Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau
Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surfa...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 19746 - 19 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the “Moving Surface Spline Interpolation Algorithm Based on Green’s Function” and “Fuzzy C-means algorithm”, and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0–20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15–9.57°, and the interdecadal variabilities were 0.49–0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models. |
---|---|
AbstractList | Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the "Moving Surface Spline Interpolation Algorithm Based on Green's Function" and "Fuzzy C-means algorithm", and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0-20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15-9.57°, and the interdecadal variabilities were 0.49-0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models.Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the "Moving Surface Spline Interpolation Algorithm Based on Green's Function" and "Fuzzy C-means algorithm", and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0-20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15-9.57°, and the interdecadal variabilities were 0.49-0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models. Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the "Moving Surface Spline Interpolation Algorithm Based on Green's Function" and "Fuzzy C-means algorithm", and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0-20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15-9.57°, and the interdecadal variabilities were 0.49-0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models. Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the “Moving Surface Spline Interpolation Algorithm Based on Green’s Function” and “Fuzzy C-means algorithm”, and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0–20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15–9.57°, and the interdecadal variabilities were 0.49–0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models. Abstract Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as seed germination, plant growth, and water evaporation. Therefore, the study of shallow ST is of great significance in understanding the surface energy, water cycle, ecology and climate change. This work collected observational data from 141 meteorological stations on the Qinghai-Tibet Plateau from 1981 to 2020 and ERA5 reanalysis data, used the “Moving Surface Spline Interpolation Algorithm Based on Green’s Function” and “Fuzzy C-means algorithm”, and analyzed the temporal and spatial change characteristics of ST at different levels. The results showed that 1) the temperature increase of 0–20 cm (the surface layer of the shallow soil) was roughly the same. The average annual ST was 9.15–9.57°, and the interdecadal variabilities were 0.49–0.53 K/10a. The average annual ST of 40 cm (the bottom layer) was 8.69°, and the interdecadal variability reached 0.98 K/10a. 2) Considering the 7 regions, the warming trend was obvious, and there were certain regional differences. The average annual ST in different regions ranged from 5.2 (northeastern Plateau) to 17.1 °C (western Sichuan Plateau), with a difference of nearly 12 K. The standard deviation ranged from 0.40 (western Sichuan Plateau) to 0.61 K (Qiangtang Plateau), with a difference of 0.21 K. 3) The errors of the obtained grid data were basically less than 3%, which were much smaller than the errors obtained from the ERA5 reanalysis data. This work is significant for understanding the characteristics of ST evolution and land‒atmosphere interactions on the Qinghai-Tibet Plateau and provides important data support for improving the underlying surface boundary conditions of models. |
ArticleNumber | 19746 |
Author | Jin, Xiao Gao, Xiaoqing Zhang, Cunjie Li, Zhenchao Yang, Liwei Li, Yujie |
Author_xml | – sequence: 1 givenname: Yujie surname: Li fullname: Li, Yujie organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 2 givenname: Cunjie surname: Zhang fullname: Zhang, Cunjie organization: China Meteorological Administration, National Climate Center – sequence: 3 givenname: Zhenchao surname: Li fullname: Li, Zhenchao organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences – sequence: 4 givenname: Liwei surname: Yang fullname: Yang, Liwei organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, University of Chinese Academy of Sciences – sequence: 5 givenname: Xiao surname: Jin fullname: Jin, Xiao organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences – sequence: 6 givenname: Xiaoqing surname: Gao fullname: Gao, Xiaoqing email: xqgao@lzb.ac.cn organization: Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions of Chinese Academy of Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36396695$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAInHhEvBnYl-QqoqPSpUAqZytiTO78cobb22nqP8e724X2h6agz8yz_t67JnX1dEUJqyqt5R8pISrT0lQqVVDGGsYl0I14kV1woiQZcvY0YP1cXWW0oqUTzItqH5VHfOW67bV8qS6OZ_A3yWX6jDVecQ643oTIvgapqFOG8iurO0IEWzG6FJ2trCLHZtG8D78qVNwfifECHmOeIj_ctNyBNdcux5z_dNDRpjfVC8X4BOe3c-n1e-vX64vvjdXP75dXpxfNVYKkstIleYoLFjZdwIZV1KhHpAIUL2QPYiBMV7C3A4aLcGuTMAUUuypsvy0utz7DgFWZhPdGuKdCeDM7keISwOx3MajIYuecwXlPGWF7ojSZLCLTpYHGzoKQ_H6vPfazP0aB4tTLk_0yPRxZHKjWYZbo9uOES6LwYd7gxhuZkzZrF2y6D1MGOZkWMcV1aIltKDvn6CrMMdSpR3VccI7saXePczoXyqHyhZA7QEbQ0oRF8a6XKoZtgk6bygx2z4y-z4ypY_Mro-MKFL2RHpwf1bE96JU4GmJ8X_az6j-Arf02-s |
CitedBy_id | crossref_primary_10_5194_essd_16_1425_2024 crossref_primary_10_1007_s11430_023_1212_3 crossref_primary_10_1360_SSTe_2023_0083 crossref_primary_10_1016_j_catena_2025_108936 crossref_primary_10_1016_j_accre_2024_01_004 crossref_primary_10_1038_s41598_024_60549_x crossref_primary_10_3390_rs16020405 crossref_primary_10_3390_atmos15040434 |
Cites_doi | 10.1016/j.gloplacha.2013.12.001 10.1016/j.cageo.2008.08.012 10.1002/ppp.688 10.1029/95RG00284 10.1002/ppp.485 10.1007/s00704-020-03149-9 10.1023/A:1005424003553 10.1038/ncomms14008 10.1007/s11430-009-0194-9 10.1175/JCLI-D-15-0181.1 10.1657/1938-4246-43.2.239 10.13885/j.issn.0455-2059.1996.01.024 10.1175/JCLI-D-15-0563.1 10.1029/2017JD028260 10.1175/JCLI-D-11-00669.1 10.1023/A:1004278421334 10.1007/s00382-016-3469-9 10.1002/1097-0088(20001130)20:14<1729::AIDJOC556>3.0.CO;2-Y 10.1029/2005GL023469 10.1002/ppp.1988 10.7519/jissn1000-0526.2014.07.008 10.1111/nph.13111 10.1002/2017JD026858 10.1007/s10113-017-1163-z 10.1038/NGEO868 10.1371/journal.pone.0053914 10.1029/2010JD015012 10.1360/03ez0002 10.1029/1999JD901031 10.1175/JCLI-D-16-0041.1 10.1007/s00382-019-05055-x 10.1007/s13351-013-0505-0 10.1007/s00704-016-1914-7 10.1175/JCLI-D-11-00281.1 10.5194/hess-15-2303-2011 10.11888/Socioeco.tpdc.270467 10.7522/j.issn.1000-0240.2018.0117 10.1038/s41598-017-05293-1 10.1657/1523-0430(07-509)[YANG]2.0.CO;2 10.1029/2007WR005994 10.3724/SP.J.1226.2021.20024 10.1016/S0378-1127(99)00290-X 10.1007/s00382-010-0951-7 10.1016/j.geoderma.2018.10.044 10.1111/j.1757-1707.2008.01005.x 10.1016/j.jhydrol.2014.08.014 10.1111/gcb.12248 10.1029/2006JF000631 10.1007/BF02883561 10.11820/dlkxjz.2014.07.003 10.1175/2008JHM949.1 10.1007/s00376-017-6326-9 10.3969/j.issn.1673-1719.2014.01.001 10.1016/j.gloplacha.2010.01.020 10.1016/j.atmosres.2020.105401 10.13781/j.cnki.xdzk.2019.09.006 10.1029/91JD01700 10.1016/j.neucom.2017.06.053 10.1111/j.1365-2486.2010.02250.x 10.1007/s11004-011-9346-5 10.2136/sssaj1984.03615995004800040024x 10.1007/s004420000544 10.5194/bg-12-1091-2015 10.1007/s00382-013-1889-3 10.1002/ppp.1971 10.1016/00983004(85)90094-9 10.1109/FUZZY.2009.5277209 10.1016/j.agrformet.2005.04.008 10.2307/1907187 10.1002/2016JF003876 10.1016/0038-0717(94)00242-S 10.12006/j.issn.1673-1719.2016.039 10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2 10.1111/j.1744-7909.2006.00263.x 10.1016/S0921-8181(01)00098-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-23548-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 19 |
ExternalDocumentID | oai_doaj_org_article_0fb338a8938c4970890dcf75052d71ad PMC9672035 36396695 10_1038_s41598_022_23548_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Tibet Tibetan Plateau |
GeographicLocations_xml | – name: Tibet – name: Tibetan Plateau |
GrantInformation_xml | – fundername: Key Talent Projects of Gansu Province in 2021 – fundername: Numerical Simulation Research on the Influence of Soil Temperature on Precipitation Forecast grantid: QHMS2019015 – fundername: Second Tibetan Plateau Scientific Expedition and Research Program (STEP) grantid: 2019QZKK010303 – fundername: ; – fundername: ; grantid: QHMS2019015 – fundername: ; grantid: 2019QZKK010303 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-c51893e4cac5b74e23858e9de04a8b45ba4d223cac3cd9ec0e7d9ea28e1eb18c3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:24:30 EDT 2025 Thu Aug 21 18:39:55 EDT 2025 Fri Jul 11 07:58:07 EDT 2025 Wed Aug 13 04:20:45 EDT 2025 Thu Apr 03 07:02:29 EDT 2025 Thu Apr 24 22:59:35 EDT 2025 Tue Jul 01 00:55:25 EDT 2025 Fri Feb 21 02:40:35 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-c51893e4cac5b74e23858e9de04a8b45ba4d223cac3cd9ec0e7d9ea28e1eb18c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-23548-4 |
PMID | 36396695 |
PQID | 2737303741 |
PQPubID | 2041939 |
PageCount | 19 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0fb338a8938c4970890dcf75052d71ad pubmedcentral_primary_oai_pubmedcentral_nih_gov_9672035 proquest_miscellaneous_2738194601 proquest_journals_2737303741 pubmed_primary_36396695 crossref_citationtrail_10_1038_s41598_022_23548_4 crossref_primary_10_1038_s41598_022_23548_4 springer_journals_10_1038_s41598_022_23548_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-17 |
PublicationDateYYYYMMDD | 2022-11-17 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | BoumaTJNielsenKLEissenstatDMLynchJPEstimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water contentPlant Soil19971952212321:CAS:528:DyaK2sXns1Sks70%3D10.1023/A:1004278421334 OelkeCZhangTJA model study of circum-Arctic soil temperaturesPermafr. Periglac. Process20041510312110.1002/ppp.485 PanBTLiJJQinghai-Tibetan Plateau: A driver and amplifier of the global climatic change—(III) The effects of the uplift of Qinghai-Tibetan Plateau on climatic changesJ. Lanzhou Univ.19963210811510.13885/j.issn.0455-2059.1996.01.024 JiangXWLiYQYangSYangKChenJWInterannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime ContinentJ. Clim.2016291211382016JCli...29..121J10.1175/JCLI-D-15-0181.1 ChenXLLiuYMWuGXUnderstanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan PlateauAdv. Atmos. Sci.2017341447146010.1007/s00376-017-6326-9 LuoDLElevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest ChinaPermafr. Periglac. Process.20182925727010.1002/ppp.1988 GaoNGaoXQYangLWZhouYSpatial and temporal characteristics of soil temperature at 1.6m depth in mainland of China from 1981 to 2000Plateau Meteorol.201635686692 CollinsMThe impact of global warming on the tropical Pacific Ocean and El NinoNat. Goesci.201033914391:CAS:528:DC%2BC3cXmslSrtrc%3D10.1038/NGEO868 WesselPA general-purpose Green’s function-based interpolatorComput. Geosci.200935124712542009CG.....35.1247W10.1016/j.cageo.2008.08.012 TangMCWangJXZhangJA primary method for predicting the spring rainfall by the winter soil temperature depth 80cmPlateau Meteorol.19876244255 TangMCLiCQPapers of the First Symposium of China Qinghai-Tibet Plateau Research Association1992BeijingScience Press4248 ZhouYGaoXQZhangKLiYJYangLWSpatiotemporal variations in 3.2 m soil temperature in China during 1980–2017Clim. Dyn.2020541233124410.1007/s00382-019-05055-x HolmesTROweMDe JeuRAKooiHEstimating the soil temperature profile from a single depth observation: A simple empirical heatflow solutionWater Resour. Res.200844W024122008WRR....44.2412H10.1029/2007WR005994 YangKWangCHLiSYImproved simulation of frozen-thawing process in land surface model (CLM4.5)J. Geophys. Res. Atmos.201812323825810.1029/2017JD028260 ZhangHZSeasonal and regional variations of soil temperature in ChinaActa. Pedol. Sinica.20092009228234 AbramoffRZFinziACAre above- and below-ground phenology in sync?New Phytol.20152051054106110.1111/nph.1311125729805 WuTWQianZAThe relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigationJ. Clim.200316203820512003JCli...16.2038W10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2 Kendall, M. Rand Correlation Methods. 13–26 (Charles Griffin, London, 1975). YanDThe temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubationSci. Rep.2017751812017NatSR...7.5181Y1:CAS:528:DC%2BC1cXhtlGjsrvI10.1038/s41598-017-05293-1287016875507886 QianBGregorichEGGamedaSHopkinsDWWangXLObserved soil temperature trends associated with climate change in CanadaJ. Geophys. Res.201111611610.1029/2010JD015012 DuanJPWeakening of annual temperature cycle over the Tibetan Plateau since the 1870sNat. Commun.20178140082017NatCo...814008D1:CAS:528:DC%2BC2sXht1Omsbk%3D10.1038/ncomms14008280947915247579 KangSKimOSLeeDPredicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperatureFor. Ecol. Manag.200013617318410.1016/S0378-1127(99)00290-X HuangFZhanWFJuWMWangZHImproved reconstruction of soil thermal field using two-depth measurements of soil temperatureJ. Hydrol.20145197117192014JHyd..519..711H10.1016/j.jhydrol.2014.08.014 PanWDWangQCYuSSZhangXYStudy on ground temperature change and characteristic response of engineering geology of permafrost along Qinghai-Tibet RailwaySci. Ch. Ser. (E) Technol Sci.200346789010.1360/03ez0002 PowerSBKociubaGThe impact of global warming on the Southern oscillation indexClim. Dyn.2011371745175410.1007/s00382-010-0951-7 QinYHSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Clim.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9 YangMXYaoTDGouXHTangHGWater recycling between the land surface and atmosphere on the northern Tibetan Plateau—A case study at flat observation sitesArct. Antarct. Alp. Res.20073969469810.1657/1523-0430(07-509)[YANG]2.0.CO;2 TangXLDependence of soil respiration on soil temperature and soil moisture in successional forests in southern ChinaJ. Integr. Plant Biol.20064865466310.1111/j.1744-7909.2006.00263.x XuXSherryRANiuSLLiDJLuoYQNet primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairieGlob. Chang. Biol.201319275327642013GCBio..19.2753X10.1111/gcb.1224823649795 MannHBNonparametric tests against trendEconometrica1945132452591240510.2307/19071870063.03770 TangMCShenZBChenYYOn climatic characteristics of the Xizang Plateau monsoonActa. Geograph. Sin.1979343442 ChengGDWuTHResponses of permafrost to climate change and their environmental significance, Qinghai-Tibet PlateauJ. Geophys. Res. Earth Surf.2007112F02S032007JGRF..112.2S03C10.1029/2006JF000631 YangNFanGZAnalysis of soil temperature variation over the Qinghai-Xizang Plateau from 2000 to 2016J. Southwest Univers. Nat. Sci. Edit.201941405110.13781/j.cnki.xdzk.2019.09.006 DuanAMXiaoZXWuGXCharacteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014Clim. Chang. Res.20141237538110.12006/j.issn.1673-1719.2016.039 LiNThe Surface Heat Source Estimation Over the Tibetan Plateau and Its Variability2020ChinaNanjing IPCC Climate ChangeThe Physical Basis Science2013USACambridge University Press MackayADBarberSASoil-temperature effects on root-growth and phosphorus uptake by cornSoil Sci. Soc. Am. J.1984488188231984SSASJ..48..818M1:CAS:528:DyaL2cXlsFSltbs%3D10.2136/sssaj1984.03615995004800040024x ParkHSChiangJCBordoniSThe mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoonJ. Clim.201225239424072012JCli...25.2394P10.1175/JCLI-D-11-00281.1 DuanAMWangMRLeiYHCuiYFTrends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008J. Clim.2013262612752013JCli...26..261D10.1175/JCLI-D-11-00669.1 YouQLRelationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis dataGlob. Planet. Chang.2010711241332010GPC....71..124Y10.1016/j.gloplacha.2010.01.020 BezdekJCEhrlidhRFullWFCM: The fuzzy C-means clustering algorithmComput. Geosci.1984101912031984CG.....10..191B10.1016/00983004(85)90094-9 WangYHChenWZhangJYNathDRelationship between soil temperature in may over northwest China and the East Asian summer monsoon precipitationJ. Meteorol. Res.20132771672410.1007/s13351-013-0505-0 DengXSTangZAMoving surface spline interpolation based on Green’s functionMath. Geosci.201143663680282412510.1007/s11004-011-9346-51219.86014 ShiXZDengXHGongZTSoil temperature region in ChinaResearch on Chinese Soil Taxonomy (in Chinese)1993Science Press353360 XuYMKnudbyAHoHCShenYLiuYHWarming over the Tibetan Plateau in the last 55 years based on area-weighted average temperatureReg. Environ. Chang.2017172339234710.1007/s10113-017-1163-z ZhaoLLiRDingYJXiaoYSunLCLiuYStudy on soil thermal status of Qinghai-Tibet Plateau from 1977 to 2006Adv. Clim. Chang. Res.20117307315 SaxenaAA review of clustering techniques and developmentsNeurocomputing201726766468110.1016/j.neucom.2017.06.053 KirschbaumMUThe temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storageSoil Biol. Biochem.1995277537601:CAS:528:DyaK2MXlsF2msrk%3D10.1016/0038-0717(94)00242-S WanGNYangMXWangXJGround temperature variation and its response to climate change on the northern Tibetan PlateauSci. Cold Arid Reg.20211329931310.3724/SP.J.1226.2021.20024 QinYHLiuWGuoZXueSSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Climatol.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9 RustadLEA meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warmingOecologia20011265435622001Oecol.126..543R1:STN:280:DC%2BC1cnhsFKmtA%3D%3D10.1007/s00442000054428547240 GuoDLWangHJPermafrost degradation and associated ground settlement estimation under 2 °C global warmingClim. Dyn.2016492569258310.1007/s00382-016-3469-9 QinYHNumerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan PlateauJ. Geophys. Res.-Atmos.201712211604116202017JGRD..12211604Q10.1002/2017JD026858 LiLThe truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet PlateauJ. Claciology Geocryol.2018401079108910.7522/j.issn.1000-0240.2018.0117 HuQFengSHow have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent?Geophys. Res. Lett.200532577610.1029/2005GL023469 MahanamaSPPKosterRDReichleRHSuarezMJImpact of subsurface temperature variability on surface air temperature variability: An AGCM studyJ. Hydrometeorol.200898048152008JHyMe...9..804M10.1175/2008JHM949.1 HuaiBJEvaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian mountains Qinghai-Tibet PlateauAtmos. Res.202125010540110.1016/j.atmosres.2020.105401 DickinsonRELand-atmosphere interactionRev. Geophys.1995339179221995RvGeo..33S.917D10.1029/95RG00284 HuZZBengtssonLArpeKImpact of global warming on the Asian winter monsoon in a coupled GCMJ. Geophys. Res. Atmos.2000105460746242000JGR...105.4607H10.1029/1999JD901031 CitakogluHComparison of XW Jiang (23548_CR17) 2016; 29 XO Peng (23548_CR28) 2016; 121 BT Pan (23548_CR7) 1996; 32 MC Tang (23548_CR30) 1987; 6 MX Yang (23548_CR23) 2007; 39 DH Qin (23548_CR2) 2014; 10 X Xu (23548_CR75) 2013; 19 HS Park (23548_CR16) 2012; 25 GD Cheng (23548_CR26) 2007; 112 B Bond-Lamberty (23548_CR36) 2005; 131 N Yang (23548_CR57) 2019; 41 LE Rustad (23548_CR77) 2001; 126 YH Qin (23548_CR49) 2017; 122 IPCC Climate Change (23548_CR1) 2013 B Qian (23548_CR82) 2011; 116 YH Wang (23548_CR22) 2013; 27 YH Qin (23548_CR53) 2020; 140 CA Chen (23548_CR42) 2016; 29 P Wessel (23548_CR64) 2009; 35 BJ Huai (23548_CR54) 2021; 250 XL Chen (23548_CR84) 2017; 34 S Kang (23548_CR79) 2000; 136 GJ Hu (23548_CR50) 2019; 337 GN Wan (23548_CR51) 2021; 13 N Gao (23548_CR37) 2016; 35 K Yang (23548_CR48) 2018; 123 ZY Lin (23548_CR70) 1981; 36 RE Dickinson (23548_CR19) 1995; 33 HZ Zhang (23548_CR68) 2009; 2009 XB Wu (23548_CR47) 2018; 29 QX Wang (23548_CR89) 2014; 43 WQ Ma (23548_CR11) 2011; 43 HB Mann (23548_CR61) 1945; 13 XZ Shi (23548_CR78) 1993 MU Kirschbaum (23548_CR25) 1995; 27 XS Deng (23548_CR63) 2011; 43 DL Luo (23548_CR27) 2018; 29 Q Hu (23548_CR29) 2005; 32 JC Bezdek (23548_CR59) 1984; 10 HS Liu (23548_CR35) 2008; 27 SB Power (23548_CR43) 2011; 37 QL You (23548_CR55) 2010; 71 RZ Abramoff (23548_CR72) 2015; 205 D Yan (23548_CR67) 2017; 7 TD Yao (23548_CR85) 2014; 33 YH Qin (23548_CR31) 2020; 140 H Citakoglu (23548_CR81) 2017; 130 AD Mackay (23548_CR24) 1984; 48 23548_CR56 XD Liu (23548_CR10) 2000; 20 TR Holmes (23548_CR21) 2008; 44 M Collins (23548_CR40) 2010; 3 WD Liu (23548_CR69) 2014; 40 23548_CR52 SPP Mahanama (23548_CR90) 2008; 9 M Lee (23548_CR60) 2009; 1–3 N Li (23548_CR65) 2020 A Saxena (23548_CR58) 2017; 267 L Zhao (23548_CR6) 2010; 21 XL Tang (23548_CR34) 2006; 48 DL Guo (23548_CR46) 2016; 49 H Jiang (23548_CR83) 2003; 22 WD Pan (23548_CR39) 2003; 46 K Yang (23548_CR8) 2014; 112 ZZ Hu (23548_CR41) 2000; 105 JP Duan (23548_CR88) 2017; 8 XJ Zhou (23548_CR12) 2009; 52 MC Tang (23548_CR3) 1992 CH Wang (23548_CR13) 2017; 30 Z Su (23548_CR5) 2011; 15 C Oelke (23548_CR71) 2004; 15 TJ Bouma (23548_CR32) 1997; 195 L Zhao (23548_CR18) 2011; 7 Y Zhou (23548_CR38) 2020; 54 YQ Luo (23548_CR76) 2009; 1 CL Phillips (23548_CR33) 2011; 17 TM Munir (23548_CR73) 2015; 12 AM Duan (23548_CR86) 2014; 12 JR Miller (23548_CR44) 1992; 97 23548_CR62 YM Xu (23548_CR87) 2017; 17 TW Wu (23548_CR14) 2003; 16 S Feng (23548_CR4) 1998; 43 AM Duan (23548_CR15) 2013; 26 F Huang (23548_CR20) 2014; 519 NJ Rosenberg (23548_CR45) 1999; 42 L Li (23548_CR66) 2018; 40 MC Tang (23548_CR9) 1979; 34 H Beltrami (23548_CR80) 2001; 29 GB Wang (23548_CR74) 2013; 8 |
References_xml | – reference: MillerJRRussellGLThe impact of global warming on river runoffJ. Geophys. Res. Atmos.199297275727641992JGR....97.2757M10.1029/91JD01700 – reference: Bond-LambertyBWangCKGowerSTSpatiotemporal measurement and modeling of stand-level boreal forest soil temperaturesAgric. For. Meteorol.200513127402005AgFM..131...27B10.1016/j.agrformet.2005.04.008 – reference: ChenCAYuJYChouCImpacts of vertical structure of convection in global warming: The role of shallow convectionJ. Clim.201629466546842016JCli...29.4665C10.1175/JCLI-D-15-0563.1 – reference: MannHBNonparametric tests against trendEconometrica1945132452591240510.2307/19071870063.03770 – reference: MaWQMaYMSuBFeasibility of retrieving land surface heat fluxes from aster data using SEBS: A case study from NamCo area of the Tibetan PlateauArct. Antarct. Alp. Res.20114323924510.1657/1938-4246-43.2.239 – reference: MahanamaSPPKosterRDReichleRHSuarezMJImpact of subsurface temperature variability on surface air temperature variability: An AGCM studyJ. Hydrometeorol.200898048152008JHyMe...9..804M10.1175/2008JHM949.1 – reference: JiangXWLiYQYangSYangKChenJWInterannual variation of summer atmospheric heat source over the Tibetan Plateau and the role of convection around the western Maritime ContinentJ. Clim.2016291211382016JCli...29..121J10.1175/JCLI-D-15-0181.1 – reference: HuQFengSHow have soil temperatures been affected by the surface temperature and precipitation in the Eurasian continent?Geophys. Res. Lett.200532577610.1029/2005GL023469 – reference: IPCC Climate ChangeThe Physical Basis Science2013USACambridge University Press – reference: DickinsonRELand-atmosphere interactionRev. Geophys.1995339179221995RvGeo..33S.917D10.1029/95RG00284 – reference: DuanJPWeakening of annual temperature cycle over the Tibetan Plateau since the 1870sNat. Commun.20178140082017NatCo...814008D1:CAS:528:DC%2BC2sXht1Omsbk%3D10.1038/ncomms14008280947915247579 – reference: LiNThe Surface Heat Source Estimation Over the Tibetan Plateau and Its Variability2020ChinaNanjing – reference: ChenXLLiuYMWuGXUnderstanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan PlateauAdv. Atmos. Sci.2017341447146010.1007/s00376-017-6326-9 – reference: WangQXFanXHWangMBRecent warming amplification over high elevation regions across the globeClim. Dyn.201443871011:CAS:528:DC%2BC2MXhvFyqtrvO10.1007/s00382-013-1889-3 – reference: GuoDLWangHJPermafrost degradation and associated ground settlement estimation under 2 °C global warmingClim. Dyn.2016492569258310.1007/s00382-016-3469-9 – reference: WesselPA general-purpose Green’s function-based interpolatorComput. Geosci.200935124712542009CG.....35.1247W10.1016/j.cageo.2008.08.012 – reference: BeltramiHOn the relationship between ground temperature histories and meteorological records: A report on the Pomquet stationGlob. Planet. Chang.2001293273482001GPC....29..327B10.1016/S0921-8181(01)00098-4 – reference: DengXSTangZAMoving surface spline interpolation based on Green’s functionMath. Geosci.201143663680282412510.1007/s11004-011-9346-51219.86014 – reference: BoumaTJNielsenKLEissenstatDMLynchJPEstimating respiration of roots in soil: Interactions with soil CO2, soil temperature and soil water contentPlant Soil19971952212321:CAS:528:DyaK2sXns1Sks70%3D10.1023/A:1004278421334 – reference: TangXLDependence of soil respiration on soil temperature and soil moisture in successional forests in southern ChinaJ. Integr. Plant Biol.20064865466310.1111/j.1744-7909.2006.00263.x – reference: LinZYWuXDClimate regionalization of the Qinghai-Xizang PlateauActa Geogr. Sin.19813622321981thst.book.....L – reference: RustadLEA meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warmingOecologia20011265435622001Oecol.126..543R1:STN:280:DC%2BC1cnhsFKmtA%3D%3D10.1007/s00442000054428547240 – reference: LuoDLElevation-dependent thermal regime and dynamics of frozen ground in the Bayan Har Mountains, northeastern Qinghai-Tibet Plateau, southwest ChinaPermafr. Periglac. Process.20182925727010.1002/ppp.1988 – reference: WuXBNanZTZhaoSPZhaoLChengGDSpatial modeling of permafrost distribution and properties on the Qinghai-Tibet PlateauPermafr. Periglac. Process.201829869910.1002/ppp.1971 – reference: PanBTLiJJQinghai-Tibetan Plateau: A driver and amplifier of the global climatic change—(III) The effects of the uplift of Qinghai-Tibetan Plateau on climatic changesJ. Lanzhou Univ.19963210811510.13885/j.issn.0455-2059.1996.01.024 – reference: LiuXDChenBDClimatic warming in the Tibetan Plateau during recent decadesInt. J. Climatol.2000201729174210.1002/1097-0088(20001130)20:14<1729::AIDJOC556>3.0.CO;2-Y – reference: Ran, Y. & Li, X. Multi-source integrated Chinese land cover map (2000). National Tibetan Plateau Data Center. https://doi.org/10.11888/Socioeco.tpdc.270467 (2019). – reference: SaxenaAA review of clustering techniques and developmentsNeurocomputing201726766468110.1016/j.neucom.2017.06.053 – reference: BezdekJCEhrlidhRFullWFCM: The fuzzy C-means clustering algorithmComput. Geosci.1984101912031984CG.....10..191B10.1016/00983004(85)90094-9 – reference: ZhouXJZhaoPChenJMChenLXLiWLImpacts of thermodynamic processes over the Tibetan Plateau on the northern hemispheric climateSci. China Ser. D Earth Sci.200952167916932009ScChD..52.1679Z10.1007/s11430-009-0194-9 – reference: ShiXZDengXHGongZTSoil temperature region in ChinaResearch on Chinese Soil Taxonomy (in Chinese)1993Science Press353360 – reference: YangKRecent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A reviewGlob. Planet. Chang.201411279912014GPC...112...79Y10.1016/j.gloplacha.2013.12.001 – reference: QianBGregorichEGGamedaSHopkinsDWWangXLObserved soil temperature trends associated with climate change in CanadaJ. Geophys. Res.201111611610.1029/2010JD015012 – reference: MunirTMPerkinsMKaingEStrackMCarbon dioxide flux and net primary production of a boreal treed bog: Responses to warming and water-table-lowering simulations of climate changeBiogeosciences201512109111112015BGeo...12.1091M10.5194/bg-12-1091-2015 – reference: QinYHSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Clim.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9 – reference: XuYMKnudbyAHoHCShenYLiuYHWarming over the Tibetan Plateau in the last 55 years based on area-weighted average temperatureReg. Environ. Chang.2017172339234710.1007/s10113-017-1163-z – reference: FengSTangMCWangDMThe new evidence for “Qinghai-Tibet Plateau is the climate change initiation zone of China”Sci. Bull.199843633634 – reference: PengXOResponse of changes in seasonal soil freeze/thaw state to climate change from 1950 to 2010 across ChinaJ. Geophys. Res. Earth Surf.2016121198420002016JGRF..121.1984P10.1002/2016JF003876 – reference: TangMCWangJXZhangJA primary method for predicting the spring rainfall by the winter soil temperature depth 80cmPlateau Meteorol.19876244255 – reference: MackayADBarberSASoil-temperature effects on root-growth and phosphorus uptake by cornSoil Sci. Soc. Am. J.1984488188231984SSASJ..48..818M1:CAS:528:DyaL2cXlsFSltbs%3D10.2136/sssaj1984.03615995004800040024x – reference: RosenbergNJPossible impacts of global warming on the hydrology of the Ogallala aquifer regionClim. Chang.1999426776921:CAS:528:DyaK1MXmtFGitLg%3D10.1023/A:1005424003553 – reference: TangMCLiCQPapers of the First Symposium of China Qinghai-Tibet Plateau Research Association1992BeijingScience Press4248 – reference: WangYHChenWZhangJYNathDRelationship between soil temperature in may over northwest China and the East Asian summer monsoon precipitationJ. Meteorol. Res.20132771672410.1007/s13351-013-0505-0 – reference: PhillipsCLNickersonNRiskDBondBJInterpreting diel hysteresis between soil respiration and temperatureGlob. Chang. Biol.2011175155272011GCBio..17..515P10.1111/j.1365-2486.2010.02250.x – reference: ZhouYGaoXQZhangKLiYJYangLWSpatiotemporal variations in 3.2 m soil temperature in China during 1980–2017Clim. Dyn.2020541233124410.1007/s00382-019-05055-x – reference: HuZZBengtssonLArpeKImpact of global warming on the Asian winter monsoon in a coupled GCMJ. Geophys. Res. Atmos.2000105460746242000JGR...105.4607H10.1029/1999JD901031 – reference: KirschbaumMUThe temperature-dependence of soil organic-matter decomposition, and the effect of global warming on soil organic-C storageSoil Biol. Biochem.1995277537601:CAS:528:DyaK2MXlsF2msrk%3D10.1016/0038-0717(94)00242-S – reference: WanGNYangMXWangXJGround temperature variation and its response to climate change on the northern Tibetan PlateauSci. Cold Arid Reg.20211329931310.3724/SP.J.1226.2021.20024 – reference: WangCHYangKLiYLWuDBoYImpacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in eastern ChinaJ. Meteorol. Res.20173088590310.1175/JCLI-D-16-0041.1 – reference: LiuHSThe temperature sensitivity of soil respirationProg. Geogr.2008275260 – reference: CollinsMThe impact of global warming on the tropical Pacific Ocean and El NinoNat. Goesci.201033914391:CAS:528:DC%2BC3cXmslSrtrc%3D10.1038/NGEO868 – reference: OelkeCZhangTJA model study of circum-Arctic soil temperaturesPermafr. Periglac. Process20041510312110.1002/ppp.485 – reference: CitakogluHComparison of artificial intelligence techniques for prediction of soil temperatures in TurkeyTheor. Appl. Climatol.20171305455562017ThApC.130..545C10.1007/s00704-016-1914-7 – reference: JiangHTangMCGaoXQContribution of multi-hot spring regions over Qinghai-Xizang Plateau to air temperature fieldPlateau Meteorol.200322640642 – reference: DuanAMXiaoZXWuGXCharacteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014Clim. Chang. Res.20141237538110.12006/j.issn.1673-1719.2016.039 – reference: HuGJVariations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis productsGeoderma20193378939052019Geode.337..893H10.1016/j.geoderma.2018.10.044 – reference: LuoYQSherryRZhouXHWanSQTerrestrial carbon-cycle feedback to climate warming: Experimental evidence on plant regulation and impacts of biofuel feedstock harvestGlob. Chang. Biol. Bioenerg.2009162741:CAS:528:DC%2BD1MXotlaltLg%3D10.1111/j.1757-1707.2008.01005.x – reference: QinYHLiuWGuoZXueSSpatial and temporal variations in soil temperatures over the Qinghai-Tibet Plateau from 1980 to 2017 based on reanalysis productsTheor. Appl. Climatol.2020140105510692020ThApC.140.1055Q10.1007/s00704-020-03149-9 – reference: XuXSherryRANiuSLLiDJLuoYQNet primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairieGlob. Chang. Biol.201319275327642013GCBio..19.2753X10.1111/gcb.1224823649795 – reference: TangMCShenZBChenYYOn climatic characteristics of the Xizang Plateau monsoonActa. Geograph. Sin.1979343442 – reference: WuTWQianZAThe relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigationJ. Clim.200316203820512003JCli...16.2038W10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2 – reference: LiuWDYouHLRenGYYangPZhangBZAWS precipitation characteristics based on K-means clustering method in Beijing areaMeteorol. Monogr.20144084485110.7519/jissn1000-0526.2014.07.008 – reference: PanWDWangQCYuSSZhangXYStudy on ground temperature change and characteristic response of engineering geology of permafrost along Qinghai-Tibet RailwaySci. Ch. Ser. (E) Technol Sci.200346789010.1360/03ez0002 – reference: HuaiBJEvaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian mountains Qinghai-Tibet PlateauAtmos. Res.202125010540110.1016/j.atmosres.2020.105401 – reference: YangNFanGZAnalysis of soil temperature variation over the Qinghai-Xizang Plateau from 2000 to 2016J. Southwest Univers. Nat. Sci. Edit.201941405110.13781/j.cnki.xdzk.2019.09.006 – reference: YangMXYaoTDGouXHTangHGWater recycling between the land surface and atmosphere on the northern Tibetan Plateau—A case study at flat observation sitesArct. Antarct. Alp. Res.20073969469810.1657/1523-0430(07-509)[YANG]2.0.CO;2 – reference: ZhaoLLiRDingYJXiaoYSunLCLiuYStudy on soil thermal status of Qinghai-Tibet Plateau from 1977 to 2006Adv. Clim. Chang. Res.20117307315 – reference: Kendall, M. Rand Correlation Methods. 13–26 (Charles Griffin, London, 1975). – reference: HuangFZhanWFJuWMWangZHImproved reconstruction of soil thermal field using two-depth measurements of soil temperatureJ. Hydrol.20145197117192014JHyd..519..711H10.1016/j.jhydrol.2014.08.014 – reference: LeeMImprovement of the fuzzy C-means clustering algorithm with adaptive learning of the dissimilarities among categorical feature valuesIEEE Int. Conf. Fuzzy Syst.20091–340340810.1109/FUZZY.2009.5277209 – reference: ParkHSChiangJCBordoniSThe mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoonJ. Clim.201225239424072012JCli...25.2394P10.1175/JCLI-D-11-00281.1 – reference: YouQLRelationship between temperature trend magnitude, elevation and mean temperature in the Tibetan Plateau from homogenized surface stations and reanalysis dataGlob. Planet. Chang.2010711241332010GPC....71..124Y10.1016/j.gloplacha.2010.01.020 – reference: HolmesTROweMDe JeuRAKooiHEstimating the soil temperature profile from a single depth observation: A simple empirical heatflow solutionWater Resour. Res.200844W024122008WRR....44.2412H10.1029/2007WR005994 – reference: KangSKimOSLeeDPredicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperatureFor. Ecol. Manag.200013617318410.1016/S0378-1127(99)00290-X – reference: QinDHStockerJ259 authors & TSU highlights of the IPCC working group I fifth assessment reportClim. Change. Res.2014101610.3969/j.issn.1673-1719.2014.01.001 – reference: YangKWangCHLiSYImproved simulation of frozen-thawing process in land surface model (CLM4.5)J. Geophys. Res. Atmos.201812323825810.1029/2017JD028260 – reference: GaoNGaoXQYangLWZhouYSpatial and temporal characteristics of soil temperature at 1.6m depth in mainland of China from 1981 to 2000Plateau Meteorol.201635686692 – reference: SuZThe Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model productsHydrol. Earth Syst. Sci.201115230323162011HESS...15.2303S1:CAS:528:DC%2BC3MXhtlansLzE10.5194/hess-15-2303-2011 – reference: WangGBZhouYXuXRuanHHWangJSTemperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi mountains ChinaPLoS ONE20138e539142013PLoSO...853914W1:CAS:528:DC%2BC3sXhsVGlurs%3D10.1371/journal.pone.0053914233420383544745 – reference: QinYHNumerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan PlateauJ. Geophys. Res.-Atmos.201712211604116202017JGRD..12211604Q10.1002/2017JD026858 – reference: ZhaoLWuQBMarchenkoSSSharkhuuNThermal state of permafrost and active layer in Central Asia during the international polar yearPermafr. Periglac. Process20102119820710.1002/ppp.688 – reference: LiLThe truth and inter-annual oscillation causes for climate change in the Qinghai-Tibet PlateauJ. Claciology Geocryol.2018401079108910.7522/j.issn.1000-0240.2018.0117 – reference: AbramoffRZFinziACAre above- and below-ground phenology in sync?New Phytol.20152051054106110.1111/nph.1311125729805 – reference: YanDThe temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubationSci. Rep.2017751812017NatSR...7.5181Y1:CAS:528:DC%2BC1cXhtlGjsrvI10.1038/s41598-017-05293-1287016875507886 – reference: DuanAMWangMRLeiYHCuiYFTrends in summer rainfall over China associated with the Tibetan Plateau sensible heat source during 1980–2008J. Clim.2013262612752013JCli...26..261D10.1175/JCLI-D-11-00669.1 – reference: ChengGDWuTHResponses of permafrost to climate change and their environmental significance, Qinghai-Tibet PlateauJ. Geophys. Res. Earth Surf.2007112F02S032007JGRF..112.2S03C10.1029/2006JF000631 – reference: ZhangHZSeasonal and regional variations of soil temperature in ChinaActa. Pedol. Sinica.20092009228234 – reference: PowerSBKociubaGThe impact of global warming on the Southern oscillation indexClim. Dyn.2011371745175410.1007/s00382-010-0951-7 – reference: YaoTDTPE international program: A program for coping with major future environmental challenges of the Third Pole regionProgress Geogr.20143388489210.11820/dlkxjz.2014.07.003 – reference: Hennermann, K. & Berrisford, P. ERA5 Data Documentation. Copernicus Knowledge Base. https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation (2017, Accessed 18 August 2020). – volume: 112 start-page: 79 year: 2014 ident: 23548_CR8 publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2013.12.001 – volume: 35 start-page: 1247 year: 2009 ident: 23548_CR64 publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2008.08.012 – volume: 21 start-page: 198 year: 2010 ident: 23548_CR6 publication-title: Permafr. Periglac. Process doi: 10.1002/ppp.688 – volume: 33 start-page: 917 year: 1995 ident: 23548_CR19 publication-title: Rev. Geophys. doi: 10.1029/95RG00284 – volume: 15 start-page: 103 year: 2004 ident: 23548_CR71 publication-title: Permafr. Periglac. Process doi: 10.1002/ppp.485 – volume: 140 start-page: 1055 year: 2020 ident: 23548_CR31 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-020-03149-9 – volume: 42 start-page: 677 year: 1999 ident: 23548_CR45 publication-title: Clim. Chang. doi: 10.1023/A:1005424003553 – volume: 8 start-page: 14008 year: 2017 ident: 23548_CR88 publication-title: Nat. Commun. doi: 10.1038/ncomms14008 – volume: 52 start-page: 1679 year: 2009 ident: 23548_CR12 publication-title: Sci. China Ser. D Earth Sci. doi: 10.1007/s11430-009-0194-9 – volume: 7 start-page: 307 year: 2011 ident: 23548_CR18 publication-title: Adv. Clim. Chang. Res. – volume-title: The Physical Basis Science year: 2013 ident: 23548_CR1 – volume: 29 start-page: 121 year: 2016 ident: 23548_CR17 publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0181.1 – volume: 43 start-page: 239 year: 2011 ident: 23548_CR11 publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1938-4246-43.2.239 – volume: 6 start-page: 244 year: 1987 ident: 23548_CR30 publication-title: Plateau Meteorol. – volume: 32 start-page: 108 year: 1996 ident: 23548_CR7 publication-title: J. Lanzhou Univ. doi: 10.13885/j.issn.0455-2059.1996.01.024 – volume: 29 start-page: 4665 year: 2016 ident: 23548_CR42 publication-title: J. Clim. doi: 10.1175/JCLI-D-15-0563.1 – volume: 123 start-page: 238 year: 2018 ident: 23548_CR48 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2017JD028260 – volume: 26 start-page: 261 year: 2013 ident: 23548_CR15 publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00669.1 – volume: 195 start-page: 221 year: 1997 ident: 23548_CR32 publication-title: Plant Soil doi: 10.1023/A:1004278421334 – volume: 27 start-page: 52 year: 2008 ident: 23548_CR35 publication-title: Prog. Geogr. – volume: 49 start-page: 2569 year: 2016 ident: 23548_CR46 publication-title: Clim. Dyn. doi: 10.1007/s00382-016-3469-9 – volume: 20 start-page: 1729 year: 2000 ident: 23548_CR10 publication-title: Int. J. Climatol. doi: 10.1002/1097-0088(20001130)20:14<1729::AIDJOC556>3.0.CO;2-Y – volume: 32 start-page: 57 year: 2005 ident: 23548_CR29 publication-title: Geophys. Res. Lett. doi: 10.1029/2005GL023469 – volume: 29 start-page: 257 year: 2018 ident: 23548_CR27 publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1988 – volume: 40 start-page: 844 year: 2014 ident: 23548_CR69 publication-title: Meteorol. Monogr. doi: 10.7519/jissn1000-0526.2014.07.008 – volume: 205 start-page: 1054 year: 2015 ident: 23548_CR72 publication-title: New Phytol. doi: 10.1111/nph.13111 – ident: 23548_CR62 – ident: 23548_CR56 – volume: 122 start-page: 11604 year: 2017 ident: 23548_CR49 publication-title: J. Geophys. Res.-Atmos. doi: 10.1002/2017JD026858 – volume: 17 start-page: 2339 year: 2017 ident: 23548_CR87 publication-title: Reg. Environ. Chang. doi: 10.1007/s10113-017-1163-z – volume: 3 start-page: 391 year: 2010 ident: 23548_CR40 publication-title: Nat. Goesci. doi: 10.1038/NGEO868 – volume: 8 start-page: e53914 year: 2013 ident: 23548_CR74 publication-title: PLoS ONE doi: 10.1371/journal.pone.0053914 – volume: 116 start-page: 1 year: 2011 ident: 23548_CR82 publication-title: J. Geophys. Res. doi: 10.1029/2010JD015012 – volume: 46 start-page: 78 year: 2003 ident: 23548_CR39 publication-title: Sci. Ch. Ser. (E) Technol Sci. doi: 10.1360/03ez0002 – volume: 105 start-page: 4607 year: 2000 ident: 23548_CR41 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD901031 – volume: 22 start-page: 640 year: 2003 ident: 23548_CR83 publication-title: Plateau Meteorol. – volume: 30 start-page: 885 year: 2017 ident: 23548_CR13 publication-title: J. Meteorol. Res. doi: 10.1175/JCLI-D-16-0041.1 – volume: 54 start-page: 1233 year: 2020 ident: 23548_CR38 publication-title: Clim. Dyn. doi: 10.1007/s00382-019-05055-x – volume: 27 start-page: 716 year: 2013 ident: 23548_CR22 publication-title: J. Meteorol. Res. doi: 10.1007/s13351-013-0505-0 – volume: 130 start-page: 545 year: 2017 ident: 23548_CR81 publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-016-1914-7 – volume: 25 start-page: 2394 year: 2012 ident: 23548_CR16 publication-title: J. Clim. doi: 10.1175/JCLI-D-11-00281.1 – volume: 15 start-page: 2303 year: 2011 ident: 23548_CR5 publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-2303-2011 – ident: 23548_CR52 doi: 10.11888/Socioeco.tpdc.270467 – volume: 40 start-page: 1079 year: 2018 ident: 23548_CR66 publication-title: J. Claciology Geocryol. doi: 10.7522/j.issn.1000-0240.2018.0117 – volume: 7 start-page: 5181 year: 2017 ident: 23548_CR67 publication-title: Sci. Rep. doi: 10.1038/s41598-017-05293-1 – volume: 39 start-page: 694 year: 2007 ident: 23548_CR23 publication-title: Arct. Antarct. Alp. Res. doi: 10.1657/1523-0430(07-509)[YANG]2.0.CO;2 – volume: 44 start-page: W02412 year: 2008 ident: 23548_CR21 publication-title: Water Resour. Res. doi: 10.1029/2007WR005994 – volume: 13 start-page: 299 year: 2021 ident: 23548_CR51 publication-title: Sci. Cold Arid Reg. doi: 10.3724/SP.J.1226.2021.20024 – volume: 136 start-page: 173 year: 2000 ident: 23548_CR79 publication-title: For. Ecol. Manag. doi: 10.1016/S0378-1127(99)00290-X – volume: 37 start-page: 1745 year: 2011 ident: 23548_CR43 publication-title: Clim. Dyn. doi: 10.1007/s00382-010-0951-7 – volume: 337 start-page: 893 year: 2019 ident: 23548_CR50 publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.044 – volume: 1 start-page: 62 year: 2009 ident: 23548_CR76 publication-title: Glob. Chang. Biol. Bioenerg. doi: 10.1111/j.1757-1707.2008.01005.x – volume: 519 start-page: 711 year: 2014 ident: 23548_CR20 publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2014.08.014 – volume: 19 start-page: 2753 year: 2013 ident: 23548_CR75 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12248 – volume: 112 start-page: F02S03 year: 2007 ident: 23548_CR26 publication-title: J. Geophys. Res. Earth Surf. doi: 10.1029/2006JF000631 – volume: 36 start-page: 22 year: 1981 ident: 23548_CR70 publication-title: Acta Geogr. Sin. – volume: 43 start-page: 633 year: 1998 ident: 23548_CR4 publication-title: Sci. Bull. doi: 10.1007/BF02883561 – volume-title: The Surface Heat Source Estimation Over the Tibetan Plateau and Its Variability year: 2020 ident: 23548_CR65 – volume: 33 start-page: 884 year: 2014 ident: 23548_CR85 publication-title: Progress Geogr. doi: 10.11820/dlkxjz.2014.07.003 – volume: 9 start-page: 804 year: 2008 ident: 23548_CR90 publication-title: J. Hydrometeorol. doi: 10.1175/2008JHM949.1 – volume: 34 start-page: 1447 year: 2017 ident: 23548_CR84 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-017-6326-9 – start-page: 353 volume-title: Research on Chinese Soil Taxonomy (in Chinese) year: 1993 ident: 23548_CR78 – volume: 10 start-page: 1 year: 2014 ident: 23548_CR2 publication-title: Clim. Change. Res. doi: 10.3969/j.issn.1673-1719.2014.01.001 – volume: 71 start-page: 124 year: 2010 ident: 23548_CR55 publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2010.01.020 – volume: 34 start-page: 34 year: 1979 ident: 23548_CR9 publication-title: Acta. Geograph. Sin. – volume: 250 start-page: 105401 year: 2021 ident: 23548_CR54 publication-title: Atmos. Res. doi: 10.1016/j.atmosres.2020.105401 – volume: 41 start-page: 40 year: 2019 ident: 23548_CR57 publication-title: J. Southwest Univers. Nat. Sci. Edit. doi: 10.13781/j.cnki.xdzk.2019.09.006 – volume: 97 start-page: 2757 year: 1992 ident: 23548_CR44 publication-title: J. Geophys. Res. Atmos. doi: 10.1029/91JD01700 – volume: 267 start-page: 664 year: 2017 ident: 23548_CR58 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.06.053 – volume: 17 start-page: 515 year: 2011 ident: 23548_CR33 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2010.02250.x – volume: 43 start-page: 663 year: 2011 ident: 23548_CR63 publication-title: Math. Geosci. doi: 10.1007/s11004-011-9346-5 – volume: 48 start-page: 818 year: 1984 ident: 23548_CR24 publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1984.03615995004800040024x – volume: 126 start-page: 543 year: 2001 ident: 23548_CR77 publication-title: Oecologia doi: 10.1007/s004420000544 – volume: 12 start-page: 1091 year: 2015 ident: 23548_CR73 publication-title: Biogeosciences doi: 10.5194/bg-12-1091-2015 – volume: 43 start-page: 87 year: 2014 ident: 23548_CR89 publication-title: Clim. Dyn. doi: 10.1007/s00382-013-1889-3 – volume: 29 start-page: 86 year: 2018 ident: 23548_CR47 publication-title: Permafr. Periglac. Process. doi: 10.1002/ppp.1971 – volume: 10 start-page: 191 year: 1984 ident: 23548_CR59 publication-title: Comput. Geosci. doi: 10.1016/00983004(85)90094-9 – volume: 1–3 start-page: 403 year: 2009 ident: 23548_CR60 publication-title: IEEE Int. Conf. Fuzzy Syst. doi: 10.1109/FUZZY.2009.5277209 – volume: 131 start-page: 27 year: 2005 ident: 23548_CR36 publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2005.04.008 – volume: 140 start-page: 1055 year: 2020 ident: 23548_CR53 publication-title: Theor. Appl. Clim. doi: 10.1007/s00704-020-03149-9 – volume: 13 start-page: 245 year: 1945 ident: 23548_CR61 publication-title: Econometrica doi: 10.2307/1907187 – volume: 35 start-page: 686 year: 2016 ident: 23548_CR37 publication-title: Plateau Meteorol. – volume: 2009 start-page: 228 year: 2009 ident: 23548_CR68 publication-title: Acta. Pedol. Sinica. – volume: 121 start-page: 1984 year: 2016 ident: 23548_CR28 publication-title: J. Geophys. Res. Earth Surf. doi: 10.1002/2016JF003876 – start-page: 42 volume-title: Papers of the First Symposium of China Qinghai-Tibet Plateau Research Association year: 1992 ident: 23548_CR3 – volume: 27 start-page: 753 year: 1995 ident: 23548_CR25 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(94)00242-S – volume: 12 start-page: 375 year: 2014 ident: 23548_CR86 publication-title: Clim. Chang. Res. doi: 10.12006/j.issn.1673-1719.2016.039 – volume: 16 start-page: 2038 year: 2003 ident: 23548_CR14 publication-title: J. Clim. doi: 10.1175/1520-0442(2003)016<2038:TRBTTW>2.0.CO;2 – volume: 48 start-page: 654 year: 2006 ident: 23548_CR34 publication-title: J. Integr. Plant Biol. doi: 10.1111/j.1744-7909.2006.00263.x – volume: 29 start-page: 327 year: 2001 ident: 23548_CR80 publication-title: Glob. Planet. Chang. doi: 10.1016/S0921-8181(01)00098-4 |
SSID | ssj0000529419 |
Score | 2.432621 |
Snippet | Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as... Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil, such as... Abstract Shallow soil refers to the soil layer within the 50 cm depth. Shallow soil temperature (ST) directly or indirectly affects many processes in the soil,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19746 |
SubjectTerms | 704/106/35/823 704/106/694/2739 Algorithms Atmosphere Boundary conditions Climate Change Evaporation Greenhouse effect Heat Humanities and Social Sciences Hydrologic cycle multidisciplinary Permafrost Plant growth Precipitation Radiation Regions Respiration Science Science (multidisciplinary) Seed germination Soil Soil temperature Soils Surface properties Temperature Tibet Water Cycle |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB7KQiGX0qQvNw9U6C018UOypGNbEpZCSwMJ5CYkWWIXFjutdyn59xnJ9nadvi697C4rCYaZkeYbj_wNwFuZCVtxz9K89FlKvatSQyvMWi3ziL6rmsXnkJ-_VPNr-umG3ey0-gp3wnp64F5xZ5k3mEVpDKvCUskzIbPaeh76r9U813U4fTHm7SRTPat3IWkuh7dkslKcdRipwttkmHsVJQtP0SaRKBL2_w5l_npZ8kHFNAaii6fwZECQ5H0v-T48cs0BPO57St49g28jzQhpG4LojgzkUyuim5p04QI1_rZTnmbS-ji3C61V2h-ka5eruHCgXB7HL1GihV6mV0vj1uTrCoGq3jyH64vzq4_zdOirkFrEZ2v8zFGdjlptmeHUFaE46GTtMqqFocxoWiNqwOHS1tLZzHH80oVwOZ7swpYvYNa0jXsFxOuQQUph0KiU-8JIIzSjOSYxFrGESCAfdazsQDoeel-sVCx-l0L1dlFoFxXtomgCp9s1tz3lxl9nfwim284MdNnxD3QiNTiR-pcTJXA0Gl4Ne7hTCOzw-CsRciXwZjuMuy-UVHTj2k2cg5CKYlabwMveT7aSlAj-qkqyBPjEgyaiTkea5SIyfMsqVMdx5bvR136K9WdVvP4fqjiEvSJsknDTkR_BbP19444Rd63NSdxi98VtKBE priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEA66Ivgi3u26SgTftGwvaZM8iYrLIigKu3DeQq7ugUO7uz0H8d_vTJp2qZd96SknCaSdSeabmfQbQt7IQtiWhyYv61DkLPg2N6wFr9U2AdB365oYh_z6rT0-ZV9WzSoF3IZ0rHLaE-NG7XqLMfJDMLOgjDUYwPfnFzlWjcLsaiqhcZvcQeoy1Gq-4nOMBbNYrJTpW5miFocD2Cv8pgw8sKpuMJa2sEeRtv9fWPPvI5N_5E2jOTp6QO4nHEk_jIJ_SG757hG5O1aW_P2YXExkI7TvKGA8miioNlR3jg54jBru7ZKtmfYh9h2wwEr_iw79ehMHJuLlqf0HzOhMr_OTtfFb-n0DcFXvnpDTo88nn47zVF0ht4DStnAtAat4ZrVtDGe-whShl84XTAvDGqOZA-wAzbV10tvCc_jRlfAl7O_C1k_JXtd3_jmhQaMfKYUB0TIeKiON0A0rwZWxgChERsrpHSubqMexAsZGxRR4LdQoFwVyUVEuimXk7TzmfCTeuLH3RxTd3BNJs-Mf_eVPldagKoIBh1zDUwvLJC-ELJwNHEv5OV5ql5GDSfAqreRBXetdRl7PzbAGMbGiO9_vYh8AVgx824w8G_VknkkNELBtZZMRvtCgxVSXLd36LPJ8yxZz5DDy3aRr19P6_6vYv_kpXpB7Fao_nmTkB2Rve7nzLwFXbc2ruHiuAMz7IB8 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-N1tq0TwTRf3I9kkj2dpKQeKYgt9C0k2sQfHrnbvkP73nWQ_ZLUKvtwdlwRmdybJbzKT3wC8kZmwFfcszUufpdS7KjW0Qq_VMo_ou6pZPIf8-Kk6u6DLS3a5A8V4FyYm7UdKy7hMj9lh7zvcaMJlMHSdipKFQ7B7sBeo2tG29xaL5dfldLISYlc0l8MNmawUdwye7UKRrP8uhPlnouRv0dK4CZ0-gocDeiSLXt7HsOOaJ3C_ryd58xR-jBQjpG0IIjsyEE-tiW5q0oXkafxt5xzNpPWxbxfKqrQ_Sdeu1nHgQLc8tn9Bia70Kj1fGbchn9cIUvX2GVycnpwfn6VDTYXUIjbb4GeOCMVRqy0znLoiBAadrF1GtTCUGU1rRAzYXNpaOps5jl-6EC7HVV3Y8jnsNm3j9oF4HbxHKQwqlHJfGGmEZjRHB8YijhAJ5OM7VnYgHA91L9YqBr5LoXq9KNSLinpRNIG305jvPd3GP3t_CKqbegaq7PhHe_1NDaajMm_QDdf41MJSyTMhs9p6Hgr41TzXdQJHo-LVMH87haAOl74S4VYCr6dmnHkhnKIb125jH4RTFD3aBF70djJJUiLwqyrJEuAzC5qJOm9pVleR3VtWITKOI9-NtvZLrL-_ioP_634ID4owHUI-Iz-C3c311r1EdLUxr4bpdAveSx9W priority: 102 providerName: Springer Nature |
Title | Analysis on the temporal and spatial characteristics of the shallow soil temperature of the Qinghai-Tibet Plateau |
URI | https://link.springer.com/article/10.1038/s41598-022-23548-4 https://www.ncbi.nlm.nih.gov/pubmed/36396695 https://www.proquest.com/docview/2737303741 https://www.proquest.com/docview/2738194601 https://pubmed.ncbi.nlm.nih.gov/PMC9672035 https://doaj.org/article/0fb338a8938c4970890dcf75052d71ad |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB71IVAviDeBsgoSNwjk4fhxQGi7alWt1KpAV9qbZTtOu1KU0H0I-u8ZO8nCwsKBSxLFttbrGWe-8djfALwWMTeUlXmUZGUckdLSSBOKXqvJS0TftMj9OuTZOT2dkPE0n-5An-6oG8DFVtfO5ZOazKt3329uP-KE_9AeGefvF2iE3EExdKvSLHcLZLuwj5aJuYwGZx3cb7m-U0ES0Z2d2d70AO5maLUpdRknfjFVntF_Gwz9czflbyFVb6lO7sO9DmKGw1YnHsCOrR_CnTbp5O0juOl5SMKmDhH-hR07VRWquggXboc1PptNIuewKX3dhcu90nwLF82s8g07Tua-_BP26FrNosuZtsvwokIkq1aPYXJyfDk6jbrEC5FBALfEa4IwxhKjTK4ZsamLHlpR2JgorkmuFSkQVmBxZgphTWwZ3lTKbYKffm6yJ7BXN7V9BmGpnIspuEapE1amWmiucpQN5QbBBg8g6cdYmo6V3CXHqKSPjmdctiKSKCLpRSRJAG_Wbb62nBz_rH3kRLeu6fi0_YtmfiW76SnjUqOvrvBfc0MEi7mIC1Myl-WvYIkqAjjsBS97HZWI_PD7mCEmC-DVuhinp4u5qNo2K18HMRdBtzeAp62erHvS61kAbEODNrq6WVLPrj0FuKAufI4t3_a69rNbfx-K5__9Qy_gIHWTxO1_ZIewt5yv7EtEY0s9gF02ZQPYHw7HX8Z4Pzo-v_iMb0d0NPArHAM_CX8A4JI2mA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviDcpBYwEJ4iaxE7sHBDiVW3pQyBtpb0Z23HoSqukbXZV9U_xGxk7jyo8eusliWI7cjwznm889gzAqzwSJuNlGsa0jEJW2izULEOr1aQlou-sSP065MFhNjliX2fpbA1-9Wdh3LbKfk70E3VRG7dGvo1qFpmRogJ8f3IauqxRzrvap9Bo2WLPXpyjyda82_2M9H2dJDtfpp8mYZdVIDSITpZ4jVFHW2aUSTVnNnGuMZsXNmJKaJZqxQrUmVhMTZFbE1mON5UIG-O8JgzF796Am6h4I2fs8Rkf1nSc14zFeXc2J6Jiu0H96M6wocWX0NSt3Y30n08T8C9s-_cWzT_8tF797dyFOx1uJR9aRrsHa7a6D7faTJYXD-C0D25C6oogpiRdyKsFUVVBGrdtG5_NODo0qUtft3EJXepz0tTzhW_YBXruy79jj47VPJzOtV2SbwuEx2r1EI6uZdwfwXpVV_YJkFI5uzUXGlmJ8TLRuRYqZTGaTgYRjAgg7sdYmi7Uucu4sZDe5U6FbOkikS7S00WyAN4MbU7aQB9X1v7oSDfUdEG6_Yv67KfsZF5GpaZUKPxrYVjOI5FHhSm5Sx1Y8FgVAWz1hJfdzNHISz4P4OVQjDLvHDmqsvXK10Egx9CWDuBxyydDTyhCzizL0wD4iINGXR2XVPNjH1c8z5xPHlu-7Xntslv_H4rNq__iBdyeTA_25f7u4d5T2EicKLhdlHwL1pdnK_sMMd1SP_eCRODHdUvub8jwXvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN9kDDASPEHUfDiJ_YAQY6s2BlVBm7Q34zjOVqlKtqXVtH-Nv46z42QKH3vbS1vVduT4zne_853vAN7wgKk0KxM_jMvAp6VO_ZymaLWqpET0nRaJPYf8Nk13D-mXo-RoDX51d2FMWGUnE62gLmplzsjHqGaRGWNUgOPShUXMticfT898U0HKeFq7choti-zryws035oPe9tI67dRNNk5-LzruwoDvkKkssTPEPW1pkqqJM-ojoybTPNCB1SynCa5pAXqT2yOVcG1CnSGXzJiOkQZx1SMz70F65mxikawvrUznf3oT3iMD42G3N3UCWI2blBbmhttaP9FcWJO8gba0BYN-BfS_Ttg8w-vrVWGk_twz6FY8qlluwewpquHcLuta3n5CM66VCekrggiTOISYC2IrArSmCBu_K2GuaJJXdq-jSnvUl-Qpp4v7ECX9rlr_44zOpFz_2Ce6yWZLRAsy9VjOLyRlX8Co6qu9DMgpTRWLGc5MhbNyijnOZMJDdGQUohnmAdht8ZCucTnpv7GQlgHfMxESxeBdBGWLoJ68K4fc9qm_bi295YhXd_TpOy2f9Tnx8JJABGUeRwziW_NFOVZwHhQqDIzhQSLLJSFB5sd4YWTI4244noPXvfNKAGMW0dWul7ZPgjrKFrWHjxt-aSfSYwANE154kE24KDBVIct1fzEZhnnqfHQ48j3Ha9dTev_S7Fx_Vu8gju4a8XXven-c7gbmZ1gQiqzTRgtz1f6BQK8Zf7S7SQCP2968_4GFgJkjw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+on+the+temporal+and+spatial+characteristics+of+the+shallow+soil+temperature+of+the+Qinghai-Tibet+Plateau&rft.jtitle=Scientific+reports&rft.au=Li%2C+Yujie&rft.au=Zhang%2C+Cunjie&rft.au=Li%2C+Zhenchao&rft.au=Yang%2C+Liwei&rft.date=2022-11-17&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft_id=info:doi/10.1038%2Fs41598-022-23548-4&rft_id=info%3Apmid%2F36396695&rft.externalDocID=PMC9672035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |