A dynamic lesion model for differentiation of malignant and benign pathologies
Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendenc...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 3485 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.02.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts. |
---|---|
AbstractList | Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts. Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts. Abstract Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts. |
ArticleNumber | 3485 |
Author | Pomeroy, Marc J. Pickhardt, Perry J. Cao, Weiguo Liang, Zhengrong Abbasi, Almas Gao, Yongfeng Han, Fangfang |
Author_xml | – sequence: 1 givenname: Weiguo surname: Cao fullname: Cao, Weiguo organization: Department of Radiology, State University of New York at Stony Brook – sequence: 2 givenname: Zhengrong surname: Liang fullname: Liang, Zhengrong email: jerome.liang@sunysb.edu organization: Department of Radiology, State University of New York at Stony Brook, Department of Biomedical Engineering, State University of New York at Stony Brook – sequence: 3 givenname: Yongfeng surname: Gao fullname: Gao, Yongfeng organization: Department of Radiology, State University of New York at Stony Brook – sequence: 4 givenname: Marc J. surname: Pomeroy fullname: Pomeroy, Marc J. organization: Department of Radiology, State University of New York at Stony Brook, Department of Biomedical Engineering, State University of New York at Stony Brook – sequence: 5 givenname: Fangfang surname: Han fullname: Han, Fangfang organization: School of Biomedical Engineering, Southern Medical University – sequence: 6 givenname: Almas surname: Abbasi fullname: Abbasi, Almas organization: Department of Radiology, State University of New York at Stony Brook – sequence: 7 givenname: Perry J. surname: Pickhardt fullname: Pickhardt, Perry J. organization: Department of Radiology, School of Medicine, University of Wisconsin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33568762$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxIVLwN9xLkhVxUelCi5wtibOOPUqsRc7W6n_Hu-mlLaH-uKx573nGc97XR2FGLCq3lLykRKuP2VBZacbwmijOelkw15UJ4yIEnDGjh7Ex9VZzhtSlmSdoN2r6phzqXSr2En147webgPM3tYTZh9DPccBp9rFVA_eOUwYFg_LPhNdPcPkxwBhqSEMdY-hnOotLNdxiqPH_KZ66WDKeHa3n1a_v375dfG9ufr57fLi_KqxUpClsYxgK4FiD1aAoxa0VEhBdoIAU47rtusHIIMSnFntNEiruB6EU1Yo1_HT6nLVHSJszDb5GdKtieDN4SKm0UBavJ3QKETsO0eQUhS9o9q1RAlLtCrfyBQvWp9Xre2un3GwpeEE0yPRx5ngr80Yb0yrW9m1ugh8uBNI8c8O82Jmny1OEwSMu2yY0FpKIbQq0PdPoJu4S6F81QFFRClNFtS7hxXdl_JvbAXAVoBNMeeE7h5Cidnbw6z2MMUe5mAPsyfpJyTrl8NkS1d-ep7KV2ou74QR0_-yn2H9BQEIzpI |
CitedBy_id | crossref_primary_10_1109_TMI_2023_3240847 crossref_primary_10_1016_j_neuroscience_2024_03_017 crossref_primary_10_1186_s42492_022_00108_1 |
Cites_doi | 10.1016/j.compmedimag.2019.101645 10.1039/c5ib00040h 10.31557/APJCP.2019.20.4.1073 10.1109/TMI.2016.2518958 10.1080/01431160412331269698 10.1109/TMI.2003.817785 10.1109/TSMC.1973.4309314 10.1016/S1470-2045(12)70388-1 10.1016/j.acra.2018.03.002 10.1023/A:1010933404324 10.1016/j.breast.2003.10.002 10.1016/j.partic.2013.02.011 10.1016/S2468-1253(18)30282-6 10.1016/j.acra.2008.01.014 10.1007/978-1-4419-7332-0 10.1159/000481227 10.1016/j.procs.2020.08.045 10.1002/mrm.21530 10.1201/b18191 10.1109/TMI.2009.2022630 10.1016/j.artmed.2018.05.006 10.1016/S1470-2045(13)70216-X 10.1148/radiol.2017171920 10.3233/XST-17302 10.1148/radiol.11100878 10.1038/ncomms5006 10.1088/0031-9155/61/13/R150 10.1109/JAS.2016.7471613 10.1006/cviu.1995.1014 10.1109/TMI.2019.2963177 10.1016/j.ymeth.2020.05.022 10.1007/s11548-014-0991-2 10.1038/srep24454 10.1117/1.JMI.6.4.044503 10.1038/srep37241 10.1158/1078-0432.CCR-16-3133 10.1109/CVPR.2005.177 10.1109/ICIP.2014.7026161 10.1109/INVENTIVE.2016.7823260 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-83095-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_6eeeb9f0e11e4bf18f7064c086038263 PMC7875978 33568762 10_1038_s41598_021_83095_2 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Foundation for the National Institutes of Health grantid: CA206171; CA220004 funderid: http://dx.doi.org/10.13039/100000009 – fundername: NCI NIH HHS grantid: R01 CA206171 – fundername: NCI NIH HHS grantid: R01 CA220004 – fundername: ; grantid: CA206171; CA220004 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-c20e75a1ebac4af1ca856e1a5940a26f3879bda0d6432c8f8a5c638d4f6c46f93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:29:22 EDT 2025 Thu Aug 21 18:30:09 EDT 2025 Thu Jul 10 23:27:13 EDT 2025 Wed Aug 13 09:30:01 EDT 2025 Mon Jul 21 05:20:49 EDT 2025 Tue Jul 01 01:07:27 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Fri Feb 21 02:39:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-c20e75a1ebac4af1ca856e1a5940a26f3879bda0d6432c8f8a5c638d4f6c46f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-83095-2 |
PMID | 33568762 |
PQID | 2488040645 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6eeeb9f0e11e4bf18f7064c086038263 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875978 proquest_miscellaneous_2488554486 proquest_journals_2488040645 pubmed_primary_33568762 crossref_primary_10_1038_s41598_021_83095_2 crossref_citationtrail_10_1038_s41598_021_83095_2 springer_journals_10_1038_s41598_021_83095_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-10 |
PublicationDateYYYYMMDD | 2021-02-10 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ahmed, Arya, Path, Emberton (CR19) 2012; 13 Komeda, Handa, Watanabe, Nomura, Kitahashi, Sakurai, Okamoto, Minami, Kono, Arizumi, Takenaka, Hagiwara, Matsui, Nishida, Kashida, Kudo (CR13) 2017; 93 Gity, Parviz, Saligheh Rad, Kazerooni, Shirali, Shakiba, Baikpour (CR22) 2019; 20 Putelli, Gerevini, Lavelli, Olivato, Serina (CR42) 2020; 176 Breiman (CR36) 2001; 45 Gerevini, Lavelli, Maffi, Maroldi, Minard, Serina, Squassina (CR40) 2018; 91 Cheng, Ni, Chou, Qin, Tiu, Chang, Huang, Shen, Chen (CR12) 2016; 6 Wang, Zhang, Zheng, Wang, Yuan, Dai, Zhang, Yan (CR30) 2016; 3 Kostis, Reeves, Yankelevitz, Henschke (CR3) 2003; 22 CR33 Kato, Goodman, Walavalkar, Barkauskas, Sharabi, Kurzrock (CR2) 2017; 23 Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR9) 2014; 5 Pooler, Lubner, Theis, Halberg, Liang, Pickhardt (CR39) 2019; 26 Pickhardt, Kim, Pooler, Hinshaw, Barlow, Jensen, Reichelderfer, Cash (CR1) 2013; 14 Ko, Berman, Kaur, Babb, Bomsztyk, Greenberg, Naidich, Rusinek (CR4) 2012; 262 Li, Nishikawa (CR6) 2015 Acerbi, Cassereau, Dean, Shi, Au, Park, Chen, Liphardt, Hwang, Weaver (CR18) 2015; 7 Pal (CR37) 2005; 26 Chan, Hadjiiski, Zhou, Sahiner (CR5) 2008; 15 Yip, Aerts (CR10) 2016; 61 Hu, Liang, Song, Han, Pickhardt, Zhu, Duan, Zhang, Barish, Lascarides (CR7) 2016; 35 Prasanna, Tiwari, Madabhushi (CR28) 2016; 6 Zhang, Yang, Su, Ding, Wang (CR32) 2013; 11 Gibbs, Liney, Lowry, Kneeshaw, Turnbull (CR20) 2004; 13 CR8 Ahmad, Soares, Mazomenos, Brandao, Vega, Seward, Stoyanov, Chand, Lovat (CR14) 2019; 4 CR29 CR27 Takemura, Shimizu, Hamamoto (CR38) 2010; 29 Zhang (CR11) 2018 CR25 Monga, Benayoun (CR31) 1995; 61 Haralick, Shanmugam, Dinstein (CR26) 1973; 3 Ibrahim, Primakov, Beuque, Woodruff, Halilaj, Wu, Refaee, Granzier, Widaatalla, Hustinx, Mottaghy, Lambin (CR23) 2020 Song, Zhang, Lu, Wang, Zhu, Pickhardt, Liang (CR34) 2014; 9 Wang, Zhao, Li, Pan, Liu, Gao, Han, Wang, Qi, Liang (CR16) 2018; 26 Cao, Liang, Pomeroy, Ng, Zhang, Gao, Pickhardt, Lu (CR35) 2019; 6 Park, Han (CR41) 2018; 286 Tan, Gao, Liang, Cao, Pomeroy, Huo, Li, Barish, Abbasi, Pickhardt (CR17) 2019; 39 Callahan (CR24) 2010 Jansen, Fan, Karczmar, Abe, Schmidt, Newstead (CR21) 2008; 59 Zhang, Han, Liang, Tan, Cao, Gao, Pomeroy, Ng, Hou (CR15) 2019; 77 B Song (83095_CR34) 2014; 9 83095_CR8 J Cheng (83095_CR12) 2016; 6 OF Ahmad (83095_CR14) 2019; 4 P Prasanna (83095_CR28) 2016; 6 Y-H Zhang (83095_CR11) 2018 Z Zhang (83095_CR32) 2013; 11 Y Hu (83095_CR7) 2016; 35 F-Y Wang (83095_CR30) 2016; 3 JP Ko (83095_CR4) 2012; 262 O Monga (83095_CR31) 1995; 61 B Pooler (83095_CR39) 2019; 26 M Gity (83095_CR22) 2019; 20 A Ibrahim (83095_CR23) 2020 H Wang (83095_CR16) 2018; 26 A Takemura (83095_CR38) 2010; 29 Q Li (83095_CR6) 2015 W Cao (83095_CR35) 2019; 6 HU Ahmed (83095_CR19) 2012; 13 L Putelli (83095_CR42) 2020; 176 R Haralick (83095_CR26) 1973; 3 SA Jansen (83095_CR21) 2008; 59 P Gibbs (83095_CR20) 2004; 13 SH Park (83095_CR41) 2018; 286 WJ Kostis (83095_CR3) 2003; 22 83095_CR33 PJ Pickhardt (83095_CR1) 2013; 14 J Tan (83095_CR17) 2019; 39 M Pal (83095_CR37) 2005; 26 AE Gerevini (83095_CR40) 2018; 91 H Aerts (83095_CR9) 2014; 5 JJ Callahan (83095_CR24) 2010 Y Komeda (83095_CR13) 2017; 93 HP Chan (83095_CR5) 2008; 15 S Yip (83095_CR10) 2016; 61 S Kato (83095_CR2) 2017; 23 83095_CR25 S Zhang (83095_CR15) 2019; 77 I Acerbi (83095_CR18) 2015; 7 83095_CR27 L Breiman (83095_CR36) 2001; 45 83095_CR29 |
References_xml | – volume: 77 start-page: 101645 year: 2019 ident: CR15 article-title: An investigation of CNN models for differentiating malignant from benign lesions using small pathologically proven datasets publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.101645 – volume: 7 start-page: 1120 issue: 10 year: 2015 end-page: 1134 ident: CR18 article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration publication-title: Integr. Biol. doi: 10.1039/c5ib00040h – volume: 20 start-page: 1073 issue: 4 year: 2019 end-page: 1079 ident: CR22 article-title: Differentiation of benign from malignant adnexal masses by dynamic contrast-enhanced MRI (DCE-MRI): Quantitative and semi-quantitative analysis at 3-Tesla MRI publication-title: Asian Pac. J. Cancer Prev. APJCP doi: 10.31557/APJCP.2019.20.4.1073 – volume: 35 start-page: 1522 issue: 6 year: 2016 end-page: 1531 ident: CR7 article-title: Texture feature extraction and analysis for polyp differentiation via computed tomography colonography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2518958 – volume: 26 start-page: 217 issue: 1 year: 2005 end-page: 222 ident: CR37 article-title: Random forest classifier for remote sensing classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 22 start-page: 1259 issue: 10 year: 2003 end-page: 1274 ident: CR3 article-title: Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.817785 – year: 2018 ident: CR11 publication-title: “Radiomics in cancer prognosis: Applications and limitations of quantitative texture analysis”, PhD Dissertation, Karolinska Institute – volume: 3 start-page: 610 issue: 6 year: 1973 end-page: 621 ident: CR26 article-title: Textural features for image classification publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – ident: CR33 – volume: 13 start-page: e509 issue: 11 year: 2012 end-page: e517 ident: CR19 article-title: Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy? publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(12)70388-1 – volume: 26 start-page: 30 issue: 1 year: 2019 end-page: 37 ident: CR39 article-title: Volumetric textural analysis of colorectal masses at CT colonography: Differentiating benign versus malignant pathology and comparison with human reader performance publication-title: Acad. Radiol. doi: 10.1016/j.acra.2018.03.002 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR36 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: CR29 – volume: 13 start-page: 115 issue: 2 year: 2004 end-page: 121 ident: CR20 article-title: Differentiation of benign and malignant sub-1cm breast lesions using dynamic contrast enhanced MRI publication-title: Breast doi: 10.1016/j.breast.2003.10.002 – volume: 11 start-page: 549 issue: 5 year: 2013 end-page: 555 ident: CR32 article-title: Multi-scale image segmentation of coal piles on a belt based on the Hessian matrix publication-title: Particuology doi: 10.1016/j.partic.2013.02.011 – volume: 4 start-page: 71 issue: 1 year: 2019 end-page: 80 ident: CR14 article-title: Artificial intelligence and computer-aided diagnosis in colonoscopy: Current evidence and future directions publication-title: Lancet Gastroenterol. Hepatol. doi: 10.1016/S2468-1253(18)30282-6 – volume: 15 start-page: 535 issue: 5 year: 2008 end-page: 555 ident: CR5 article-title: Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography—a review publication-title: Acad. Radiol. doi: 10.1016/j.acra.2008.01.014 – ident: CR8 – year: 2010 ident: CR24 publication-title: Advanced Calculus: A Geometric View doi: 10.1007/978-1-4419-7332-0 – volume: 93 start-page: 30 year: 2017 end-page: 34 ident: CR13 article-title: Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: Preliminary experience publication-title: Oncology doi: 10.1159/000481227 – ident: CR25 – ident: CR27 – volume: 176 start-page: 349 year: 2020 end-page: 359 ident: CR42 article-title: Deep learning for classification of radiology reports with a hierarchical schema publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.08.045 – volume: 59 start-page: 747 issue: 4 year: 2008 end-page: 754 ident: CR21 article-title: Differentiation between benign and malignant breast lesions detected by bilateral dynamic contrast-enhanced MRI: A sensitivity and specificity study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21530 – year: 2015 ident: CR6 publication-title: Computer-aided Detection and Diagnosis in Medical Imaging doi: 10.1201/b18191 – volume: 29 start-page: 598 issue: 3 year: 2010 end-page: 609 ident: CR38 article-title: Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the AdaBoost algorithm with feature selection publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2022630 – volume: 91 start-page: 72 year: 2018 end-page: 81 ident: CR40 article-title: Automatic classification of radiological reports for clinical care publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.05.006 – volume: 14 start-page: 711 issue: 8 year: 2013 end-page: 720 ident: CR1 article-title: Assessment of volumetric growth rates of small colorectal polyps with CT colonography: A longitudinal study of natural history publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(13)70216-X – volume: 286 start-page: 800 year: 2018 end-page: 809 ident: CR41 article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction publication-title: Radiology doi: 10.1148/radiol.2017171920 – volume: 26 start-page: 171 issue: 2 year: 2018 end-page: 187 ident: CR16 article-title: A Hybrid CNN feature model for pulmonary nodule malignancy risk differentiation publication-title: J. X-Ray Sci. Technol. doi: 10.3233/XST-17302 – volume: 262 start-page: 662 issue: 2 year: 2012 end-page: 671 ident: CR4 article-title: Pulmonary nodules: Growth rate assessment in patients by using serial CT and three-dimensional volumetry publication-title: Radiology doi: 10.1148/radiol.11100878 – volume: 5 start-page: 4006 year: 2014 ident: CR9 article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach publication-title: Nat. Commun. doi: 10.1038/ncomms5006 – volume: 61 start-page: 150 issue: 13 year: 2016 end-page: 166 ident: CR10 article-title: Applications and limitations of radiomics publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/13/R150 – volume: 3 start-page: 113 issue: 2 year: 2016 end-page: 120 ident: CR30 article-title: Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7471613 – volume: 61 start-page: 71 issue: 2 year: 1995 end-page: 189 ident: CR31 article-title: Using partial derivatives of 3D images to extract typical surface features publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1995.1014 – volume: 39 start-page: 2013 issue: 6 year: 2019 end-page: 2024 ident: CR17 article-title: 3D-GLCM CNN: A 3-dimensional gray-level co-occurrence matrix based CNN model for polyp classification via CT colonography publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2963177 – year: 2020 ident: CR23 article-title: Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework publication-title: Methods doi: 10.1016/j.ymeth.2020.05.022 – volume: 9 start-page: 1021 issue: 6 year: 2014 end-page: 1031 ident: CR34 article-title: Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-0991-2 – volume: 6 start-page: 24454 year: 2016 ident: CR12 article-title: Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans publication-title: Sci. Rep. doi: 10.1038/srep24454 – volume: 6 start-page: 044503 issue: 4 year: 2019 ident: CR35 article-title: Multilayer feature selection method for polyp classification via computed tomographic colonography publication-title: J. Med. Imaging doi: 10.1117/1.JMI.6.4.044503 – volume: 6 start-page: 37241 year: 2016 ident: CR28 article-title: Co-occurrence of local anisotropic gradient orientations (CoLIAGe): A new radiomics descriptor publication-title: Sci. Rep. doi: 10.1038/srep37241 – volume: 23 start-page: 4242 issue: 15 year: 2017 end-page: 4250 ident: CR2 article-title: Hyperprogressors after immunotherapy: Analysis of genomic alterations associated with accelerated growth rate publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-3133 – volume-title: Computer-aided Detection and Diagnosis in Medical Imaging year: 2015 ident: 83095_CR6 doi: 10.1201/b18191 – volume: 26 start-page: 171 issue: 2 year: 2018 ident: 83095_CR16 publication-title: J. X-Ray Sci. Technol. doi: 10.3233/XST-17302 – volume: 20 start-page: 1073 issue: 4 year: 2019 ident: 83095_CR22 publication-title: Asian Pac. J. Cancer Prev. APJCP doi: 10.31557/APJCP.2019.20.4.1073 – ident: 83095_CR29 – volume: 29 start-page: 598 issue: 3 year: 2010 ident: 83095_CR38 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2022630 – volume: 22 start-page: 1259 issue: 10 year: 2003 ident: 83095_CR3 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.817785 – volume: 6 start-page: 24454 year: 2016 ident: 83095_CR12 publication-title: Sci. Rep. doi: 10.1038/srep24454 – volume: 7 start-page: 1120 issue: 10 year: 2015 ident: 83095_CR18 publication-title: Integr. Biol. doi: 10.1039/c5ib00040h – ident: 83095_CR25 – volume: 59 start-page: 747 issue: 4 year: 2008 ident: 83095_CR21 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21530 – volume: 176 start-page: 349 year: 2020 ident: 83095_CR42 publication-title: Proc. Comput. Sci. doi: 10.1016/j.procs.2020.08.045 – volume: 5 start-page: 4006 year: 2014 ident: 83095_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms5006 – volume: 9 start-page: 1021 issue: 6 year: 2014 ident: 83095_CR34 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-014-0991-2 – volume: 286 start-page: 800 year: 2018 ident: 83095_CR41 publication-title: Radiology doi: 10.1148/radiol.2017171920 – volume-title: “Radiomics in cancer prognosis: Applications and limitations of quantitative texture analysis”, PhD Dissertation, Karolinska Institute year: 2018 ident: 83095_CR11 – year: 2020 ident: 83095_CR23 publication-title: Methods doi: 10.1016/j.ymeth.2020.05.022 – volume: 6 start-page: 37241 year: 2016 ident: 83095_CR28 publication-title: Sci. Rep. doi: 10.1038/srep37241 – volume: 39 start-page: 2013 issue: 6 year: 2019 ident: 83095_CR17 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2963177 – volume: 93 start-page: 30 year: 2017 ident: 83095_CR13 publication-title: Oncology doi: 10.1159/000481227 – ident: 83095_CR27 doi: 10.1109/CVPR.2005.177 – volume: 45 start-page: 5 year: 2001 ident: 83095_CR36 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 6 start-page: 044503 issue: 4 year: 2019 ident: 83095_CR35 publication-title: J. Med. Imaging doi: 10.1117/1.JMI.6.4.044503 – ident: 83095_CR33 doi: 10.1109/ICIP.2014.7026161 – ident: 83095_CR8 doi: 10.1109/INVENTIVE.2016.7823260 – volume: 77 start-page: 101645 year: 2019 ident: 83095_CR15 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2019.101645 – volume: 26 start-page: 217 issue: 1 year: 2005 ident: 83095_CR37 publication-title: Int. J. Remote Sens. doi: 10.1080/01431160412331269698 – volume: 15 start-page: 535 issue: 5 year: 2008 ident: 83095_CR5 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2008.01.014 – volume: 14 start-page: 711 issue: 8 year: 2013 ident: 83095_CR1 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(13)70216-X – volume: 3 start-page: 610 issue: 6 year: 1973 ident: 83095_CR26 publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1973.4309314 – volume: 61 start-page: 71 issue: 2 year: 1995 ident: 83095_CR31 publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.1995.1014 – volume: 35 start-page: 1522 issue: 6 year: 2016 ident: 83095_CR7 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2518958 – volume-title: Advanced Calculus: A Geometric View year: 2010 ident: 83095_CR24 doi: 10.1007/978-1-4419-7332-0 – volume: 262 start-page: 662 issue: 2 year: 2012 ident: 83095_CR4 publication-title: Radiology doi: 10.1148/radiol.11100878 – volume: 13 start-page: 115 issue: 2 year: 2004 ident: 83095_CR20 publication-title: Breast doi: 10.1016/j.breast.2003.10.002 – volume: 91 start-page: 72 year: 2018 ident: 83095_CR40 publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2018.05.006 – volume: 11 start-page: 549 issue: 5 year: 2013 ident: 83095_CR32 publication-title: Particuology doi: 10.1016/j.partic.2013.02.011 – volume: 61 start-page: 150 issue: 13 year: 2016 ident: 83095_CR10 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/13/R150 – volume: 4 start-page: 71 issue: 1 year: 2019 ident: 83095_CR14 publication-title: Lancet Gastroenterol. Hepatol. doi: 10.1016/S2468-1253(18)30282-6 – volume: 26 start-page: 30 issue: 1 year: 2019 ident: 83095_CR39 publication-title: Acad. Radiol. doi: 10.1016/j.acra.2018.03.002 – volume: 23 start-page: 4242 issue: 15 year: 2017 ident: 83095_CR2 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-3133 – volume: 13 start-page: e509 issue: 11 year: 2012 ident: 83095_CR19 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(12)70388-1 – volume: 3 start-page: 113 issue: 2 year: 2016 ident: 83095_CR30 publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2016.7471613 |
SSID | ssj0000529419 |
Score | 2.3453128 |
Snippet | Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores... Abstract Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3485 |
SubjectTerms | 631/67/2322 639/166/985 692/308/2778 Algorithms Colon Colonic Polyps - diagnosis Colonic Polyps - pathology Diagnosis, Computer-Assisted Eigenvalues Humanities and Social Sciences Humans Lesions Lung nodules Mathematical Concepts Models, Biological multidisciplinary Neoplasm Invasiveness Neoplasms - diagnosis Neoplasms - pathology Polyps Science Science (multidisciplinary) Solitary Pulmonary Nodule - diagnosis Solitary Pulmonary Nodule - pathology |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hJCQuVfkoTUsrI_VGI2zHcZzjFoEQhz0ViZvlOGNaiWYrdjn033dsZxeW0vbCMfFEssYznufYfg_gU905o5SjZQlZlKqhdUrbN7r0tXOeyr3gmNg-p_riSl1e19ePpL7imbBMD5wdd6IRsWsDRyFQdUGY0FAV9YTEeUXQOPF8Us17tJjKrN6yVaIdb8mQ5cmcKlW8TSZFaSrCFaVcq0SJsP85lPnnYcknO6apEJ2_hlcjgmST3PMd2MBhF7aypuSvPZhOWJ9V5tktxl9hLIndMAKnbKmGssjjwWaB_SAcfhMPwzA39KzDgZ5YlClOkyLO9-Hq_Ozr6UU5iiaQexVflF5ybGonsHNeuSC8M7VG4epWcSd1qEzTdr3jPUER6U0wrvaUg70K2isd2uoNbA6zAd8CC4GGV8bLr1qrxrsuErv0PQGIYFrkVQFi6UDrR0bxKGxxa9POdmVsdrolp9vkdCsLOF598zPzafzT-kscl5Vl5MJOLyhC7Bgh9n8RUsDhclTtmKBzK-PEpSJZXwFHq2ZKrbhf4gac3WcbQlvK6AIOchCselJVtY6FpIBmLTzWurreMnz_lui7aYqkVZwp4PMykB669XdXvHsJV7yHbRkzIAra8EPYXNzd4wcCVYvuY8qf35DCHB8 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIlLVfbQgozEDaLajmM7J1QQVcWhJyq9m-V4KUglKX2vh_57Zhwn1WPpMYkTObN4Pnvs-Qh51_bOSOlgWgItaqlhntIFrWrfOuch3HMWc7XPU3VyJr-u2lVZcFuXbZXzmJgH6jB6XCM_FGhpEqurfbz8VSNrFGZXC4XGffIAS5fhli690ssaC2axJO_KWRnWmMM1xCs8UyZ4bRpAF7XYike5bP-_sObfWyb_yJvmcHS8R3YLjqRHk-Ifk3txeEIeTsySN0_J6RENE9c8vYi4IEYz5Q0FiEpnTpTNpBU6JvoT0Pg5bomhbgi0jwNcUSQrzkNjXD8jZ8dfvn0-qQt1AghZsk3tBYu6dTz2zkuXuHemVZG7tpPMCZUao7s-OBYAkAhvknGtB08MMikvVeqa52RnGIf4ktCUQMkCj8AqJbV3PZZ3CQFgRDJdZE1F-CxA60tdcaS3uLA5v90YOwndgtBtFroVFXm_vHM5VdW4s_Un1MvSEiti5xvj1bktDmZVjLHvEoucR9knbpIGY_EwY4OPCgXdPJi1aoubru2tUVXk7fIYHAyzJm6I4_XUBjCXNKoiLyYjWHrSNK3CcFIRvWUeW13dfjL8-J6LeMNACXM5U5EPsyHdduv_onh191_sk0cCbRsJa9gB2dlcXcfXAJo2_ZvsGb8BHNwT4g priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcUFteaRdkJG4QYTuO4xzLitWqh55YaW-W49gFCbKou3vg33fGeVQLBYljknE0GY9nPsf2NwDvysYZpRxOS1AiVxXOU-q20rkvnfOY7gUPie3zWi9X6mpdro9Ajmdh0qb9RGmZwvS4O-zjFhMNHQaTIjcFwoIcw-4jom4nr57r-fRfhVaulKiH8zG8MA80PchBiar_IXz55zbJ39ZKUwpanMDTATuyy17bUzgK3Rk87qtJ_noG15es7evLM_wWtDdLZW4YwlI21kHZ9T3BNpH9QAR-Q9tgmOta1oQOrxgVKE7hMGyfw2rx-ct8mQ_lEtCwiu9yL3moSidC47xyUXhnSh2EK2vFndSxMFXdtI63CEKkN9G40uPoa1XUXulYFy_guNt04RWwGLFjJR171VpV3jVE6dK2CB2iqQMvMhCjAa0fuMSppMV3m9a0C2N7o1s0uk1GtzKD91Obnz2Txj-lP1G_TJLEgp1ubG5v7OAVVocQmjryIERQTRQmVoiwPM7S8KVSo5qzsVftMDS3VlLIUkTTl8Hb6TEOKlopcV3Y7HsZxFnK6Axe9k4waVIUpaYUkkF14B4Hqh4-6b59TcTdGBxx_mYy-DA60r1afzfF-f-JX8ATSb5ORWv4DI53t_vwGoHTrnmTRsodglURtg priority: 102 providerName: Springer Nature |
Title | A dynamic lesion model for differentiation of malignant and benign pathologies |
URI | https://link.springer.com/article/10.1038/s41598-021-83095-2 https://www.ncbi.nlm.nih.gov/pubmed/33568762 https://www.proquest.com/docview/2488040645 https://www.proquest.com/docview/2488554486 https://pubmed.ncbi.nlm.nih.gov/PMC7875978 https://doaj.org/article/6eeeb9f0e11e4bf18f7064c086038263 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTaC9IL4JjMpIvEEgThzbeUCoqzZNlagQUKlvluPYG1JJt7aT2H_P2U6KCh1PURInOp3v43dxfD-AN2WtJWMayxIckTKBdUrVCJ6aUmuD6Z5mNnT7nPCzKRvPytke9HRHnQJXO0s7zyc1Xc7f_7q6-YQO_zFuGZcfVpiE_EaxnKayQMiQYkg-wMwkvKN-7uB-7PWdV4xW3d6Z3Y8ewr2iKLkPElupKnT03wVD__2b8q8l1ZCpTh_A_Q5ikmG0iYewZ9tHcDeSTt48hsmQNJGGnsyt_1ZGAhsOQfRKerqUdZwwsnDkJwL1c_-3DNFtQ2rb4hnxPMYhatrVE5iennwfnaUdqwLqn2Xr1OSZFaWmttaGaUeNliW3VJcVy3TOXSFFVTc6axCr5EY6qUuDTtowxw3jriqewn67aO1zIM7h_Od-dyznTBhd-84vTYMIw8nKZkUCtFegMl3Lcc98MVdh6buQKupfof5V0L_KE3i7eeYyNtz47-hjPy-bkb5ZdriwWJ6rzvcUt9bWlcsspZbVjkonEIgZLObwpTlHMY_6WVW9AarcRzbmu_kl8HpzG33PL6jo1i6u4xiEY0zyBJ5FI9hI0htRAmLLPLZE3b7T_rgI_b0xhmKZJxN41xvSH7FuV8WLW0V4CYe5t3BPY5Mdwf56eW1fIZRa1wO4I2ZiAAfD4fjbGI_HJ5MvX_HqiI8G4fPEIHjQb9fkHNU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4EChgJThA1cRzHOSDUQqstLSuEWqk34zh2QSpJ6W6F-qf4jcw4j2p59NZjEm_iHX-eh8eeD-BFXhklhMGwBFvEosA4pawLGdvcGIvmPk1cqPY5k9MD8eEwP1yBX8NZGNpWOejEoKjr1tIa-TonpAmqrvb25EdMrFGUXR0oNDpY7Lrznxiyzd_svMfxfcn59tb-u2ncswrg90WyiC1PXJGb1FXGCuNTa1QuXWryUiSGS5-poqxqk9Roq7lVXpncIkhr4aUV0lPxJVT5qyLDUGYCq5tbs0-fx1UdypuJtOxP5ySZWp-jhaRTbDyNVYb-TMyXLGAgCviXd_v3Js0_MrXBAG7fgpu958o2OqjdhhXX3IFrHZfl-V2YbbC6Y7dnx46W4Fgg2WHoFLOBhWXR4YC1nn1H__-INuEw09Sscg1eMaJHDsrYze_BwZWI9T5MmrZxD4F5j7DidOhWSlFYU1FBmbpGx8Wr0iVZBOkgQG37SuZEqHGsQ0Y9U7oTukah6yB0zSN4Nf7mpKvjcWnrTRqXsSXV4A432tMj3U9pLZ1zVekTl6ZOVD5VvkB4WowR8aVcYjfXhlHVvWKY6wsYR_B8fIxTmvI0pnHtWdcGvTyhZAQPOhCMPcmyXJIBi6BYgsdSV5efNN--hrLhqJoxelQRvB6AdNGt_4vi0eX_4hlcn-5_3NN7O7Pdx3CDE86JLidZg8ni9Mw9QZdtUT3t5wmDL1c9NX8DTfJTAw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDeBAkaCE0QbO47jHBAqlFVL0YoDlfZmHMcuSCVbuluh_jV-HTPOo1oevfW4G-_KGX_z8tjzATwvaqultJiW4IhUlpinVE2pUldY69Dd88zHbp8ztXsgP8yL-Qb8Gu7C0LHKwSZGQ90sHO2RTwQhTVJ3tUnoj0V82pm-Of6REoMUVVoHOo0OIvv-7Cemb8vXezu41i-EmL7__G437RkGcC4yW6VOZL4sLPe1ddIG7qwulOe2qGRmhQq5Lqu6sVmDfls4HbQtHAK2kUE5qQI1YkLzf6XMC046Vs7LcX-HKmiSV_09nSzXkyX6SrrPJniqc4xsUrHmCyNlwL_i3L-Pa_5Rs42ucHoTbvQxLNvuQHcLNnx7G652rJZnd2C2zZqO554dedqMY5Fuh2F4zAY-llWHCLYI7DtmAod0HIfZtmG1b_ETI6LkaJb98i4cXIpQ78Fmu2j9A2AhIMAEXb9VSpbO1tRapmkwhAm68lmeAB8EaFzf05yoNY5MrK3n2nRCNyh0E4VuRAIvx98cdx09Lhz9ltZlHEnduOMXi5ND0yu3Ud77ugqZ59zLOnAdSgSqw2wR_1QonObWsKqmNxFLcw7oBJ6Nj1G5qWJjW7847cZgvCe1SuB-B4JxJnleKHJlCZRr8Fib6vqT9tvX2EAcjTTmkTqBVwOQzqf1f1E8vPgtnsI1VEjzcW-2_wiuC4I58eZkW7C5Ojn1jzF2W9VPopIw-HLZWvkbWVBV0w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+lesion+model+for+differentiation+of+malignant+and+benign+pathologies&rft.jtitle=Scientific+reports&rft.au=Cao%2C+Weiguo&rft.au=Liang%2C+Zhengrong&rft.au=Gao%2C+Yongfeng&rft.au=Pomeroy%2C+Marc+J&rft.date=2021-02-10&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=3485&rft_id=info:doi/10.1038%2Fs41598-021-83095-2&rft_id=info%3Apmid%2F33568762&rft.externalDocID=33568762 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |