Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement

Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimental...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 2777 - 11
Main Authors Xiong, Peng, Wu, Ruibo, Zhan, Jian, Zhou, Yaoqi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.05.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
AbstractList Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.
Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined "native" structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base-base, base-oxygen and oxygen-oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base-base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined "native" structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base-base, base-oxygen and oxygen-oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base-base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques.Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the progress in protein or RNA structure refinement has been slow because the global minimum given by the energy scores is not at the experimentally determined “native” structure. Here, we propose a fully knowledge-based energy function that captures the full orientation dependence of base–base, base–oxygen and oxygen–oxygen interactions with the RNA backbone modelled by rotameric states and internal energies. A total of 4000 quantum-mechanical calculations were performed to reweight base–base statistical potentials for minimizing possible effects of indirect interactions. The resulting BRiQ knowledge-based potential, equipped with a nucleobase-centric sampling algorithm, provides a robust improvement in refining near-native RNA models generated by a wide variety of modelling techniques. Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the authors propose a way to incorporate knowledge on interactions at the atomic and base–base level to refine the prediction of RNA structures.
ArticleNumber 2777
Author Zhan, Jian
Xiong, Peng
Wu, Ruibo
Zhou, Yaoqi
Author_xml – sequence: 1
  givenname: Peng
  surname: Xiong
  fullname: Xiong, Peng
  organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive, Institute for Systems and Physical Biology, Shenzhen Bay Laboratory
– sequence: 2
  givenname: Ruibo
  surname: Wu
  fullname: Wu, Ruibo
  organization: School of Pharmaceutical Sciences, Sun Yat-Sen University
– sequence: 3
  givenname: Jian
  orcidid: 0000-0003-0856-2385
  surname: Zhan
  fullname: Zhan, Jian
  email: j.zhan@griffith.edu.au
  organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive
– sequence: 4
  givenname: Yaoqi
  orcidid: 0000-0002-9958-5699
  surname: Zhou
  fullname: Zhou, Yaoqi
  email: zhouyq@szbl.ac.cn
  organization: Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Drive, Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Peking University Shenzhen Graduate School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33986288$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARLaU_wAJFYsMm4FdiZ4NUVTwqVYAQrC3bObnXV44d7KRVV_11nJsW2i7qhX1kz4zG58zL4sAHD0XxGqP3GFHxITHMGl4hgitCMUIVe1YcEcRwhTmhB_fqw-IkpR3Ki7ZYMPaiOKS0FQ0R4qi4-aFstH5TqnJrN9sqQgpunmzwZZrUZNNkjXLlGCbwk83VlZ22Gexn4yBolaAy-SVaUyY1jG4v5TYhZthQ9iGWdhhjuFzuf347LYfQgSsj9NbDkImviue9cglObs_j4vfnT7_OvlYX37-cn51eVKZmaMp7TzgAwo1hDRjdtlj1Ahvas1q3ujWNFjXvFHSEa041BY77BjMlEHBDBD0uzlfdLqidHKMdVLyWQVm5vwhxI1XMf3UgKSdCkw46XjPGeqN1RzmuEWOkNVybrPVx1RpnPUC3_79yD0Qfvni7lZtwKQXGLasXM-9uBWL4M0Oa5GCTAeeUhzAnSWoiMBdCsAx9-wi6C3P0uVULqmG8xg3NqDf3Hf2zcjfnDBArwMSQUm6_NHYZb1gMWicxkkuq5JoqmVMl96mSiwPyiHqn_iSJrqQ0LumC-N_2E6y_EuHhgA
CitedBy_id crossref_primary_10_1093_bib_bbae682
crossref_primary_10_1021_acs_jpclett_2c01342
crossref_primary_10_1021_acs_jctc_3c01239
crossref_primary_10_1016_j_tig_2023_10_001
crossref_primary_10_59761_RCR5107
crossref_primary_10_7554_eLife_90254_3
crossref_primary_10_3390_molecules28124833
crossref_primary_10_1038_s41467_023_42528_4
crossref_primary_10_1093_nargab_lqad016
crossref_primary_10_1021_acs_jcim_2c00939
crossref_primary_10_3390_molecules28145532
crossref_primary_10_1038_s41592_024_02487_0
crossref_primary_10_59717_j_xinn_med_2025_100120
crossref_primary_10_1007_s12539_023_00561_3
crossref_primary_10_1016_j_csbj_2022_11_007
crossref_primary_10_1093_nar_gkad1031
crossref_primary_10_1021_acs_jctc_4c00497
crossref_primary_10_1016_j_bpj_2022_08_017
crossref_primary_10_1088_1742_6596_2131_3_032092
crossref_primary_10_3390_molecules29061244
crossref_primary_10_1093_nar_gkad122
crossref_primary_10_1038_s41467_023_41303_9
crossref_primary_10_1016_j_str_2024_08_015
crossref_primary_10_1016_j_bpj_2024_01_026
crossref_primary_10_3389_fbinf_2021_809082
crossref_primary_10_1021_acs_jpcb_1c07288
crossref_primary_10_1088_1572_9494_ac7042
crossref_primary_10_1371_journal_pcbi_1010501
crossref_primary_10_7554_eLife_90254
crossref_primary_10_1016_j_bpj_2021_11_016
crossref_primary_10_1002_prot_26574
crossref_primary_10_1093_nar_gkae541
Cites_doi 10.1126/sciadv.aar5316
10.1093/nar/gkv141
10.1038/s41467-019-13395-9
10.1073/pnas.1835769100
10.1038/nmeth.1433
10.1007/s00214-007-0310-x
10.1093/nar/gkx1269
10.1016/j.str.2020.05.011
10.1261/rna.060368.116
10.1073/pnas.0703836104
10.1146/annurev-biophys-070816-033920
10.1073/pnas.1713027115
10.1093/bioinformatics/btn328
10.1038/srep00734
10.1261/rna.049502.114
10.1261/rna.074179.119
10.1021/ja00525a004
10.1016/j.cell.2016.03.030
10.1038/nsb0594-334
10.1006/jmbi.1999.3001
10.1126/science.1219021
10.1093/nar/gki541
10.1021/jp112059y
10.1261/rna.069872.118
10.1371/journal.pone.0074830
10.1093/nar/gkm216
10.1093/nar/gku991
10.3389/fgene.2017.00231
10.1021/acs.jpcb.7b10102
10.1261/rna.1700409
10.1093/nar/gku1214
10.1002/wcms.1307
10.1385/CBB:46:2:165
10.1261/rna.075341.120
10.1021/acs.jctc.7b00125
10.1093/bioinformatics/btv221
10.1038/nature06684
10.1093/nar/gkx386
10.1093/nar/gkq1320
10.1093/nar/gkv1479
10.1261/rna.657708
10.1186/s12900-019-0103-1
10.5281/zenodo.4661144
10.1093/bioinformatics/btab165
10.3390/ijms20174116
10.1142/9789814295291_0024
10.1089/cmb.2019.0251
10.3390/ijms20092301
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-23100-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Publicly Available Content Database


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Statistics
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_3728b2ded75444fcbbd371504429c7bc
PMC8119458
33986288
10_1038_s41467_021_23100_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Education and Training | Australian Research Council (ARC)
  grantid: DP180102060; DP210101875
  funderid: https://doi.org/10.13039/501100000923
– fundername: ;
  grantid: DP180102060; DP210101875
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-c5f27ee016c46ecb991af81c3f45b9b9c6b857daed27b73b3e71f614a80e7c283
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:27 EDT 2025
Thu Aug 21 14:11:09 EDT 2025
Sun Aug 24 04:11:27 EDT 2025
Wed Aug 13 04:33:17 EDT 2025
Thu Apr 03 07:08:55 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Tue Jul 01 04:17:25 EDT 2025
Fri Feb 21 02:39:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c5f27ee016c46ecb991af81c3f45b9b9c6b857daed27b73b3e71f614a80e7c283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0856-2385
0000-0002-9958-5699
OpenAccessLink https://www.proquest.com/docview/2526475163?pq-origsite=%requestingapplication%
PMID 33986288
PQID 2526475163
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_3728b2ded75444fcbbd371504429c7bc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8119458
proquest_miscellaneous_2528178884
proquest_journals_2526475163
pubmed_primary_33986288
crossref_citationtrail_10_1038_s41467_021_23100_4
crossref_primary_10_1038_s41467_021_23100_4
springer_journals_10_1038_s41467_021_23100_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-13
PublicationDateYYYYMMDD 2021-05-13
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Singh, Hanson, Paliwal, Zhou (CR43) 2019; 10
Das, Karanicolas, Baker (CR23) 2010; 7
Dunbrack, Karplus (CR33) 1994; 1
Murray, Arendall, Richardson, Richardson (CR31) 2003; 100
Das, Baker (CR7) 2007; 104
Miao (CR17) 2017; 23
Rose (CR1) 2015; 43
Miao (CR19) 2020; 26
Wang, Zhao, Zhu, Xiao (CR27) 2015; 43
Miao (CR18) 2015; 21
Dill, MacCallum (CR32) 2012; 338
Krokhotin, Houlihan, Dokholyan (CR10) 2015; 31
Westhof, Sundaralingam (CR49) 1980; 102
CR5
Tinoco, Bustamante (CR30) 1999; 293
CR46
Davis (CR37) 2007; 35
CR44
Antunes, Jorge, Caffarena, Passetti (CR4) 2018; 8
Parisien, Major (CR8) 2008; 452
Watkins (CR34) 2018; 4
Rother, Rother, Puton, Bujnicki (CR6) 2011; 39
Poblete, Bottaro, Bussi (CR45) 2018; 46
Weinreb (CR40) 2016; 165
Zhao (CR14) 2012; 2
Cuturello, Tiana, Bussi (CR42) 2020; 26
Sharma, Ding, Dokholyan (CR11) 2008; 24
CR15
Alford (CR25) 2017; 13
Boniecki (CR16) 2016; 44
Gardner, Wilm, Washietl (CR38) 2005; 33
CR50
Das (CR9) 2013; 8
Petrov (CR2) 2015; 43
Stasiewicz, Mukherjee, Nithin, Bujnicki (CR22) 2019; 19
Tan, Piana, Dirks, Shaw (CR35) 2018; 115
Tan (CR29) 2019; 25
Parisien, Cruz, Westhof, Major (CR36) 2009; 15
De Leonardis (CR39) 2015; 43
Wang (CR41) 2017; 45
CR28
Sun, Zhang, Chen (CR3) 2017; 46
CR21
Richardson (CR48) 2008; 14
Watkins, Rangan, Das (CR24) 2020; 28
Zhao, Truhlar (CR47) 2008; 120
Zhou, Zhou, Zhang, Liu (CR26) 2006; 46
Feig (CR20) 2017; 7
Cao, Chen (CR12) 2011; 115
Xu, Chen (CR13) 2018; 122
J Wang (23100_CR27) 2015; 43
23100_CR46
MJ Boniecki (23100_CR16) 2016; 44
IW Davis (23100_CR37) 2007; 35
A Krokhotin (23100_CR10) 2015; 31
F Cuturello (23100_CR42) 2020; 26
YL Tan (23100_CR29) 2019; 25
23100_CR50
J Wang (23100_CR41) 2017; 45
PW Rose (23100_CR1) 2015; 43
Y Zhao (23100_CR47) 2008; 120
LJ Murray (23100_CR31) 2003; 100
23100_CR15
Z Miao (23100_CR17) 2017; 23
AI Petrov (23100_CR2) 2015; 43
AM Watkins (23100_CR24) 2020; 28
M Parisien (23100_CR36) 2009; 15
R Das (23100_CR23) 2010; 7
J Singh (23100_CR43) 2019; 10
R Das (23100_CR7) 2007; 104
PP Gardner (23100_CR38) 2005; 33
23100_CR21
RF Alford (23100_CR25) 2017; 13
E De Leonardis (23100_CR39) 2015; 43
Y Zhao (23100_CR14) 2012; 2
M Feig (23100_CR20) 2017; 7
RL Dunbrack Jr. (23100_CR33) 1994; 1
D Antunes (23100_CR4) 2018; 8
D Tan (23100_CR35) 2018; 115
E Westhof (23100_CR49) 1980; 102
23100_CR28
AM Watkins (23100_CR34) 2018; 4
Y Zhou (23100_CR26) 2006; 46
C Weinreb (23100_CR40) 2016; 165
J Stasiewicz (23100_CR22) 2019; 19
Z Miao (23100_CR18) 2015; 21
R Das (23100_CR9) 2013; 8
KA Dill (23100_CR32) 2012; 338
M Rother (23100_CR6) 2011; 39
X Xu (23100_CR13) 2018; 122
S Poblete (23100_CR45) 2018; 46
Z Miao (23100_CR19) 2020; 26
I Tinoco (23100_CR30) 1999; 293
23100_CR5
M Parisien (23100_CR8) 2008; 452
S Cao (23100_CR12) 2011; 115
S Sharma (23100_CR11) 2008; 24
JS Richardson (23100_CR48) 2008; 14
LZ Sun (23100_CR3) 2017; 46
23100_CR44
References_xml – volume: 4
  start-page: eaar5316
  year: 2018
  ident: CR34
  article-title: Blind prediction of noncanonical RNA structure at atomic accuracy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar5316
– volume: 43
  start-page: e63
  year: 2015
  ident: CR27
  article-title: 3dRNAscore: a distance and torsion angle dependent evaluation function of 3D RNA structures
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv141
– volume: 10
  start-page: 5407
  year: 2019
  ident: CR43
  article-title: RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13395-9
– volume: 100
  start-page: 13904
  year: 2003
  end-page: 13909
  ident: CR31
  article-title: RNA backbone is rotameric
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1835769100
– volume: 7
  start-page: 291
  year: 2010
  end-page: 294
  ident: CR23
  article-title: Atomic accuracy in predicting and designing noncanonical RNA structure
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1433
– volume: 120
  start-page: 215
  year: 2008
  end-page: 241
  ident: CR47
  article-title: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 46
  start-page: 1674
  year: 2018
  end-page: 1683
  ident: CR45
  article-title: A nucleobase-centered coarse-grained representation for structure prediction of RNA motifs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1269
– volume: 28
  start-page: 963
  year: 2020
  end-page: 976 e6
  ident: CR24
  article-title: FARFAR2: improved de novo Rosetta prediction of complex global RNA folds
  publication-title: Structure
  doi: 10.1016/j.str.2020.05.011
– volume: 23
  start-page: 655
  year: 2017
  end-page: 672
  ident: CR17
  article-title: RNA-puzzles round III: 3D RNA structure prediction of five riboswitches and one ribozyme
  publication-title: RNA
  doi: 10.1261/rna.060368.116
– ident: CR21
– ident: CR46
– volume: 104
  start-page: 14664
  year: 2007
  end-page: 14669
  ident: CR7
  article-title: Automated de novo prediction of native-like RNA tertiary structures
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0703836104
– volume: 46
  start-page: 227
  year: 2017
  end-page: 246
  ident: CR3
  article-title: Theory and modeling of RNA structure and interactions with metal ions and small molecules
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-070816-033920
– ident: CR15
– ident: CR50
– volume: 43
  start-page: 10444
  year: 2015
  end-page: 10455
  ident: CR39
  article-title: Direct-coupling analysis of nucleotide coevolution facilitates RNA secondary and tertiary structure prediction
  publication-title: Nucleic Acids Res.
– volume: 115
  start-page: E1346
  year: 2018
  end-page: E1355
  ident: CR35
  article-title: RNA force field with accuracy comparable to state-of-the-art protein force fields
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1713027115
– volume: 24
  start-page: 1951
  year: 2008
  end-page: 1952
  ident: CR11
  article-title: iFoldRNA: three-dimensional RNA structure prediction and folding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn328
– volume: 2
  year: 2012
  ident: CR14
  article-title: Automated and fast building of three-dimensional RNA structures
  publication-title: Sci. Rep.
  doi: 10.1038/srep00734
– volume: 21
  start-page: 1066
  year: 2015
  end-page: 1084
  ident: CR18
  article-title: RNA-puzzles round II: assessment of RNA structure prediction programs applied to three large RNA structures
  publication-title: RNA
  doi: 10.1261/rna.049502.114
– volume: 26
  start-page: 637
  year: 2020
  end-page: 647
  ident: CR42
  article-title: Assessing the accuracy of direct-coupling analysis for RNA contact prediction
  publication-title: RNA
  doi: 10.1261/rna.074179.119
– volume: 102
  start-page: 1493
  year: 1980
  end-page: 1500
  ident: CR49
  article-title: Interrelationships between the pseudorotation parameters P and taum and the geometry of the furanose ring
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00525a004
– volume: 165
  start-page: 963
  year: 2016
  end-page: 975
  ident: CR40
  article-title: 3D RNA and functional interactions from evolutionary couplings
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.030
– volume: 1
  start-page: 334
  year: 1994
  end-page: 340
  ident: CR33
  article-title: Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0594-334
– volume: 293
  start-page: 271
  year: 1999
  end-page: 281
  ident: CR30
  article-title: How RNA folds
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3001
– ident: CR5
– volume: 338
  start-page: 1042
  year: 2012
  end-page: 1046
  ident: CR32
  article-title: The protein-folding problem, 50 years on
  publication-title: Science
  doi: 10.1126/science.1219021
– volume: 33
  start-page: 2433
  year: 2005
  end-page: 2439
  ident: CR38
  article-title: A benchmark of multiple sequence alignment programs upon structural RNAs
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki541
– volume: 115
  start-page: 4216
  year: 2011
  end-page: 4226
  ident: CR12
  article-title: Physics-based de novo prediction of RNA 3D structures
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp112059y
– volume: 25
  start-page: 793
  year: 2019
  end-page: 812
  ident: CR29
  article-title: What is the best reference state for building statistical potentials in RNA 3D structure evaluation?
  publication-title: RNA
  doi: 10.1261/rna.069872.118
– volume: 8
  start-page: e74830
  year: 2013
  ident: CR9
  article-title: Atomic-accuracy prediction of protein loop structures through an RNA-inspired Ansatz
  publication-title: PLos ONE
  doi: 10.1371/journal.pone.0074830
– volume: 35
  start-page: W375
  year: 2007
  end-page: W383
  ident: CR37
  article-title: MolProbity: all-atom contacts and structure validation for proteins and nucleic acids
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm216
– volume: 43
  start-page: D123
  year: 2015
  end-page: D129
  ident: CR2
  article-title: RNAcentral: an international database of ncRNA sequences
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku991
– volume: 8
  start-page: 231
  year: 2018
  ident: CR4
  article-title: Using RNA sequence and structure for the prediction of riboswitch aptamer: a comprehensive review of available software and tools
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00231
– volume: 122
  start-page: 5327
  year: 2018
  end-page: 5335
  ident: CR13
  article-title: Hierarchical assembly of RNA three-dimensional structures based on loop templates
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b10102
– volume: 15
  start-page: 1875
  year: 2009
  end-page: 1885
  ident: CR36
  article-title: New metrics for comparing and assessing discrepancies between RNA 3D structures and models
  publication-title: RNA
  doi: 10.1261/rna.1700409
– volume: 43
  start-page: D345
  year: 2015
  end-page: D356
  ident: CR1
  article-title: The RCSB Protein Data Bank: views of structural biology for basic and applied research and education
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1214
– volume: 7
  start-page: e1307
  year: 2017
  ident: CR20
  article-title: Computational protein structure refinement: almost there, yet still so far to go
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1307
– volume: 46
  start-page: 165
  year: 2006
  end-page: 174
  ident: CR26
  article-title: What is a desirable statistical energy function for proteins and how can it be obtained?
  publication-title: Cell Biochem. Biophys.
  doi: 10.1385/CBB:46:2:165
– volume: 26
  start-page: 982
  year: 2020
  end-page: 995
  ident: CR19
  article-title: RNA-puzzles round IV: 3D structure predictions of four ribozymes and two aptamers
  publication-title: RNA
  doi: 10.1261/rna.075341.120
– volume: 13
  start-page: 3031
  year: 2017
  end-page: 3048
  ident: CR25
  article-title: The Rosetta all-atom energy function for macromolecular modeling and design
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00125
– ident: CR44
– volume: 31
  start-page: 2891
  year: 2015
  end-page: 2893
  ident: CR10
  article-title: iFoldRNA v2: folding RNA with constraints
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv221
– volume: 452
  start-page: 51
  year: 2008
  end-page: 55
  ident: CR8
  article-title: The MC-fold and MC-Sym pipeline infers RNA structure from sequence data
  publication-title: Nature
  doi: 10.1038/nature06684
– volume: 45
  start-page: 6299
  year: 2017
  end-page: 6309
  ident: CR41
  article-title: Optimization of RNA 3D structure prediction using evolutionary restraints of nucleotide-nucleotide interactions from direct coupling analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx386
– volume: 39
  start-page: 4007
  year: 2011
  end-page: 4022
  ident: CR6
  article-title: ModeRNA: a tool for comparative modeling of RNA 3D structure
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1320
– volume: 44
  start-page: e63
  year: 2016
  ident: CR16
  article-title: SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1479
– volume: 14
  start-page: 465
  year: 2008
  end-page: 481
  ident: CR48
  article-title: RNA backbone: consensus all-angle conformers and modular string nomenclature (an RNA Ontology Consortium contribution)
  publication-title: RNA
  doi: 10.1261/rna.657708
– ident: CR28
– volume: 19
  year: 2019
  ident: CR22
  article-title: QRNAS: software tool for refinement of nucleic acid structures
  publication-title: BMC Struct. Biol.
  doi: 10.1186/s12900-019-0103-1
– ident: 23100_CR46
– volume: 120
  start-page: 215
  year: 2008
  ident: 23100_CR47
  publication-title: Theor. Chem. Acc.
  doi: 10.1007/s00214-007-0310-x
– volume: 10
  start-page: 5407
  year: 2019
  ident: 23100_CR43
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13395-9
– ident: 23100_CR50
  doi: 10.5281/zenodo.4661144
– ident: 23100_CR44
  doi: 10.1093/bioinformatics/btab165
– volume: 45
  start-page: 6299
  year: 2017
  ident: 23100_CR41
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx386
– volume: 23
  start-page: 655
  year: 2017
  ident: 23100_CR17
  publication-title: RNA
  doi: 10.1261/rna.060368.116
– volume: 28
  start-page: 963
  year: 2020
  ident: 23100_CR24
  publication-title: Structure
  doi: 10.1016/j.str.2020.05.011
– volume: 46
  start-page: 227
  year: 2017
  ident: 23100_CR3
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-070816-033920
– volume: 293
  start-page: 271
  year: 1999
  ident: 23100_CR30
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1999.3001
– volume: 26
  start-page: 982
  year: 2020
  ident: 23100_CR19
  publication-title: RNA
  doi: 10.1261/rna.075341.120
– volume: 104
  start-page: 14664
  year: 2007
  ident: 23100_CR7
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0703836104
– ident: 23100_CR15
  doi: 10.3390/ijms20174116
– volume: 1
  start-page: 334
  year: 1994
  ident: 23100_CR33
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb0594-334
– volume: 338
  start-page: 1042
  year: 2012
  ident: 23100_CR32
  publication-title: Science
  doi: 10.1126/science.1219021
– volume: 44
  start-page: e63
  year: 2016
  ident: 23100_CR16
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1479
– volume: 43
  start-page: e63
  year: 2015
  ident: 23100_CR27
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv141
– volume: 13
  start-page: 3031
  year: 2017
  ident: 23100_CR25
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b00125
– volume: 26
  start-page: 637
  year: 2020
  ident: 23100_CR42
  publication-title: RNA
  doi: 10.1261/rna.074179.119
– volume: 115
  start-page: 4216
  year: 2011
  ident: 23100_CR12
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp112059y
– volume: 15
  start-page: 1875
  year: 2009
  ident: 23100_CR36
  publication-title: RNA
  doi: 10.1261/rna.1700409
– volume: 46
  start-page: 1674
  year: 2018
  ident: 23100_CR45
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx1269
– volume: 165
  start-page: 963
  year: 2016
  ident: 23100_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2016.03.030
– volume: 8
  start-page: 231
  year: 2018
  ident: 23100_CR4
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2017.00231
– volume: 31
  start-page: 2891
  year: 2015
  ident: 23100_CR10
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv221
– volume: 43
  start-page: 10444
  year: 2015
  ident: 23100_CR39
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 465
  year: 2008
  ident: 23100_CR48
  publication-title: RNA
  doi: 10.1261/rna.657708
– volume: 39
  start-page: 4007
  year: 2011
  ident: 23100_CR6
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq1320
– ident: 23100_CR5
  doi: 10.1142/9789814295291_0024
– volume: 7
  start-page: e1307
  year: 2017
  ident: 23100_CR20
  publication-title: Wiley Interdiscip. Rev. Comput. Mol. Sci.
  doi: 10.1002/wcms.1307
– ident: 23100_CR28
  doi: 10.1089/cmb.2019.0251
– volume: 33
  start-page: 2433
  year: 2005
  ident: 23100_CR38
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki541
– volume: 2
  year: 2012
  ident: 23100_CR14
  publication-title: Sci. Rep.
  doi: 10.1038/srep00734
– volume: 100
  start-page: 13904
  year: 2003
  ident: 23100_CR31
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1835769100
– volume: 21
  start-page: 1066
  year: 2015
  ident: 23100_CR18
  publication-title: RNA
  doi: 10.1261/rna.049502.114
– ident: 23100_CR21
  doi: 10.3390/ijms20092301
– volume: 43
  start-page: D345
  year: 2015
  ident: 23100_CR1
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku1214
– volume: 43
  start-page: D123
  year: 2015
  ident: 23100_CR2
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gku991
– volume: 25
  start-page: 793
  year: 2019
  ident: 23100_CR29
  publication-title: RNA
  doi: 10.1261/rna.069872.118
– volume: 24
  start-page: 1951
  year: 2008
  ident: 23100_CR11
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn328
– volume: 102
  start-page: 1493
  year: 1980
  ident: 23100_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00525a004
– volume: 452
  start-page: 51
  year: 2008
  ident: 23100_CR8
  publication-title: Nature
  doi: 10.1038/nature06684
– volume: 115
  start-page: E1346
  year: 2018
  ident: 23100_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1713027115
– volume: 122
  start-page: 5327
  year: 2018
  ident: 23100_CR13
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.7b10102
– volume: 46
  start-page: 165
  year: 2006
  ident: 23100_CR26
  publication-title: Cell Biochem. Biophys.
  doi: 10.1385/CBB:46:2:165
– volume: 35
  start-page: W375
  year: 2007
  ident: 23100_CR37
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkm216
– volume: 4
  start-page: eaar5316
  year: 2018
  ident: 23100_CR34
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar5316
– volume: 8
  start-page: e74830
  year: 2013
  ident: 23100_CR9
  publication-title: PLos ONE
  doi: 10.1371/journal.pone.0074830
– volume: 19
  year: 2019
  ident: 23100_CR22
  publication-title: BMC Struct. Biol.
  doi: 10.1186/s12900-019-0103-1
– volume: 7
  start-page: 291
  year: 2010
  ident: 23100_CR23
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1433
SSID ssj0000391844
Score 2.499094
Snippet Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years’ efforts, the...
Refining modelled structures to approach experimental accuracy is one of the most challenging problems in molecular biology. Despite many years' efforts, the...
Predicting RNA structure from sequence is challenging due to the relative sparsity of experimentally-determined RNA 3D structures for model training. Here, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2777
SubjectTerms 631/114/2397
631/114/2411
631/45/535
Accuracy
Algorithms
Energy
Humanities and Social Sciences
Knowledge
Methods
Model accuracy
Molecular biology
multidisciplinary
Nucleotide sequence
Oxygen
Protein structure
Proteins
Ribonucleic acid
RNA
Sampling
Science
Science (multidisciplinary)
Statistical analysis
Statistics
Three dimensional models
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS-QwEA4iHPhyeKd31tMjB755xW0zbZLHVRQRbhFR8C0kaaoL2oq7Pvh0f_1m0u7qenf64stStpMyTSYzXybpN4ztgFC29OBTKQqRQl1q9IO2TGspglS6hCzmIX-NyuMLOLksLp-V-qIzYR09cNdxe0LmyuVVqIipDWrvXCUkohhAR-ql8-R9MeY9W0xFHyw0Ll2g_0pmINTeBKJPoBMJBGkGKSxEokjY_y-U-fdhyRc7pjEQHa2yjz2C5MNO809sKTSf2YeupuTjGvt9asfUkFtOVMQpLqd76-L08VDkZcbmd-2UzgnhFWViUbghYuOWgloadRh7PrF03JwedXPV3qPYLUeIy8ezPAQ_Gw15LKXD8e0QrlKmcZ1dHB2eHxynfZWF1CNam-JvncsQEPp5KIN3CBhtrTIvaiicdtqXThWysqHKpZPC4RhmNQZ1qwZBekQnX9hy0zZhg3EUhkp4IbXPQOrIpSY9LsigqHTp6oRlsx43vqcgp0oYNyZuhQtlulEyOEomjpKBhO3O29x1BByvSu_TQM4liTw7_oEmZXqTMm-ZVMK2ZmZg-hk9MXmB0FEWCF8T9mN-G-cibbDYJrQPUUZllFNAPb52VjPXRAitqLRzwuSCPS2ouninGV9Hvm-VZRoKbPlzZnlPav2_Kzbfoyu-sZWcpgzR1Yottjy9fwjbiMKm7nuccH8AZqEuBw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED66jkFfRtf9ctsNDfa2east2ZIexuhGSxm0jLJA34Qky10gs9skhfap__ruZDslW9qXYOKTOEt3vk8n-TuA94IrW3rhU8kLnoq61PgetGVaSx6k0qXIYh7y-KQ8GokfZ8XZGgzljvoBnK1c2lE9qdF08un68uYrOvyX7pNx9XkmorvTYQNCK3upeASPMTJJctTjHu7HNzPXuKAR_bczq5suxadI478Ke_5_hPKffdQYng434WmPK9l-ZwjPYC00W_CkqzR5swUbBCo7TubncPvTjqkXZhmxFae44u4NkM0GMezrop3TUSK8omQtCjfEfdxS3EujQmPPZpZOpFNXk_N2imJ_GKJgNh5SFez0ZJ_FajsMHxURLSUjX8Do8ODX96O0L8SQegR0c_ytcxkCokMvyuAdYkpbq8zzWhROO-1LpwpZ2VDl0knucJqzGuO-VXtBegQwL2G9aZvwGhgKi4p7LrXPhNSRbk16XLOJotKlqxPIhuE3vmcpp2IZExN3y7ky3ZQZnDITp8yIBD4s2lx0HB0PSn-jWV1IEr92_KOdnpveXQ2XuXJ5FSriBxS1d67iErGzwPDtpfMJ7A42YQabNXmB6FIWiHATeLe4je5KezC2Ce1VlFEZpR1Qj1edCS004Vwrqv6cgFwyriVVl-8049-RElxlmRYFtvw4mOGdWvcPxfbDT7EDGzl5BnHV8l1Yn0-vwhuEYHP3NvrVX0keLNY
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OE8EX8dvqKRF80-K2mTbJ47l4HIKHiAf3FpI0PRfO9tjde_DJf92Z9ENWT8GXpWxnyrQz0_w6mfwC8AqldnXAkCtZyRzb2tB70NV5q2RU2tRYpDrkx5P6-BQ_nFVne1BOa2FS036itEyv6ak77O0GU0pzQwEjkkWON-AmU7dzVC_r5VxXYcZzjTiuj1lIfY3qzhiUqPqvw5d_tkn-NleahqCju3BnxI7icLD2HuzF7j7cGnaT_P4AfnxyK1YUTjAJcU4f0mNcCV42lBiZSf2y33KHEB1xDZaEO6Y07nk4y5MNqyA2jhvN-VIX5_2axL4JArdiNVUgxOeTQ5E20RF0dwRUucb4EE6P3n9ZHufj_gp5IJy2pd-2VDES6AtYx-AJKrpWF0G2WHnjTai9rlTjYlMqr6Qn7xUtDedOL6IKhEsewX7Xd_EJCBLGRgapTChQmcSipgJ9imHVmNq3GRTTE7dhJB_nPTAubJoEl9oOXrLkJZu8ZDGD17PO5UC98U_pd-zIWZJps9Mf_frcjmFkpSq1L5vYMO0ftsH7RiqCxEijclA-ZHAwhYEdc3ljy4pAo6oIuGbwcj5NWchTK66L_VWS0QVXE8iOx0PUzJZIaTRv6pyB2omnHVN3z3Srr4npWxeFwYo030yR98usvz-Kp_8n_gxul5wcTEkrD2B_u76Kzwlpbf2LlFo_AbU4Ixw
  priority: 102
  providerName: Springer Nature
Title Pairing a high-resolution statistical potential with a nucleobase-centric sampling algorithm for improving RNA model refinement
URI https://link.springer.com/article/10.1038/s41467-021-23100-4
https://www.ncbi.nlm.nih.gov/pubmed/33986288
https://www.proquest.com/docview/2526475163
https://www.proquest.com/docview/2528178884
https://pubmed.ncbi.nlm.nih.gov/PMC8119458
https://doaj.org/article/3728b2ded75444fcbbd371504429c7bc
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swELc20CRepsE-yIDKk_a2RTSxEztPU6noUCUqxIbUNyt2HKjEko6Ehz3tX-fOcYK6D17SKrlYju_s--V8-R0hHzmTeWq4CQVLWMjLNIN1ME_DUjArZJbyyMUhzxfp2RWfL5OlD7g1Pq2yXxPdQl3UBmPkx3ECrlskAB--rH-GWDUKd1d9CY3nZBupyzClSyzFEGNB9nPJuf9WZszkccPdyoB5CQhsxiHf8EeOtv9fWPPvlMk_9k2dO5q9Ii89jqSTTvG75Jmt9siLrrLkrz2ygyCy42B-TX5f5CtsheYU2YlDeMP2BkebXgzaWtctpg7BPwzOgnCFXMc1-rnQdWhlaJNjBjo2dXsNo9Pe_KCAeumqD03Qy8WEuuo6FB4VECwGH9-Qq9np9-lZ6AsvhAYAXAvHMhbWAho0PLVGA4bMSxkZVvJEZzozqZaJKHJbxEILpkGtUQl-PpdjKwwAlrdkq6oru08oCPOCGSYyE3GROXo1YeAdjSdFluoyIFE__Mp4VnIsjnGr3O44k6pTmQKVKacyxQPyabhn3XFyPCl9glodJJFP252o766Vn56KiVjquLAF8gHy0mhdMAFYmYO7NkKbgBz2NqH8JG_Uo0kG5MNwGaYn7rnkla3vnYyMMMwA_XjXmdDQE8YyidWeAyI2jGujq5tXqtWNowCXYO48gTs_92b42K3_D8X7p5_igOzEODOQm5Ydkq327t4eAeRq9cjNKzjK2dcR2Z5M5t_m8Htyuri4hLPTdDpywQw4nnP5ADHLMHQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQvCMorUMBIcIKom9iJnQNC5VFtabtCqJX2ZmLHaVcqydJNhXriH_EbmXEe1fLorZdVtJlYk8x45svY-QbgheAqT62woeQJD0WZZhgH8zQsJXdSZamIfB1yf5KOD8WnaTJdgV_9tzC0rbKPiT5QF7WlGvlmnGDqlgnCh7fz7yF1jaLV1b6FRusWu-78B76yLd7sfED7vozj7Y8H78dh11UgtIhOGvwtY-kcQh0rUmcNAqS8VJHlpUhMZjKbGpXIIndFLI3kBnWOSkxiuRo5aTEb47jX4Dom3hHNKDmVQ02H2NaVEN23OSOuNhfCRyLaB0FAahSKpfzn2wT8C9v-vUXzj3Van_62b8OtDreyrdbR7sCKq9bhRtvJ8nwd1gi0tpzPd-Hn53xGo7CcERtyiG_0nYOzRS-GY83rhrYq4REVg1G4Im7lmvJq6BWaWbbIacc7DXVyhNZojr8xRNls1pdC2JfJFvPdfBjeKiJmKnbeg8MrMcl9WK3qyj0EhsKi4JbLzEZCZp7OTVp8JxRJkaWmDCDqH7-2HQs6NeM40X41nivdmkyjybQ3mRYBvBqumbccIJdKvyOrDpLE3-3_qE-PdBcONJexMnHhCuIfFKU1puASsblAeGClsQFs9D6hu6Cy0BdTIIDnw2kMB7TGk1euPvMyKqKyBurxoHWhQRPOM0XdpQOQS861pOrymWp27CnHVRRlIsErX_dueKHW_x_Fo8vv4hncHB_s7-m9ncnuY1iLaZYQLy7fgNXm9Mw9QbjXmKd-jjH4etWT-jfL0WeT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlAvFZTXlgJGghNEu4md2DkgVCirlsKqQlTamxs7TrtSSZYmFeqJ_8WvY8ZJtloevfWyijYTa5x5-PN4MgPwQnCVJVbYQPKYB6JIUvSDWRIUkjup0kSEPg75eZLsHoqP03i6Ar_6b2EorbL3id5R55WlGPkwinHpljHCh2HRpUUc7Izfzr8H1EGKTlr7dhqtiuy7ix-4favf7O2grF9G0fjD1_e7QddhILCIVBr8LSLpHMIeKxJnDYKlrFCh5YWITWpSmxgVyzxzeSSN5Ab5Dwtc0DI1ctLiyozj3oCbOM-QbExO5SK-Q5XXlRDddzojroa18F6JciIIVI0CsbQW-pYB_8K5f6dr_nFm65fC8R1Y7zAs226V7i6suHIDbrVdLS82YI0AbFv_-R78PMhmNArLGFVGDnB33yk7q3syHGteNZS2hFcUGEbikuosV7TGBp6hmWV1RtnvNNTpMUqjOfnGEHGzWR8WYV8m28x39mE4VUTPFPi8D4fXIpIHsFpWpXsEDIlFzi2XqQ2FTH1pN2lxfyjiPE1MMYCwf_3adhXRqTHHqfYn81zpVmQaRaa9yLQYwKvFM_O2HsiV1O9IqgtKquXt_6jOjnXnGjSXkTJR7nKqRSgKa0zOJeJ0gVDBSmMHsNXrhO4cTK0vzWEAzxe30TXQeU9Wuurc06iQQhzIx8NWhRaccJ4q6jQ9ALmkXEusLt8pZye-_LgKw1TE-OTrXg0v2fr_q9i8ehbP4Daas_60N9l_DGsRGQmVyOVbsNqcnbsniPwa89SbGIOj67bp341ua8k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pairing+a+high-resolution+statistical+potential+with+a+nucleobase-centric+sampling+algorithm+for+improving+RNA+model+refinement&rft.jtitle=Nature+communications&rft.au=Xiong%2C+Peng&rft.au=Wu+Ruibo&rft.au=Zhan+Jian&rft.au=Zhou%2C+Yaoqi&rft.date=2021-05-13&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-23100-4&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon