Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau

Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surfa...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 19746 - 19
Main Authors Li, Yujie, Zhang, Cunjie, Li, Zhenchao, Yang, Liwei, Jin, Xiao, Gao, Xiaoqing
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.11.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the “Moving Surface Spline Interpolation Algorithm Based on Green’s Function” and “Fuzzy C-means algorithm”, and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0–20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15–9.57°, and the interdecadal variabilities were 0.49–0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.
AbstractList Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the "Moving Surface Spline Interpolation Algorithm Based on Green's Function" and "Fuzzy C-means algorithm", and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0-20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15-9.57°, and the interdecadal variabilities were 0.49-0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the "Moving Surface Spline Interpolation Algorithm Based on Green's Function" and "Fuzzy C-means algorithm", and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0-20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15-9.57°, and the interdecadal variabilities were 0.49-0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.
Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the "Moving Surface Spline Interpolation Algorithm Based on Green's Function" and "Fuzzy C-means algorithm", and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0-20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15-9.57°, and the interdecadal variabilities were 0.49-0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.
Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the “Moving Surface Spline Interpolation Algorithm Based on Green’s Function” and “Fuzzy C-means algorithm”, and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0–20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15–9.57°, and the interdecadal variabilities were 0.49–0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.
Abstract Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the “Moving Surface Spline Interpolation Algorithm Based on Green’s Function” and “Fuzzy C-means algorithm”, and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0–20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15–9.57°, and the interdecadal variabilities were 0.49–0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.
ArticleNumber 19746
Author Jin, Xiao
Gao, Xiaoqing
Zhang, Cunjie
Li, Zhenchao
Yang, Liwei
Li, Yujie
Author_xml – sequence: 1
  givenname: Yujie
  surname: Li
  fullname: Li, Yujie
  organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 2
  givenname: Cunjie
  surname: Zhang
  fullname: Zhang, Cunjie
  organization: China Meteorological Administration, National Climate Center
– sequence: 3
  givenname: Zhenchao
  surname: Li
  fullname: Li, Zhenchao
  organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
– sequence: 4
  givenname: Liwei
  surname: Yang
  fullname: Yang, Liwei
  organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xiao
  surname: Jin
  fullname: Jin, Xiao
  organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
– sequence: 6
  givenname: Xiaoqing
  surname: Gao
  fullname: Gao, Xiaoqing
  email: xqgao@lzb.ac.cn
  organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36396695$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnYl-QqoqPSpUAqZytiTO78cobb22nqP8e724X2h6agz8yz_t67JnX1dEUJqyqt5R8pISrT0lQqVVDGGsYl0I14kV1woiQZcvY0YP1cXWW0oqUTzItqH5VHfOW67bV8qS6OZ_A3yWX6jDVecQ643oTIvgapqFOG8iurO0IEWzG6FJ2trCLHZtG8D78qVNwfifECHmOeIj_ctNyBNdcux5z_dNDRpjfVC8X4BOe3c-n1e-vX64vvjdXP75dXpxfNVYKkstIleYoLFjZdwIZV1KhHpAIUL2QPYiBMV7C3A4aLcGuTMAUUuypsvy0utz7DgFWZhPdGuKdCeDM7keISwOx3MajIYuecwXlPGWF7ojSZLCLTpYHGzoKQ_H6vPfazP0aB4tTLk_0yPRxZHKjWYZbo9uOES6LwYd7gxhuZkzZrF2y6D1MGOZkWMcV1aIltKDvn6CrMMdSpR3VccI7saXePczoXyqHyhZA7QEbQ0oRF8a6XKoZtgk6bygx2z4y-z4ypY_Mro-MKFL2RHpwf1bE96JU4GmJ8X_az6j-Arf02-s
CitedBy_id crossref_primary_10_5194_essd_16_1425_2024
crossref_primary_10_1007_s11430_023_1212_3
crossref_primary_10_1360_SSTe_2023_0083
crossref_primary_10_1016_j_catena_2025_108936
crossref_primary_10_1016_j_accre_2024_01_004
crossref_primary_10_1038_s41598_024_60549_x
crossref_primary_10_3390_rs16020405
crossref_primary_10_3390_atmos15040434
Cites_doi 10.1016/j.gloplacha.2013.12.001
10.1016/j.cageo.2008.08.012
10.1002/ppp.688
10.1029/95RG00284
10.1002/ppp.485
10.1007/s00704-020-03149-9
10.1023/A:1005424003553
10.1038/ncomms14008
10.1007/s11430-009-0194-9
10.1175/JCLI-D-15-0181.1
10.1657/1938-4246-43.2.239
10.13885/j.issn.0455-2059.1996.01.024
10.1175/JCLI-D-15-0563.1
10.1029/2017JD028260
10.1175/JCLI-D-11-00669.1
10.1023/A:1004278421334
10.1007/s00382-016-3469-9
10.1002/1097-0088(20001130)20:14<1729::AIDJOC556>3.0.CO;2-Y
10.1029/2005GL023469
10.1002/ppp.1988
10.7519/jissn1000-0526.2014.07.008
10.1111/nph.13111
10.1002/2017JD026858
10.1007/s10113-017-1163-z
10.1038/NGEO868
10.1371/journal.pone.0053914
10.1029/2010JD015012
10.1360/03ez0002
10.1029/1999JD901031
10.1175/JCLI-D-16-0041.1
10.1007/s00382-019-05055-x
10.1007/s13351-013-0505-0
10.1007/s00704-016-1914-7
10.1175/JCLI-D-11-00281.1
10.5194/hess-15-2303-2011
10.11888/Socioeco.tpdc.270467
10.7522/j.issn.1000-0240.2018.0117
10.1038/s41598-017-05293-1
10.1657/1523-0430(07-509)[YANG]2.0.CO;2
10.1029/2007WR005994
10.3724/SP.J.1226.2021.20024
10.1016/S0378-1127(99)00290-X
10.1007/s00382-010-0951-7
10.1016/j.geoderma.2018.10.044
10.1111/j.1757-1707.2008.01005.x
10.1016/j.jhydrol.2014.08.014
10.1111/gcb.12248
10.1029/2006JF000631
10.1007/BF02883561
10.11820/dlkxjz.2014.07.003
10.1175/2008JHM949.1
10.1007/s00376-017-6326-9
10.3969/j.issn.1673-1719.2014.01.001
10.1016/j.gloplacha.2010.01.020
10.1016/j.atmosres.2020.105401
10.13781/j.cnki.xdzk.2019.09.006
10.1029/91JD01700
10.1016/j.neucom.2017.06.053
10.1111/j.1365-2486.2010.02250.x
10.1007/s11004-011-9346-5
10.2136/sssaj1984.03615995004800040024x
10.1007/s004420000544
10.5194/bg-12-1091-2015
10.1007/s00382-013-1889-3
10.1002/ppp.1971
10.1016/00983004(85)90094-9
10.1109/FUZZY.2009.5277209
10.1016/j.agrformet.2005.04.008
10.2307/1907187
10.1002/2016JF003876
10.1016/0038-0717(94)00242-S
10.12006/j.issn.1673-1719.2016.039
10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
10.1111/j.1744-7909.2006.00263.x
10.1016/S0921-8181(01)00098-4
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-23548-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Publicly Available Content Database



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19
ExternalDocumentID oai_doaj_org_article_0fb338a8938c4970890dcf75052d71ad
PMC9672035
36396695
10_1038_s41598_022_23548_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Tibet
Tibetan Plateau
GeographicLocations_xml – name: Tibet
– name: Tibetan Plateau
GrantInformation_xml – fundername: Key Talent Projects of Gansu Province in 2021
– fundername: Numerical Simulation Research on the Influence of Soil Temperature on Precipitation Forecast
  grantid: QHMS2019015
– fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP)
  grantid: 2019QZKK010303
– fundername: ;
– fundername: ;
  grantid: QHMS2019015
– fundername: ;
  grantid: 2019QZKK010303
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-c51893e4cac5b74e23858e9de04a8b45ba4d223cac3cd9ec0e7d9ea28e1eb18c3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:24:30 EDT 2025
Thu Aug 21 18:39:55 EDT 2025
Fri Jul 11 07:58:07 EDT 2025
Wed Aug 13 04:20:45 EDT 2025
Thu Apr 03 07:02:29 EDT 2025
Thu Apr 24 22:59:35 EDT 2025
Tue Jul 01 00:55:25 EDT 2025
Fri Feb 21 02:40:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c51893e4cac5b74e23858e9de04a8b45ba4d223cac3cd9ec0e7d9ea28e1eb18c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-23548-4
PMID 36396695
PQID 2737303741
PQPubID 2041939
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_0fb338a8938c4970890dcf75052d71ad
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9672035
proquest_miscellaneous_2738194601
proquest_journals_2737303741
pubmed_primary_36396695
crossref_citationtrail_10_1038_s41598_022_23548_4
crossref_primary_10_1038_s41598_022_23548_4
springer_journals_10_1038_s41598_022_23548_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-17
PublicationDateYYYYMMDD 2022-11-17
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BoumaTJNielsenKLEissenstatDMLynchJPEstimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water contentPlant Soil19971952212321:CAS:528:DyaK2sXns1Sks70%3D10.1023/A:1004278421334
OelkeCZhangTJA model study of circum-Arctic soil temperaturesPermafr. Periglac. Process20041510312110.1002/ppp.485
PanBTLiJJQinghai-Tibetan Plateau: A driver and amplifier of the global climatic change—(III) The effects of the uplift of Qinghai-Tibetan Plateau on climatic changesJ. Lanzhou Univ.19963210811510.13885/j.issn.0455-2059.1996.01.024
JiangXWLiYQYangSYangKChenJWInterannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime ContinentJ. Clim.2016291211382016JCli...29..121J10.1175/JCLI-D-15-0181.1
ChenXLLiuYMWuGXUnderstanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan PlateauAdv. Atmos. Sci.2017341447146010.1007/s00376-017-6326-9
LuoDLElevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest ChinaPermafr. Periglac. Process.20182925727010.1002/ppp.1988
GaoNGaoXQYangLWZhouYSpatial and temporal characteristics of soil temperature at 1.6m depth in mainland of China from 1981 to 2000Plateau Meteorol.201635686692
CollinsMThe impact of global warming on the tropical Pacific Ocean and El NinoNat. Goesci.201033914391:CAS:528:DC%2BC3cXmslSrtrc%3D10.1038/NGEO868
WesselPA general-purpose Green’s function-based interpolatorComput. Geosci.200935124712542009CG.....35.1247W10.1016/j.cageo.2008.08.012
TangMCWangJXZhangJA primary method for predicting the spring rainfall by the winter soil temperature depth 80cmPlateau Meteorol.19876244255
TangMCLiCQPapers of the First Symposium of China Qinghai-Tibet Plateau Research Association1992BeijingScience Press4248
ZhouYGaoXQZhangKLiYJYangLWSpatiotemporal variations in 3.2 m soil temperature in China during 1980–2017Clim. Dyn.2020541233124410.1007/s00382-019-05055-x
HolmesTROweMDe JeuRAKooiHEstimating the soil temperature profile from a single depth observation: A simple empirical heatflow solutionWater Resour. Res.200844W024122008WRR....44.2412H10.1029/2007WR005994
YangKWangCHLiSYImproved simulation of frozen-thawing process in land surface model (CLM4.5)J. Geophys. Res. Atmos.201812323825810.1029/2017JD028260
ZhangHZSeasonal and regional variations of soil temperature in ChinaActa. Pedol. Sinica.20092009228234
AbramoffRZFinziACAre above- and below-ground phenology in sync?New Phytol.20152051054106110.1111/nph.1311125729805
WuTWQianZAThe relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigationJ. Clim.200316203820512003JCli...16.2038W10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
Kendall, M. Rand Correlation Methods. 13–26 (Charles Griffin, London, 1975).
YanDThe temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubationSci. Rep.2017751812017NatSR...7.5181Y1:CAS:528:DC%2BC1cXhtlGjsrvI10.1038/s41598-017-05293-1287016875507886
QianBGregorichEGGamedaSHopkinsDWWangXLObserved soil temperature trends associated with climate change in CanadaJ. Geophys. Res.201111611610.1029/2010JD015012
DuanJPWeakening of annual temperature cycle over the Tibetan Plateau since the 1870sNat. Commun.20178140082017NatCo...814008D1:CAS:528:DC%2BC2sXht1Omsbk%3D10.1038/ncomms14008280947915247579
KangSKimOSLeeDPredicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperatureFor. Ecol. Manag.200013617318410.1016/S0378-1127(99)00290-X
HuangFZhanWFJuWMWangZHImproved reconstruction of soil thermal field using two-depth measurements of soil temperatureJ. Hydrol.20145197117192014JHyd..519..711H10.1016/j.jhydrol.2014.08.014
PanWDWangQCYuSSZhangXYStudy on ground temperature change and characteristic response of engineering geology of permafrost along Qinghai-Tibet RailwaySci. Ch. Ser. (E) Technol Sci.200346789010.1360/03ez0002
PowerSBKociubaGThe impact of global warming on the Southern oscillation indexClim. Dyn.2011371745175410.1007/s00382-010-0951-7
QinYHSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Clim.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9
YangMXYaoTDGouXHTangHGWater recycling between the land surface and atmosphere on the northern Tibetan Plateau—A case study at flat observation sitesArct. Antarct. Alp. Res.20073969469810.1657/1523-0430(07-509)[YANG]2.0.CO;2
TangXLDependence of soil respiration on soil temperature and soil moisture in successional forests in southern ChinaJ. Integr. Plant Biol.20064865466310.1111/j.1744-7909.2006.00263.x
XuXSherryRANiuSLLiDJLuoYQNet primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairieGlob. Chang. Biol.201319275327642013GCBio..19.2753X10.1111/gcb.1224823649795
MannHBNonparametric tests against trendEconometrica1945132452591240510.2307/19071870063.03770
TangMCShenZBChenYYOn climatic characteristics of the Xizang Plateau monsoonActa. Geograph. Sin.1979343442
ChengGDWuTHResponses of permafrost to climate change and their environmental significance, Qinghai-Tibet PlateauJ. Geophys. Res. Earth Surf.2007112F02S032007JGRF..112.2S03C10.1029/2006JF000631
YangNFanGZAnalysis of soil temperature variation over the Qinghai-Xizang Plateau from 2000 to 2016J. Southwest Univers. Nat. Sci. Edit.201941405110.13781/j.cnki.xdzk.2019.09.006
DuanAMXiaoZXWuGXCharacteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014Clim. Chang. Res.20141237538110.12006/j.issn.1673-1719.2016.039
LiNThe Surface Heat Source Estimation Over the Tibetan Plateau and Its Variability2020ChinaNanjing
IPCC Climate ChangeThe Physical Basis Science2013USACambridge University Press
MackayADBarberSASoil-temperature effects on root-growth and phosphorus uptake by cornSoil Sci. Soc. Am. J.1984488188231984SSASJ..48..818M1:CAS:528:DyaL2cXlsFSltbs%3D10.2136/sssaj1984.03615995004800040024x
ParkHSChiangJCBordoniSThe mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoonJ. Clim.201225239424072012JCli...25.2394P10.1175/JCLI-D-11-00281.1
DuanAMWangMRLeiYHCuiYFTrends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008J. Clim.2013262612752013JCli...26..261D10.1175/JCLI-D-11-00669.1
YouQLRelationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis dataGlob. Planet. Chang.2010711241332010GPC....71..124Y10.1016/j.gloplacha.2010.01.020
BezdekJCEhrlidhRFullWFCM: The fuzzy C-means clustering algorithmComput. Geosci.1984101912031984CG.....10..191B10.1016/00983004(85)90094-9
WangYHChenWZhangJYNathDRelationship between soil temperature in may over northwest China and the East Asian summer monsoon precipitationJ. Meteorol. Res.20132771672410.1007/s13351-013-0505-0
DengXSTangZAMoving surface spline interpolation based on Green’s functionMath. Geosci.201143663680282412510.1007/s11004-011-9346-51219.86014
ShiXZDengXHGongZTSoil temperature region in ChinaResearch on Chinese Soil Taxonomy (in Chinese)1993Science Press353360
XuYMKnudbyAHoHCShenYLiuYHWarming over the Tibetan Plateau in the last 55 years based on area-weighted average temperatureReg. Environ. Chang.2017172339234710.1007/s10113-017-1163-z
ZhaoLLiRDingYJXiaoYSunLCLiuYStudy on soil thermal status of Qinghai-Tibet Plateau from 1977 to 2006Adv. Clim. Chang. Res.20117307315
SaxenaAA review of clustering techniques and developmentsNeurocomputing201726766468110.1016/j.neucom.2017.06.053
KirschbaumMUThe temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storageSoil Biol. Biochem.1995277537601:CAS:528:DyaK2MXlsF2msrk%3D10.1016/0038-0717(94)00242-S
WanGNYangMXWangXJGround temperature variation and its response to climate change on the northern Tibetan PlateauSci. Cold Arid Reg.20211329931310.3724/SP.J.1226.2021.20024
QinYHLiuWGuoZXueSSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Climatol.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9
RustadLEA meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warmingOecologia20011265435622001Oecol.126..543R1:STN:280:DC%2BC1cnhsFKmtA%3D%3D10.1007/s00442000054428547240
GuoDLWangHJPermafrost degradation and associated ground settlement estimation under 2 °C global warmingClim. Dyn.2016492569258310.1007/s00382-016-3469-9
QinYHNumerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan PlateauJ. Geophys. Res.-Atmos.201712211604116202017JGRD..12211604Q10.1002/2017JD026858
LiLThe truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet PlateauJ. Claciology Geocryol.2018401079108910.7522/j.issn.1000-0240.2018.0117
HuQFengSHow have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent?Geophys. Res. Lett.200532577610.1029/2005GL023469
MahanamaSPPKosterRDReichleRHSuarezMJImpact of subsurface temperature variability on surface air temperature variability: An AGCM studyJ. Hydrometeorol.200898048152008JHyMe...9..804M10.1175/2008JHM949.1
HuaiBJEvaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian mountains Qinghai-Tibet PlateauAtmos. Res.202125010540110.1016/j.atmosres.2020.105401
DickinsonRELand-atmosphere interactionRev. Geophys.1995339179221995RvGeo..33S.917D10.1029/95RG00284
HuZZBengtssonLArpeKImpact of global warming on the Asian winter monsoon in a coupled GCMJ. Geophys. Res. Atmos.2000105460746242000JGR...105.4607H10.1029/1999JD901031
CitakogluHComparison of
XW Jiang (23548_CR17) 2016; 29
XO Peng (23548_CR28) 2016; 121
BT Pan (23548_CR7) 1996; 32
MC Tang (23548_CR30) 1987; 6
MX Yang (23548_CR23) 2007; 39
DH Qin (23548_CR2) 2014; 10
X Xu (23548_CR75) 2013; 19
HS Park (23548_CR16) 2012; 25
GD Cheng (23548_CR26) 2007; 112
B Bond-Lamberty (23548_CR36) 2005; 131
N Yang (23548_CR57) 2019; 41
LE Rustad (23548_CR77) 2001; 126
YH Qin (23548_CR49) 2017; 122
IPCC Climate Change (23548_CR1) 2013
B Qian (23548_CR82) 2011; 116
YH Wang (23548_CR22) 2013; 27
YH Qin (23548_CR53) 2020; 140
CA Chen (23548_CR42) 2016; 29
P Wessel (23548_CR64) 2009; 35
BJ Huai (23548_CR54) 2021; 250
XL Chen (23548_CR84) 2017; 34
S Kang (23548_CR79) 2000; 136
GJ Hu (23548_CR50) 2019; 337
GN Wan (23548_CR51) 2021; 13
N Gao (23548_CR37) 2016; 35
K Yang (23548_CR48) 2018; 123
ZY Lin (23548_CR70) 1981; 36
RE Dickinson (23548_CR19) 1995; 33
HZ Zhang (23548_CR68) 2009; 2009
XB Wu (23548_CR47) 2018; 29
QX Wang (23548_CR89) 2014; 43
WQ Ma (23548_CR11) 2011; 43
HB Mann (23548_CR61) 1945; 13
XZ Shi (23548_CR78) 1993
MU Kirschbaum (23548_CR25) 1995; 27
XS Deng (23548_CR63) 2011; 43
DL Luo (23548_CR27) 2018; 29
Q Hu (23548_CR29) 2005; 32
JC Bezdek (23548_CR59) 1984; 10
HS Liu (23548_CR35) 2008; 27
SB Power (23548_CR43) 2011; 37
QL You (23548_CR55) 2010; 71
RZ Abramoff (23548_CR72) 2015; 205
D Yan (23548_CR67) 2017; 7
TD Yao (23548_CR85) 2014; 33
YH Qin (23548_CR31) 2020; 140
H Citakoglu (23548_CR81) 2017; 130
AD Mackay (23548_CR24) 1984; 48
23548_CR56
XD Liu (23548_CR10) 2000; 20
TR Holmes (23548_CR21) 2008; 44
M Collins (23548_CR40) 2010; 3
WD Liu (23548_CR69) 2014; 40
23548_CR52
SPP Mahanama (23548_CR90) 2008; 9
M Lee (23548_CR60) 2009; 1–3
N Li (23548_CR65) 2020
A Saxena (23548_CR58) 2017; 267
L Zhao (23548_CR6) 2010; 21
XL Tang (23548_CR34) 2006; 48
DL Guo (23548_CR46) 2016; 49
H Jiang (23548_CR83) 2003; 22
WD Pan (23548_CR39) 2003; 46
K Yang (23548_CR8) 2014; 112
ZZ Hu (23548_CR41) 2000; 105
JP Duan (23548_CR88) 2017; 8
XJ Zhou (23548_CR12) 2009; 52
MC Tang (23548_CR3) 1992
CH Wang (23548_CR13) 2017; 30
Z Su (23548_CR5) 2011; 15
C Oelke (23548_CR71) 2004; 15
TJ Bouma (23548_CR32) 1997; 195
L Zhao (23548_CR18) 2011; 7
Y Zhou (23548_CR38) 2020; 54
YQ Luo (23548_CR76) 2009; 1
CL Phillips (23548_CR33) 2011; 17
TM Munir (23548_CR73) 2015; 12
AM Duan (23548_CR86) 2014; 12
JR Miller (23548_CR44) 1992; 97
23548_CR62
YM Xu (23548_CR87) 2017; 17
TW Wu (23548_CR14) 2003; 16
S Feng (23548_CR4) 1998; 43
AM Duan (23548_CR15) 2013; 26
F Huang (23548_CR20) 2014; 519
NJ Rosenberg (23548_CR45) 1999; 42
L Li (23548_CR66) 2018; 40
MC Tang (23548_CR9) 1979; 34
H Beltrami (23548_CR80) 2001; 29
GB Wang (23548_CR74) 2013; 8
References_xml – reference: MillerJRRussellGLThe impact of global warming on river runoffJ. Geophys. Res. Atmos.199297275727641992JGR....97.2757M10.1029/91JD01700
– reference: Bond-LambertyBWangCKGowerSTSpatiotemporal measurement and modeling of stand-level boreal forest soil temperaturesAgric. For. Meteorol.200513127402005AgFM..131...27B10.1016/j.agrformet.2005.04.008
– reference: ChenCAYuJYChouCImpacts of vertical structure of convection in global warming: The role of shallow convectionJ. Clim.201629466546842016JCli...29.4665C10.1175/JCLI-D-15-0563.1
– reference: MannHBNonparametric tests against trendEconometrica1945132452591240510.2307/19071870063.03770
– reference: MaWQMaYMSuBFeasibility of retrieving land surface heat fluxes from aster data using SEBS: A case study from NamCo area of the Tibetan PlateauArct. Antarct. Alp. Res.20114323924510.1657/1938-4246-43.2.239
– reference: MahanamaSPPKosterRDReichleRHSuarezMJImpact of subsurface temperature variability on surface air temperature variability: An AGCM studyJ. Hydrometeorol.200898048152008JHyMe...9..804M10.1175/2008JHM949.1
– reference: JiangXWLiYQYangSYangKChenJWInterannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime ContinentJ. Clim.2016291211382016JCli...29..121J10.1175/JCLI-D-15-0181.1
– reference: HuQFengSHow have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent?Geophys. Res. Lett.200532577610.1029/2005GL023469
– reference: IPCC Climate ChangeThe Physical Basis Science2013USACambridge University Press
– reference: DickinsonRELand-atmosphere interactionRev. Geophys.1995339179221995RvGeo..33S.917D10.1029/95RG00284
– reference: DuanJPWeakening of annual temperature cycle over the Tibetan Plateau since the 1870sNat. Commun.20178140082017NatCo...814008D1:CAS:528:DC%2BC2sXht1Omsbk%3D10.1038/ncomms14008280947915247579
– reference: LiNThe Surface Heat Source Estimation Over the Tibetan Plateau and Its Variability2020ChinaNanjing
– reference: ChenXLLiuYMWuGXUnderstanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan PlateauAdv. Atmos. Sci.2017341447146010.1007/s00376-017-6326-9
– reference: WangQXFanXHWangMBRecent warming amplification over high elevation regions across the globeClim. Dyn.201443871011:CAS:528:DC%2BC2MXhvFyqtrvO10.1007/s00382-013-1889-3
– reference: GuoDLWangHJPermafrost degradation and associated ground settlement estimation under 2 °C global warmingClim. Dyn.2016492569258310.1007/s00382-016-3469-9
– reference: WesselPA general-purpose Green’s function-based interpolatorComput. Geosci.200935124712542009CG.....35.1247W10.1016/j.cageo.2008.08.012
– reference: BeltramiHOn the relationship between ground temperature histories and meteorological records: A report on the Pomquet stationGlob. Planet. Chang.2001293273482001GPC....29..327B10.1016/S0921-8181(01)00098-4
– reference: DengXSTangZAMoving surface spline interpolation based on Green’s functionMath. Geosci.201143663680282412510.1007/s11004-011-9346-51219.86014
– reference: BoumaTJNielsenKLEissenstatDMLynchJPEstimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water contentPlant Soil19971952212321:CAS:528:DyaK2sXns1Sks70%3D10.1023/A:1004278421334
– reference: TangXLDependence of soil respiration on soil temperature and soil moisture in successional forests in southern ChinaJ. Integr. Plant Biol.20064865466310.1111/j.1744-7909.2006.00263.x
– reference: LinZYWuXDClimate regionalization of the Qinghai-Xizang PlateauActa Geogr. Sin.19813622321981thst.book.....L
– reference: RustadLEA meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warmingOecologia20011265435622001Oecol.126..543R1:STN:280:DC%2BC1cnhsFKmtA%3D%3D10.1007/s00442000054428547240
– reference: LuoDLElevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest ChinaPermafr. Periglac. Process.20182925727010.1002/ppp.1988
– reference: WuXBNanZTZhaoSPZhaoLChengGDSpatial modeling of permafrost distribution and properties on the Qinghai-Tibet PlateauPermafr. Periglac. Process.201829869910.1002/ppp.1971
– reference: PanBTLiJJQinghai-Tibetan Plateau: A driver and amplifier of the global climatic change—(III) The effects of the uplift of Qinghai-Tibetan Plateau on climatic changesJ. Lanzhou Univ.19963210811510.13885/j.issn.0455-2059.1996.01.024
– reference: LiuXDChenBDClimatic warming in the Tibetan Plateau during recent decadesInt. J. Climatol.2000201729174210.1002/1097-0088(20001130)20:14<1729::AIDJOC556>3.0.CO;2-Y
– reference: Ran, Y. & Li, X. Multi-source integrated Chinese land cover map (2000). National Tibetan Plateau Data Center. https://doi.org/10.11888/Socioeco.tpdc.270467 (2019).
– reference: SaxenaAA review of clustering techniques and developmentsNeurocomputing201726766468110.1016/j.neucom.2017.06.053
– reference: BezdekJCEhrlidhRFullWFCM: The fuzzy C-means clustering algorithmComput. Geosci.1984101912031984CG.....10..191B10.1016/00983004(85)90094-9
– reference: ZhouXJZhaoPChenJMChenLXLiWLImpacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climateSci. China Ser. D Earth Sci.200952167916932009ScChD..52.1679Z10.1007/s11430-009-0194-9
– reference: ShiXZDengXHGongZTSoil temperature region in ChinaResearch on Chinese Soil Taxonomy (in Chinese)1993Science Press353360
– reference: YangKRecent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A reviewGlob. Planet. Chang.201411279912014GPC...112...79Y10.1016/j.gloplacha.2013.12.001
– reference: QianBGregorichEGGamedaSHopkinsDWWangXLObserved soil temperature trends associated with climate change in CanadaJ. Geophys. Res.201111611610.1029/2010JD015012
– reference: MunirTMPerkinsMKaingEStrackMCarbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate changeBiogeosciences201512109111112015BGeo...12.1091M10.5194/bg-12-1091-2015
– reference: QinYHSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Clim.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9
– reference: XuYMKnudbyAHoHCShenYLiuYHWarming over the Tibetan Plateau in the last 55 years based on area-weighted average temperatureReg. Environ. Chang.2017172339234710.1007/s10113-017-1163-z
– reference: FengSTangMCWangDMThe new evidence for “Qinghai-Tibet Plateau is the climate change initiation zone of China”Sci. Bull.199843633634
– reference: PengXOResponse of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across ChinaJ. Geophys. Res. Earth Surf.2016121198420002016JGRF..121.1984P10.1002/2016JF003876
– reference: TangMCWangJXZhangJA primary method for predicting the spring rainfall by the winter soil temperature depth 80cmPlateau Meteorol.19876244255
– reference: MackayADBarberSASoil-temperature effects on root-growth and phosphorus uptake by cornSoil Sci. Soc. Am. J.1984488188231984SSASJ..48..818M1:CAS:528:DyaL2cXlsFSltbs%3D10.2136/sssaj1984.03615995004800040024x
– reference: RosenbergNJPossible impacts of global warming on the hydrology of the Ogallala aquifer regionClim. Chang.1999426776921:CAS:528:DyaK1MXmtFGitLg%3D10.1023/A:1005424003553
– reference: TangMCLiCQPapers of the First Symposium of China Qinghai-Tibet Plateau Research Association1992BeijingScience Press4248
– reference: WangYHChenWZhangJYNathDRelationship between soil temperature in may over northwest China and the East Asian summer monsoon precipitationJ. Meteorol. Res.20132771672410.1007/s13351-013-0505-0
– reference: PhillipsCLNickersonNRiskDBondBJInterpreting diel hysteresis between soil respiration and temperatureGlob. Chang. Biol.2011175155272011GCBio..17..515P10.1111/j.1365-2486.2010.02250.x
– reference: ZhouYGaoXQZhangKLiYJYangLWSpatiotemporal variations in 3.2 m soil temperature in China during 1980–2017Clim. Dyn.2020541233124410.1007/s00382-019-05055-x
– reference: HuZZBengtssonLArpeKImpact of global warming on the Asian winter monsoon in a coupled GCMJ. Geophys. Res. Atmos.2000105460746242000JGR...105.4607H10.1029/1999JD901031
– reference: KirschbaumMUThe temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storageSoil Biol. Biochem.1995277537601:CAS:528:DyaK2MXlsF2msrk%3D10.1016/0038-0717(94)00242-S
– reference: WanGNYangMXWangXJGround temperature variation and its response to climate change on the northern Tibetan PlateauSci. Cold Arid Reg.20211329931310.3724/SP.J.1226.2021.20024
– reference: WangCHYangKLiYLWuDBoYImpacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern ChinaJ. Meteorol. Res.20173088590310.1175/JCLI-D-16-0041.1
– reference: LiuHSThe temperature sensitivity of soil respirationProg. Geogr.2008275260
– reference: CollinsMThe impact of global warming on the tropical Pacific Ocean and El NinoNat. Goesci.201033914391:CAS:528:DC%2BC3cXmslSrtrc%3D10.1038/NGEO868
– reference: OelkeCZhangTJA model study of circum-Arctic soil temperaturesPermafr. Periglac. Process20041510312110.1002/ppp.485
– reference: CitakogluHComparison of artificial intelligence techniques for prediction of soil temperatures in TurkeyTheor. Appl. Climatol.20171305455562017ThApC.130..545C10.1007/s00704-016-1914-7
– reference: JiangHTangMCGaoXQContribution of multi-hot spring regions over Qinghai-Xizang Plateau to air temperature fieldPlateau Meteorol.200322640642
– reference: DuanAMXiaoZXWuGXCharacteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014Clim. Chang. Res.20141237538110.12006/j.issn.1673-1719.2016.039
– reference: HuGJVariations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis productsGeoderma20193378939052019Geode.337..893H10.1016/j.geoderma.2018.10.044
– reference: LuoYQSherryRZhouXHWanSQTerrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvestGlob. Chang. Biol. Bioenerg.2009162741:CAS:528:DC%2BD1MXotlaltLg%3D10.1111/j.1757-1707.2008.01005.x
– reference: QinYHLiuWGuoZXueSSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Climatol.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9
– reference: XuXSherryRANiuSLLiDJLuoYQNet primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairieGlob. Chang. Biol.201319275327642013GCBio..19.2753X10.1111/gcb.1224823649795
– reference: TangMCShenZBChenYYOn climatic characteristics of the Xizang Plateau monsoonActa. Geograph. Sin.1979343442
– reference: WuTWQianZAThe relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigationJ. Clim.200316203820512003JCli...16.2038W10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
– reference: LiuWDYouHLRenGYYangPZhangBZAWS precipitation characteristics based on K-means clustering method in Beijing areaMeteorol. Monogr.20144084485110.7519/jissn1000-0526.2014.07.008
– reference: PanWDWangQCYuSSZhangXYStudy on ground temperature change and characteristic response of engineering geology of permafrost along Qinghai-Tibet RailwaySci. Ch. Ser. (E) Technol Sci.200346789010.1360/03ez0002
– reference: HuaiBJEvaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian mountains Qinghai-Tibet PlateauAtmos. Res.202125010540110.1016/j.atmosres.2020.105401
– reference: YangNFanGZAnalysis of soil temperature variation over the Qinghai-Xizang Plateau from 2000 to 2016J. Southwest Univers. Nat. Sci. Edit.201941405110.13781/j.cnki.xdzk.2019.09.006
– reference: YangMXYaoTDGouXHTangHGWater recycling between the land surface and atmosphere on the northern Tibetan Plateau—A case study at flat observation sitesArct. Antarct. Alp. Res.20073969469810.1657/1523-0430(07-509)[YANG]2.0.CO;2
– reference: ZhaoLLiRDingYJXiaoYSunLCLiuYStudy on soil thermal status of Qinghai-Tibet Plateau from 1977 to 2006Adv. Clim. Chang. Res.20117307315
– reference: Kendall, M. Rand Correlation Methods. 13–26 (Charles Griffin, London, 1975).
– reference: HuangFZhanWFJuWMWangZHImproved reconstruction of soil thermal field using two-depth measurements of soil temperatureJ. Hydrol.20145197117192014JHyd..519..711H10.1016/j.jhydrol.2014.08.014
– reference: LeeMImprovement of the fuzzy C-means clustering algorithm with adaptive learning of the dissimilarities among categorical feature valuesIEEE Int. Conf. Fuzzy Syst.20091–340340810.1109/FUZZY.2009.5277209
– reference: ParkHSChiangJCBordoniSThe mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoonJ. Clim.201225239424072012JCli...25.2394P10.1175/JCLI-D-11-00281.1
– reference: YouQLRelationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis dataGlob. Planet. Chang.2010711241332010GPC....71..124Y10.1016/j.gloplacha.2010.01.020
– reference: HolmesTROweMDe JeuRAKooiHEstimating the soil temperature profile from a single depth observation: A simple empirical heatflow solutionWater Resour. Res.200844W024122008WRR....44.2412H10.1029/2007WR005994
– reference: KangSKimOSLeeDPredicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperatureFor. Ecol. Manag.200013617318410.1016/S0378-1127(99)00290-X
– reference: QinDHStockerJ259 authors & TSU highlights of the IPCC working group I fifth assessment reportClim. Change. Res.2014101610.3969/j.issn.1673-1719.2014.01.001
– reference: YangKWangCHLiSYImproved simulation of frozen-thawing process in land surface model (CLM4.5)J. Geophys. Res. Atmos.201812323825810.1029/2017JD028260
– reference: GaoNGaoXQYangLWZhouYSpatial and temporal characteristics of soil temperature at 1.6m depth in mainland of China from 1981 to 2000Plateau Meteorol.201635686692
– reference: SuZThe Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model productsHydrol. Earth Syst. Sci.201115230323162011HESS...15.2303S1:CAS:528:DC%2BC3MXhtlansLzE10.5194/hess-15-2303-2011
– reference: WangGBZhouYXuXRuanHHWangJSTemperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi mountains ChinaPLoS ONE20138e539142013PLoSO...853914W1:CAS:528:DC%2BC3sXhsVGlurs%3D10.1371/journal.pone.0053914233420383544745
– reference: QinYHNumerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan PlateauJ. Geophys. Res.-Atmos.201712211604116202017JGRD..12211604Q10.1002/2017JD026858
– reference: ZhaoLWuQBMarchenkoSSSharkhuuNThermal state of permafrost and active layer in Central Asia during the international polar yearPermafr. Periglac. Process20102119820710.1002/ppp.688
– reference: LiLThe truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet PlateauJ. Claciology Geocryol.2018401079108910.7522/j.issn.1000-0240.2018.0117
– reference: AbramoffRZFinziACAre above- and below-ground phenology in sync?New Phytol.20152051054106110.1111/nph.1311125729805
– reference: YanDThe temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubationSci. Rep.2017751812017NatSR...7.5181Y1:CAS:528:DC%2BC1cXhtlGjsrvI10.1038/s41598-017-05293-1287016875507886
– reference: DuanAMWangMRLeiYHCuiYFTrends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008J. Clim.2013262612752013JCli...26..261D10.1175/JCLI-D-11-00669.1
– reference: ChengGDWuTHResponses of permafrost to climate change and their environmental significance, Qinghai-Tibet PlateauJ. Geophys. Res. Earth Surf.2007112F02S032007JGRF..112.2S03C10.1029/2006JF000631
– reference: ZhangHZSeasonal and regional variations of soil temperature in ChinaActa. Pedol. Sinica.20092009228234
– reference: PowerSBKociubaGThe impact of global warming on the Southern oscillation indexClim. Dyn.2011371745175410.1007/s00382-010-0951-7
– reference: YaoTDTPE international program: A program for coping with major future environmental challenges of the Third Pole regionProgress Geogr.20143388489210.11820/dlkxjz.2014.07.003
– reference: Hennermann, K. & Berrisford, P. ERA5 Data Documentation. Copernicus Knowledge Base. https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (2017, Accessed 18 August 2020).
– volume: 112
  start-page: 79
  year: 2014
  ident: 23548_CR8
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2013.12.001
– volume: 35
  start-page: 1247
  year: 2009
  ident: 23548_CR64
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2008.08.012
– volume: 21
  start-page: 198
  year: 2010
  ident: 23548_CR6
  publication-title: Permafr. Periglac. Process
  doi: 10.1002/ppp.688
– volume: 33
  start-page: 917
  year: 1995
  ident: 23548_CR19
  publication-title: Rev. Geophys.
  doi: 10.1029/95RG00284
– volume: 15
  start-page: 103
  year: 2004
  ident: 23548_CR71
  publication-title: Permafr. Periglac. Process
  doi: 10.1002/ppp.485
– volume: 140
  start-page: 1055
  year: 2020
  ident: 23548_CR31
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-020-03149-9
– volume: 42
  start-page: 677
  year: 1999
  ident: 23548_CR45
  publication-title: Clim. Chang.
  doi: 10.1023/A:1005424003553
– volume: 8
  start-page: 14008
  year: 2017
  ident: 23548_CR88
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14008
– volume: 52
  start-page: 1679
  year: 2009
  ident: 23548_CR12
  publication-title: Sci. China Ser. D Earth Sci.
  doi: 10.1007/s11430-009-0194-9
– volume: 7
  start-page: 307
  year: 2011
  ident: 23548_CR18
  publication-title: Adv. Clim. Chang. Res.
– volume-title: The Physical Basis Science
  year: 2013
  ident: 23548_CR1
– volume: 29
  start-page: 121
  year: 2016
  ident: 23548_CR17
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0181.1
– volume: 43
  start-page: 239
  year: 2011
  ident: 23548_CR11
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/1938-4246-43.2.239
– volume: 6
  start-page: 244
  year: 1987
  ident: 23548_CR30
  publication-title: Plateau Meteorol.
– volume: 32
  start-page: 108
  year: 1996
  ident: 23548_CR7
  publication-title: J. Lanzhou Univ.
  doi: 10.13885/j.issn.0455-2059.1996.01.024
– volume: 29
  start-page: 4665
  year: 2016
  ident: 23548_CR42
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-15-0563.1
– volume: 123
  start-page: 238
  year: 2018
  ident: 23548_CR48
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2017JD028260
– volume: 26
  start-page: 261
  year: 2013
  ident: 23548_CR15
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00669.1
– volume: 195
  start-page: 221
  year: 1997
  ident: 23548_CR32
  publication-title: Plant Soil
  doi: 10.1023/A:1004278421334
– volume: 27
  start-page: 52
  year: 2008
  ident: 23548_CR35
  publication-title: Prog. Geogr.
– volume: 49
  start-page: 2569
  year: 2016
  ident: 23548_CR46
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-016-3469-9
– volume: 20
  start-page: 1729
  year: 2000
  ident: 23548_CR10
  publication-title: Int. J. Climatol.
  doi: 10.1002/1097-0088(20001130)20:14<1729::AIDJOC556>3.0.CO;2-Y
– volume: 32
  start-page: 57
  year: 2005
  ident: 23548_CR29
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2005GL023469
– volume: 29
  start-page: 257
  year: 2018
  ident: 23548_CR27
  publication-title: Permafr. Periglac. Process.
  doi: 10.1002/ppp.1988
– volume: 40
  start-page: 844
  year: 2014
  ident: 23548_CR69
  publication-title: Meteorol. Monogr.
  doi: 10.7519/jissn1000-0526.2014.07.008
– volume: 205
  start-page: 1054
  year: 2015
  ident: 23548_CR72
  publication-title: New Phytol.
  doi: 10.1111/nph.13111
– ident: 23548_CR62
– ident: 23548_CR56
– volume: 122
  start-page: 11604
  year: 2017
  ident: 23548_CR49
  publication-title: J. Geophys. Res.-Atmos.
  doi: 10.1002/2017JD026858
– volume: 17
  start-page: 2339
  year: 2017
  ident: 23548_CR87
  publication-title: Reg. Environ. Chang.
  doi: 10.1007/s10113-017-1163-z
– volume: 3
  start-page: 391
  year: 2010
  ident: 23548_CR40
  publication-title: Nat. Goesci.
  doi: 10.1038/NGEO868
– volume: 8
  start-page: e53914
  year: 2013
  ident: 23548_CR74
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053914
– volume: 116
  start-page: 1
  year: 2011
  ident: 23548_CR82
  publication-title: J. Geophys. Res.
  doi: 10.1029/2010JD015012
– volume: 46
  start-page: 78
  year: 2003
  ident: 23548_CR39
  publication-title: Sci. Ch. Ser. (E) Technol Sci.
  doi: 10.1360/03ez0002
– volume: 105
  start-page: 4607
  year: 2000
  ident: 23548_CR41
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/1999JD901031
– volume: 22
  start-page: 640
  year: 2003
  ident: 23548_CR83
  publication-title: Plateau Meteorol.
– volume: 30
  start-page: 885
  year: 2017
  ident: 23548_CR13
  publication-title: J. Meteorol. Res.
  doi: 10.1175/JCLI-D-16-0041.1
– volume: 54
  start-page: 1233
  year: 2020
  ident: 23548_CR38
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-019-05055-x
– volume: 27
  start-page: 716
  year: 2013
  ident: 23548_CR22
  publication-title: J. Meteorol. Res.
  doi: 10.1007/s13351-013-0505-0
– volume: 130
  start-page: 545
  year: 2017
  ident: 23548_CR81
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-016-1914-7
– volume: 25
  start-page: 2394
  year: 2012
  ident: 23548_CR16
  publication-title: J. Clim.
  doi: 10.1175/JCLI-D-11-00281.1
– volume: 15
  start-page: 2303
  year: 2011
  ident: 23548_CR5
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-2303-2011
– ident: 23548_CR52
  doi: 10.11888/Socioeco.tpdc.270467
– volume: 40
  start-page: 1079
  year: 2018
  ident: 23548_CR66
  publication-title: J. Claciology Geocryol.
  doi: 10.7522/j.issn.1000-0240.2018.0117
– volume: 7
  start-page: 5181
  year: 2017
  ident: 23548_CR67
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-05293-1
– volume: 39
  start-page: 694
  year: 2007
  ident: 23548_CR23
  publication-title: Arct. Antarct. Alp. Res.
  doi: 10.1657/1523-0430(07-509)[YANG]2.0.CO;2
– volume: 44
  start-page: W02412
  year: 2008
  ident: 23548_CR21
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR005994
– volume: 13
  start-page: 299
  year: 2021
  ident: 23548_CR51
  publication-title: Sci. Cold Arid Reg.
  doi: 10.3724/SP.J.1226.2021.20024
– volume: 136
  start-page: 173
  year: 2000
  ident: 23548_CR79
  publication-title: For. Ecol. Manag.
  doi: 10.1016/S0378-1127(99)00290-X
– volume: 37
  start-page: 1745
  year: 2011
  ident: 23548_CR43
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-010-0951-7
– volume: 337
  start-page: 893
  year: 2019
  ident: 23548_CR50
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.044
– volume: 1
  start-page: 62
  year: 2009
  ident: 23548_CR76
  publication-title: Glob. Chang. Biol. Bioenerg.
  doi: 10.1111/j.1757-1707.2008.01005.x
– volume: 519
  start-page: 711
  year: 2014
  ident: 23548_CR20
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2014.08.014
– volume: 19
  start-page: 2753
  year: 2013
  ident: 23548_CR75
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12248
– volume: 112
  start-page: F02S03
  year: 2007
  ident: 23548_CR26
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1029/2006JF000631
– volume: 36
  start-page: 22
  year: 1981
  ident: 23548_CR70
  publication-title: Acta Geogr. Sin.
– volume: 43
  start-page: 633
  year: 1998
  ident: 23548_CR4
  publication-title: Sci. Bull.
  doi: 10.1007/BF02883561
– volume-title: The Surface Heat Source Estimation Over the Tibetan Plateau and Its Variability
  year: 2020
  ident: 23548_CR65
– volume: 33
  start-page: 884
  year: 2014
  ident: 23548_CR85
  publication-title: Progress Geogr.
  doi: 10.11820/dlkxjz.2014.07.003
– volume: 9
  start-page: 804
  year: 2008
  ident: 23548_CR90
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2008JHM949.1
– volume: 34
  start-page: 1447
  year: 2017
  ident: 23548_CR84
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-017-6326-9
– start-page: 353
  volume-title: Research on Chinese Soil Taxonomy (in Chinese)
  year: 1993
  ident: 23548_CR78
– volume: 10
  start-page: 1
  year: 2014
  ident: 23548_CR2
  publication-title: Clim. Change. Res.
  doi: 10.3969/j.issn.1673-1719.2014.01.001
– volume: 71
  start-page: 124
  year: 2010
  ident: 23548_CR55
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2010.01.020
– volume: 34
  start-page: 34
  year: 1979
  ident: 23548_CR9
  publication-title: Acta. Geograph. Sin.
– volume: 250
  start-page: 105401
  year: 2021
  ident: 23548_CR54
  publication-title: Atmos. Res.
  doi: 10.1016/j.atmosres.2020.105401
– volume: 41
  start-page: 40
  year: 2019
  ident: 23548_CR57
  publication-title: J. Southwest Univers. Nat. Sci. Edit.
  doi: 10.13781/j.cnki.xdzk.2019.09.006
– volume: 97
  start-page: 2757
  year: 1992
  ident: 23548_CR44
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/91JD01700
– volume: 267
  start-page: 664
  year: 2017
  ident: 23548_CR58
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.06.053
– volume: 17
  start-page: 515
  year: 2011
  ident: 23548_CR33
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2010.02250.x
– volume: 43
  start-page: 663
  year: 2011
  ident: 23548_CR63
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-011-9346-5
– volume: 48
  start-page: 818
  year: 1984
  ident: 23548_CR24
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1984.03615995004800040024x
– volume: 126
  start-page: 543
  year: 2001
  ident: 23548_CR77
  publication-title: Oecologia
  doi: 10.1007/s004420000544
– volume: 12
  start-page: 1091
  year: 2015
  ident: 23548_CR73
  publication-title: Biogeosciences
  doi: 10.5194/bg-12-1091-2015
– volume: 43
  start-page: 87
  year: 2014
  ident: 23548_CR89
  publication-title: Clim. Dyn.
  doi: 10.1007/s00382-013-1889-3
– volume: 29
  start-page: 86
  year: 2018
  ident: 23548_CR47
  publication-title: Permafr. Periglac. Process.
  doi: 10.1002/ppp.1971
– volume: 10
  start-page: 191
  year: 1984
  ident: 23548_CR59
  publication-title: Comput. Geosci.
  doi: 10.1016/00983004(85)90094-9
– volume: 1–3
  start-page: 403
  year: 2009
  ident: 23548_CR60
  publication-title: IEEE Int. Conf. Fuzzy Syst.
  doi: 10.1109/FUZZY.2009.5277209
– volume: 131
  start-page: 27
  year: 2005
  ident: 23548_CR36
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2005.04.008
– volume: 140
  start-page: 1055
  year: 2020
  ident: 23548_CR53
  publication-title: Theor. Appl. Clim.
  doi: 10.1007/s00704-020-03149-9
– volume: 13
  start-page: 245
  year: 1945
  ident: 23548_CR61
  publication-title: Econometrica
  doi: 10.2307/1907187
– volume: 35
  start-page: 686
  year: 2016
  ident: 23548_CR37
  publication-title: Plateau Meteorol.
– volume: 2009
  start-page: 228
  year: 2009
  ident: 23548_CR68
  publication-title: Acta. Pedol. Sinica.
– volume: 121
  start-page: 1984
  year: 2016
  ident: 23548_CR28
  publication-title: J. Geophys. Res. Earth Surf.
  doi: 10.1002/2016JF003876
– start-page: 42
  volume-title: Papers of the First Symposium of China Qinghai-Tibet Plateau Research Association
  year: 1992
  ident: 23548_CR3
– volume: 27
  start-page: 753
  year: 1995
  ident: 23548_CR25
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(94)00242-S
– volume: 12
  start-page: 375
  year: 2014
  ident: 23548_CR86
  publication-title: Clim. Chang. Res.
  doi: 10.12006/j.issn.1673-1719.2016.039
– volume: 16
  start-page: 2038
  year: 2003
  ident: 23548_CR14
  publication-title: J. Clim.
  doi: 10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2
– volume: 48
  start-page: 654
  year: 2006
  ident: 23548_CR34
  publication-title: J. Integr. Plant Biol.
  doi: 10.1111/j.1744-7909.2006.00263.x
– volume: 29
  start-page: 327
  year: 2001
  ident: 23548_CR80
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/S0921-8181(01)00098-4
SSID ssj0000529419
Score 2.432621
Snippet Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as...
Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as...
Abstract Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19746
SubjectTerms 704/106/35/823
704/106/694/2739
Algorithms
Atmosphere
Boundary conditions
Climate Change
Evaporation
Greenhouse effect
Heat
Humanities and Social Sciences
Hydrologic cycle
multidisciplinary
Permafrost
Plant growth
Precipitation
Radiation
Regions
Respiration
Science
Science (multidisciplinary)
Seed germination
Soil
Soil temperature
Soils
Surface properties
Temperature
Tibet
Water Cycle
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KQiGX0qQvNw9U6C018UOypGNbEpZCSwMJ5CYkWWIXFjutdyn59xnJ9nadvi697C4rCYaZkeYbj_wNwFuZCVtxz9K89FlKvatSQyvMWi3ziL6rmsXnkJ-_VPNr-umG3ey0-gp3wnp64F5xZ5k3mEVpDKvCUskzIbPaeh76r9U813U4fTHm7SRTPat3IWkuh7dkslKcdRipwttkmHsVJQtP0SaRKBL2_w5l_npZ8kHFNAaii6fwZECQ5H0v-T48cs0BPO57St49g28jzQhpG4LojgzkUyuim5p04QI1_rZTnmbS-ji3C61V2h-ka5eruHCgXB7HL1GihV6mV0vj1uTrCoGq3jyH64vzq4_zdOirkFrEZ2v8zFGdjlptmeHUFaE46GTtMqqFocxoWiNqwOHS1tLZzHH80oVwOZ7swpYvYNa0jXsFxOuQQUph0KiU-8JIIzSjOSYxFrGESCAfdazsQDoeel-sVCx-l0L1dlFoFxXtomgCp9s1tz3lxl9nfwim284MdNnxD3QiNTiR-pcTJXA0Gl4Ne7hTCOzw-CsRciXwZjuMuy-UVHTj2k2cg5CKYlabwMveT7aSlAj-qkqyBPjEgyaiTkea5SIyfMsqVMdx5bvR136K9WdVvP4fqjiEvSJsknDTkR_BbP19444Rd63NSdxi98VtKBE
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66Ivgi3u26SgTftGwvaZM8iYrLIigKu3DeQq7ugUO7uz0H8d_vTJp2qZd96SknCaSdSeabmfQbQt7IQtiWhyYv61DkLPg2N6wFr9U2AdB365oYh_z6rT0-ZV9WzSoF3IZ0rHLaE-NG7XqLMfJDMLOgjDUYwPfnFzlWjcLsaiqhcZvcQeoy1Gq-4nOMBbNYrJTpW5miFocD2Cv8pgw8sKpuMJa2sEeRtv9fWPPvI5N_5E2jOTp6QO4nHEk_jIJ_SG757hG5O1aW_P2YXExkI7TvKGA8miioNlR3jg54jBru7ZKtmfYh9h2wwEr_iw79ehMHJuLlqf0HzOhMr_OTtfFb-n0DcFXvnpDTo88nn47zVF0ht4DStnAtAat4ZrVtDGe-whShl84XTAvDGqOZA-wAzbV10tvCc_jRlfAl7O_C1k_JXtd3_jmhQaMfKYUB0TIeKiON0A0rwZWxgChERsrpHSubqMexAsZGxRR4LdQoFwVyUVEuimXk7TzmfCTeuLH3RxTd3BNJs-Mf_eVPldagKoIBh1zDUwvLJC-ELJwNHEv5OV5ql5GDSfAqreRBXetdRl7PzbAGMbGiO9_vYh8AVgx824w8G_VknkkNELBtZZMRvtCgxVSXLd36LPJ8yxZz5DDy3aRr19P6_6vYv_kpXpB7Fao_nmTkB2Rve7nzLwFXbc2ruHiuAMz7IB8
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-N1tq0TwTRf3I9kkj2dpKQeKYgt9C0k2sQfHrnbvkP73nWQ_ZLUKvtwdlwRmdybJbzKT3wC8kZmwFfcszUufpdS7KjW0Qq_VMo_ou6pZPIf8-Kk6u6DLS3a5A8V4FyYm7UdKy7hMj9lh7zvcaMJlMHSdipKFQ7B7sBeo2tG29xaL5dfldLISYlc0l8MNmawUdwye7UKRrP8uhPlnouRv0dK4CZ0-gocDeiSLXt7HsOOaJ3C_ryd58xR-jBQjpG0IIjsyEE-tiW5q0oXkafxt5xzNpPWxbxfKqrQ_Sdeu1nHgQLc8tn9Bia70Kj1fGbchn9cIUvX2GVycnpwfn6VDTYXUIjbb4GeOCMVRqy0znLoiBAadrF1GtTCUGU1rRAzYXNpaOps5jl-6EC7HVV3Y8jnsNm3j9oF4HbxHKQwqlHJfGGmEZjRHB8YijhAJ5OM7VnYgHA91L9YqBr5LoXq9KNSLinpRNIG305jvPd3GP3t_CKqbegaq7PhHe_1NDaajMm_QDdf41MJSyTMhs9p6Hgr41TzXdQJHo-LVMH87haAOl74S4VYCr6dmnHkhnKIb125jH4RTFD3aBF70djJJUiLwqyrJEuAzC5qJOm9pVleR3VtWITKOI9-NtvZLrL-_ioP_634ID4owHUI-Iz-C3c311r1EdLUxr4bpdAveSx9W
  priority: 102
  providerName: Springer Nature
Title Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau
URI https://link.springer.com/article/10.1038/s41598-022-23548-4
https://www.ncbi.nlm.nih.gov/pubmed/36396695
https://www.proquest.com/docview/2737303741
https://www.proquest.com/docview/2738194601
https://pubmed.ncbi.nlm.nih.gov/PMC9672035
https://doaj.org/article/0fb338a8938c4970890dcf75052d71ad
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviDeBsgoSNwjk4fhxQGi7alWt1KpAV9qbZTtOu1KU0H0I-u8ZO8nCwsKBSxLFttbrGWe-8djfALwWMTeUlXmUZGUckdLSSBOKXqvJS0TftMj9OuTZOT2dkPE0n-5An-6oG8DFVtfO5ZOazKt3329uP-KE_9AeGefvF2iE3EExdKvSLHcLZLuwj5aJuYwGZx3cb7m-U0ES0Z2d2d70AO5maLUpdRknfjFVntF_Gwz9czflbyFVb6lO7sO9DmKGw1YnHsCOrR_CnTbp5O0juOl5SMKmDhH-hR07VRWquggXboc1PptNIuewKX3dhcu90nwLF82s8g07Tua-_BP26FrNosuZtsvwokIkq1aPYXJyfDk6jbrEC5FBALfEa4IwxhKjTK4ZsamLHlpR2JgorkmuFSkQVmBxZgphTWwZ3lTKbYKffm6yJ7BXN7V9BmGpnIspuEapE1amWmiucpQN5QbBBg8g6cdYmo6V3CXHqKSPjmdctiKSKCLpRSRJAG_Wbb62nBz_rH3kRLeu6fi0_YtmfiW76SnjUqOvrvBfc0MEi7mIC1Myl-WvYIkqAjjsBS97HZWI_PD7mCEmC-DVuhinp4u5qNo2K18HMRdBtzeAp62erHvS61kAbEODNrq6WVLPrj0FuKAufI4t3_a69rNbfx-K5__9Qy_gIHWTxO1_ZIewt5yv7EtEY0s9gF02ZQPYHw7HX8Z4Pzo-v_iMb0d0NPArHAM_CX8A4JI2mA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviDcpBYwEJ4iaxE7sHBDiVW3pQyBtpb0Z23HoSqukbXZV9U_xGxk7jyo8eusliWI7cjwznm889gzAqzwSJuNlGsa0jEJW2izULEOr1aQlou-sSP065MFhNjliX2fpbA1-9Wdh3LbKfk70E3VRG7dGvo1qFpmRogJ8f3IauqxRzrvap9Bo2WLPXpyjyda82_2M9H2dJDtfpp8mYZdVIDSITpZ4jVFHW2aUSTVnNnGuMZsXNmJKaJZqxQrUmVhMTZFbE1mON5UIG-O8JgzF796Am6h4I2fs8Rkf1nSc14zFeXc2J6Jiu0H96M6wocWX0NSt3Y30n08T8C9s-_cWzT_8tF797dyFOx1uJR9aRrsHa7a6D7faTJYXD-C0D25C6oogpiRdyKsFUVVBGrdtG5_NODo0qUtft3EJXepz0tTzhW_YBXruy79jj47VPJzOtV2SbwuEx2r1EI6uZdwfwXpVV_YJkFI5uzUXGlmJ8TLRuRYqZTGaTgYRjAgg7sdYmi7Uucu4sZDe5U6FbOkikS7S00WyAN4MbU7aQB9X1v7oSDfUdEG6_Yv67KfsZF5GpaZUKPxrYVjOI5FHhSm5Sx1Y8FgVAWz1hJfdzNHISz4P4OVQjDLvHDmqsvXK10Egx9CWDuBxyydDTyhCzizL0wD4iINGXR2XVPNjH1c8z5xPHlu-7Xntslv_H4rNq__iBdyeTA_25f7u4d5T2EicKLhdlHwL1pdnK_sMMd1SP_eCRODHdUvub8jwXvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN9kDDASPEHUfDiJ_YAQY6s2BlVBm7Q34zjOVqlKtqXVtH-Nv46z42QKH3vbS1vVduT4zne_853vAN7wgKk0KxM_jMvAp6VO_ZymaLWqpET0nRaJPYf8Nk13D-mXo-RoDX51d2FMWGUnE62gLmplzsjHqGaRGWNUgOPShUXMticfT898U0HKeFq7choti-zryws035oPe9tI67dRNNk5-LzruwoDvkKkssTPEPW1pkqqJM-ojoybTPNCB1SynCa5pAXqT2yOVcG1CnSGXzJiOkQZx1SMz70F65mxikawvrUznf3oT3iMD42G3N3UCWI2blBbmhttaP9FcWJO8gba0BYN-BfS_Ttg8w-vrVWGk_twz6FY8qlluwewpquHcLuta3n5CM66VCekrggiTOISYC2IrArSmCBu_K2GuaJJXdq-jSnvUl-Qpp4v7ECX9rlr_44zOpFz_2Ce6yWZLRAsy9VjOLyRlX8Co6qu9DMgpTRWLGc5MhbNyijnOZMJDdGQUohnmAdht8ZCucTnpv7GQlgHfMxESxeBdBGWLoJ68K4fc9qm_bi295YhXd_TpOy2f9Tnx8JJABGUeRwziW_NFOVZwHhQqDIzhQSLLJSFB5sd4YWTI4244noPXvfNKAGMW0dWul7ZPgjrKFrWHjxt-aSfSYwANE154kE24KDBVIct1fzEZhnnqfHQ48j3Ha9dTev_S7Fx_Vu8gju4a8XXven-c7gbmZ1gQiqzTRgtz1f6BQK8Zf7S7SQCP2968_4GFgJkjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+on+the+temporal+and+spatial+characteristics+of+the+shallow+soil+temperature+of+the+Qinghai-Tibet+Plateau&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yujie&rft.au=Zhang%2C+Cunjie&rft.au=Li%2C+Zhenchao&rft.au=Yang%2C+Liwei&rft.date=2022-11-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-23548-4&rft_id=info%3Apmid%2F36396695&rft.externalDocID=PMC9672035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon