Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset
Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 4914 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
29.10.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in
MFN2
cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2 is unclear. Here, we present crystal structures of truncated human MFN2 in different nucleotide-loading states. Unlike other dynamin superfamily members including MFN1, MFN2 forms sustained dimers even after GTP hydrolysis via the GTPase domain (G) interface, which accounts for its high membrane-tethering efficiency. The biochemical discrepancy between human MFN2 and MFN1 largely derives from a primate-only single amino acid variance. MFN2 and MFN1 can form heterodimers via the G interface in a nucleotide-dependent manner. CMT2A-related mutations, mapping to different functional zones of MFN2, lead to changes in GTP hydrolysis and homo/hetero-association ability. Our study provides fundamental insight into how mitofusins mediate mitochondrial fusion and the ways their disruptions cause disease.
Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Here, authors report crystal structures of truncated human MFN2 in different nucleotide-loading states and show that MFN2 forms sustained dimers even after GTP hydrolysis. |
---|---|
AbstractList | Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2 is unclear. Here, we present crystal structures of truncated human MFN2 in different nucleotide-loading states. Unlike other dynamin superfamily members including MFN1, MFN2 forms sustained dimers even after GTP hydrolysis via the GTPase domain (G) interface, which accounts for its high membrane-tethering efficiency. The biochemical discrepancy between human MFN2 and MFN1 largely derives from a primate-only single amino acid variance. MFN2 and MFN1 can form heterodimers via the G interface in a nucleotide-dependent manner. CMT2A-related mutations, mapping to different functional zones of MFN2, lead to changes in GTP hydrolysis and homo/hetero-association ability. Our study provides fundamental insight into how mitofusins mediate mitochondrial fusion and the ways their disruptions cause disease.Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2 is unclear. Here, we present crystal structures of truncated human MFN2 in different nucleotide-loading states. Unlike other dynamin superfamily members including MFN1, MFN2 forms sustained dimers even after GTP hydrolysis via the GTPase domain (G) interface, which accounts for its high membrane-tethering efficiency. The biochemical discrepancy between human MFN2 and MFN1 largely derives from a primate-only single amino acid variance. MFN2 and MFN1 can form heterodimers via the G interface in a nucleotide-dependent manner. CMT2A-related mutations, mapping to different functional zones of MFN2, lead to changes in GTP hydrolysis and homo/hetero-association ability. Our study provides fundamental insight into how mitofusins mediate mitochondrial fusion and the ways their disruptions cause disease. Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2 is unclear. Here, we present crystal structures of truncated human MFN2 in different nucleotide-loading states. Unlike other dynamin superfamily members including MFN1, MFN2 forms sustained dimers even after GTP hydrolysis via the GTPase domain (G) interface, which accounts for its high membrane-tethering efficiency. The biochemical discrepancy between human MFN2 and MFN1 largely derives from a primate-only single amino acid variance. MFN2 and MFN1 can form heterodimers via the G interface in a nucleotide-dependent manner. CMT2A-related mutations, mapping to different functional zones of MFN2, lead to changes in GTP hydrolysis and homo/hetero-association ability. Our study provides fundamental insight into how mitofusins mediate mitochondrial fusion and the ways their disruptions cause disease. Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Here, authors report crystal structures of truncated human MFN2 in different nucleotide-loading states and show that MFN2 forms sustained dimers even after GTP hydrolysis. Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2 is unclear. Here, we present crystal structures of truncated human MFN2 in different nucleotide-loading states. Unlike other dynamin superfamily members including MFN1, MFN2 forms sustained dimers even after GTP hydrolysis via the GTPase domain (G) interface, which accounts for its high membrane-tethering efficiency. The biochemical discrepancy between human MFN2 and MFN1 largely derives from a primate-only single amino acid variance. MFN2 and MFN1 can form heterodimers via the G interface in a nucleotide-dependent manner. CMT2A-related mutations, mapping to different functional zones of MFN2, lead to changes in GTP hydrolysis and homo/hetero-association ability. Our study provides fundamental insight into how mitofusins mediate mitochondrial fusion and the ways their disruptions cause disease. Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the neurodegenerative disease Charcot-Marie-Tooth type 2A (CMT2A). The molecular basis underlying the physiological and pathological relevance of MFN2 is unclear. Here, we present crystal structures of truncated human MFN2 in different nucleotide-loading states. Unlike other dynamin superfamily members including MFN1, MFN2 forms sustained dimers even after GTP hydrolysis via the GTPase domain (G) interface, which accounts for its high membrane-tethering efficiency. The biochemical discrepancy between human MFN2 and MFN1 largely derives from a primate-only single amino acid variance. MFN2 and MFN1 can form heterodimers via the G interface in a nucleotide-dependent manner. CMT2A-related mutations, mapping to different functional zones of MFN2, lead to changes in GTP hydrolysis and homo/hetero-association ability. Our study provides fundamental insight into how mitofusins mediate mitochondrial fusion and the ways their disruptions cause disease. Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Here, authors report crystal structures of truncated human MFN2 in different nucleotide-loading states and show that MFN2 forms sustained dimers even after GTP hydrolysis. |
ArticleNumber | 4914 |
Author | Zhong, Ya-Ting Chen, Xiaoxue Qi, Yuanbo Luo, Li Cao, Yu-Lu Yu, Bing Lan, Lan Hu, Junjie Yang, Jie-Feng Chen, Shoudeng Feng, Jian-Xiong Li, Yu-Jie Meng, Shuxia Kang, Sisi Chan, David C. Gao, Song |
Author_xml | – sequence: 1 givenname: Yu-Jie orcidid: 0000-0002-8425-386X surname: Li fullname: Li, Yu-Jie organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 2 givenname: Yu-Lu orcidid: 0000-0002-5239-1184 surname: Cao fullname: Cao, Yu-Lu organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 3 givenname: Jian-Xiong surname: Feng fullname: Feng, Jian-Xiong organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 4 givenname: Yuanbo orcidid: 0000-0002-6589-3677 surname: Qi fullname: Qi, Yuanbo organization: Department of Genetics and Cell Biology, College of Life Sciences, Nankai University – sequence: 5 givenname: Shuxia surname: Meng fullname: Meng, Shuxia organization: Division of Biology and Biological Engineering, California Institute of Technology – sequence: 6 givenname: Jie-Feng surname: Yang fullname: Yang, Jie-Feng organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 7 givenname: Ya-Ting surname: Zhong fullname: Zhong, Ya-Ting organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 8 givenname: Sisi surname: Kang fullname: Kang, Sisi organization: Department of Experimental Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth affiliated Hospital, Sun Yat-sen University – sequence: 9 givenname: Xiaoxue surname: Chen fullname: Chen, Xiaoxue organization: Department of Experimental Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth affiliated Hospital, Sun Yat-sen University – sequence: 10 givenname: Lan surname: Lan fullname: Lan, Lan organization: National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 11 givenname: Li surname: Luo fullname: Luo, Li organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 12 givenname: Bing surname: Yu fullname: Yu, Bing organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center – sequence: 13 givenname: Shoudeng surname: Chen fullname: Chen, Shoudeng organization: Department of Experimental Medicine, Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth affiliated Hospital, Sun Yat-sen University – sequence: 14 givenname: David C. surname: Chan fullname: Chan, David C. organization: Division of Biology and Biological Engineering, California Institute of Technology – sequence: 15 givenname: Junjie orcidid: 0000-0003-4712-2243 surname: Hu fullname: Hu, Junjie organization: Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 16 givenname: Song orcidid: 0000-0001-7427-6681 surname: Gao fullname: Gao, Song email: gaosong@sysucc.org.cn organization: State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou Regenerative Medicine and Health Guangdong Laboratory |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31664033$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB_0D7BAkdiwCfg1sb1BqkZAKxUhQVlbjmPPeJTYxXYq8e-5nbTQdlFv_LjnfDq6vsfoIKboEHpD8AeCmfxYOOGdaDFRLaGK0Ba_QEcUc9ISQdnBg_MhOi1lh2ExRSTnr9AhI13HMWNH6MfPmmdb52zGJsQSNttamuSb7TyZ2EyhJj-XEFsK1Zr2D3ab4pADGG5LKTYmDs362xU9a1Isrr5GL70Zizu920_Qry-fr9bn7eX3rxfrs8vWrjiurZWUcO6pMp2wglpifS8E7xTrDFZ4wEQSYwTtvRp6o7jHnWDUK8OslGJl2Am6WLhDMjt9ncNk8h-dTND7h5Q32uQa7Og0BRgfbM88NtzhoWfcKC-kXGG4SQ-sTwvreu4nN1gXK3TkEfRxJYat3qQb3UmKgQOA93eAnH7PrlQ9hWLdOJro0lw0ZQTyr3jHQfruiXSX5hyhVXsVp1IRBaq3DxP9i3L_dSCQi8DmVEp2XttQTYUPgYBh1ATr20HRy6BoGBS9HxSNwUqfWO_pz5rYYiogjhuX_8d-xvUXtZDOww |
CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107740 crossref_primary_10_1212_WNL_0000000000200233 crossref_primary_10_12688_f1000research_53230_2 crossref_primary_10_12688_f1000research_53230_1 crossref_primary_10_1002_cac2_12428 crossref_primary_10_1002_cbin_11853 crossref_primary_10_1038_s41589_022_01224_y crossref_primary_10_1093_jb_mvad098 crossref_primary_10_1016_j_bbabio_2022_148913 crossref_primary_10_1016_j_tcb_2020_09_008 crossref_primary_10_1016_j_gendis_2023_101115 crossref_primary_10_3390_cells12141897 crossref_primary_10_7554_eLife_84235 crossref_primary_10_1007_s00395_023_01019_9 crossref_primary_10_3389_fcell_2021_781933 crossref_primary_10_1073_pnas_2313609121 crossref_primary_10_1111_jns_12564 crossref_primary_10_1016_j_isci_2023_107014 crossref_primary_10_3389_fcell_2022_868465 crossref_primary_10_1093_abbs_gmaa161 crossref_primary_10_1016_j_jbc_2021_101410 crossref_primary_10_1016_j_bbrc_2022_12_061 crossref_primary_10_1155_2022_1731701 crossref_primary_10_1016_j_mito_2023_02_001 crossref_primary_10_2174_1570180820666230911165225 crossref_primary_10_1016_j_celrep_2023_112011 crossref_primary_10_1093_nar_gkac768 crossref_primary_10_1097_HEP_0000000000000910 crossref_primary_10_1155_2022_8803404 crossref_primary_10_3389_fphys_2020_00782 crossref_primary_10_14336_AD_2023_0201 crossref_primary_10_1016_j_biopha_2024_116428 crossref_primary_10_1016_j_nbd_2025_106862 crossref_primary_10_3389_fendo_2020_00374 crossref_primary_10_3390_ijms21186841 crossref_primary_10_1002_JLB_1A0720_471R crossref_primary_10_1016_j_freeradbiomed_2023_11_008 crossref_primary_10_1002_1873_3468_14077 crossref_primary_10_1016_j_bbrc_2023_01_044 crossref_primary_10_3390_ijms222111569 crossref_primary_10_3389_fcell_2020_572182 crossref_primary_10_3389_fcell_2022_837337 crossref_primary_10_1016_j_celrep_2024_114304 crossref_primary_10_1016_j_jnutbio_2023_109559 crossref_primary_10_26508_lsa_202101305 crossref_primary_10_3390_cells13211773 crossref_primary_10_1016_j_molcel_2023_07_021 crossref_primary_10_3389_fmolb_2021_681237 crossref_primary_10_1080_1028415X_2020_1829344 crossref_primary_10_3389_fnins_2022_1075141 crossref_primary_10_1007_s00018_022_04386_z crossref_primary_10_1002_jcb_30138 crossref_primary_10_1016_j_yexcr_2021_112758 crossref_primary_10_1016_j_jep_2025_119639 crossref_primary_10_1038_s41419_024_06691_w crossref_primary_10_1038_s41598_021_99887_5 crossref_primary_10_1186_s11658_024_00572_y crossref_primary_10_1016_j_drudis_2021_11_006 crossref_primary_10_1038_s42003_022_03632_1 crossref_primary_10_1016_j_arr_2023_101920 crossref_primary_10_52601_bpr_2024_240037 crossref_primary_10_1007_s00232_022_00267_5 crossref_primary_10_31146_1682_8658_ecg_228_8_143_157 crossref_primary_10_3389_fcell_2023_1244313 crossref_primary_10_1212_NXG_0000000000200114 crossref_primary_10_1124_jpet_122_001332 crossref_primary_10_1016_j_gene_2023_147684 crossref_primary_10_1097_WNO_0000000000001404 crossref_primary_10_1038_s41580_024_00785_1 crossref_primary_10_3390_cells9040815 crossref_primary_10_1016_j_chembiol_2023_02_002 crossref_primary_10_1038_s41467_022_31324_1 crossref_primary_10_2169_internalmedicine_6487_20 crossref_primary_10_1016_j_bbabio_2020_148302 crossref_primary_10_3389_fbinf_2021_660936 crossref_primary_10_1016_j_biopha_2021_111612 crossref_primary_10_1021_acs_biochem_2c00061 crossref_primary_10_3389_fmolb_2024_1354682 crossref_primary_10_1126_sciimmunol_abq2424 crossref_primary_10_3389_fgene_2022_866473 crossref_primary_10_26508_lsa_201900527 crossref_primary_10_3233_JAD_220829 crossref_primary_10_1021_acschembio_1c00456 crossref_primary_10_1038_s41598_021_81469_0 crossref_primary_10_1242_dmm_048912 crossref_primary_10_1021_acs_jcim_3c01361 crossref_primary_10_3390_biology10040268 crossref_primary_10_1159_000530485 crossref_primary_10_1038_s42003_022_03377_x crossref_primary_10_3390_ijms25179475 crossref_primary_10_1038_s41467_023_42521_x crossref_primary_10_1097_WNO_0000000000001100 crossref_primary_10_3390_biom13081225 crossref_primary_10_1038_s41598_025_93702_1 crossref_primary_10_1016_j_yjmcc_2020_04_016 crossref_primary_10_3390_biom15030433 crossref_primary_10_3390_antiox12112007 crossref_primary_10_1242_jcs_257808 crossref_primary_10_1016_j_ijbiomac_2024_134673 crossref_primary_10_3390_ijms25084566 crossref_primary_10_1016_j_mitoco_2023_03_001 crossref_primary_10_7554_eLife_82283 crossref_primary_10_3389_fendo_2023_1160155 |
Cites_doi | 10.1016/j.molcel.2016.04.010 10.1073/pnas.1208385109 10.1016/j.molcel.2010.11.030 10.1093/nar/gkw408 10.1126/science.1099793 10.1126/science.1231031 10.1007/s41365-018-0398-9 10.1016/S0962-8924(01)02246-2 10.2337/diabetes.54.9.2685 10.1016/j.molcel.2016.02.022 10.1016/j.cell.2009.11.003 10.1107/S0907444996012255 10.1126/science.aao1785 10.1073/pnas.1101643108 10.1038/nrm1313 10.1126/science.283.5407.1493 10.1038/ncomms15744 10.1073/pnas.1504880112 10.1523/JNEUROSCI.6248-09.2010 10.1083/jcb.200211046 10.1126/science.1219855 10.1242/jcs.01565 10.1161/CIRCRESAHA.112.274142 10.1083/jcb.200809125 10.1093/jb/mvg150 10.1107/S0907444909047337 10.1083/jcb.201609019 10.1038/nature07534 10.1107/S0907444909042073 10.1083/jcb.201511036 10.1073/pnas.1108220109 10.1093/nar/gkz268 10.1038/s41419-017-0023-6 10.1038/s41467-018-05523-8 10.1001/archneurol.2009.284 10.1038/cddis.2016.173 10.1038/nature21077 10.1083/jcb.200611080 10.1038/nature12985 10.1038/s41594-018-0034-8 10.1093/hmg/dds352 10.1146/annurev-genet-110410-132529 10.1093/hmg/ddv229 10.1038/s41586-018-0201-4 10.1073/pnas.1012792108 10.1096/fj.13-230037 10.1107/S0021889897006766 10.1073/pnas.0913485107 10.1107/S0907444909052925 10.1038/ng1341 10.1161/CIRCRESAHA.111.258723 10.1038/nature09032 10.1107/S0021889892009944 10.1074/jbc.M112.359174 10.1107/S0907444904019158 10.1016/j.cell.2013.09.003 10.1523/JNEUROSCI.1357-09.2009 10.7554/eLife.14618 10.1242/jcs.114.5.867 10.15252/embr.201745241 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-12912-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_20184dcb3f0a4e0db34a9f78850e0d8f PMC6820788 31664033 10_1038_s41467_019_12912_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Innovative Team Program of Guangzhou Regenerative Medicine and Health Guangdong Laboratory (2018GZR110103002) to S.G., the National Institutes of Health (GM110039 and GM119388) to D.C.C., and National Natural Science Foundation of China (81802730) to Y.-L.C. – fundername: Natural Science Foundation of Guangdong Province (Guangdong Natural Science Foundation) grantid: 2014TQ01R584 and 2014A030312015 funderid: https://doi.org/10.13039/501100003453 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31722016, 31470729, 81772977 funderid: https://doi.org/10.13039/501100001809 – fundername: NIGMS NIH HHS grantid: R01 GM110039 – fundername: NIGMS NIH HHS grantid: R35 GM127147 – fundername: NIGMS NIH HHS grantid: R01 GM119388 – fundername: ; grantid: 31722016, 31470729, 81772977 – fundername: ; – fundername: ; grantid: 2014TQ01R584 and 2014A030312015 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-c82144f29a67c72c1cfb7746936a090d0181aa72bf9dba94f06732f9a3c8875a3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:25 EDT 2025 Thu Aug 21 13:38:27 EDT 2025 Tue Aug 05 11:29:46 EDT 2025 Wed Aug 13 04:44:57 EDT 2025 Mon Jul 21 06:03:37 EDT 2025 Tue Jul 01 04:08:45 EDT 2025 Thu Apr 24 23:11:48 EDT 2025 Fri Feb 21 02:38:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-c82144f29a67c72c1cfb7746936a090d0181aa72bf9dba94f06732f9a3c8875a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7427-6681 0000-0002-6589-3677 0000-0002-5239-1184 0000-0002-8425-386X 0000-0003-4712-2243 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-12912-0 |
PMID | 31664033 |
PQID | 2310428919 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_20184dcb3f0a4e0db34a9f78850e0d8f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6820788 proquest_miscellaneous_2310675464 proquest_journals_2310428919 pubmed_primary_31664033 crossref_citationtrail_10_1038_s41467_019_12912_0 crossref_primary_10_1038_s41467_019_12912_0 springer_journals_10_1038_s41467_019_12912_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-29 |
PublicationDateYYYYMMDD | 2019-10-29 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-29 day: 29 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Santel, Fuller (CR7) 2001; 114 Detmer, Chan (CR41) 2007; 176 Chen, Dorn (CR16) 2013; 340 Qi (CR31) 2016; 215 Eura, Ishihara, Yokota, Mihara (CR34) 2003; 134 CR39 de Brito, Scorrano (CR13) 2008; 456 Yaffe (CR4) 1999; 283 Sebastian (CR18) 2012; 109 Celardo (CR25) 2016; 7 Lee (CR24) 2012; 21 Cao (CR32) 2017; 542 Chan (CR5) 2012; 46 Ishihara, Eura, Mihara (CR11) 2004; 117 Chen (CR42) 2017; 8 Chen (CR20) 2014; 28 Yan (CR33) 2018; 25 Madeira (CR60) 2019; 47 Shaw, Nunnari (CR1) 2002; 12 Rocha (CR35) 2018; 360 Hoppins (CR49) 2011; 41 CR48 Calvo (CR50) 2009; 66 Laskowski, MacArthur, Moss, Thornton (CR59) 1993; 26 Schrepfer, Scorrano (CR21) 2016; 61 Misko, Jiang, Wegorzewska, Milbrandt, Baloh (CR19) 2010; 30 Adams (CR57) 2010; 66 Emsley, Cowtan (CR55) 2004; 60 Wang (CR23) 2009; 29 Koshiba (CR10) 2004; 305 Byrnes, Sondermann (CR38) 2011; 108 Bian (CR37) 2011; 108 Youle, van der Bliek (CR2) 2012; 337 Chen (CR58) 2010; 66 Low, Sachse, Amos, Löwe (CR43) 2009; 139 Liu, Noel, Low (CR44) 2018; 9 Sawyer (CR40) 2015; 24 Hunkeler (CR47) 2018; 558 Murshudov, Vagin, Dodson (CR56) 1997; 53 Kumar (CR45) 2016; 62 Mishra, Chan (CR3) 2016; 212 Chen, Liu, Dorn (CR26) 2011; 109 Vagin, Teplyakov (CR54) 1997; 30 Filadi (CR12) 2015; 112 Chen (CR9) 2003; 160 Ashkenazy (CR61) 2016; 44 Bach (CR28) 2005; 54 Liu (CR51) 2012; 109 Chappie, Acharya, Leonard, Schmid, Dyda (CR36) 2010; 465 Praefcke, McMahon (CR8) 2004; 5 Wang (CR52) 2018; 29 Ziviani, Tao, Whitworth (CR15) 2010; 107 Schneeberger (CR29) 2013; 155 Friedman, Nunnari (CR6) 2014; 505 Ishihara, Maeda, Ban, Mihara (CR46) 2017; 162 Papanicolaou (CR27) 2012; 111 Züchner (CR22) 2004; 36 Ngoh, Papanicolaou, Walsh (CR17) 2012; 287 Kabsch (CR53) 2010; 66 Filadi, Pendin, Pizzo (CR30) 2018; 9 Narendra, Tanaka, Suen, Youle (CR14) 2008; 183 A Misko (12912_CR19) 2010; 30 KH Chen (12912_CR20) 2014; 28 X Wang (12912_CR23) 2009; 29 T Koshiba (12912_CR10) 2004; 305 E Ziviani (12912_CR15) 2010; 107 Y Eura (12912_CR34) 2003; 134 N Ishihara (12912_CR46) 2017; 162 12912_CR48 S Hoppins (12912_CR49) 2011; 41 JR Friedman (12912_CR6) 2014; 505 J Calvo (12912_CR50) 2009; 66 X Bian (12912_CR37) 2011; 108 D Narendra (12912_CR14) 2008; 183 S Lee (12912_CR24) 2012; 21 M Hunkeler (12912_CR47) 2018; 558 Y Chen (12912_CR16) 2013; 340 KN Papanicolaou (12912_CR27) 2012; 111 A Santel (12912_CR7) 2001; 114 E Schrepfer (12912_CR21) 2016; 61 VB Chen (12912_CR58) 2010; 66 TY Liu (12912_CR51) 2012; 109 HH Low (12912_CR43) 2009; 139 MP Yaffe (12912_CR4) 1999; 283 JS Chappie (12912_CR36) 2010; 465 W Kabsch (12912_CR53) 2010; 66 GN Murshudov (12912_CR56) 1997; 53 Y Qi (12912_CR31) 2016; 215 Y Chen (12912_CR26) 2011; 109 R Filadi (12912_CR30) 2018; 9 AG Rocha (12912_CR35) 2018; 360 SA Detmer (12912_CR41) 2007; 176 L Yan (12912_CR33) 2018; 25 A Vagin (12912_CR54) 1997; 30 YL Cao (12912_CR32) 2017; 542 GJ Praefcke (12912_CR8) 2004; 5 GA Ngoh (12912_CR17) 2012; 287 LJ Byrnes (12912_CR38) 2011; 108 Q-S Wang (12912_CR52) 2018; 29 D Sebastian (12912_CR18) 2012; 109 P Emsley (12912_CR55) 2004; 60 S Kumar (12912_CR45) 2016; 62 JM Shaw (12912_CR1) 2002; 12 Y Chen (12912_CR42) 2017; 8 H Chen (12912_CR9) 2003; 160 PD Adams (12912_CR57) 2010; 66 F Madeira (12912_CR60) 2019; 47 H Ashkenazy (12912_CR61) 2016; 44 SL Sawyer (12912_CR40) 2015; 24 RJ Youle (12912_CR2) 2012; 337 N Ishihara (12912_CR11) 2004; 117 D Bach (12912_CR28) 2005; 54 P Mishra (12912_CR3) 2016; 212 OM de Brito (12912_CR13) 2008; 456 R Filadi (12912_CR12) 2015; 112 M Schneeberger (12912_CR29) 2013; 155 DC Chan (12912_CR5) 2012; 46 J Liu (12912_CR44) 2018; 9 RA Laskowski (12912_CR59) 1993; 26 12912_CR39 S Züchner (12912_CR22) 2004; 36 I Celardo (12912_CR25) 2016; 7 |
References_xml | – volume: 62 start-page: 520 year: 2016 end-page: 531 ident: CR45 article-title: Activation of mitofusin2 by Smad2-RIN1 complex during mitochondrial fusion publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.010 – volume: 109 start-page: E2146 year: 2012 end-page: E2154 ident: CR51 article-title: Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1208385109 – volume: 41 start-page: 150 year: 2011 end-page: 160 ident: CR49 article-title: The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.030 – volume: 44 start-page: W344 issue: W1 year: 2016 end-page: W350 ident: CR61 article-title: ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw408 – volume: 305 start-page: 858 year: 2004 end-page: 862 ident: CR10 article-title: Structural basis of mitochondrial tethering by mitofusin complexes publication-title: Science doi: 10.1126/science.1099793 – ident: CR39 – volume: 340 start-page: 471 year: 2013 end-page: 475 ident: CR16 article-title: PINK1-phosphorylated mitofusin 2 is a parkin receptor for culling damaged mitochondria publication-title: Science doi: 10.1126/science.1231031 – volume: 29 year: 2018 ident: CR52 article-title: Upgrade of macromolecular crystallography beamline BL17U1 at SSRF publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-018-0398-9 – volume: 12 start-page: 178 year: 2002 end-page: 184 ident: CR1 article-title: Mitochondrial dynamics and division in budding yeast publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(01)02246-2 – volume: 54 start-page: 2685 year: 2005 end-page: 2693 ident: CR28 article-title: Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6 publication-title: Diabetes doi: 10.2337/diabetes.54.9.2685 – volume: 61 start-page: 683 year: 2016 end-page: 694 ident: CR21 article-title: Mitofusins, from Mitochondria to Metabolism publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.022 – volume: 139 start-page: 1342 year: 2009 end-page: 1352 ident: CR43 article-title: Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving publication-title: Cell doi: 10.1016/j.cell.2009.11.003 – volume: 53 start-page: 240 issue: Pt 3 year: 1997 end-page: 255 ident: CR56 article-title: Refinement of macromolecular structures by the maximum-likelihood method publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444996012255 – volume: 360 start-page: 336 year: 2018 end-page: 341 ident: CR35 article-title: MFN2 agonists reverse mitochondrial defects in preclinical models of Charcot-Marie-Tooth disease type 2A publication-title: Science doi: 10.1126/science.aao1785 – volume: 108 start-page: 3976 year: 2011 end-page: 3981 ident: CR37 article-title: Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1101643108 – volume: 5 start-page: 133 year: 2004 end-page: 147 ident: CR8 article-title: The dynamin superfamily: universal membrane tubulation and fission molecules? publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1313 – volume: 283 start-page: 1493 year: 1999 end-page: 1497 ident: CR4 article-title: The machinery of mitochondrial inheritance and behavior publication-title: Science doi: 10.1126/science.283.5407.1493 – volume: 8 year: 2017 ident: CR42 article-title: Conformational dynamics of dynamin-like MxA revealed by single-molecule FRET publication-title: Nat. Commun. doi: 10.1038/ncomms15744 – volume: 112 start-page: E2174 year: 2015 end-page: E2181 ident: CR12 article-title: Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling publication-title: Proc. Natl Acad. Sci. US doi: 10.1073/pnas.1504880112 – volume: 30 start-page: 4232 year: 2010 end-page: 4240 ident: CR19 article-title: Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6248-09.2010 – volume: 160 start-page: 189 year: 2003 end-page: 200 ident: CR9 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J. Cell Biol. doi: 10.1083/jcb.200211046 – volume: 337 start-page: 1062 year: 2012 end-page: 1065 ident: CR2 article-title: Mitochondrial fission, fusion, and stress publication-title: Science doi: 10.1126/science.1219855 – volume: 162 start-page: 287 year: 2017 end-page: 294 ident: CR46 article-title: Cell-free mitochondrial fusion assay detected by specific protease reaction revealed Ca2+ as regulator of mitofusin-dependent mitochondrial fusion publication-title: J. Biochem. – volume: 117 start-page: 6535 issue: Pt 26 year: 2004 end-page: 6546 ident: CR11 article-title: Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity publication-title: J. Cell. Sci. doi: 10.1242/jcs.01565 – volume: 111 start-page: 1012 year: 2012 end-page: 1026 ident: CR27 article-title: Mitofusins 1 and 2 are essential for postnatal metabolic remodeling in heart publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.274142 – volume: 183 start-page: 795 year: 2008 end-page: 803 ident: CR14 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 134 start-page: 333 year: 2003 end-page: 344 ident: CR34 article-title: Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion publication-title: J. Biochem. doi: 10.1093/jb/mvg150 – volume: 66 start-page: 125 issue: Pt 2 year: 2010 end-page: 132 ident: CR53 article-title: Xds publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444909047337 – volume: 215 start-page: 621 year: 2016 end-page: 629 ident: CR31 article-title: Structures of human mitofusin 1 provide insight into mitochondrial tethering publication-title: J. Cell. Biol. doi: 10.1083/jcb.201609019 – volume: 456 start-page: 605 year: 2008 end-page: 610 ident: CR13 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature doi: 10.1038/nature07534 – volume: 66 start-page: 12 issue: Pt 1 year: 2010 end-page: 21 ident: CR58 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 212 start-page: 379 year: 2016 end-page: 387 ident: CR3 article-title: Metabolic regulation of mitochondrial dynamics publication-title: J. Cell Biol. doi: 10.1083/jcb.201511036 – volume: 109 start-page: 5523 year: 2012 end-page: 5528 ident: CR18 article-title: Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1108220109 – volume: 47 start-page: W636 issue: W1 year: 2019 end-page: W641 ident: CR60 article-title: The EMBL-EBI search and sequence analysis tools APIs in 2019 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz268 – volume: 9 start-page: 330 year: 2018 ident: CR30 article-title: Mitofusin 2: from functions to disease publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0023-6 – volume: 9 year: 2018 ident: CR44 article-title: Structural basis for membrane tethering by a bacterial dynamin-like pair publication-title: Nat. Commun. doi: 10.1038/s41467-018-05523-8 – volume: 66 start-page: 1511 year: 2009 end-page: 1516 ident: CR50 article-title: Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations publication-title: Arch. Neurol. doi: 10.1001/archneurol.2009.284 – volume: 7 start-page: e2271 year: 2016 ident: CR25 article-title: Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson’s disease publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.173 – volume: 542 start-page: 372 year: 2017 end-page: 376 ident: CR32 article-title: MFN1 structures reveal nucleotide-triggered dimerization critical for mitochondrial fusion publication-title: Nature doi: 10.1038/nature21077 – volume: 176 start-page: 405 year: 2007 end-page: 414 ident: CR41 article-title: Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations publication-title: J. Cell Biol. doi: 10.1083/jcb.200611080 – volume: 505 start-page: 335 year: 2014 end-page: 343 ident: CR6 article-title: Mitochondrial form and function publication-title: Nature doi: 10.1038/nature12985 – volume: 25 start-page: 233 year: 2018 end-page: 243 ident: CR33 article-title: Structural basis for GTP hydrolysis and conformational change of MFN1 in mediating membrane fusion publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0034-8 – volume: 21 start-page: 4827 year: 2012 end-page: 4835 ident: CR24 article-title: Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds352 – volume: 46 start-page: 265 year: 2012 end-page: 287 ident: CR5 article-title: Fusion and fission: interlinked processes critical for mitochondrial health publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132529 – volume: 24 start-page: 5109 year: 2015 end-page: 5114 ident: CR40 article-title: Homozygous mutations in MFN2 cause multiple symmetric lipomatosis associated with neuropathy publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv229 – volume: 558 start-page: 470 year: 2018 end-page: 474 ident: CR47 article-title: Structural basis for regulation of human acetyl-CoA carboxylase publication-title: Nature doi: 10.1038/s41586-018-0201-4 – ident: CR48 – volume: 108 start-page: 2216 year: 2011 end-page: 2221 ident: CR38 article-title: Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1012792108 – volume: 28 start-page: 382 year: 2014 end-page: 394 ident: CR20 article-title: Role of mitofusin 2 (Mfn2) in controlling cellular proliferation publication-title: FASEB J. doi: 10.1096/fj.13-230037 – volume: 30 start-page: 1022 year: 1997 end-page: 1025 ident: CR54 article-title: : an automated program for molecular replacement publication-title: J. Appl Cryst. doi: 10.1107/S0021889897006766 – volume: 107 start-page: 5018 year: 2010 end-page: 5023 ident: CR15 article-title: Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.0913485107 – volume: 66 start-page: 213 issue: Pt 2 year: 2010 end-page: 221 ident: CR57 article-title: PHENIX: a comprehensive python-based system for macromolecular structure solution publication-title: Acta Crystallogr. Sect. D., Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 36 start-page: 449 year: 2004 end-page: 451 ident: CR22 article-title: Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A publication-title: Nat. Genet. doi: 10.1038/ng1341 – volume: 114 start-page: 867 issue: Pt 5 year: 2001 end-page: 874 ident: CR7 article-title: Control of mitochondrial morphology by a human mitofusin publication-title: J. Cell. Sci. – volume: 109 start-page: 1327 year: 2011 end-page: 1331 ident: CR26 article-title: Mitochondrial fusion is essential for organelle function and cardiac homeostasis publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.258723 – volume: 465 start-page: 435 year: 2010 end-page: 440 ident: CR36 article-title: G domain dimerization controls dynamin’s assembly-stimulated GTPase activity publication-title: Nature doi: 10.1038/nature09032 – volume: 26 start-page: 283 year: 1993 end-page: 291 ident: CR59 article-title: : a program to check the stereochemical quality of protein structures publication-title: J. Appl. Cryst. doi: 10.1107/S0021889892009944 – volume: 287 start-page: 20321 year: 2012 end-page: 20332 ident: CR17 article-title: Loss of mitofusin 2 promotes endoplasmic reticulum stress publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.359174 – volume: 60 start-page: 2126 issue: Pt 12 Pt 1 year: 2004 end-page: 2132 ident: CR55 article-title: Coot: model-building tools for molecular graphics publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 155 start-page: 172 year: 2013 end-page: 187 ident: CR29 article-title: Mitofusin 2 in POMC neurons connects ER stress with leptin resistance and energy imbalance publication-title: Cell doi: 10.1016/j.cell.2013.09.003 – volume: 29 start-page: 9090 year: 2009 end-page: 9103 ident: CR23 article-title: Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1357-09.2009 – volume: 109 start-page: 1327 year: 2011 ident: 12912_CR26 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.111.258723 – ident: 12912_CR48 doi: 10.7554/eLife.14618 – volume: 183 start-page: 795 year: 2008 ident: 12912_CR14 publication-title: J. Cell Biol. doi: 10.1083/jcb.200809125 – volume: 134 start-page: 333 year: 2003 ident: 12912_CR34 publication-title: J. Biochem. doi: 10.1093/jb/mvg150 – volume: 215 start-page: 621 year: 2016 ident: 12912_CR31 publication-title: J. Cell. Biol. doi: 10.1083/jcb.201609019 – volume: 12 start-page: 178 year: 2002 ident: 12912_CR1 publication-title: Trends Cell Biol. doi: 10.1016/S0962-8924(01)02246-2 – volume: 21 start-page: 4827 year: 2012 ident: 12912_CR24 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds352 – volume: 24 start-page: 5109 year: 2015 ident: 12912_CR40 publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddv229 – volume: 287 start-page: 20321 year: 2012 ident: 12912_CR17 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.359174 – volume: 283 start-page: 1493 year: 1999 ident: 12912_CR4 publication-title: Science doi: 10.1126/science.283.5407.1493 – volume: 340 start-page: 471 year: 2013 ident: 12912_CR16 publication-title: Science doi: 10.1126/science.1231031 – volume: 44 start-page: W344 issue: W1 year: 2016 ident: 12912_CR61 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw408 – volume: 28 start-page: 382 year: 2014 ident: 12912_CR20 publication-title: FASEB J. doi: 10.1096/fj.13-230037 – volume: 54 start-page: 2685 year: 2005 ident: 12912_CR28 publication-title: Diabetes doi: 10.2337/diabetes.54.9.2685 – volume: 114 start-page: 867 issue: Pt 5 year: 2001 ident: 12912_CR7 publication-title: J. Cell. Sci. doi: 10.1242/jcs.114.5.867 – volume: 5 start-page: 133 year: 2004 ident: 12912_CR8 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm1313 – volume: 111 start-page: 1012 year: 2012 ident: 12912_CR27 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.112.274142 – volume: 26 start-page: 283 year: 1993 ident: 12912_CR59 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889892009944 – volume: 61 start-page: 683 year: 2016 ident: 12912_CR21 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.02.022 – volume: 360 start-page: 336 year: 2018 ident: 12912_CR35 publication-title: Science doi: 10.1126/science.aao1785 – volume: 305 start-page: 858 year: 2004 ident: 12912_CR10 publication-title: Science doi: 10.1126/science.1099793 – volume: 66 start-page: 12 issue: Pt 1 year: 2010 ident: 12912_CR58 publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444909042073 – volume: 456 start-page: 605 year: 2008 ident: 12912_CR13 publication-title: Nature doi: 10.1038/nature07534 – volume: 7 start-page: e2271 year: 2016 ident: 12912_CR25 publication-title: Cell Death Dis. doi: 10.1038/cddis.2016.173 – volume: 47 start-page: W636 issue: W1 year: 2019 ident: 12912_CR60 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz268 – volume: 9 start-page: 330 year: 2018 ident: 12912_CR30 publication-title: Cell Death Dis. doi: 10.1038/s41419-017-0023-6 – volume: 155 start-page: 172 year: 2013 ident: 12912_CR29 publication-title: Cell doi: 10.1016/j.cell.2013.09.003 – volume: 112 start-page: E2174 year: 2015 ident: 12912_CR12 publication-title: Proc. Natl Acad. Sci. US doi: 10.1073/pnas.1504880112 – volume: 107 start-page: 5018 year: 2010 ident: 12912_CR15 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.0913485107 – volume: 109 start-page: E2146 year: 2012 ident: 12912_CR51 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1208385109 – volume: 212 start-page: 379 year: 2016 ident: 12912_CR3 publication-title: J. Cell Biol. doi: 10.1083/jcb.201511036 – volume: 139 start-page: 1342 year: 2009 ident: 12912_CR43 publication-title: Cell doi: 10.1016/j.cell.2009.11.003 – volume: 9 year: 2018 ident: 12912_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05523-8 – volume: 505 start-page: 335 year: 2014 ident: 12912_CR6 publication-title: Nature doi: 10.1038/nature12985 – volume: 542 start-page: 372 year: 2017 ident: 12912_CR32 publication-title: Nature doi: 10.1038/nature21077 – volume: 66 start-page: 125 issue: Pt 2 year: 2010 ident: 12912_CR53 publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444909047337 – volume: 117 start-page: 6535 issue: Pt 26 year: 2004 ident: 12912_CR11 publication-title: J. Cell. Sci. doi: 10.1242/jcs.01565 – volume: 29 start-page: 9090 year: 2009 ident: 12912_CR23 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1357-09.2009 – volume: 108 start-page: 3976 year: 2011 ident: 12912_CR37 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1101643108 – volume: 41 start-page: 150 year: 2011 ident: 12912_CR49 publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.11.030 – volume: 176 start-page: 405 year: 2007 ident: 12912_CR41 publication-title: J. Cell Biol. doi: 10.1083/jcb.200611080 – volume: 53 start-page: 240 issue: Pt 3 year: 1997 ident: 12912_CR56 publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444996012255 – volume: 160 start-page: 189 year: 2003 ident: 12912_CR9 publication-title: J. Cell Biol. doi: 10.1083/jcb.200211046 – volume: 29 year: 2018 ident: 12912_CR52 publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-018-0398-9 – volume: 30 start-page: 4232 year: 2010 ident: 12912_CR19 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.6248-09.2010 – volume: 465 start-page: 435 year: 2010 ident: 12912_CR36 publication-title: Nature doi: 10.1038/nature09032 – volume: 30 start-page: 1022 year: 1997 ident: 12912_CR54 publication-title: J. Appl Cryst. doi: 10.1107/S0021889897006766 – ident: 12912_CR39 doi: 10.15252/embr.201745241 – volume: 62 start-page: 520 year: 2016 ident: 12912_CR45 publication-title: Mol. Cell doi: 10.1016/j.molcel.2016.04.010 – volume: 66 start-page: 1511 year: 2009 ident: 12912_CR50 publication-title: Arch. Neurol. doi: 10.1001/archneurol.2009.284 – volume: 60 start-page: 2126 issue: Pt 12 Pt 1 year: 2004 ident: 12912_CR55 publication-title: Acta Crystallogr. D. Biol. Crystallogr. doi: 10.1107/S0907444904019158 – volume: 109 start-page: 5523 year: 2012 ident: 12912_CR18 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1108220109 – volume: 8 year: 2017 ident: 12912_CR42 publication-title: Nat. Commun. doi: 10.1038/ncomms15744 – volume: 558 start-page: 470 year: 2018 ident: 12912_CR47 publication-title: Nature doi: 10.1038/s41586-018-0201-4 – volume: 162 start-page: 287 year: 2017 ident: 12912_CR46 publication-title: J. Biochem. – volume: 66 start-page: 213 issue: Pt 2 year: 2010 ident: 12912_CR57 publication-title: Acta Crystallogr. Sect. D., Biol. Crystallogr. doi: 10.1107/S0907444909052925 – volume: 337 start-page: 1062 year: 2012 ident: 12912_CR2 publication-title: Science doi: 10.1126/science.1219855 – volume: 25 start-page: 233 year: 2018 ident: 12912_CR33 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-018-0034-8 – volume: 108 start-page: 2216 year: 2011 ident: 12912_CR38 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1012792108 – volume: 46 start-page: 265 year: 2012 ident: 12912_CR5 publication-title: Annu. Rev. Genet. doi: 10.1146/annurev-genet-110410-132529 – volume: 36 start-page: 449 year: 2004 ident: 12912_CR22 publication-title: Nat. Genet. doi: 10.1038/ng1341 |
SSID | ssj0000391844 |
Score | 2.5950022 |
Snippet | Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in
MFN2
cause the... Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Mutations in MFN2 cause the... Mitofusin-2 (MFN2) is a dynamin-like GTPase that plays a central role in regulating mitochondrial fusion and cell metabolism. Here, authors report crystal... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4914 |
SubjectTerms | 14/19 38/70 631/45/173 631/535/1266 631/80/642/333 692/699/375/365 82/80 82/83 Amino acids Cell fusion Charcot-Marie-Tooth disease Charcot-Marie-Tooth Disease - enzymology Charcot-Marie-Tooth Disease - genetics Charcot-Marie-Tooth Disease - physiopathology Crystal structure Dimerization Dimers Dynamin GTP Phosphohydrolases - chemistry GTP Phosphohydrolases - genetics GTP Phosphohydrolases - metabolism Guanosine triphosphatases Guanosine triphosphate Guanosine Triphosphate - metabolism Humanities and Social Sciences Humans Hydrolysis Mapping Mitochondria Mitochondria - chemistry Mitochondria - enzymology Mitochondria - genetics Mitochondrial Dynamics Mitochondrial Membrane Transport Proteins - chemistry Mitochondrial Membrane Transport Proteins - genetics Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Proteins - chemistry Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism multidisciplinary Mutation Neurodegenerative diseases Nucleotides Protein Domains Science Science (multidisciplinary) Tethering |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI9XNtlQjedDGbr90ca7EUQQ_aQm9hkmywoNnCex78753J7nv2-XnxuPlYhsnMZIaZ_Iax58ZA73Ki52cWAxTTQRsG1bWhAz1o1KdurGif7-3puX57YS6utfqimrAZHnhmHAbnGIOkGFQWoEeRgtLgMgZuRuDXkMn64p13LZiqNlg53KaXVzJCDa9WutoE9GhavOKoHmHnJqqA_b_zMn8tlvwpY1ovopM77PbiQfKjmfJ9dmMsd9nNuafkt3vsw8eKCEtoGvyyrCj2XvEp89qMj39BBc5U695KnF1PdQAtYEkkiJympsKhJH787kwecaq1Xt9n5ydvzo5P26VxQhvRAVu3cSAgtCwd2D72MnYxB3TzrFMWhBOJQLoAehmySwGcztStRmYHKqLNMaAesL0ylfER43hckPAXEsBoSC6YEAfoLaUF5GhEw7oNE31cUMWpucVnX7PbavAz4z0y3lfGe9zzYrvnasbU-Ovq13Q225WEh10HUEr8IiX-X1LSsMPNyfpFSVeeXFuMvlznGvZsO43qRTkTKOP0dV6DMZW2umEPZ0HYUqI6a7VQqmH9jojskLo7Uy4_VQhvi44XUtewlxth-kHWn1nx-H-w4oDdklULRCvdIdtDoRyfoGO1Dk-rDn0HxccdJw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLxZtAQUbiBlETvxKfUKlYKiQ4QCv1Zo2dGCpB0pLlwL9nxvGmWh49JnYiZzwz_uyZfMPYC62hsbGj388MblB0DaVvZV36GlSr0J7qPrF9fjRHJ-r9qT7NB25TTqvc-MTkqLsx0Bn5PuEQhMq2tq_PL0qqGkXR1VxC4zq7UeNKQyld7erdcsZC7OetUvlfmUq2-5NKngFxTYkLHWUlbK1Hibb_X1jz75TJP-KmaTla3Wa7GUfyg3ni77Br_XCX3ZwrS_66xz59TrywxKnBz4aJduATHyNPJfn4dzTjSBnvpcDW9ZhuoB8cOlJHTk3jwGHo-OGHY3HAKeN6fZ-drN4eHx6VuXxCGRCGrcvQEh1aFBZMExoR6hA9gj1jpYHKVh1RdQE0wkfbebAqUs0aES3IgJ5Hg3zAdoZx6B8xjpMGHb5CAGgFnfXahxYaQ8EB0euqYPVGiC5kbnEqcfHNpRi3bN0seIeCd0nwDp95uTxzPjNrXNn7Dc3N0pNYsdON8ccXl43MIZhB_QpexgpUX3VeKrARN_m6wqs2FmxvM7Mum-rkLhWrYM-XZjQyipzA0I8_5z64s1JGFezhrAjLSGRtjKqkLFizpSJbQ91uGc6-JiJvg_ALR1ewVxtluhzW_0Xx-OqveMJuiaTfVSnsHttBdeufInBa-2fJOn4DNsMUNw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CBRmJG0QkfiU-LhVVtRIcaCv1Zo2TGCqVBLHLgX_PjPNACwWJY2I7Go2_sWfi8TcAL43BysWWr59ZClBMiXmoVZmHEnWtyZ7KLrF9frAn53p9YS72QM53YVLSfqK0TMv0nB32ZqOTSZNDktMOxekEN-CAqdoJ2wer1fp0vfxZYc7zWuvphkyh6msG7-xCiaz_Og_zz0TJ305L0yZ0fAduT96jWI3y3oW9rr8HN8d6kj_uw8fTxAbLTBrist9w3L0RQxSpEJ_4QsYbOc89l9S6HdILWv36lkEouGnoBfatOHp_JleC86y3D-D8-N3Z0Uk-FU3IG3K-tnlTMwlalA5t1VSyKZsYyMWzTlksXNEyQRdiJUN0bUCnI1eqkdGhami9Magewn4_9N1jEDRV2NInJKLR2LpgQlNjZflIQHamyKCcleibiVGcC1tc-XSyrWo_Kt6T4n1SvKcxr5YxX0c-jX_2fstzs_RkLuz0Yvj2yU_Y8OTCEKqaoGKBuivaoDS6SKG9KeipjhkczjPrJwPdeHZrKfJypcvgxdJMpsXnJdh3w_exD8VT2uoMHo1AWCRRpbW6UCqDagciO6LutvSXnxN9tyWni6TL4PUMpl9i_V0VT_6v-1O4JRPei1y6Q9gn-HXPyH3ahueTvfwE_5ATWg priority: 102 providerName: Springer Nature |
Title | Structural insights of human mitofusin-2 into mitochondrial fusion and CMT2A onset |
URI | https://link.springer.com/article/10.1038/s41467-019-12912-0 https://www.ncbi.nlm.nih.gov/pubmed/31664033 https://www.proquest.com/docview/2310428919 https://www.proquest.com/docview/2310675464 https://pubmed.ncbi.nlm.nih.gov/PMC6820788 https://doaj.org/article/20184dcb3f0a4e0db34a9f78850e0d8f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IO4ERmUk3iCQ2I4TPyDUVRtTpU1oW6W-WcdJDJNGAmuR2L_n2EmKCoUHXlrVl9by-U78ndr-DsDLLMNcu8pfP1MUoGQpxrYQaWxTlIUkf0rroPZ5qo5ncjrP5lswpDvqJ3CxMbTz-aRm11dvfny7eU8O_667Ml68Xcjg7kRWYlq9_FGDbdillSn3GQ1OerofnsxCU0Aj-7szm7vuwW2RKiUTIdaWqqDov4mG_nma8rct1bBSHd2FOz3FZOMOE_dgq27uw60u6eTNAzg7D5KxXm6DXTYLH5wvWOtYyNbHvpCHO38YPuZUu2xDAc1SU3mkMl_VNgybik1OLviY-cPYy4cwOzq8mBzHfWaFuCSGtozLwiulOa5R5WXOy7R0lnig0kJhopPKq3gh5tw6XVnU0vl0NtxpFCU9lDIUj2CnaZv6CTCyJ1b0FRwxk1hpm9mywFz5fQNeZ0kE6TCJpuxlx332iysTtr9FYTobGLKBCTYw1OfVqs_XTnTjn60PvG1WLb1gdihorz-Z3v8M8RyCXmmFS1DWSWWFRO0o_s8S-lS4CPYHy5oBhMZzXwrPdKojeLGqJv_zmyrY1O33rg0FXVLJCB53QFiNZABSBPkaRNaGul7TXH4OGt-KmBmNLoLXA5h-DevvU_H0v3_oGezx4AVJzPU-7BAS6-dEt5Z2BNv5PKfX4ujDCHbH4-n5lN4PDk8_nlHpRE1G4Y-MUfC1n32DK34 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCaImtuPYB4RKYdnSxwG2Um_GebitBEkhi1D_FL-RGSfZann01mNiJ3LG34w_Z8YzAM-yzOXGV3T8TOEGJUtdXGiRxkXqpJaoT2kdsn3uqem-_HCQHazAr_EsDIVVjjYxGOqqLekf-TrxEKTKJjWvT77FVDWKvKtjCY0eFtv16U_csnWvtt7i_D7nfPJutjmNh6oCcYnsZB6XmrKEeW6cysucl2npC-RAygjlEpNUlMHKuZwX3lSFM9JTKRfujRMlKmTmBL73ElyWAldyOpk-eb_4p0PZ1rWUw9mcROj1TgZLhDwqxoWVoiCW1r9QJuBf3PbvEM0__LRh-ZvcgOsDb2UbPdBuwkrd3IIrfSXL09vw8VPIQ0s5PNhx09GOv2OtZ6EEIPuKZsNThH3MsXXehhtod5uK4M-oqW2Yayq2uTvjG4wivOd3YP9CBHsXVpu2qe8DQ5C4Cl_Bncukq0yRFaV2uSJnBK-zJIJ0FKIth1zmVFLjiw0-daFtL3iLgrdB8BafebF45qTP5HFu7zc0N4uelIU73Gi_H9pBqS2SJ8RzWQifOFknVSGkMz7XOkvwSvsI1saZtYNp6OwZkCN4umhGpSZPjWvq9kffB3dyUskI7vVAWIxEpErJRIgI8iWILA11uaU5PgqJwxXSPRxdBC9HMJ0N6_-ieHD-VzyBq9PZ7o7d2drbfgjXeMB6EnOzBqsIvfoRkrZ58ThoCoPPF62avwHDsVAt |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2sR0nPiDU16qlsKpKK_VmnIehEiSFLEL9a_w6ZpxHtTx66zGxEznjb8bfxOMZgOdJYlPtSjp-ptBBSWIb5pmIwzy2MpOoT3Hls33O1c6RfHucHK_Ar-EsDIVVDjbRG-qyKegf-ZR4CFJlHeup68Mi9rdmb06_hVRBinZah3IaHUT2qrOf6L61r3e3cK5fcD7bPtzcCfsKA2GBTGURFhllDHNcW5UWKS_iwuXIh5QWykY6KimblbUpz50uc6ulo7Iu3GkrClTOxAp87xVYTckrmsDqxvZ8_2D8w0O51zMp-5M6kcimrfR2CVlViMssxUQsrYa-aMC_mO7fAZt_7Nr6xXB2E270LJatd7C7BStVfRuudnUtz-7AwQeflZYyerCTuiX_v2WNY74gIPuKRsRRvH3IsXXR-BtoheuSlIFRU1MzW5ds8_0hX2cU7724C0eXItp7MKmbunoADCFjS3wFtzaRttR5kheZTRVtTfAqiQKIByGaos9sTgU2vhi_wy4y0wneoOCNF7zBZ16Oz5x2eT0u7L1BczP2pJzc_kbz_ZPpVdwglUJ0F7lwkZVVVOZCWu3SLEsivMpcAGvDzJreULTmHNYBPBubUcVp38bWVfOj64N-nVQygPsdEMaRiFgpGQkRQLoEkaWhLrfUJ599GnGF5A9HF8CrAUznw_q_KB5e_BVP4RqqpXm3O997BNe5h3oUcr0GE0Re9RgZ3CJ_0qsKg4-XrZ2_AT7rVb8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Structural+insights+of+human+mitofusin-2+into+mitochondrial+fusion+and+CMT2A+onset&rft.jtitle=Nature+communications&rft.au=Li%2C+Yu-Jie&rft.au=Cao%2C+Yu-Lu&rft.au=Feng%2C+Jian-Xiong&rft.au=Qi%2C+Yuanbo&rft.date=2019-10-29&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft_id=info:doi/10.1038%2Fs41467-019-12912-0&rft_id=info%3Apmid%2F31664033&rft.externalDocID=PMC6820788 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |