Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimental...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 2777 - 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.05.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.
Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures. |
---|---|
AbstractList | Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures. Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined "native" structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base-base, base-oxygen and oxygen-oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base-base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined "native" structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base-base, base-oxygen and oxygen-oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base-base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures. Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures. |
ArticleNumber | 2777 |
Author | Zhan, Jian Xiong, Peng Wu, Ruibo Zhou, Yaoqi |
Author_xml | – sequence: 1 givenname: Peng surname: Xiong fullname: Xiong, Peng organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive, Institute for Systems and Physical Biology, Shenzhen Bay Laboratory – sequence: 2 givenname: Ruibo surname: Wu fullname: Wu, Ruibo organization: School of Pharmaceutical Sciences, Sun Yat-Sen University – sequence: 3 givenname: Jian orcidid: 0000-0003-0856-2385 surname: Zhan fullname: Zhan, Jian email: j.zhan@griffith.edu.au organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive – sequence: 4 givenname: Yaoqi orcidid: 0000-0002-9958-5699 surname: Zhou fullname: Zhou, Yaoqi email: zhouyq@szbl.ac.cn organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive, Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33986288$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUjFARLaU_wAJFYsMm4FdiZ4NUVTwqVYAQrC3bObnXV44d7KRVV_11nJsW2i7qhX1kz4zG58zL4sAHD0XxGqP3GFHxITHMGl4hgitCMUIVe1YcEcRwhTmhB_fqw-IkpR3Ki7ZYMPaiOKS0FQ0R4qi4-aFstH5TqnJrN9sqQgpunmzwZZrUZNNkjXLlGCbwk83VlZ22Gexn4yBolaAy-SVaUyY1jG4v5TYhZthQ9iGWdhhjuFzuf347LYfQgSsj9NbDkImviue9cglObs_j4vfnT7_OvlYX37-cn51eVKZmaMp7TzgAwo1hDRjdtlj1Ahvas1q3ujWNFjXvFHSEa041BY77BjMlEHBDBD0uzlfdLqidHKMdVLyWQVm5vwhxI1XMf3UgKSdCkw46XjPGeqN1RzmuEWOkNVybrPVx1RpnPUC3_79yD0Qfvni7lZtwKQXGLasXM-9uBWL4M0Oa5GCTAeeUhzAnSWoiMBdCsAx9-wi6C3P0uVULqmG8xg3NqDf3Hf2zcjfnDBArwMSQUm6_NHYZb1gMWicxkkuq5JoqmVMl96mSiwPyiHqn_iSJrqQ0LumC-N_2E6y_EuHhgA |
CitedBy_id | crossref_primary_10_1093_bib_bbae682 crossref_primary_10_1021_acs_jpclett_2c01342 crossref_primary_10_1021_acs_jctc_3c01239 crossref_primary_10_1016_j_tig_2023_10_001 crossref_primary_10_59761_RCR5107 crossref_primary_10_7554_eLife_90254_3 crossref_primary_10_3390_molecules28124833 crossref_primary_10_1038_s41467_023_42528_4 crossref_primary_10_1093_nargab_lqad016 crossref_primary_10_1021_acs_jcim_2c00939 crossref_primary_10_3390_molecules28145532 crossref_primary_10_1038_s41592_024_02487_0 crossref_primary_10_59717_j_xinn_med_2025_100120 crossref_primary_10_1007_s12539_023_00561_3 crossref_primary_10_1016_j_csbj_2022_11_007 crossref_primary_10_1093_nar_gkad1031 crossref_primary_10_1021_acs_jctc_4c00497 crossref_primary_10_1016_j_bpj_2022_08_017 crossref_primary_10_1088_1742_6596_2131_3_032092 crossref_primary_10_3390_molecules29061244 crossref_primary_10_1093_nar_gkad122 crossref_primary_10_1038_s41467_023_41303_9 crossref_primary_10_1016_j_str_2024_08_015 crossref_primary_10_1016_j_bpj_2024_01_026 crossref_primary_10_3389_fbinf_2021_809082 crossref_primary_10_1021_acs_jpcb_1c07288 crossref_primary_10_1088_1572_9494_ac7042 crossref_primary_10_1371_journal_pcbi_1010501 crossref_primary_10_7554_eLife_90254 crossref_primary_10_1016_j_bpj_2021_11_016 crossref_primary_10_1002_prot_26574 crossref_primary_10_1093_nar_gkae541 |
Cites_doi | 10.1126/sciadv.aar5316 10.1093/nar/gkv141 10.1038/s41467-019-13395-9 10.1073/pnas.1835769100 10.1038/nmeth.1433 10.1007/s00214-007-0310-x 10.1093/nar/gkx1269 10.1016/j.str.2020.05.011 10.1261/rna.060368.116 10.1073/pnas.0703836104 10.1146/annurev-biophys-070816-033920 10.1073/pnas.1713027115 10.1093/bioinformatics/btn328 10.1038/srep00734 10.1261/rna.049502.114 10.1261/rna.074179.119 10.1021/ja00525a004 10.1016/j.cell.2016.03.030 10.1038/nsb0594-334 10.1006/jmbi.1999.3001 10.1126/science.1219021 10.1093/nar/gki541 10.1021/jp112059y 10.1261/rna.069872.118 10.1371/journal.pone.0074830 10.1093/nar/gkm216 10.1093/nar/gku991 10.3389/fgene.2017.00231 10.1021/acs.jpcb.7b10102 10.1261/rna.1700409 10.1093/nar/gku1214 10.1002/wcms.1307 10.1385/CBB:46:2:165 10.1261/rna.075341.120 10.1021/acs.jctc.7b00125 10.1093/bioinformatics/btv221 10.1038/nature06684 10.1093/nar/gkx386 10.1093/nar/gkq1320 10.1093/nar/gkv1479 10.1261/rna.657708 10.1186/s12900-019-0103-1 10.5281/zenodo.4661144 10.1093/bioinformatics/btab165 10.3390/ijms20174116 10.1142/9789814295291_0024 10.1089/cmb.2019.0251 10.3390/ijms20092301 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-23100-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Statistics |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_3728b2ded75444fcbbd371504429c7bc PMC8119458 33986288 10_1038_s41467_021_23100_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Education and Training | Australian Research Council (ARC) grantid: DP180102060; DP210101875 funderid: https://doi.org/10.13039/501100000923 – fundername: ; grantid: DP180102060; DP210101875 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-c5f27ee016c46ecb991af81c3f45b9b9c6b857daed27b73b3e71f614a80e7c283 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:27 EDT 2025 Thu Aug 21 14:11:09 EDT 2025 Sun Aug 24 04:11:27 EDT 2025 Wed Aug 13 04:33:17 EDT 2025 Thu Apr 03 07:08:55 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Tue Jul 01 04:17:25 EDT 2025 Fri Feb 21 02:39:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-c5f27ee016c46ecb991af81c3f45b9b9c6b857daed27b73b3e71f614a80e7c283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0856-2385 0000-0002-9958-5699 |
OpenAccessLink | https://www.proquest.com/docview/2526475163?pq-origsite=%requestingapplication% |
PMID | 33986288 |
PQID | 2526475163 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3728b2ded75444fcbbd371504429c7bc pubmedcentral_primary_oai_pubmedcentral_nih_gov_8119458 proquest_miscellaneous_2528178884 proquest_journals_2526475163 pubmed_primary_33986288 crossref_citationtrail_10_1038_s41467_021_23100_4 crossref_primary_10_1038_s41467_021_23100_4 springer_journals_10_1038_s41467_021_23100_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-05-13 |
PublicationDateYYYYMMDD | 2021-05-13 |
PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Singh, Hanson, Paliwal, Zhou (CR43) 2019; 10 Das, Karanicolas, Baker (CR23) 2010; 7 Dunbrack, Karplus (CR33) 1994; 1 Murray, Arendall, Richardson, Richardson (CR31) 2003; 100 Das, Baker (CR7) 2007; 104 Miao (CR17) 2017; 23 Rose (CR1) 2015; 43 Miao (CR19) 2020; 26 Wang, Zhao, Zhu, Xiao (CR27) 2015; 43 Miao (CR18) 2015; 21 Dill, MacCallum (CR32) 2012; 338 Krokhotin, Houlihan, Dokholyan (CR10) 2015; 31 Westhof, Sundaralingam (CR49) 1980; 102 CR5 Tinoco, Bustamante (CR30) 1999; 293 CR46 Davis (CR37) 2007; 35 CR44 Antunes, Jorge, Caffarena, Passetti (CR4) 2018; 8 Parisien, Major (CR8) 2008; 452 Watkins (CR34) 2018; 4 Rother, Rother, Puton, Bujnicki (CR6) 2011; 39 Poblete, Bottaro, Bussi (CR45) 2018; 46 Weinreb (CR40) 2016; 165 Zhao (CR14) 2012; 2 Cuturello, Tiana, Bussi (CR42) 2020; 26 Sharma, Ding, Dokholyan (CR11) 2008; 24 CR15 Alford (CR25) 2017; 13 Boniecki (CR16) 2016; 44 Gardner, Wilm, Washietl (CR38) 2005; 33 CR50 Das (CR9) 2013; 8 Petrov (CR2) 2015; 43 Stasiewicz, Mukherjee, Nithin, Bujnicki (CR22) 2019; 19 Tan, Piana, Dirks, Shaw (CR35) 2018; 115 Tan (CR29) 2019; 25 Parisien, Cruz, Westhof, Major (CR36) 2009; 15 De Leonardis (CR39) 2015; 43 Wang (CR41) 2017; 45 CR28 Sun, Zhang, Chen (CR3) 2017; 46 CR21 Richardson (CR48) 2008; 14 Watkins, Rangan, Das (CR24) 2020; 28 Zhao, Truhlar (CR47) 2008; 120 Zhou, Zhou, Zhang, Liu (CR26) 2006; 46 Feig (CR20) 2017; 7 Cao, Chen (CR12) 2011; 115 Xu, Chen (CR13) 2018; 122 J Wang (23100_CR27) 2015; 43 23100_CR46 MJ Boniecki (23100_CR16) 2016; 44 IW Davis (23100_CR37) 2007; 35 A Krokhotin (23100_CR10) 2015; 31 F Cuturello (23100_CR42) 2020; 26 YL Tan (23100_CR29) 2019; 25 23100_CR50 J Wang (23100_CR41) 2017; 45 PW Rose (23100_CR1) 2015; 43 Y Zhao (23100_CR47) 2008; 120 LJ Murray (23100_CR31) 2003; 100 23100_CR15 Z Miao (23100_CR17) 2017; 23 AI Petrov (23100_CR2) 2015; 43 AM Watkins (23100_CR24) 2020; 28 M Parisien (23100_CR36) 2009; 15 R Das (23100_CR23) 2010; 7 J Singh (23100_CR43) 2019; 10 R Das (23100_CR7) 2007; 104 PP Gardner (23100_CR38) 2005; 33 23100_CR21 RF Alford (23100_CR25) 2017; 13 E De Leonardis (23100_CR39) 2015; 43 Y Zhao (23100_CR14) 2012; 2 M Feig (23100_CR20) 2017; 7 RL Dunbrack Jr. (23100_CR33) 1994; 1 D Antunes (23100_CR4) 2018; 8 D Tan (23100_CR35) 2018; 115 E Westhof (23100_CR49) 1980; 102 23100_CR28 AM Watkins (23100_CR34) 2018; 4 Y Zhou (23100_CR26) 2006; 46 C Weinreb (23100_CR40) 2016; 165 J Stasiewicz (23100_CR22) 2019; 19 Z Miao (23100_CR18) 2015; 21 R Das (23100_CR9) 2013; 8 KA Dill (23100_CR32) 2012; 338 M Rother (23100_CR6) 2011; 39 X Xu (23100_CR13) 2018; 122 S Poblete (23100_CR45) 2018; 46 Z Miao (23100_CR19) 2020; 26 I Tinoco (23100_CR30) 1999; 293 23100_CR5 M Parisien (23100_CR8) 2008; 452 S Cao (23100_CR12) 2011; 115 S Sharma (23100_CR11) 2008; 24 JS Richardson (23100_CR48) 2008; 14 LZ Sun (23100_CR3) 2017; 46 23100_CR44 |
References_xml | – volume: 4 start-page: eaar5316 year: 2018 ident: CR34 article-title: Blind prediction of noncanonical RNA structure at atomic accuracy publication-title: Sci. Adv. doi: 10.1126/sciadv.aar5316 – volume: 43 start-page: e63 year: 2015 ident: CR27 article-title: 3dRNAscore: a distance and torsion angle dependent evaluation function of 3D RNA structures publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv141 – volume: 10 start-page: 5407 year: 2019 ident: CR43 article-title: RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning publication-title: Nat. Commun. doi: 10.1038/s41467-019-13395-9 – volume: 100 start-page: 13904 year: 2003 end-page: 13909 ident: CR31 article-title: RNA backbone is rotameric publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1835769100 – volume: 7 start-page: 291 year: 2010 end-page: 294 ident: CR23 article-title: Atomic accuracy in predicting and designing noncanonical RNA structure publication-title: Nat. Methods doi: 10.1038/nmeth.1433 – volume: 120 start-page: 215 year: 2008 end-page: 241 ident: CR47 article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 46 start-page: 1674 year: 2018 end-page: 1683 ident: CR45 article-title: A nucleobase-centered coarse-grained representation for structure prediction of RNA motifs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1269 – volume: 28 start-page: 963 year: 2020 end-page: 976 e6 ident: CR24 article-title: FARFAR2: improved de novo Rosetta prediction of complex global RNA folds publication-title: Structure doi: 10.1016/j.str.2020.05.011 – volume: 23 start-page: 655 year: 2017 end-page: 672 ident: CR17 article-title: RNA-puzzles round III: 3D RNA structure prediction of five riboswitches and one ribozyme publication-title: RNA doi: 10.1261/rna.060368.116 – ident: CR21 – ident: CR46 – volume: 104 start-page: 14664 year: 2007 end-page: 14669 ident: CR7 article-title: Automated de novo prediction of native-like RNA tertiary structures publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0703836104 – volume: 46 start-page: 227 year: 2017 end-page: 246 ident: CR3 article-title: Theory and modeling of RNA structure and interactions with metal ions and small molecules publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-070816-033920 – ident: CR15 – ident: CR50 – volume: 43 start-page: 10444 year: 2015 end-page: 10455 ident: CR39 article-title: Direct-coupling analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction publication-title: Nucleic Acids Res. – volume: 115 start-page: E1346 year: 2018 end-page: E1355 ident: CR35 article-title: RNA force field with accuracy comparable to state-of-the-art protein force fields publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1713027115 – volume: 24 start-page: 1951 year: 2008 end-page: 1952 ident: CR11 article-title: iFoldRNA: three-dimensional RNA structure prediction and folding publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn328 – volume: 2 year: 2012 ident: CR14 article-title: Automated and fast building of three-dimensional RNA structures publication-title: Sci. Rep. doi: 10.1038/srep00734 – volume: 21 start-page: 1066 year: 2015 end-page: 1084 ident: CR18 article-title: RNA-puzzles round II: assessment of RNA structure prediction programs applied to three large RNA structures publication-title: RNA doi: 10.1261/rna.049502.114 – volume: 26 start-page: 637 year: 2020 end-page: 647 ident: CR42 article-title: Assessing the accuracy of direct-coupling analysis for RNA contact prediction publication-title: RNA doi: 10.1261/rna.074179.119 – volume: 102 start-page: 1493 year: 1980 end-page: 1500 ident: CR49 article-title: Interrelationships between the pseudorotation parameters P and taum and the geometry of the furanose ring publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00525a004 – volume: 165 start-page: 963 year: 2016 end-page: 975 ident: CR40 article-title: 3D RNA and functional interactions from evolutionary couplings publication-title: Cell doi: 10.1016/j.cell.2016.03.030 – volume: 1 start-page: 334 year: 1994 end-page: 340 ident: CR33 article-title: Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0594-334 – volume: 293 start-page: 271 year: 1999 end-page: 281 ident: CR30 article-title: How RNA folds publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3001 – ident: CR5 – volume: 338 start-page: 1042 year: 2012 end-page: 1046 ident: CR32 article-title: The protein-folding problem, 50 years on publication-title: Science doi: 10.1126/science.1219021 – volume: 33 start-page: 2433 year: 2005 end-page: 2439 ident: CR38 article-title: A benchmark of multiple sequence alignment programs upon structural RNAs publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki541 – volume: 115 start-page: 4216 year: 2011 end-page: 4226 ident: CR12 article-title: Physics-based de novo prediction of RNA 3D structures publication-title: J. Phys. Chem. B doi: 10.1021/jp112059y – volume: 25 start-page: 793 year: 2019 end-page: 812 ident: CR29 article-title: What is the best reference state for building statistical potentials in RNA 3D structure evaluation? publication-title: RNA doi: 10.1261/rna.069872.118 – volume: 8 start-page: e74830 year: 2013 ident: CR9 article-title: Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz publication-title: PLos ONE doi: 10.1371/journal.pone.0074830 – volume: 35 start-page: W375 year: 2007 end-page: W383 ident: CR37 article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm216 – volume: 43 start-page: D123 year: 2015 end-page: D129 ident: CR2 article-title: RNAcentral: an international database of ncRNA sequences publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku991 – volume: 8 start-page: 231 year: 2018 ident: CR4 article-title: Using RNA sequence and structure for the prediction of riboswitch aptamer: a comprehensive review of available software and tools publication-title: Front. Genet. doi: 10.3389/fgene.2017.00231 – volume: 122 start-page: 5327 year: 2018 end-page: 5335 ident: CR13 article-title: Hierarchical assembly of RNA three-dimensional structures based on loop templates publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b10102 – volume: 15 start-page: 1875 year: 2009 end-page: 1885 ident: CR36 article-title: New metrics for comparing and assessing discrepancies between RNA 3D structures and models publication-title: RNA doi: 10.1261/rna.1700409 – volume: 43 start-page: D345 year: 2015 end-page: D356 ident: CR1 article-title: The RCSB Protein Data Bank: views of structural biology for basic and applied research and education publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1214 – volume: 7 start-page: e1307 year: 2017 ident: CR20 article-title: Computational protein structure refinement: almost there, yet still so far to go publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1307 – volume: 46 start-page: 165 year: 2006 end-page: 174 ident: CR26 article-title: What is a desirable statistical energy function for proteins and how can it be obtained? publication-title: Cell Biochem. Biophys. doi: 10.1385/CBB:46:2:165 – volume: 26 start-page: 982 year: 2020 end-page: 995 ident: CR19 article-title: RNA-puzzles round IV: 3D structure predictions of four ribozymes and two aptamers publication-title: RNA doi: 10.1261/rna.075341.120 – volume: 13 start-page: 3031 year: 2017 end-page: 3048 ident: CR25 article-title: The Rosetta all-atom energy function for macromolecular modeling and design publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00125 – ident: CR44 – volume: 31 start-page: 2891 year: 2015 end-page: 2893 ident: CR10 article-title: iFoldRNA v2: folding RNA with constraints publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv221 – volume: 452 start-page: 51 year: 2008 end-page: 55 ident: CR8 article-title: The MC-fold and MC-Sym pipeline infers RNA structure from sequence data publication-title: Nature doi: 10.1038/nature06684 – volume: 45 start-page: 6299 year: 2017 end-page: 6309 ident: CR41 article-title: Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx386 – volume: 39 start-page: 4007 year: 2011 end-page: 4022 ident: CR6 article-title: ModeRNA: a tool for comparative modeling of RNA 3D structure publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1320 – volume: 44 start-page: e63 year: 2016 ident: CR16 article-title: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1479 – volume: 14 start-page: 465 year: 2008 end-page: 481 ident: CR48 article-title: RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution) publication-title: RNA doi: 10.1261/rna.657708 – ident: CR28 – volume: 19 year: 2019 ident: CR22 article-title: QRNAS: software tool for refinement of nucleic acid structures publication-title: BMC Struct. Biol. doi: 10.1186/s12900-019-0103-1 – ident: 23100_CR46 – volume: 120 start-page: 215 year: 2008 ident: 23100_CR47 publication-title: Theor. Chem. Acc. doi: 10.1007/s00214-007-0310-x – volume: 10 start-page: 5407 year: 2019 ident: 23100_CR43 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13395-9 – ident: 23100_CR50 doi: 10.5281/zenodo.4661144 – ident: 23100_CR44 doi: 10.1093/bioinformatics/btab165 – volume: 45 start-page: 6299 year: 2017 ident: 23100_CR41 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx386 – volume: 23 start-page: 655 year: 2017 ident: 23100_CR17 publication-title: RNA doi: 10.1261/rna.060368.116 – volume: 28 start-page: 963 year: 2020 ident: 23100_CR24 publication-title: Structure doi: 10.1016/j.str.2020.05.011 – volume: 46 start-page: 227 year: 2017 ident: 23100_CR3 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-070816-033920 – volume: 293 start-page: 271 year: 1999 ident: 23100_CR30 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1999.3001 – volume: 26 start-page: 982 year: 2020 ident: 23100_CR19 publication-title: RNA doi: 10.1261/rna.075341.120 – volume: 104 start-page: 14664 year: 2007 ident: 23100_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0703836104 – ident: 23100_CR15 doi: 10.3390/ijms20174116 – volume: 1 start-page: 334 year: 1994 ident: 23100_CR33 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb0594-334 – volume: 338 start-page: 1042 year: 2012 ident: 23100_CR32 publication-title: Science doi: 10.1126/science.1219021 – volume: 44 start-page: e63 year: 2016 ident: 23100_CR16 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1479 – volume: 43 start-page: e63 year: 2015 ident: 23100_CR27 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv141 – volume: 13 start-page: 3031 year: 2017 ident: 23100_CR25 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b00125 – volume: 26 start-page: 637 year: 2020 ident: 23100_CR42 publication-title: RNA doi: 10.1261/rna.074179.119 – volume: 115 start-page: 4216 year: 2011 ident: 23100_CR12 publication-title: J. Phys. Chem. B doi: 10.1021/jp112059y – volume: 15 start-page: 1875 year: 2009 ident: 23100_CR36 publication-title: RNA doi: 10.1261/rna.1700409 – volume: 46 start-page: 1674 year: 2018 ident: 23100_CR45 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx1269 – volume: 165 start-page: 963 year: 2016 ident: 23100_CR40 publication-title: Cell doi: 10.1016/j.cell.2016.03.030 – volume: 8 start-page: 231 year: 2018 ident: 23100_CR4 publication-title: Front. Genet. doi: 10.3389/fgene.2017.00231 – volume: 31 start-page: 2891 year: 2015 ident: 23100_CR10 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv221 – volume: 43 start-page: 10444 year: 2015 ident: 23100_CR39 publication-title: Nucleic Acids Res. – volume: 14 start-page: 465 year: 2008 ident: 23100_CR48 publication-title: RNA doi: 10.1261/rna.657708 – volume: 39 start-page: 4007 year: 2011 ident: 23100_CR6 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq1320 – ident: 23100_CR5 doi: 10.1142/9789814295291_0024 – volume: 7 start-page: e1307 year: 2017 ident: 23100_CR20 publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci. doi: 10.1002/wcms.1307 – ident: 23100_CR28 doi: 10.1089/cmb.2019.0251 – volume: 33 start-page: 2433 year: 2005 ident: 23100_CR38 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki541 – volume: 2 year: 2012 ident: 23100_CR14 publication-title: Sci. Rep. doi: 10.1038/srep00734 – volume: 100 start-page: 13904 year: 2003 ident: 23100_CR31 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1835769100 – volume: 21 start-page: 1066 year: 2015 ident: 23100_CR18 publication-title: RNA doi: 10.1261/rna.049502.114 – ident: 23100_CR21 doi: 10.3390/ijms20092301 – volume: 43 start-page: D345 year: 2015 ident: 23100_CR1 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1214 – volume: 43 start-page: D123 year: 2015 ident: 23100_CR2 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku991 – volume: 25 start-page: 793 year: 2019 ident: 23100_CR29 publication-title: RNA doi: 10.1261/rna.069872.118 – volume: 24 start-page: 1951 year: 2008 ident: 23100_CR11 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn328 – volume: 102 start-page: 1493 year: 1980 ident: 23100_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00525a004 – volume: 452 start-page: 51 year: 2008 ident: 23100_CR8 publication-title: Nature doi: 10.1038/nature06684 – volume: 115 start-page: E1346 year: 2018 ident: 23100_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1713027115 – volume: 122 start-page: 5327 year: 2018 ident: 23100_CR13 publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.7b10102 – volume: 46 start-page: 165 year: 2006 ident: 23100_CR26 publication-title: Cell Biochem. Biophys. doi: 10.1385/CBB:46:2:165 – volume: 35 start-page: W375 year: 2007 ident: 23100_CR37 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkm216 – volume: 4 start-page: eaar5316 year: 2018 ident: 23100_CR34 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar5316 – volume: 8 start-page: e74830 year: 2013 ident: 23100_CR9 publication-title: PLos ONE doi: 10.1371/journal.pone.0074830 – volume: 19 year: 2019 ident: 23100_CR22 publication-title: BMC Struct. Biol. doi: 10.1186/s12900-019-0103-1 – volume: 7 start-page: 291 year: 2010 ident: 23100_CR23 publication-title: Nat. Methods doi: 10.1038/nmeth.1433 |
SSID | ssj0000391844 |
Score | 2.499094 |
Snippet | Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the... Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the... Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2777 |
SubjectTerms | 631/114/2397 631/114/2411 631/45/535 Accuracy Algorithms Energy Humanities and Social Sciences Knowledge Methods Model accuracy Molecular biology multidisciplinary Nucleotide sequence Oxygen Protein structure Proteins Ribonucleic acid RNA Sampling Science Science (multidisciplinary) Statistical analysis Statistics Three dimensional models |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS-QwEA4iHPhyeKd31tMjB755xW0zbZLHVRQRbhFR8C0kaaoL2oq7Pvh0f_1m0u7qenf64stStpMyTSYzXybpN4ztgFC29OBTKQqRQl1q9IO2TGspglS6hCzmIX-NyuMLOLksLp-V-qIzYR09cNdxe0LmyuVVqIipDWrvXCUkohhAR-ql8-R9MeY9W0xFHyw0Ll2g_0pmINTeBKJPoBMJBGkGKSxEokjY_y-U-fdhyRc7pjEQHa2yjz2C5MNO809sKTSf2YeupuTjGvt9asfUkFtOVMQpLqd76-L08VDkZcbmd-2UzgnhFWViUbghYuOWgloadRh7PrF03JwedXPV3qPYLUeIy8ezPAQ_Gw15LKXD8e0QrlKmcZ1dHB2eHxynfZWF1CNam-JvncsQEPp5KIN3CBhtrTIvaiicdtqXThWysqHKpZPC4RhmNQZ1qwZBekQnX9hy0zZhg3EUhkp4IbXPQOrIpSY9LsigqHTp6oRlsx43vqcgp0oYNyZuhQtlulEyOEomjpKBhO3O29x1BByvSu_TQM4liTw7_oEmZXqTMm-ZVMK2ZmZg-hk9MXmB0FEWCF8T9mN-G-cibbDYJrQPUUZllFNAPb52VjPXRAitqLRzwuSCPS2ouninGV9Hvm-VZRoKbPlzZnlPav2_Kzbfoyu-sZWcpgzR1Yottjy9fwjbiMKm7nuccH8AZqEuBw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED66jkFfRtf9ctsNDfa2east2ZIexuhGSxm0jLJA34Qky10gs9skhfap__ruZDslW9qXYOKTOEt3vk8n-TuA94IrW3rhU8kLnoq61PgetGVaSx6k0qXIYh7y-KQ8GokfZ8XZGgzljvoBnK1c2lE9qdF08un68uYrOvyX7pNx9XkmorvTYQNCK3upeASPMTJJctTjHu7HNzPXuKAR_bczq5suxadI478Ke_5_hPKffdQYng434WmPK9l-ZwjPYC00W_CkqzR5swUbBCo7TubncPvTjqkXZhmxFae44u4NkM0GMezrop3TUSK8omQtCjfEfdxS3EujQmPPZpZOpFNXk_N2imJ_GKJgNh5SFez0ZJ_FajsMHxURLSUjX8Do8ODX96O0L8SQegR0c_ytcxkCokMvyuAdYkpbq8zzWhROO-1LpwpZ2VDl0knucJqzGuO-VXtBegQwL2G9aZvwGhgKi4p7LrXPhNSRbk16XLOJotKlqxPIhuE3vmcpp2IZExN3y7ky3ZQZnDITp8yIBD4s2lx0HB0PSn-jWV1IEr92_KOdnpveXQ2XuXJ5FSriBxS1d67iErGzwPDtpfMJ7A42YQabNXmB6FIWiHATeLe4je5KezC2Ce1VlFEZpR1Qj1edCS004Vwrqv6cgFwyriVVl-8049-RElxlmRYFtvw4mOGdWvcPxfbDT7EDGzl5BnHV8l1Yn0-vwhuEYHP3NvrVX0keLNY priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRF80-K2mTbJ47l4HIKHiAf3FpI0PRfO9tjde_DJf92Z9ENWT8GXpWxnyrQz0_w6mfwC8AqldnXAkCtZyRzb2tB70NV5q2RU2tRYpDrkx5P6-BQ_nFVne1BOa2FS036itEyv6ak77O0GU0pzQwEjkkWON-AmU7dzVC_r5VxXYcZzjTiuj1lIfY3qzhiUqPqvw5d_tkn-NleahqCju3BnxI7icLD2HuzF7j7cGnaT_P4AfnxyK1YUTjAJcU4f0mNcCV42lBiZSf2y33KHEB1xDZaEO6Y07nk4y5MNqyA2jhvN-VIX5_2axL4JArdiNVUgxOeTQ5E20RF0dwRUucb4EE6P3n9ZHufj_gp5IJy2pd-2VDES6AtYx-AJKrpWF0G2WHnjTai9rlTjYlMqr6Qn7xUtDedOL6IKhEsewX7Xd_EJCBLGRgapTChQmcSipgJ9imHVmNq3GRTTE7dhJB_nPTAubJoEl9oOXrLkJZu8ZDGD17PO5UC98U_pd-zIWZJps9Mf_frcjmFkpSq1L5vYMO0ftsH7RiqCxEijclA-ZHAwhYEdc3ljy4pAo6oIuGbwcj5NWchTK66L_VWS0QVXE8iOx0PUzJZIaTRv6pyB2omnHVN3z3Srr4npWxeFwYo030yR98usvz-Kp_8n_gxul5wcTEkrD2B_u76Kzwlpbf2LlFo_AbU4Ixw priority: 102 providerName: Springer Nature |
Title | Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement |
URI | https://link.springer.com/article/10.1038/s41467-021-23100-4 https://www.ncbi.nlm.nih.gov/pubmed/33986288 https://www.proquest.com/docview/2526475163 https://www.proquest.com/docview/2528178884 https://pubmed.ncbi.nlm.nih.gov/PMC8119458 https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELc20CRepsE-yIDKk_a2RTSxEztPU6noUCUqxIbUNyt2HKjEko6Ehz3tX-fOcYK6D17SKrlYju_s--V8-R0hHzmTeWq4CQVLWMjLNIN1ME_DUjArZJbyyMUhzxfp2RWfL5OlD7g1Pq2yXxPdQl3UBmPkx3ECrlskAB--rH-GWDUKd1d9CY3nZBupyzClSyzFEGNB9nPJuf9WZszkccPdyoB5CQhsxiHf8EeOtv9fWPPvlMk_9k2dO5q9Ii89jqSTTvG75Jmt9siLrrLkrz2ygyCy42B-TX5f5CtsheYU2YlDeMP2BkebXgzaWtctpg7BPwzOgnCFXMc1-rnQdWhlaJNjBjo2dXsNo9Pe_KCAeumqD03Qy8WEuuo6FB4VECwGH9-Qq9np9-lZ6AsvhAYAXAvHMhbWAho0PLVGA4bMSxkZVvJEZzozqZaJKHJbxEILpkGtUQl-PpdjKwwAlrdkq6oru08oCPOCGSYyE3GROXo1YeAdjSdFluoyIFE__Mp4VnIsjnGr3O44k6pTmQKVKacyxQPyabhn3XFyPCl9glodJJFP252o766Vn56KiVjquLAF8gHy0mhdMAFYmYO7NkKbgBz2NqH8JG_Uo0kG5MNwGaYn7rnkla3vnYyMMMwA_XjXmdDQE8YyidWeAyI2jGujq5tXqtWNowCXYO48gTs_92b42K3_D8X7p5_igOzEODOQm5Ydkq327t4eAeRq9cjNKzjK2dcR2Z5M5t_m8Htyuri4hLPTdDpywQw4nnP5ADHLMHQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvCMorUMBIcIKom9iJnQNC5VFtabtCqJX2ZmLHaVcqydJNhXriH_EbmXEe1fLorZdVtJlYk8x45svY-QbgheAqT62woeQJD0WZZhgH8zQsJXdSZamIfB1yf5KOD8WnaTJdgV_9tzC0rbKPiT5QF7WlGvlmnGDqlgnCh7fz7yF1jaLV1b6FRusWu-78B76yLd7sfED7vozj7Y8H78dh11UgtIhOGvwtY-kcQh0rUmcNAqS8VJHlpUhMZjKbGpXIIndFLI3kBnWOSkxiuRo5aTEb47jX4Dom3hHNKDmVQ02H2NaVEN23OSOuNhfCRyLaB0FAahSKpfzn2wT8C9v-vUXzj3Van_62b8OtDreyrdbR7sCKq9bhRtvJ8nwd1gi0tpzPd-Hn53xGo7CcERtyiG_0nYOzRS-GY83rhrYq4REVg1G4Im7lmvJq6BWaWbbIacc7DXVyhNZojr8xRNls1pdC2JfJFvPdfBjeKiJmKnbeg8MrMcl9WK3qyj0EhsKi4JbLzEZCZp7OTVp8JxRJkaWmDCDqH7-2HQs6NeM40X41nivdmkyjybQ3mRYBvBqumbccIJdKvyOrDpLE3-3_qE-PdBcONJexMnHhCuIfFKU1puASsblAeGClsQFs9D6hu6Cy0BdTIIDnw2kMB7TGk1euPvMyKqKyBurxoHWhQRPOM0XdpQOQS861pOrymWp27CnHVRRlIsErX_dueKHW_x_Fo8vv4hncHB_s7-m9ncnuY1iLaZYQLy7fgNXm9Mw9QbjXmKd-jjH4etWT-jfL0WeT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvFZTXlgJGghNEu4md2DkgVCirlsKqQlTamxs7TrtSSZYmFeqJ_8WvY8ZJtloevfWyijYTa5x5-PN4MgPwQnCVJVbYQPKYB6JIUvSDWRIUkjup0kSEPg75eZLsHoqP03i6Ar_6b2EorbL3id5R55WlGPkwinHpljHCh2HRpUUc7Izfzr8H1EGKTlr7dhqtiuy7ix-4favf7O2grF9G0fjD1_e7QddhILCIVBr8LSLpHMIeKxJnDYKlrFCh5YWITWpSmxgVyzxzeSSN5Ab5Dwtc0DI1ctLiyozj3oCbOM-QbExO5SK-Q5XXlRDddzojroa18F6JciIIVI0CsbQW-pYB_8K5f6dr_nFm65fC8R1Y7zAs226V7i6suHIDbrVdLS82YI0AbFv_-R78PMhmNArLGFVGDnB33yk7q3syHGteNZS2hFcUGEbikuosV7TGBp6hmWV1RtnvNNTpMUqjOfnGEHGzWR8WYV8m28x39mE4VUTPFPi8D4fXIpIHsFpWpXsEDIlFzi2XqQ2FTH1pN2lxfyjiPE1MMYCwf_3adhXRqTHHqfYn81zpVmQaRaa9yLQYwKvFM_O2HsiV1O9IqgtKquXt_6jOjnXnGjSXkTJR7nKqRSgKa0zOJeJ0gVDBSmMHsNXrhO4cTK0vzWEAzxe30TXQeU9Wuurc06iQQhzIx8NWhRaccJ4q6jQ9ALmkXEusLt8pZye-_LgKw1TE-OTrXg0v2fr_q9i8ehbP4Daas_60N9l_DGsRGQmVyOVbsNqcnbsniPwa89SbGIOj67bp341ua8k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairing+a+high-resolution+statistical+potential+with+a+nucleobase-centric+sampling+algorithm+for+improving+RNA+model+refinement&rft.jtitle=Nature+communications&rft.au=Xiong%2C+Peng&rft.au=Wu+Ruibo&rft.au=Zhan+Jian&rft.au=Zhou%2C+Yaoqi&rft.date=2021-05-13&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-23100-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |