The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation
Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon...
Saved in:
Published in | Cell reports (Cambridge) Vol. 27; no. 2; pp. 343 - 358.e5 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
09.04.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion.
[Display omitted]
•The ER protein DFCP1 redistributes from the ER to LDs upon induction of LD formation•Fusion of DFCP1-labeled nascent structures contributes to initial LD growth•BSCL2 regulates the dynamics and maturation of DFCP1-labeled structures•DFCP1 interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation
Li et al. used super-resolution GI-SIM imaging to reveal that during LD biogenesis, the ER-localized protein DFCP1 redistributes to nascent LD structures, which further fuse to form expanding LDs. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. |
---|---|
AbstractList | Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. [Display omitted] •The ER protein DFCP1 redistributes from the ER to LDs upon induction of LD formation•Fusion of DFCP1-labeled nascent structures contributes to initial LD growth•BSCL2 regulates the dynamics and maturation of DFCP1-labeled structures•DFCP1 interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation Li et al. used super-resolution GI-SIM imaging to reveal that during LD biogenesis, the ER-localized protein DFCP1 redistributes to nascent LD structures, which further fuse to form expanding LDs. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion.Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD contacts for LD growth. Using super-resolution grazing incidence structured illumination microscopy (GI-SIM) live-cell imaging, we reveal that upon LD induction, the ER-localized protein DFCP1 redistributes to nascent puncta on the ER, whose formation depends on triglyceride synthesis. These structures move along the ER and fuse to form expanding LDs. Fusion and expansion of DFCP1-labeled nascent structures is controlled by BSCL2. BSCL2 depletion causes accumulation of nascent DFCP1 structures. DFCP1 overexpression increases LD size and enhances ER-LD contacts, while DFCP1 knockdown has the opposite effect. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Our study reveals that fusion of DFCP1-labeled nascent structures contributes to initial LD growth and that the DFCP1-Rab18 complex is involved in tethering the ER-LD contact for LD expansion. : Li et al. used super-resolution GI-SIM imaging to reveal that during LD biogenesis, the ER-localized protein DFCP1 redistributes to nascent LD structures, which further fuse to form expanding LDs. DFCP1 acts as a Rab18 effector for LD localization and interacts with the Rab18-ZW10 complex to mediate ER-LD contact formation. Keywords: DFCP1, BSCL2, Rab18, membrane contact, lipid droplets |
Author | Zhao, Yan G. Feng, Du Li, Dongfang Miao, Guangyan Li, Dong Zhao, Hongyu Zhang, Hong Huang, Jie Li, Di Liu, Pingsheng |
Author_xml | – sequence: 1 givenname: Dongfang surname: Li fullname: Li, Dongfang organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Yan G. surname: Zhao fullname: Zhao, Yan G. organization: Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA – sequence: 3 givenname: Di surname: Li fullname: Li, Di organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 4 givenname: Hongyu surname: Zhao fullname: Zhao, Hongyu organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 5 givenname: Jie surname: Huang fullname: Huang, Jie organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 6 givenname: Guangyan surname: Miao fullname: Miao, Guangyan organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 7 givenname: Du surname: Feng fullname: Feng, Du organization: School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China – sequence: 8 givenname: Pingsheng surname: Liu fullname: Liu, Pingsheng organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 9 givenname: Dong surname: Li fullname: Li, Dong email: lidong@ibp.ac.cn organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China – sequence: 10 givenname: Hong surname: Zhang fullname: Zhang, Hong email: hongzhang@ibp.ac.cn organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30970241$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9v1DAQxS1UREvpN0AoRy4J4z-JEw5IaNuFikVUqJwtx56AV9k42N5K8OnxblqEOMBcZmS99yz93lNyMvkJCXlOoaJAm1fbyuAYcK4Y0K4CXgGrH5EzxigtKRPy5I_7lFzEuIU8DVDaiSfklEMngQl6Rj7cfsPi6nO58UaP7ifa4ib4hG4qLterG1p89HY_6oTxKHKzs8Vl8POIqVj5KWmTirUPO52cn56Rx4MeI17c73PyZX11u3pfbj69u1693ZSmFpBKY7ATLRMc2n5oTAP9YFhrbc173g6sNk2jzdAPADUzaAWXA2W9qW1vaYOU8XNyveRar7dqDm6nww_ltVPHBx--Kh2SMyMqgdIybiTtZSbRsZZZwLwbqlspgOasl0vWHPz3Pcakdi5mtqOe0O-jYgxkxyWVB-mLe-m-36H9_fEDzCx4vQhM8DEGHJRx6UgmBe1GRUEdylNbtZSnDuUp4CqXl83iL_ND_n9sbxYbZuB3DoOKxuGUubmAJmUi7t8BvwBQ3rIl |
CitedBy_id | crossref_primary_10_1016_j_omtn_2024_102335 crossref_primary_10_1080_15548627_2020_1732713 crossref_primary_10_1146_annurev_cellbio_012624_031419 crossref_primary_10_1021_acs_analchem_2c00964 crossref_primary_10_1016_j_antiviral_2022_105398 crossref_primary_10_1016_j_isci_2020_101252 crossref_primary_10_3389_fcell_2021_650186 crossref_primary_10_3389_fcell_2023_1112954 crossref_primary_10_1016_j_mcpro_2021_100051 crossref_primary_10_1177_2515256420908142 crossref_primary_10_3390_cancers14184526 crossref_primary_10_1016_j_theriogenology_2024_03_002 crossref_primary_10_1016_j_dyepig_2020_108884 crossref_primary_10_1016_j_antiviral_2023_105590 crossref_primary_10_3390_cells10050970 crossref_primary_10_1016_j_celrep_2021_110049 crossref_primary_10_1039_D2TB01536F crossref_primary_10_1002_1873_3468_14899 crossref_primary_10_1016_j_bbalip_2021_158923 crossref_primary_10_1038_s42003_025_07717_5 crossref_primary_10_1016_j_semcdb_2020_02_013 crossref_primary_10_1016_j_jbc_2023_105295 crossref_primary_10_1016_j_neuron_2022_04_020 crossref_primary_10_1016_j_bbrc_2025_151673 crossref_primary_10_1016_j_devcel_2023_05_009 crossref_primary_10_1038_s41586_022_04835_6 crossref_primary_10_1038_s44319_024_00266_8 crossref_primary_10_1080_13813455_2024_2388779 crossref_primary_10_1016_j_biopha_2024_116812 crossref_primary_10_1134_S0022093020050026 crossref_primary_10_1177_2515256420934671 crossref_primary_10_1038_s41467_024_53750_z crossref_primary_10_1002_cbin_11199 crossref_primary_10_3389_fnmol_2020_00042 crossref_primary_10_1002_1873_3468_14581 crossref_primary_10_3389_fcell_2021_726261 crossref_primary_10_3390_ijms22052776 crossref_primary_10_3389_fnins_2019_01051 crossref_primary_10_1016_j_bbamcr_2019_118603 crossref_primary_10_1021_acsnano_4c06138 crossref_primary_10_1177_2515256420945820 crossref_primary_10_3389_fnins_2022_900338 crossref_primary_10_1002_smtd_202201712 crossref_primary_10_3390_ijms24032096 crossref_primary_10_1016_j_jmb_2019_12_031 crossref_primary_10_1016_j_tcb_2021_01_004 crossref_primary_10_1038_s41467_020_18153_w crossref_primary_10_1016_j_plipres_2023_101233 crossref_primary_10_1083_jcb_201809020 crossref_primary_10_3390_ijms242417177 crossref_primary_10_1080_14789450_2021_1995356 crossref_primary_10_1007_s00216_023_05010_0 crossref_primary_10_1172_JCI162836 crossref_primary_10_1016_j_jlr_2024_100700 crossref_primary_10_1038_s41420_023_01493_z crossref_primary_10_1177_25152564221135748 crossref_primary_10_1016_j_jbc_2022_102830 crossref_primary_10_1016_j_saa_2022_120946 crossref_primary_10_1177_25152564241304196 crossref_primary_10_1177_2515256420912090 crossref_primary_10_1142_S1793545825300010 crossref_primary_10_1016_j_ceb_2025_102466 crossref_primary_10_1016_j_heliyon_2023_e17493 crossref_primary_10_3390_cells11071067 crossref_primary_10_1016_j_yexcr_2023_113756 crossref_primary_10_1002_bies_202400038 crossref_primary_10_1091_mbc_E20_09_0590 crossref_primary_10_1142_S1793545824300064 crossref_primary_10_1016_j_addr_2023_114977 crossref_primary_10_1016_j_omtn_2022_04_003 crossref_primary_10_1128_jvi_00695_24 crossref_primary_10_3389_fcell_2024_1483902 crossref_primary_10_1016_j_plipres_2021_101141 crossref_primary_10_1038_s41574_023_00845_0 crossref_primary_10_1093_plcell_koac239 crossref_primary_10_1091_mbc_E22_07_0279 crossref_primary_10_1146_annurev_cellbio_031320_101827 crossref_primary_10_2174_0929867329666220727113129 crossref_primary_10_1093_plphys_kiad525 |
Cites_doi | 10.4161/auto.6.6.12709 10.1083/jcb.201201139 10.1016/j.tcb.2016.02.007 10.7554/eLife.16582 10.1038/ncb3579 10.15252/embj.201695170 10.1091/mbc.E14-08-1303 10.1083/jcb.201104142 10.1083/jcb.200803137 10.1016/j.devcel.2013.01.013 10.1038/nrm.2015.8 10.1016/j.cmet.2011.07.013 10.1016/j.bbalip.2017.06.016 10.1016/j.bbalip.2015.08.003 10.1083/jcb.201505067 10.1371/journal.pgen.1002201 10.1242/jcs.02401 10.1016/j.devcel.2017.11.020 10.1016/j.devcel.2017.05.012 10.1126/science.aaf3928 10.7554/eLife.01607 10.1016/j.ceb.2018.04.003 10.1083/jcb.201305142 10.1083/jcb.201704184 10.1016/j.cub.2018.02.020 10.1038/nmeth.3179 10.1016/j.molcel.2017.08.005 10.1146/annurev-cellbio-100616-060608 10.1073/pnas.1307685110 10.1016/j.ceb.2012.05.012 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2019 The Author(s) – notice: Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2019.03.025 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef PubMed MEDLINE - Academic Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 358.e5 |
ExternalDocumentID | oai_doaj_org_article_4e7d23c71b72479282d0e79261a87401 30970241 10_1016_j_celrep_2019_03_025 S2211124719303419 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ NPM 7X8 |
ID | FETCH-LOGICAL-c540t-cce94824308bf6c60bfc28dd53b38f25c66acfbf0052ced437f12bc5dbd16e123 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:30:46 EDT 2025 Fri Jul 11 02:53:11 EDT 2025 Thu Jan 02 23:00:17 EST 2025 Thu Apr 24 23:12:46 EDT 2025 Tue Jul 01 02:59:01 EDT 2025 Wed May 17 00:03:08 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | BSCL2 membrane contact Rab18 lipid droplets DFCP1 |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-cce94824308bf6c60bfc28dd53b38f25c66acfbf0052ced437f12bc5dbd16e123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124719303419 |
PMID | 30970241 |
PQID | 2207937171 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4e7d23c71b72479282d0e79261a87401 proquest_miscellaneous_2207937171 pubmed_primary_30970241 crossref_citationtrail_10_1016_j_celrep_2019_03_025 crossref_primary_10_1016_j_celrep_2019_03_025 elsevier_sciencedirect_doi_10_1016_j_celrep_2019_03_025 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-09 |
PublicationDateYYYYMMDD | 2019-04-09 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-09 day: 09 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Yang, Galea, Sytnyk, Crossley (bib28) 2012; 24 Salo, Belevich, Li, Karhinen, Vihinen, Vigouroux, Magré, Thiele, Hölttä-Vuori, Jokitalo, Ikonen (bib19) 2016; 35 Cartwright, Binns, Hilton, Han, Gao, Goodman (bib4) 2015; 26 Lam, Martell, Kamer, Deerinck, Ellisman, Mootha, Ting (bib14) 2015; 12 Nixon-Abell, Obara, Weigel, Li, Legant, Xu, Pasolli, Harvey, Hess, Betzig (bib15) 2016; 354 Wilfling, Wang, Haas, Krahmer, Gould, Uchida, Cheng, Graham, Christiano, Fröhlich (bib23) 2013; 24 Xu, Li, Wu, Li, Zhao, Yu, Huang, Ferguson, Parton, Yang, Li (bib27) 2018; 217 Krahmer, Guo, Wilfling, Hilger, Lingrell, Heger, Newman, Schmidt-Supprian, Vance, Mann (bib13) 2011; 14 Joshi, Zhang, Prinz (bib10) 2017; 19 Bersuker, Peterson, To, Sahl, Savikhin, Grossman, Nomura, Olzmann (bib3) 2018; 44 Ozeki, Cheng, Tauchi-Sato, Hatano, Taniguchi, Fujimoto (bib16) 2005; 118 Walther, Chung, Farese (bib21) 2017; 33 Ben M’barek, Ajjaji, Chorlay, Vanni, Forêt, Thiam (bib2) 2017; 41 Wang, Becuwe, Housden, Chitraju, Porras, Graham, Liu, Thiam, Savage, Agarwal (bib22) 2016; 5 Axe, Walker, Manifava, Chandra, Roderick, Habermann, Griffiths, Ktistakis (bib1) 2008; 182 Fei, Shui, Zhang, Krahmer, Ferguson, Kapterian, Lin, Dawes, Brown, Li (bib7) 2011; 7 Phillips, Voeltz (bib17) 2016; 17 Xu, Zhang, Cole, McKinney, Guo, Haas, Bobba, Farese, Mak (bib26) 2012; 198 Zhao, Zhang (bib29) 2018; 53 Itakura, Mizushima (bib9) 2010; 6 Kory, Farese, Walther (bib12) 2016; 26 Qi, Sun, Yang (bib18) 2017; 1862 Wolinski, Hofbauer, Hellauer, Cristobal-Sarramian, Kolb, Radulovic, Knittelfelder, Rechberger, Kohlwein (bib25) 2015; 1851 Thiam, Antonny, Wang, Delacotte, Wilfling, Walther, Beck, Rothman, Pincet (bib20) 2013; 110 Gong, Sun, Wu, Xu, Schieber, Xu, Shui, Yang, Parton, Li (bib8) 2011; 195 Kassan, Herms, Fernández-Vidal, Bosch, Schieber, Reddy, Fajardo, Gelabert-Baldrich, Tebar, Enrich (bib11) 2013; 203 Wilfling, Thiam, Olarte, Wang, Beck, Gould, Allgeyer, Pincet, Bewersdorf, Farese, Walther (bib24) 2014; 3 Choudhary, Ojha, Golden, Prinz (bib5) 2015; 211 Choudhary, Golani, Joshi, Cottier, Schneiter, Prinz, Kozlov (bib6) 2018; 28 Zhao, Chen, Miao, Zhao, Qu, Li, Wang, Liu, Li, Chen (bib30) 2017; 67 Joshi (10.1016/j.celrep.2019.03.025_bib10) 2017; 19 Kassan (10.1016/j.celrep.2019.03.025_bib11) 2013; 203 Xu (10.1016/j.celrep.2019.03.025_bib26) 2012; 198 Cartwright (10.1016/j.celrep.2019.03.025_bib4) 2015; 26 Wilfling (10.1016/j.celrep.2019.03.025_bib24) 2014; 3 Zhao (10.1016/j.celrep.2019.03.025_bib30) 2017; 67 Itakura (10.1016/j.celrep.2019.03.025_bib9) 2010; 6 Thiam (10.1016/j.celrep.2019.03.025_bib20) 2013; 110 Wolinski (10.1016/j.celrep.2019.03.025_bib25) 2015; 1851 Yang (10.1016/j.celrep.2019.03.025_bib28) 2012; 24 Ben M’barek (10.1016/j.celrep.2019.03.025_bib2) 2017; 41 Fei (10.1016/j.celrep.2019.03.025_bib7) 2011; 7 Wilfling (10.1016/j.celrep.2019.03.025_bib23) 2013; 24 Bersuker (10.1016/j.celrep.2019.03.025_bib3) 2018; 44 Gong (10.1016/j.celrep.2019.03.025_bib8) 2011; 195 Kory (10.1016/j.celrep.2019.03.025_bib12) 2016; 26 Krahmer (10.1016/j.celrep.2019.03.025_bib13) 2011; 14 Zhao (10.1016/j.celrep.2019.03.025_bib29) 2018; 53 Phillips (10.1016/j.celrep.2019.03.025_bib17) 2016; 17 Wang (10.1016/j.celrep.2019.03.025_bib22) 2016; 5 Nixon-Abell (10.1016/j.celrep.2019.03.025_bib15) 2016; 354 Qi (10.1016/j.celrep.2019.03.025_bib18) 2017; 1862 Walther (10.1016/j.celrep.2019.03.025_bib21) 2017; 33 Choudhary (10.1016/j.celrep.2019.03.025_bib5) 2015; 211 Xu (10.1016/j.celrep.2019.03.025_bib27) 2018; 217 Salo (10.1016/j.celrep.2019.03.025_bib19) 2016; 35 Lam (10.1016/j.celrep.2019.03.025_bib14) 2015; 12 Choudhary (10.1016/j.celrep.2019.03.025_bib6) 2018; 28 Ozeki (10.1016/j.celrep.2019.03.025_bib16) 2005; 118 Axe (10.1016/j.celrep.2019.03.025_bib1) 2008; 182 |
References_xml | – volume: 354 start-page: aaf3928 year: 2016 ident: bib15 article-title: Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER publication-title: Science – volume: 217 start-page: 975 year: 2018 end-page: 995 ident: bib27 article-title: Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions publication-title: J. Cell Biol. – volume: 211 start-page: 261 year: 2015 end-page: 271 ident: bib5 article-title: A conserved family of proteins facilitates nascent lipid droplet budding from the ER publication-title: J. Cell Biol. – volume: 198 start-page: 895 year: 2012 end-page: 911 ident: bib26 article-title: The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface publication-title: J. Cell Biol. – volume: 24 start-page: 384 year: 2013 end-page: 399 ident: bib23 article-title: Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets publication-title: Dev. Cell – volume: 14 start-page: 504 year: 2011 end-page: 515 ident: bib13 article-title: Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase publication-title: Cell Metab. – volume: 28 start-page: 915 year: 2018 end-page: 926.e9 ident: bib6 article-title: Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature publication-title: Curr. Biol. – volume: 33 start-page: 491 year: 2017 end-page: 510 ident: bib21 article-title: Lipid droplet biogenesis publication-title: Annu. Rev. Cell Dev. Biol. – volume: 41 start-page: 591 year: 2017 end-page: 604.e7 ident: bib2 article-title: ER membrane phospholipids and surface tension control cellular lipid droplet formation publication-title: Dev. Cell – volume: 5 start-page: e16582 year: 2016 ident: bib22 article-title: Seipin is required for converting nascent to mature lipid droplets publication-title: eLife – volume: 6 start-page: 764 year: 2010 end-page: 776 ident: bib9 article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins publication-title: Autophagy – volume: 1862 start-page: 1273 year: 2017 end-page: 1283 ident: bib18 article-title: Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids publication-title: Biochim Biophys Acta Mol Cell Biol Lipids – volume: 26 start-page: 726 year: 2015 end-page: 739 ident: bib4 article-title: Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology publication-title: Mol. Biol. Cell – volume: 110 start-page: 13244 year: 2013 end-page: 13249 ident: bib20 article-title: COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function publication-title: Proc. Natl. Acad. Sci. USA – volume: 195 start-page: 953 year: 2011 end-page: 963 ident: bib8 article-title: Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites publication-title: J. Cell Biol. – volume: 26 start-page: 535 year: 2016 end-page: 546 ident: bib12 article-title: Targeting fat: mechanisms of protein localization to lipid droplets publication-title: Trends Cell Biol. – volume: 7 start-page: e1002201 year: 2011 ident: bib7 article-title: A role for phosphatidic acid in the formation of “supersized” lipid droplets publication-title: PLoS Genet. – volume: 17 start-page: 69 year: 2016 end-page: 82 ident: bib17 article-title: Structure and function of ER membrane contact sites with other organelles publication-title: Nat. Rev. Mol. Cell Biol. – volume: 44 start-page: 97 year: 2018 end-page: 112.e7 ident: bib3 article-title: A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes publication-title: Dev. Cell – volume: 3 start-page: e01607 year: 2014 ident: bib24 article-title: Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting publication-title: eLife – volume: 12 start-page: 51 year: 2015 end-page: 54 ident: bib14 article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling publication-title: Nat. Methods – volume: 118 start-page: 2601 year: 2005 end-page: 2611 ident: bib16 article-title: Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane publication-title: J. Cell Sci. – volume: 24 start-page: 509 year: 2012 end-page: 516 ident: bib28 article-title: Controlling the size of lipid droplets: lipid and protein factors publication-title: Curr. Opin. Cell Biol. – volume: 19 start-page: 876 year: 2017 end-page: 882 ident: bib10 article-title: Organelle biogenesis in the endoplasmic reticulum publication-title: Nat. Cell Biol. – volume: 1851 start-page: 1450 year: 2015 end-page: 1464 ident: bib25 article-title: Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast publication-title: Biochim. Biophys. Acta – volume: 53 start-page: 29 year: 2018 end-page: 36 ident: bib29 article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network publication-title: Curr. Opin. Cell Biol. – volume: 35 start-page: 2699 year: 2016 end-page: 2716 ident: bib19 article-title: Seipin regulates ER-lipid droplet contacts and cargo delivery publication-title: EMBO J. – volume: 182 start-page: 685 year: 2008 end-page: 701 ident: bib1 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J. Cell Biol. – volume: 67 start-page: 974 year: 2017 end-page: 989.e6 ident: bib30 article-title: The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation publication-title: Mol. Cell – volume: 203 start-page: 985 year: 2013 end-page: 1001 ident: bib11 article-title: Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains publication-title: J. Cell Biol. – volume: 6 start-page: 764 year: 2010 ident: 10.1016/j.celrep.2019.03.025_bib9 article-title: Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins publication-title: Autophagy doi: 10.4161/auto.6.6.12709 – volume: 198 start-page: 895 year: 2012 ident: 10.1016/j.celrep.2019.03.025_bib26 article-title: The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface publication-title: J. Cell Biol. doi: 10.1083/jcb.201201139 – volume: 26 start-page: 535 year: 2016 ident: 10.1016/j.celrep.2019.03.025_bib12 article-title: Targeting fat: mechanisms of protein localization to lipid droplets publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2016.02.007 – volume: 5 start-page: e16582 year: 2016 ident: 10.1016/j.celrep.2019.03.025_bib22 article-title: Seipin is required for converting nascent to mature lipid droplets publication-title: eLife doi: 10.7554/eLife.16582 – volume: 19 start-page: 876 year: 2017 ident: 10.1016/j.celrep.2019.03.025_bib10 article-title: Organelle biogenesis in the endoplasmic reticulum publication-title: Nat. Cell Biol. doi: 10.1038/ncb3579 – volume: 35 start-page: 2699 year: 2016 ident: 10.1016/j.celrep.2019.03.025_bib19 article-title: Seipin regulates ER-lipid droplet contacts and cargo delivery publication-title: EMBO J. doi: 10.15252/embj.201695170 – volume: 26 start-page: 726 year: 2015 ident: 10.1016/j.celrep.2019.03.025_bib4 article-title: Seipin performs dissectible functions in promoting lipid droplet biogenesis and regulating droplet morphology publication-title: Mol. Biol. Cell doi: 10.1091/mbc.E14-08-1303 – volume: 195 start-page: 953 year: 2011 ident: 10.1016/j.celrep.2019.03.025_bib8 article-title: Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites publication-title: J. Cell Biol. doi: 10.1083/jcb.201104142 – volume: 182 start-page: 685 year: 2008 ident: 10.1016/j.celrep.2019.03.025_bib1 article-title: Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum publication-title: J. Cell Biol. doi: 10.1083/jcb.200803137 – volume: 24 start-page: 384 year: 2013 ident: 10.1016/j.celrep.2019.03.025_bib23 article-title: Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.01.013 – volume: 17 start-page: 69 year: 2016 ident: 10.1016/j.celrep.2019.03.025_bib17 article-title: Structure and function of ER membrane contact sites with other organelles publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm.2015.8 – volume: 14 start-page: 504 year: 2011 ident: 10.1016/j.celrep.2019.03.025_bib13 article-title: Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine cytidylyltransferase publication-title: Cell Metab. doi: 10.1016/j.cmet.2011.07.013 – volume: 1862 start-page: 1273 issue: 10 Pt B year: 2017 ident: 10.1016/j.celrep.2019.03.025_bib18 article-title: Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids publication-title: Biochim Biophys Acta Mol Cell Biol Lipids doi: 10.1016/j.bbalip.2017.06.016 – volume: 1851 start-page: 1450 year: 2015 ident: 10.1016/j.celrep.2019.03.025_bib25 article-title: Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbalip.2015.08.003 – volume: 211 start-page: 261 year: 2015 ident: 10.1016/j.celrep.2019.03.025_bib5 article-title: A conserved family of proteins facilitates nascent lipid droplet budding from the ER publication-title: J. Cell Biol. doi: 10.1083/jcb.201505067 – volume: 7 start-page: e1002201 year: 2011 ident: 10.1016/j.celrep.2019.03.025_bib7 article-title: A role for phosphatidic acid in the formation of “supersized” lipid droplets publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1002201 – volume: 118 start-page: 2601 year: 2005 ident: 10.1016/j.celrep.2019.03.025_bib16 article-title: Rab18 localizes to lipid droplets and induces their close apposition to the endoplasmic reticulum-derived membrane publication-title: J. Cell Sci. doi: 10.1242/jcs.02401 – volume: 44 start-page: 97 year: 2018 ident: 10.1016/j.celrep.2019.03.025_bib3 article-title: A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.11.020 – volume: 41 start-page: 591 year: 2017 ident: 10.1016/j.celrep.2019.03.025_bib2 article-title: ER membrane phospholipids and surface tension control cellular lipid droplet formation publication-title: Dev. Cell doi: 10.1016/j.devcel.2017.05.012 – volume: 354 start-page: aaf3928 year: 2016 ident: 10.1016/j.celrep.2019.03.025_bib15 article-title: Increased spatiotemporal resolution reveals highly dynamic dense tubular matrices in the peripheral ER publication-title: Science doi: 10.1126/science.aaf3928 – volume: 3 start-page: e01607 year: 2014 ident: 10.1016/j.celrep.2019.03.025_bib24 article-title: Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting publication-title: eLife doi: 10.7554/eLife.01607 – volume: 53 start-page: 29 year: 2018 ident: 10.1016/j.celrep.2019.03.025_bib29 article-title: Formation and maturation of autophagosomes in higher eukaryotes: a social network publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2018.04.003 – volume: 203 start-page: 985 year: 2013 ident: 10.1016/j.celrep.2019.03.025_bib11 article-title: Acyl-CoA synthetase 3 promotes lipid droplet biogenesis in ER microdomains publication-title: J. Cell Biol. doi: 10.1083/jcb.201305142 – volume: 217 start-page: 975 year: 2018 ident: 10.1016/j.celrep.2019.03.025_bib27 article-title: Rab18 promotes lipid droplet (LD) growth by tethering the ER to LDs through SNARE and NRZ interactions publication-title: J. Cell Biol. doi: 10.1083/jcb.201704184 – volume: 28 start-page: 915 year: 2018 ident: 10.1016/j.celrep.2019.03.025_bib6 article-title: Architecture of lipid droplets in endoplasmic reticulum is determined by phospholipid intrinsic curvature publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.02.020 – volume: 12 start-page: 51 year: 2015 ident: 10.1016/j.celrep.2019.03.025_bib14 article-title: Directed evolution of APEX2 for electron microscopy and proximity labeling publication-title: Nat. Methods doi: 10.1038/nmeth.3179 – volume: 67 start-page: 974 year: 2017 ident: 10.1016/j.celrep.2019.03.025_bib30 article-title: The ER-Localized Transmembrane Protein EPG-3/VMP1 Regulates SERCA Activity to Control ER-Isolation Membrane Contacts for Autophagosome Formation publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.08.005 – volume: 33 start-page: 491 year: 2017 ident: 10.1016/j.celrep.2019.03.025_bib21 article-title: Lipid droplet biogenesis publication-title: Annu. Rev. Cell Dev. Biol. doi: 10.1146/annurev-cellbio-100616-060608 – volume: 110 start-page: 13244 year: 2013 ident: 10.1016/j.celrep.2019.03.025_bib20 article-title: COPI buds 60-nm lipid droplets from reconstituted water-phospholipid-triacylglyceride interfaces, suggesting a tension clamp function publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1307685110 – volume: 24 start-page: 509 year: 2012 ident: 10.1016/j.celrep.2019.03.025_bib28 article-title: Controlling the size of lipid droplets: lipid and protein factors publication-title: Curr. Opin. Cell Biol. doi: 10.1016/j.ceb.2012.05.012 |
SSID | ssj0000601194 |
Score | 2.5107565 |
Snippet | Very little is known about the spatiotemporal generation of lipid droplets (LDs) from the endoplasmic reticulum (ER) and the factors that mediate ER-LD... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 343 |
SubjectTerms | BSCL2 DFCP1 lipid droplets membrane contact Rab18 |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOglNEmTbF4o0Kup9bBsH_NaQh4llAZyE3oZXII3bJxD--szI9nL5hD2kpPBSPIwM9Z8kkbfEPKjMgCqPW66OyUyqfIA82BeZd7UTAZbqzoSad_9UlcP8vqxeFwq9YU5YYkeOCnupwyl58KVzJZcljWsEHwe4KmYidXkcPaFmLe0mEpzMHKZ4ZEy55izBV3He3MxucuFp3lAukqWOE6xUvZSXIr0_e_C00fwM4ah6TeyMeBHeprk3iRfQrdF1lNFyX_b5AbMTi9_Z7cYotr_wdN7JGJoO3oxPb9n9G7msV5XeImN2ufW04s55pD3FHmqjOvpdLzO-J08TC__nF9lQ72EzAHu6jPnAmiWS5FXtlFO5bZxvPK-EFZUDS-cUsY1tsGtYBe8FGXDuHWFt56pACFsh6x1sy7sESrxjQkC4EUNCzhpTFFXDvTaACZQVTMhYtSWdgOZONa0eNJj1thfnXSsUcc6Fxp0PCHZotdzItNY0f4MDbFoi1TY8QU4iB4cRK9ykAkpRzPqAVUktABDtSs-fzJaXcNPhycppguz1xfNeeQVZCWMvpvcYSGkyOsSgA_b_wzhD8hXFCimCtWHZK2fv4YjQEG9PY4O_wY-xPy9 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA9zIvgifnudSgRfK81Hk_ZBhm67DPXKEC_sLeSrUrn0zt4O3P76ndO0VwaOgU-lIU3KOSc5vyQnv0PIu9ICqA646e6VyKTKI8yDeZkFWzEZXaWqgUh78U0dL-Xn0-J0h0w5W0cBbv65tMN8Ustu9f7P74t9GPAf_sZq-bjqIrJPskRZyos75C74Jo05DRYj4E9zM3Kc4VEz5xjLxaWe7tPd0NA1fzXQ-l9zWzfB0sE9zR-SByOupB-TITwiO7F9TO6lTJMXT8gXMAd69D37iq6ruYyBniBBQ9PSw_nBCaOLdcA8XnEzVGrOmkAPO4wt7ynyV1nf0_l0zfEpWc6PfhwcZ2MehcwDHusz7yNInEuRl65WXuWu9rwMoRBOlDUvvFLW167GLWIfgxS6Ztz5IrjAVATX9ozstus2viBUYomNAmBHBQs7aW1RlR7kWgNWUGU9I2KSlvEjyTjmuliZKZrsl0kyNihjkwsDMp6RbPvVWSLZuKX-J1TEti5SZA8F6-6nGUeckVEHLrxmToOWK1hahjzCUzE7pCGcET2p0YxoI6EIaKq5pfu3k9YNDEY8YbFtXJ9vDOcD3yDT0PrzZA7bnxR5pQEQsZf_3e8euY9vKZjmFdntu_P4GiBR794MVn4FWG8EQQ priority: 102 providerName: Scholars Portal |
Title | The ER-Localized Protein DFCP1 Modulates ER-Lipid Droplet Contact Formation |
URI | https://dx.doi.org/10.1016/j.celrep.2019.03.025 https://www.ncbi.nlm.nih.gov/pubmed/30970241 https://www.proquest.com/docview/2207937171 https://doaj.org/article/4e7d23c71b72479282d0e79261a87401 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhEOil5NE0mxcq9GrWsmRZPjabLKHpltAmsDehl4PD4l02zqH99Z2R7SU5hEAvNhaSJUbjmU_y6BtCvioDoNrjpruTPBEyDWAHU5V4UzIRbCnLSKQ9-ymv78X3eT7fIpPhLAyGVfa2v7Pp0Vr3JeNemuNVXY9_Z7B2Ae9UAARJkZUM7DAXKh7im19s9lmQb4TFfIhYP8EGwwm6GOblwmIdkLiSdWynmDP7hYeKRP6vHNVbQDQ6pOku-dgjSfqtG-we2QrNPtnpckv-OSA3oAD06lfyA51V_Td4eouUDHVDL6eTW0ZnS4-Zu8JTrFSvak8v1xhN3lJkrDKupdPhYOMncj-9uptcJ33mhMQBAmsT5wLIOBM8VbaSTqa2cpnyPueWqyrLnZTGVbbCTWEQtOBFxTLrcm89kwGc2SHZbpZNOCJUYIkJHIBGCUs5YUxeKgdyrQAdSFWNCB-kpV1PK47ZLRZ6iB971J2MNcpYp1yDjEck2bRadbQa79S_wInY1EVS7FiwXD_oXiu0CIXPuCuYLWCWS1hM-jTAXTITEw-OSDFMo36lY_Cq-p3uvwyzruHzw38qpgnL5yedZZFhkBXw9s-dOmwGydOyAAjEjv-73xPyAZ9ipFB5Srbb9XM4AxDU2vO4eXAedR2uM6H-AUuTAY4 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBelY2wvY9_NPjXYHk0syZbshz2sTUOyJKVsLeRNkyV5eBQnJC6j-7f2D-5OtsP6MAqDPhlkxT7uznc_KaffEfI-MwCqHW66WymiRMYe4mCcRc7kLPFFLvNApL04kZPz5PMyXe6R3_1ZGCyr7GJ_G9NDtO5Ghp02h-uqGn7lsHaB7KQAgsTIStZVVs781U9Yt20_Tkdg5A-cj4_PjiZR11ogsgBRmshaD0LwRMRZUUor46K0PHMuFYXISp5aKY0tixJ3TUGSRKiS8cKmrnBMeoZsBxD37wD6UBgNpsvD3cYOEpyw0IARBYxQwv7IXqgrs_5i45Epk7X0qtik-6-UGDoHXMuM_0K-IQOOH5IHHXSln1rtPCJ7vn5M7rbNLK-ekBl4HD3-Es0xO1a_vKOnyAFR1XQ0PjpldLFy2CrMb8Okal05Otpg-XpDkSLL2IaO-5OUT8n5rejzGdmvV7U_IDTBEeMFIJsc1o6JMWmeWdBrCXBEZuWAiF5b2nY85thO40L3BWs_dKtjjTrWsdCg4wGJdr9atzweN8w_REPs5iILdxhYbb7rzg114pXjwipWKLByDqtXF3u4SmZCp8MBUb0Z9TWnhkdVN7z-XW91Dd87_oljar-63GrOA6UhU_D056077IQUca4Ac7EX__3et-Te5Gwx1_PpyewluY93QplS_orsN5tL_xoQWFO8CR5Pybfb_sT-AJOIPnE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+ER-Localized+Protein+DFCP1+Modulates+ER-Lipid+Droplet+Contact+Formation&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Li%2C+Dongfang&rft.au=Zhao%2C+Yan+G.&rft.au=Li%2C+Di&rft.au=Zhao%2C+Hongyu&rft.date=2019-04-09&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=27&rft.issue=2&rft.spage=343&rft.epage=358.e5&rft_id=info:doi/10.1016%2Fj.celrep.2019.03.025&rft.externalDocID=S2211124719303419 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |