– volume: 24
  start-page: 384
  year: 2013
  end-page: 399
  ident: bib23
  article-title: Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
  publication-title: Dev. Cell
– volume: 14
  start-page: 504
  year: 2011
  end-page: 515
  ident: bib13
  article-title: Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
  publication-title: Cell Metab.
– volume: 28
  start-page: 915
  year: 2018
  end-page: 926.e9
  ident: bib6
  article-title: Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature
  publication-title: Curr. Biol.
– volume: 33
  start-page: 491
  year: 2017
  end-page: 510
  ident: bib21
  article-title: Lipid droplet biogenesis
  publication-title: Annu. Rev. Cell Dev. Biol.
– volume: 41
  start-page: 591
  year: 2017
  end-page: 604.e7
  ident: bib2
  article-title: ER membrane phospholipids and surface tension control cellular lipid droplet formation
  publication-title: Dev. Cell
– volume: 5
  start-page: e16582
  year: 2016
  ident: bib22
  article-title: Seipin is required for converting nascent to mature lipid droplets
  publication-title: eLife
– volume: 6
  start-page: 764
  year: 2010
  end-page: 776
  ident: bib9
  article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
  publication-title: Autophagy
– volume: 1862
  start-page: 1273
  year: 2017
  end-page: 1283
  ident: bib18
  article-title: Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
– volume: 26
  start-page: 726
  year: 2015
  end-page: 739
  ident: bib4
  article-title: Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology
  publication-title: Mol. Biol. Cell
– volume: 110
  start-page: 13244
  year: 2013
  end-page: 13249
  ident: bib20
  article-title: COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 195
  start-page: 953
  year: 2011
  end-page: 963
  ident: bib8
  article-title: Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
  publication-title: J. Cell Biol.
– volume: 26
  start-page: 535
  year: 2016
  end-page: 546
  ident: bib12
  article-title: Targeting fat: mechanisms of protein localization to lipid droplets
  publication-title: Trends Cell Biol.
– volume: 7
  start-page: e1002201
  year: 2011
  ident: bib7
  article-title: A role for phosphatidic acid in the formation of “supersized” lipid droplets
  publication-title: PLoS Genet.
– volume: 17
  start-page: 69
  year: 2016
  end-page: 82
  ident: bib17
  article-title: Structure and function of ER membrane contact sites with other organelles
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 44
  start-page: 97
  year: 2018
  end-page: 112.e7
  ident: bib3
  article-title: A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes
  publication-title: Dev. Cell
– volume: 3
  start-page: e01607
  year: 2014
  ident: bib24
  article-title: Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
  publication-title: eLife
– volume: 12
  start-page: 51
  year: 2015
  end-page: 54
  ident: bib14
  article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling
  publication-title: Nat. Methods
– volume: 118
  start-page: 2601
  year: 2005
  end-page: 2611
  ident: bib16
  article-title: Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane
  publication-title: J. Cell Sci.
– volume: 24
  start-page: 509
  year: 2012
  end-page: 516
  ident: bib28
  article-title: Controlling the size of lipid droplets: lipid and protein factors
  publication-title: Curr. Opin. Cell Biol.
– volume: 19
  start-page: 876
  year: 2017
  end-page: 882
  ident: bib10
  article-title: Organelle biogenesis in the endoplasmic reticulum
  publication-title: Nat. Cell Biol.
– volume: 1851
  start-page: 1450
  year: 2015
  end-page: 1464
  ident: bib25
  article-title: Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast
  publication-title: Biochim. Biophys. Acta
– volume: 53
  start-page: 29
  year: 2018
  end-page: 36
  ident: bib29
  article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network
  publication-title: Curr. Opin. Cell Biol.
– volume: 35
  start-page: 2699
  year: 2016
  end-page: 2716
  ident: bib19
  article-title: Seipin regulates ER-lipid droplet contacts and cargo delivery
  publication-title: EMBO J.
– volume: 182
  start-page: 685
  year: 2008
  end-page: 701
  ident: bib1
  article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
  publication-title: J. Cell Biol.
– volume: 67
  start-page: 974
  year: 2017
  end-page: 989.e6
  ident: bib30
  article-title: The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation
  publication-title: Mol. Cell
– volume: 203
  start-page: 985
  year: 2013
  end-page: 1001
  ident: bib11
  article-title: Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
  publication-title: J. Cell Biol.
– volume: 6
  start-page: 764
  year: 2010
  ident: 10.1016/j.celrep.2019.03.025_bib9
  article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins
  publication-title: Autophagy
  doi: 10.4161/auto.6.6.12709
– volume: 198
  start-page: 895
  year: 2012
  ident: 10.1016/j.celrep.2019.03.025_bib26
  article-title: The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201201139
– volume: 26
  start-page: 535
  year: 2016
  ident: 10.1016/j.celrep.2019.03.025_bib12
  article-title: Targeting fat: mechanisms of protein localization to lipid droplets
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2016.02.007
– volume: 5
  start-page: e16582
  year: 2016
  ident: 10.1016/j.celrep.2019.03.025_bib22
  article-title: Seipin is required for converting nascent to mature lipid droplets
  publication-title: eLife
  doi: 10.7554/eLife.16582
– volume: 19
  start-page: 876
  year: 2017
  ident: 10.1016/j.celrep.2019.03.025_bib10
  article-title: Organelle biogenesis in the endoplasmic reticulum
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3579
– volume: 35
  start-page: 2699
  year: 2016
  ident: 10.1016/j.celrep.2019.03.025_bib19
  article-title: Seipin regulates ER-lipid droplet contacts and cargo delivery
  publication-title: EMBO J.
  doi: 10.15252/embj.201695170
– volume: 26
  start-page: 726
  year: 2015
  ident: 10.1016/j.celrep.2019.03.025_bib4
  article-title: Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.E14-08-1303
– volume: 195
  start-page: 953
  year: 2011
  ident: 10.1016/j.celrep.2019.03.025_bib8
  article-title: Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201104142
– volume: 182
  start-page: 685
  year: 2008
  ident: 10.1016/j.celrep.2019.03.025_bib1
  article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200803137
– volume: 24
  start-page: 384
  year: 2013
  ident: 10.1016/j.celrep.2019.03.025_bib23
  article-title: Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.01.013
– volume: 17
  start-page: 69
  year: 2016
  ident: 10.1016/j.celrep.2019.03.025_bib17
  article-title: Structure and function of ER membrane contact sites with other organelles
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm.2015.8
– volume: 14
  start-page: 504
  year: 2011
  ident: 10.1016/j.celrep.2019.03.025_bib13
  article-title: Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2011.07.013
– volume: 1862
  start-page: 1273
  issue: 10 Pt B
  year: 2017
  ident: 10.1016/j.celrep.2019.03.025_bib18
  article-title: Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids
  publication-title: Biochim Biophys Acta Mol Cell Biol Lipids
  doi: 10.1016/j.bbalip.2017.06.016
– volume: 1851
  start-page: 1450
  year: 2015
  ident: 10.1016/j.celrep.2019.03.025_bib25
  article-title: Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbalip.2015.08.003
– volume: 211
  start-page: 261
  year: 2015
  ident: 10.1016/j.celrep.2019.03.025_bib5
  article-title: A conserved family of proteins facilitates nascent lipid droplet budding from the ER
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201505067
– volume: 7
  start-page: e1002201
  year: 2011
  ident: 10.1016/j.celrep.2019.03.025_bib7
  article-title: A role for phosphatidic acid in the formation of “supersized” lipid droplets
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1002201
– volume: 118
  start-page: 2601
  year: 2005
  ident: 10.1016/j.celrep.2019.03.025_bib16
  article-title: Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.02401
– volume: 44
  start-page: 97
  year: 2018
  ident: 10.1016/j.celrep.2019.03.025_bib3
  article-title: A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.11.020
– volume: 41
  start-page: 591
  year: 2017
  ident: 10.1016/j.celrep.2019.03.025_bib2
  article-title: ER membrane phospholipids and surface tension control cellular lipid droplet formation
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2017.05.012
– volume: 354
  start-page: aaf3928
  year: 2016
  ident: 10.1016/j.celrep.2019.03.025_bib15
  article-title: Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER
  publication-title: Science
  doi: 10.1126/science.aaf3928
– volume: 3
  start-page: e01607
  year: 2014
  ident: 10.1016/j.celrep.2019.03.025_bib24
  article-title: Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting
  publication-title: eLife
  doi: 10.7554/eLife.01607
– volume: 53
  start-page: 29
  year: 2018
  ident: 10.1016/j.celrep.2019.03.025_bib29
  article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2018.04.003
– volume: 203
  start-page: 985
  year: 2013
  ident: 10.1016/j.celrep.2019.03.025_bib11
  article-title: Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201305142
– volume: 217
  start-page: 975
  year: 2018
  ident: 10.1016/j.celrep.2019.03.025_bib27
  article-title: Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201704184
– volume: 28
  start-page: 915
  year: 2018
  ident: 10.1016/j.celrep.2019.03.025_bib6
  article-title: Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.02.020
– volume: 12
  start-page: 51
  year: 2015
  ident: 10.1016/j.celrep.2019.03.025_bib14
  article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3179
– volume: 67
  start-page: 974
  year: 2017
  ident: 10.1016/j.celrep.2019.03.025_bib30
  article-title: The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.08.005
– volume: 33
  start-page: 491
  year: 2017
  ident: 10.1016/j.celrep.2019.03.025_bib21
  article-title: Lipid droplet biogenesis
  publication-title: Annu. Rev. Cell Dev. Biol.
  doi: 10.1146/annurev-cellbio-100616-060608
– volume: 110
  start-page: 13244
  year: 2013
  ident: 10.1016/j.celrep.2019.03.025_bib20
  article-title: COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1307685110
– volume: 24
  start-page: 509
  year: 2012
  ident: 10.1016/j.celrep.2019.03.025_bib28
  article-title: Controlling the size of lipid droplets: lipid and protein factors
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/j.ceb.2012.05.012
SSID ssj0000601194
Score 2.5107565
Snippet Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 343
SubjectTerms BSCL2
DFCP1
lipid droplets
membrane contact
Rab18
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOglNEmTbF4o0Kup9bBsH_NaQh4llAZyE3oZXII3bJxD--szI9nL5hD2kpPBSPIwM9Z8kkbfEPKjMgCqPW66OyUyqfIA82BeZd7UTAZbqzoSad_9UlcP8vqxeFwq9YU5YYkeOCnupwyl58KVzJZcljWsEHwe4KmYidXkcPaFmLe0mEpzMHKZ4ZEy55izBV3He3MxucuFp3lAukqWOE6xUvZSXIr0_e_C00fwM4ah6TeyMeBHeprk3iRfQrdF1lNFyX_b5AbMTi9_Z7cYotr_wdN7JGJoO3oxPb9n9G7msV5XeImN2ufW04s55pD3FHmqjOvpdLzO-J08TC__nF9lQ72EzAHu6jPnAmiWS5FXtlFO5bZxvPK-EFZUDS-cUsY1tsGtYBe8FGXDuHWFt56pACFsh6x1sy7sESrxjQkC4EUNCzhpTFFXDvTaACZQVTMhYtSWdgOZONa0eNJj1thfnXSsUcc6Fxp0PCHZotdzItNY0f4MDbFoi1TY8QU4iB4cRK9ykAkpRzPqAVUktABDtSs-fzJaXcNPhycppguz1xfNeeQVZCWMvpvcYSGkyOsSgA_b_wzhD8hXFCimCtWHZK2fv4YjQEG9PY4O_wY-xPy9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9zIvgifnudSgRfK81Hk_ZBhm67DPXKEC_sLeSrUrn0zt4O3P76ndO0VwaOgU-lIU3KOSc5vyQnv0PIu9ICqA646e6VyKTKI8yDeZkFWzEZXaWqgUh78U0dL-Xn0-J0h0w5W0cBbv65tMN8Ustu9f7P74t9GPAf_sZq-bjqIrJPskRZyos75C74Jo05DRYj4E9zM3Kc4VEz5xjLxaWe7tPd0NA1fzXQ-l9zWzfB0sE9zR-SByOupB-TITwiO7F9TO6lTJMXT8gXMAd69D37iq6ruYyBniBBQ9PSw_nBCaOLdcA8XnEzVGrOmkAPO4wt7ynyV1nf0_l0zfEpWc6PfhwcZ2MehcwDHusz7yNInEuRl65WXuWu9rwMoRBOlDUvvFLW167GLWIfgxS6Ztz5IrjAVATX9ozstus2viBUYomNAmBHBQs7aW1RlR7kWgNWUGU9I2KSlvEjyTjmuliZKZrsl0kyNihjkwsDMp6RbPvVWSLZuKX-J1TEti5SZA8F6-6nGUeckVEHLrxmToOWK1hahjzCUzE7pCGcET2p0YxoI6EIaKq5pfu3k9YNDEY8YbFtXJ9vDOcD3yDT0PrzZA7bnxR5pQEQsZf_3e8euY9vKZjmFdntu_P4GiBR794MVn4FWG8EQQ
  priority: 102
  providerName: Scholars Portal
Title The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation
URI https://dx.doi.org/10.1016/j.celrep.2019.03.025
https://www.ncbi.nlm.nih.gov/pubmed/30970241
https://www.proquest.com/docview/2207937171
https://doaj.org/article/4e7d23c71b72479282d0e79261a87401
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOil5NE0mxcq9GrWsmRZPjabLKHpltAmsDehl4PD4l02zqH99Z2R7SU5hEAvNhaSJUbjmU_y6BtCvioDoNrjpruTPBEyDWAHU5V4UzIRbCnLSKQ9-ymv78X3eT7fIpPhLAyGVfa2v7Pp0Vr3JeNemuNVXY9_Z7B2Ae9UAARJkZUM7DAXKh7im19s9lmQb4TFfIhYP8EGwwm6GOblwmIdkLiSdWynmDP7hYeKRP6vHNVbQDQ6pOku-dgjSfqtG-we2QrNPtnpckv-OSA3oAD06lfyA51V_Td4eouUDHVDL6eTW0ZnS4-Zu8JTrFSvak8v1xhN3lJkrDKupdPhYOMncj-9uptcJ33mhMQBAmsT5wLIOBM8VbaSTqa2cpnyPueWqyrLnZTGVbbCTWEQtOBFxTLrcm89kwGc2SHZbpZNOCJUYIkJHIBGCUs5YUxeKgdyrQAdSFWNCB-kpV1PK47ZLRZ6iB971J2MNcpYp1yDjEck2bRadbQa79S_wInY1EVS7FiwXD_oXiu0CIXPuCuYLWCWS1hM-jTAXTITEw-OSDFMo36lY_Cq-p3uvwyzruHzw38qpgnL5yedZZFhkBXw9s-dOmwGydOyAAjEjv-73xPyAZ9ipFB5Srbb9XM4AxDU2vO4eXAedR2uM6H-AUuTAY4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBelY2wvY9_NPjXYHk0syZbshz2sTUOyJKVsLeRNkyV5eBQnJC6j-7f2D-5OtsP6MAqDPhlkxT7uznc_KaffEfI-MwCqHW66WymiRMYe4mCcRc7kLPFFLvNApL04kZPz5PMyXe6R3_1ZGCyr7GJ_G9NDtO5Ghp02h-uqGn7lsHaB7KQAgsTIStZVVs781U9Yt20_Tkdg5A-cj4_PjiZR11ogsgBRmshaD0LwRMRZUUor46K0PHMuFYXISp5aKY0tixJ3TUGSRKiS8cKmrnBMeoZsBxD37wD6UBgNpsvD3cYOEpyw0IARBYxQwv7IXqgrs_5i45Epk7X0qtik-6-UGDoHXMuM_0K-IQOOH5IHHXSln1rtPCJ7vn5M7rbNLK-ekBl4HD3-Es0xO1a_vKOnyAFR1XQ0PjpldLFy2CrMb8Okal05Otpg-XpDkSLL2IaO-5OUT8n5rejzGdmvV7U_IDTBEeMFIJsc1o6JMWmeWdBrCXBEZuWAiF5b2nY85thO40L3BWs_dKtjjTrWsdCg4wGJdr9atzweN8w_REPs5iILdxhYbb7rzg114pXjwipWKLByDqtXF3u4SmZCp8MBUb0Z9TWnhkdVN7z-XW91Dd87_oljar-63GrOA6UhU_D056077IQUca4Ac7EX__3et-Te5Gwx1_PpyewluY93QplS_orsN5tL_xoQWFO8CR5Pybfb_sT-AJOIPnE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ER-Localized+Protein+DFCP1+Modulates+ER-Lipid+Droplet+Contact+Formation&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Li%2C+Dongfang&rft.au=Zhao%2C+Yan+G.&rft.au=Li%2C+Di&rft.au=Zhao%2C+Hongyu&rft.date=2019-04-09&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=27&rft.issue=2&rft.spage=343&rft.epage=358.e5&rft_id=info:doi/10.1016%2Fj.celrep.2019.03.025&rft.externalDocID=S2211124719303419
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon