A dynamic lesion model for differentiation of malignant and benign pathologies

Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendenc...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 3485 - 11
Main Authors Cao, Weiguo, Liang, Zhengrong, Gao, Yongfeng, Pomeroy, Marc J., Han, Fangfang, Abbasi, Almas, Pickhardt, Perry J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.02.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.
AbstractList Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.
Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.
Abstract Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores the 2nd order derivatives at each image voxel, which reflect the rate of change of image intensity, as a quantitative measure of the tendency. The 2nd order derivatives at each image voxel are usually represented by the Hessian matrix, but it is difficult to quantify a matrix field (or image) through the lesion space as a measure of the tendency. We conjecture that the three eigenvalues contain important information of the Hessian matrix and are chosen as the surrogate representation of the Hessian matrix. By treating the three eigenvalues as a vector, called Hessian vector, which is defined in a local coordinate formed by three orthogonal Hessian eigenvectors and further adapting the gray level occurrence computing method to extract the vector texture descriptors (or measures) from the Hessian vector, a quantitative presentation for the dynamic lesion model is completed. The vector texture descriptors were applied to differentiate malignant from benign lesions from two pathologically proven datasets: colon polyps and lung nodules. The classification results not only outperform four state-of-the-art methods but also three radiologist experts.
ArticleNumber 3485
Author Pomeroy, Marc J.
Pickhardt, Perry J.
Cao, Weiguo
Liang, Zhengrong
Abbasi, Almas
Gao, Yongfeng
Han, Fangfang
Author_xml – sequence: 1
  givenname: Weiguo
  surname: Cao
  fullname: Cao, Weiguo
  organization: Department of Radiology, State University of New York at Stony Brook
– sequence: 2
  givenname: Zhengrong
  surname: Liang
  fullname: Liang, Zhengrong
  email: jerome.liang@sunysb.edu
  organization: Department of Radiology, State University of New York at Stony Brook, Department of Biomedical Engineering, State University of New York at Stony Brook
– sequence: 3
  givenname: Yongfeng
  surname: Gao
  fullname: Gao, Yongfeng
  organization: Department of Radiology, State University of New York at Stony Brook
– sequence: 4
  givenname: Marc J.
  surname: Pomeroy
  fullname: Pomeroy, Marc J.
  organization: Department of Radiology, State University of New York at Stony Brook, Department of Biomedical Engineering, State University of New York at Stony Brook
– sequence: 5
  givenname: Fangfang
  surname: Han
  fullname: Han, Fangfang
  organization: School of Biomedical Engineering, Southern Medical University
– sequence: 6
  givenname: Almas
  surname: Abbasi
  fullname: Abbasi, Almas
  organization: Department of Radiology, State University of New York at Stony Brook
– sequence: 7
  givenname: Perry J.
  surname: Pickhardt
  fullname: Pickhardt, Perry J.
  organization: Department of Radiology, School of Medicine, University of Wisconsin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33568762$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLwN9xLkhVxUelCi5wtibOOPUqsRc7W6n_Hu-mlLaH-uKx573nGc97XR2FGLCq3lLykRKuP2VBZacbwmijOelkw15UJ4yIEnDGjh7Ex9VZzhtSlmSdoN2r6phzqXSr2En147webgPM3tYTZh9DPccBp9rFVA_eOUwYFg_LPhNdPcPkxwBhqSEMdY-hnOotLNdxiqPH_KZ66WDKeHa3n1a_v375dfG9ufr57fLi_KqxUpClsYxgK4FiD1aAoxa0VEhBdoIAU47rtusHIIMSnFntNEiruB6EU1Yo1_HT6nLVHSJszDb5GdKtieDN4SKm0UBavJ3QKETsO0eQUhS9o9q1RAlLtCrfyBQvWp9Xre2un3GwpeEE0yPRx5ngr80Yb0yrW9m1ugh8uBNI8c8O82Jmny1OEwSMu2yY0FpKIbQq0PdPoJu4S6F81QFFRClNFtS7hxXdl_JvbAXAVoBNMeeE7h5Cidnbw6z2MMUe5mAPsyfpJyTrl8NkS1d-ep7KV2ou74QR0_-yn2H9BQEIzpI
CitedBy_id crossref_primary_10_1109_TMI_2023_3240847
crossref_primary_10_1016_j_neuroscience_2024_03_017
crossref_primary_10_1186_s42492_022_00108_1
Cites_doi 10.1016/j.compmedimag.2019.101645
10.1039/c5ib00040h
10.31557/APJCP.2019.20.4.1073
10.1109/TMI.2016.2518958
10.1080/01431160412331269698
10.1109/TMI.2003.817785
10.1109/TSMC.1973.4309314
10.1016/S1470-2045(12)70388-1
10.1016/j.acra.2018.03.002
10.1023/A:1010933404324
10.1016/j.breast.2003.10.002
10.1016/j.partic.2013.02.011
10.1016/S2468-1253(18)30282-6
10.1016/j.acra.2008.01.014
10.1007/978-1-4419-7332-0
10.1159/000481227
10.1016/j.procs.2020.08.045
10.1002/mrm.21530
10.1201/b18191
10.1109/TMI.2009.2022630
10.1016/j.artmed.2018.05.006
10.1016/S1470-2045(13)70216-X
10.1148/radiol.2017171920
10.3233/XST-17302
10.1148/radiol.11100878
10.1038/ncomms5006
10.1088/0031-9155/61/13/R150
10.1109/JAS.2016.7471613
10.1006/cviu.1995.1014
10.1109/TMI.2019.2963177
10.1016/j.ymeth.2020.05.022
10.1007/s11548-014-0991-2
10.1038/srep24454
10.1117/1.JMI.6.4.044503
10.1038/srep37241
10.1158/1078-0432.CCR-16-3133
10.1109/CVPR.2005.177
10.1109/ICIP.2014.7026161
10.1109/INVENTIVE.2016.7823260
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-83095-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE

Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_6eeeb9f0e11e4bf18f7064c086038263
PMC7875978
33568762
10_1038_s41598_021_83095_2
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Foundation for the National Institutes of Health
  grantid: CA206171; CA220004
  funderid: http://dx.doi.org/10.13039/100000009
– fundername: NCI NIH HHS
  grantid: R01 CA206171
– fundername: NCI NIH HHS
  grantid: R01 CA220004
– fundername: ;
  grantid: CA206171; CA220004
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-c20e75a1ebac4af1ca856e1a5940a26f3879bda0d6432c8f8a5c638d4f6c46f93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:22 EDT 2025
Thu Aug 21 18:30:09 EDT 2025
Thu Jul 10 23:27:13 EDT 2025
Wed Aug 13 09:30:01 EDT 2025
Mon Jul 21 05:20:49 EDT 2025
Tue Jul 01 01:07:27 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Fri Feb 21 02:39:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-c20e75a1ebac4af1ca856e1a5940a26f3879bda0d6432c8f8a5c638d4f6c46f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-83095-2
PMID 33568762
PQID 2488040645
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_6eeeb9f0e11e4bf18f7064c086038263
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7875978
proquest_miscellaneous_2488554486
proquest_journals_2488040645
pubmed_primary_33568762
crossref_primary_10_1038_s41598_021_83095_2
crossref_citationtrail_10_1038_s41598_021_83095_2
springer_journals_10_1038_s41598_021_83095_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-10
PublicationDateYYYYMMDD 2021-02-10
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Ahmed, Arya, Path, Emberton (CR19) 2012; 13
Komeda, Handa, Watanabe, Nomura, Kitahashi, Sakurai, Okamoto, Minami, Kono, Arizumi, Takenaka, Hagiwara, Matsui, Nishida, Kashida, Kudo (CR13) 2017; 93
Gity, Parviz, Saligheh Rad, Kazerooni, Shirali, Shakiba, Baikpour (CR22) 2019; 20
Putelli, Gerevini, Lavelli, Olivato, Serina (CR42) 2020; 176
Breiman (CR36) 2001; 45
Gerevini, Lavelli, Maffi, Maroldi, Minard, Serina, Squassina (CR40) 2018; 91
Cheng, Ni, Chou, Qin, Tiu, Chang, Huang, Shen, Chen (CR12) 2016; 6
Wang, Zhang, Zheng, Wang, Yuan, Dai, Zhang, Yan (CR30) 2016; 3
Kostis, Reeves, Yankelevitz, Henschke (CR3) 2003; 22
CR33
Kato, Goodman, Walavalkar, Barkauskas, Sharabi, Kurzrock (CR2) 2017; 23
Aerts, Velazquez, Leijenaar, Parmar, Grossmann, Carvalho, Bussink, Monshouwer, Haibe-Kains, Rietveld, Hoebers, Rietbergen, Leemans, Dekker, Quackenbush, Gillies, Lambin (CR9) 2014; 5
Pooler, Lubner, Theis, Halberg, Liang, Pickhardt (CR39) 2019; 26
Pickhardt, Kim, Pooler, Hinshaw, Barlow, Jensen, Reichelderfer, Cash (CR1) 2013; 14
Ko, Berman, Kaur, Babb, Bomsztyk, Greenberg, Naidich, Rusinek (CR4) 2012; 262
Li, Nishikawa (CR6) 2015
Acerbi, Cassereau, Dean, Shi, Au, Park, Chen, Liphardt, Hwang, Weaver (CR18) 2015; 7
Pal (CR37) 2005; 26
Chan, Hadjiiski, Zhou, Sahiner (CR5) 2008; 15
Yip, Aerts (CR10) 2016; 61
Hu, Liang, Song, Han, Pickhardt, Zhu, Duan, Zhang, Barish, Lascarides (CR7) 2016; 35
Prasanna, Tiwari, Madabhushi (CR28) 2016; 6
Zhang, Yang, Su, Ding, Wang (CR32) 2013; 11
Gibbs, Liney, Lowry, Kneeshaw, Turnbull (CR20) 2004; 13
CR8
Ahmad, Soares, Mazomenos, Brandao, Vega, Seward, Stoyanov, Chand, Lovat (CR14) 2019; 4
CR29
CR27
Takemura, Shimizu, Hamamoto (CR38) 2010; 29
Zhang (CR11) 2018
CR25
Monga, Benayoun (CR31) 1995; 61
Haralick, Shanmugam, Dinstein (CR26) 1973; 3
Ibrahim, Primakov, Beuque, Woodruff, Halilaj, Wu, Refaee, Granzier, Widaatalla, Hustinx, Mottaghy, Lambin (CR23) 2020
Song, Zhang, Lu, Wang, Zhu, Pickhardt, Liang (CR34) 2014; 9
Wang, Zhao, Li, Pan, Liu, Gao, Han, Wang, Qi, Liang (CR16) 2018; 26
Cao, Liang, Pomeroy, Ng, Zhang, Gao, Pickhardt, Lu (CR35) 2019; 6
Park, Han (CR41) 2018; 286
Tan, Gao, Liang, Cao, Pomeroy, Huo, Li, Barish, Abbasi, Pickhardt (CR17) 2019; 39
Callahan (CR24) 2010
Jansen, Fan, Karczmar, Abe, Schmidt, Newstead (CR21) 2008; 59
Zhang, Han, Liang, Tan, Cao, Gao, Pomeroy, Ng, Hou (CR15) 2019; 77
B Song (83095_CR34) 2014; 9
83095_CR8
J Cheng (83095_CR12) 2016; 6
OF Ahmad (83095_CR14) 2019; 4
P Prasanna (83095_CR28) 2016; 6
Y-H Zhang (83095_CR11) 2018
Z Zhang (83095_CR32) 2013; 11
Y Hu (83095_CR7) 2016; 35
F-Y Wang (83095_CR30) 2016; 3
JP Ko (83095_CR4) 2012; 262
O Monga (83095_CR31) 1995; 61
B Pooler (83095_CR39) 2019; 26
M Gity (83095_CR22) 2019; 20
A Ibrahim (83095_CR23) 2020
H Wang (83095_CR16) 2018; 26
A Takemura (83095_CR38) 2010; 29
Q Li (83095_CR6) 2015
W Cao (83095_CR35) 2019; 6
HU Ahmed (83095_CR19) 2012; 13
L Putelli (83095_CR42) 2020; 176
R Haralick (83095_CR26) 1973; 3
SA Jansen (83095_CR21) 2008; 59
P Gibbs (83095_CR20) 2004; 13
SH Park (83095_CR41) 2018; 286
WJ Kostis (83095_CR3) 2003; 22
83095_CR33
PJ Pickhardt (83095_CR1) 2013; 14
J Tan (83095_CR17) 2019; 39
M Pal (83095_CR37) 2005; 26
AE Gerevini (83095_CR40) 2018; 91
H Aerts (83095_CR9) 2014; 5
JJ Callahan (83095_CR24) 2010
Y Komeda (83095_CR13) 2017; 93
HP Chan (83095_CR5) 2008; 15
S Yip (83095_CR10) 2016; 61
S Kato (83095_CR2) 2017; 23
83095_CR25
S Zhang (83095_CR15) 2019; 77
I Acerbi (83095_CR18) 2015; 7
83095_CR27
L Breiman (83095_CR36) 2001; 45
83095_CR29
References_xml – volume: 77
  start-page: 101645
  year: 2019
  ident: CR15
  article-title: An investigation of CNN models for differentiating malignant from benign lesions using small pathologically proven datasets
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101645
– volume: 7
  start-page: 1120
  issue: 10
  year: 2015
  end-page: 1134
  ident: CR18
  article-title: Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration
  publication-title: Integr. Biol.
  doi: 10.1039/c5ib00040h
– volume: 20
  start-page: 1073
  issue: 4
  year: 2019
  end-page: 1079
  ident: CR22
  article-title: Differentiation of benign from malignant adnexal masses by dynamic contrast-enhanced MRI (DCE-MRI): Quantitative and semi-quantitative analysis at 3-Tesla MRI
  publication-title: Asian Pac. J. Cancer Prev. APJCP
  doi: 10.31557/APJCP.2019.20.4.1073
– volume: 35
  start-page: 1522
  issue: 6
  year: 2016
  end-page: 1531
  ident: CR7
  article-title: Texture feature extraction and analysis for polyp differentiation via computed tomography colonography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2518958
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  end-page: 222
  ident: CR37
  article-title: Random forest classifier for remote sensing classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 22
  start-page: 1259
  issue: 10
  year: 2003
  end-page: 1274
  ident: CR3
  article-title: Three-dimensional segmentation and growth-rate estimation of small pulmonary nodules in helical CT images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.817785
– year: 2018
  ident: CR11
  publication-title: “Radiomics in cancer prognosis: Applications and limitations of quantitative texture analysis”, PhD Dissertation, Karolinska Institute
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  end-page: 621
  ident: CR26
  article-title: Textural features for image classification
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– ident: CR33
– volume: 13
  start-page: e509
  issue: 11
  year: 2012
  end-page: e517
  ident: CR19
  article-title: Do low-grade and low-volume prostate cancers bear the hallmarks of malignancy?
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(12)70388-1
– volume: 26
  start-page: 30
  issue: 1
  year: 2019
  end-page: 37
  ident: CR39
  article-title: Volumetric textural analysis of colorectal masses at CT colonography: Differentiating benign versus malignant pathology and comparison with human reader performance
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2018.03.002
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR36
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: CR29
– volume: 13
  start-page: 115
  issue: 2
  year: 2004
  end-page: 121
  ident: CR20
  article-title: Differentiation of benign and malignant sub-1cm breast lesions using dynamic contrast enhanced MRI
  publication-title: Breast
  doi: 10.1016/j.breast.2003.10.002
– volume: 11
  start-page: 549
  issue: 5
  year: 2013
  end-page: 555
  ident: CR32
  article-title: Multi-scale image segmentation of coal piles on a belt based on the Hessian matrix
  publication-title: Particuology
  doi: 10.1016/j.partic.2013.02.011
– volume: 4
  start-page: 71
  issue: 1
  year: 2019
  end-page: 80
  ident: CR14
  article-title: Artificial intelligence and computer-aided diagnosis in colonoscopy: Current evidence and future directions
  publication-title: Lancet Gastroenterol. Hepatol.
  doi: 10.1016/S2468-1253(18)30282-6
– volume: 15
  start-page: 535
  issue: 5
  year: 2008
  end-page: 555
  ident: CR5
  article-title: Computer-aided diagnosis of lung cancer and pulmonary embolism in computed tomography—a review
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.01.014
– ident: CR8
– year: 2010
  ident: CR24
  publication-title: Advanced Calculus: A Geometric View
  doi: 10.1007/978-1-4419-7332-0
– volume: 93
  start-page: 30
  year: 2017
  end-page: 34
  ident: CR13
  article-title: Computer-aided diagnosis based on convolutional neural network system for colorectal polyp classification: Preliminary experience
  publication-title: Oncology
  doi: 10.1159/000481227
– ident: CR25
– ident: CR27
– volume: 176
  start-page: 349
  year: 2020
  end-page: 359
  ident: CR42
  article-title: Deep learning for classification of radiology reports with a hierarchical schema
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.08.045
– volume: 59
  start-page: 747
  issue: 4
  year: 2008
  end-page: 754
  ident: CR21
  article-title: Differentiation between benign and malignant breast lesions detected by bilateral dynamic contrast-enhanced MRI: A sensitivity and specificity study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21530
– year: 2015
  ident: CR6
  publication-title: Computer-aided Detection and Diagnosis in Medical Imaging
  doi: 10.1201/b18191
– volume: 29
  start-page: 598
  issue: 3
  year: 2010
  end-page: 609
  ident: CR38
  article-title: Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the AdaBoost algorithm with feature selection
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2022630
– volume: 91
  start-page: 72
  year: 2018
  end-page: 81
  ident: CR40
  article-title: Automatic classification of radiological reports for clinical care
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.05.006
– volume: 14
  start-page: 711
  issue: 8
  year: 2013
  end-page: 720
  ident: CR1
  article-title: Assessment of volumetric growth rates of small colorectal polyps with CT colonography: A longitudinal study of natural history
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(13)70216-X
– volume: 286
  start-page: 800
  year: 2018
  end-page: 809
  ident: CR41
  article-title: Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume: 26
  start-page: 171
  issue: 2
  year: 2018
  end-page: 187
  ident: CR16
  article-title: A Hybrid CNN feature model for pulmonary nodule malignancy risk differentiation
  publication-title: J. X-Ray Sci. Technol.
  doi: 10.3233/XST-17302
– volume: 262
  start-page: 662
  issue: 2
  year: 2012
  end-page: 671
  ident: CR4
  article-title: Pulmonary nodules: Growth rate assessment in patients by using serial CT and three-dimensional volumetry
  publication-title: Radiology
  doi: 10.1148/radiol.11100878
– volume: 5
  start-page: 4006
  year: 2014
  ident: CR9
  article-title: Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5006
– volume: 61
  start-page: 150
  issue: 13
  year: 2016
  end-page: 166
  ident: CR10
  article-title: Applications and limitations of radiomics
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/13/R150
– volume: 3
  start-page: 113
  issue: 2
  year: 2016
  end-page: 120
  ident: CR30
  article-title: Where does AlphaGo go: From church-turing thesis to AlphaGo thesis and beyond
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7471613
– volume: 61
  start-page: 71
  issue: 2
  year: 1995
  end-page: 189
  ident: CR31
  article-title: Using partial derivatives of 3D images to extract typical surface features
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1995.1014
– volume: 39
  start-page: 2013
  issue: 6
  year: 2019
  end-page: 2024
  ident: CR17
  article-title: 3D-GLCM CNN: A 3-dimensional gray-level co-occurrence matrix based CNN model for polyp classification via CT colonography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2963177
– year: 2020
  ident: CR23
  article-title: Radiomics for precision medicine: Current challenges, future prospects, and the proposal of a new framework
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.05.022
– volume: 9
  start-page: 1021
  issue: 6
  year: 2014
  end-page: 1031
  ident: CR34
  article-title: Volumetric texture features from higher-order images for diagnosis of colon lesions via CT colonography
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-0991-2
– volume: 6
  start-page: 24454
  year: 2016
  ident: CR12
  article-title: Computer-aided diagnosis with deep learning architecture: Applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci. Rep.
  doi: 10.1038/srep24454
– volume: 6
  start-page: 044503
  issue: 4
  year: 2019
  ident: CR35
  article-title: Multilayer feature selection method for polyp classification via computed tomographic colonography
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.6.4.044503
– volume: 6
  start-page: 37241
  year: 2016
  ident: CR28
  article-title: Co-occurrence of local anisotropic gradient orientations (CoLIAGe): A new radiomics descriptor
  publication-title: Sci. Rep.
  doi: 10.1038/srep37241
– volume: 23
  start-page: 4242
  issue: 15
  year: 2017
  end-page: 4250
  ident: CR2
  article-title: Hyperprogressors after immunotherapy: Analysis of genomic alterations associated with accelerated growth rate
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3133
– volume-title: Computer-aided Detection and Diagnosis in Medical Imaging
  year: 2015
  ident: 83095_CR6
  doi: 10.1201/b18191
– volume: 26
  start-page: 171
  issue: 2
  year: 2018
  ident: 83095_CR16
  publication-title: J. X-Ray Sci. Technol.
  doi: 10.3233/XST-17302
– volume: 20
  start-page: 1073
  issue: 4
  year: 2019
  ident: 83095_CR22
  publication-title: Asian Pac. J. Cancer Prev. APJCP
  doi: 10.31557/APJCP.2019.20.4.1073
– ident: 83095_CR29
– volume: 29
  start-page: 598
  issue: 3
  year: 2010
  ident: 83095_CR38
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2022630
– volume: 22
  start-page: 1259
  issue: 10
  year: 2003
  ident: 83095_CR3
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.817785
– volume: 6
  start-page: 24454
  year: 2016
  ident: 83095_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/srep24454
– volume: 7
  start-page: 1120
  issue: 10
  year: 2015
  ident: 83095_CR18
  publication-title: Integr. Biol.
  doi: 10.1039/c5ib00040h
– ident: 83095_CR25
– volume: 59
  start-page: 747
  issue: 4
  year: 2008
  ident: 83095_CR21
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21530
– volume: 176
  start-page: 349
  year: 2020
  ident: 83095_CR42
  publication-title: Proc. Comput. Sci.
  doi: 10.1016/j.procs.2020.08.045
– volume: 5
  start-page: 4006
  year: 2014
  ident: 83095_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5006
– volume: 9
  start-page: 1021
  issue: 6
  year: 2014
  ident: 83095_CR34
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-014-0991-2
– volume: 286
  start-page: 800
  year: 2018
  ident: 83095_CR41
  publication-title: Radiology
  doi: 10.1148/radiol.2017171920
– volume-title: “Radiomics in cancer prognosis: Applications and limitations of quantitative texture analysis”, PhD Dissertation, Karolinska Institute
  year: 2018
  ident: 83095_CR11
– year: 2020
  ident: 83095_CR23
  publication-title: Methods
  doi: 10.1016/j.ymeth.2020.05.022
– volume: 6
  start-page: 37241
  year: 2016
  ident: 83095_CR28
  publication-title: Sci. Rep.
  doi: 10.1038/srep37241
– volume: 39
  start-page: 2013
  issue: 6
  year: 2019
  ident: 83095_CR17
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2963177
– volume: 93
  start-page: 30
  year: 2017
  ident: 83095_CR13
  publication-title: Oncology
  doi: 10.1159/000481227
– ident: 83095_CR27
  doi: 10.1109/CVPR.2005.177
– volume: 45
  start-page: 5
  year: 2001
  ident: 83095_CR36
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 6
  start-page: 044503
  issue: 4
  year: 2019
  ident: 83095_CR35
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.6.4.044503
– ident: 83095_CR33
  doi: 10.1109/ICIP.2014.7026161
– ident: 83095_CR8
  doi: 10.1109/INVENTIVE.2016.7823260
– volume: 77
  start-page: 101645
  year: 2019
  ident: 83095_CR15
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2019.101645
– volume: 26
  start-page: 217
  issue: 1
  year: 2005
  ident: 83095_CR37
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160412331269698
– volume: 15
  start-page: 535
  issue: 5
  year: 2008
  ident: 83095_CR5
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2008.01.014
– volume: 14
  start-page: 711
  issue: 8
  year: 2013
  ident: 83095_CR1
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(13)70216-X
– volume: 3
  start-page: 610
  issue: 6
  year: 1973
  ident: 83095_CR26
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.1973.4309314
– volume: 61
  start-page: 71
  issue: 2
  year: 1995
  ident: 83095_CR31
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1995.1014
– volume: 35
  start-page: 1522
  issue: 6
  year: 2016
  ident: 83095_CR7
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2518958
– volume-title: Advanced Calculus: A Geometric View
  year: 2010
  ident: 83095_CR24
  doi: 10.1007/978-1-4419-7332-0
– volume: 262
  start-page: 662
  issue: 2
  year: 2012
  ident: 83095_CR4
  publication-title: Radiology
  doi: 10.1148/radiol.11100878
– volume: 13
  start-page: 115
  issue: 2
  year: 2004
  ident: 83095_CR20
  publication-title: Breast
  doi: 10.1016/j.breast.2003.10.002
– volume: 91
  start-page: 72
  year: 2018
  ident: 83095_CR40
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2018.05.006
– volume: 11
  start-page: 549
  issue: 5
  year: 2013
  ident: 83095_CR32
  publication-title: Particuology
  doi: 10.1016/j.partic.2013.02.011
– volume: 61
  start-page: 150
  issue: 13
  year: 2016
  ident: 83095_CR10
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/13/R150
– volume: 4
  start-page: 71
  issue: 1
  year: 2019
  ident: 83095_CR14
  publication-title: Lancet Gastroenterol. Hepatol.
  doi: 10.1016/S2468-1253(18)30282-6
– volume: 26
  start-page: 30
  issue: 1
  year: 2019
  ident: 83095_CR39
  publication-title: Acad. Radiol.
  doi: 10.1016/j.acra.2018.03.002
– volume: 23
  start-page: 4242
  issue: 15
  year: 2017
  ident: 83095_CR2
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-3133
– volume: 13
  start-page: e509
  issue: 11
  year: 2012
  ident: 83095_CR19
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(12)70388-1
– volume: 3
  start-page: 113
  issue: 2
  year: 2016
  ident: 83095_CR30
  publication-title: IEEE/CAA J. Autom. Sin.
  doi: 10.1109/JAS.2016.7471613
SSID ssj0000529419
Score 2.3453128
Snippet Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and explores...
Abstract Malignant lesions have a high tendency to invade their surrounding environment compared to benign ones. This paper proposes a dynamic lesion model and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3485
SubjectTerms 631/67/2322
639/166/985
692/308/2778
Algorithms
Colon
Colonic Polyps - diagnosis
Colonic Polyps - pathology
Diagnosis, Computer-Assisted
Eigenvalues
Humanities and Social Sciences
Humans
Lesions
Lung nodules
Mathematical Concepts
Models, Biological
multidisciplinary
Neoplasm Invasiveness
Neoplasms - diagnosis
Neoplasms - pathology
Polyps
Science
Science (multidisciplinary)
Solitary Pulmonary Nodule - diagnosis
Solitary Pulmonary Nodule - pathology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hJCQuVfkoTUsrI_VGI2zHcZzjFoEQhz0ViZvlOGNaiWYrdjn033dsZxeW0vbCMfFEssYznufYfg_gU905o5SjZQlZlKqhdUrbN7r0tXOeyr3gmNg-p_riSl1e19ePpL7imbBMD5wdd6IRsWsDRyFQdUGY0FAV9YTEeUXQOPF8Us17tJjKrN6yVaIdb8mQ5cmcKlW8TSZFaSrCFaVcq0SJsP85lPnnYcknO6apEJ2_hlcjgmST3PMd2MBhF7aypuSvPZhOWJ9V5tktxl9hLIndMAKnbKmGssjjwWaB_SAcfhMPwzA39KzDgZ5YlClOkyLO9-Hq_Ozr6UU5iiaQexVflF5ybGonsHNeuSC8M7VG4epWcSd1qEzTdr3jPUER6U0wrvaUg70K2isd2uoNbA6zAd8CC4GGV8bLr1qrxrsuErv0PQGIYFrkVQFi6UDrR0bxKGxxa9POdmVsdrolp9vkdCsLOF598zPzafzT-kscl5Vl5MJOLyhC7Bgh9n8RUsDhclTtmKBzK-PEpSJZXwFHq2ZKrbhf4gac3WcbQlvK6AIOchCselJVtY6FpIBmLTzWurreMnz_lui7aYqkVZwp4PMykB669XdXvHsJV7yHbRkzIAra8EPYXNzd4wcCVYvuY8qf35DCHB8
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Jb9UwELagCIlLVfbQgozEDaLajmM7J1QQVcWhJyq9m-V4KUglKX2vh_57Zhwn1WPpMYkTObN4Pnvs-Qh51_bOSOlgWgItaqlhntIFrWrfOuch3HMWc7XPU3VyJr-u2lVZcFuXbZXzmJgH6jB6XCM_FGhpEqurfbz8VSNrFGZXC4XGffIAS5fhli690ssaC2axJO_KWRnWmMM1xCs8UyZ4bRpAF7XYike5bP-_sObfWyb_yJvmcHS8R3YLjqRHk-Ifk3txeEIeTsySN0_J6RENE9c8vYi4IEYz5Q0FiEpnTpTNpBU6JvoT0Pg5bomhbgi0jwNcUSQrzkNjXD8jZ8dfvn0-qQt1AghZsk3tBYu6dTz2zkuXuHemVZG7tpPMCZUao7s-OBYAkAhvknGtB08MMikvVeqa52RnGIf4ktCUQMkCj8AqJbV3PZZ3CQFgRDJdZE1F-CxA60tdcaS3uLA5v90YOwndgtBtFroVFXm_vHM5VdW4s_Un1MvSEiti5xvj1bktDmZVjLHvEoucR9knbpIGY_EwY4OPCgXdPJi1aoubru2tUVXk7fIYHAyzJm6I4_XUBjCXNKoiLyYjWHrSNK3CcFIRvWUeW13dfjL8-J6LeMNACXM5U5EPsyHdduv_onh191_sk0cCbRsJa9gB2dlcXcfXAJo2_ZvsGb8BHNwT4g
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VRUhcUFteaRdkJG4QYTuO4xzLitWqh55YaW-W49gFCbKou3vg33fGeVQLBYljknE0GY9nPsf2NwDvysYZpRxOS1AiVxXOU-q20rkvnfOY7gUPie3zWi9X6mpdro9Ajmdh0qb9RGmZwvS4O-zjFhMNHQaTIjcFwoIcw-4jom4nr57r-fRfhVaulKiH8zG8MA80PchBiar_IXz55zbJ39ZKUwpanMDTATuyy17bUzgK3Rk87qtJ_noG15es7evLM_wWtDdLZW4YwlI21kHZ9T3BNpH9QAR-Q9tgmOta1oQOrxgVKE7hMGyfw2rx-ct8mQ_lEtCwiu9yL3moSidC47xyUXhnSh2EK2vFndSxMFXdtI63CEKkN9G40uPoa1XUXulYFy_guNt04RWwGLFjJR171VpV3jVE6dK2CB2iqQMvMhCjAa0fuMSppMV3m9a0C2N7o1s0uk1GtzKD91Obnz2Txj-lP1G_TJLEgp1ubG5v7OAVVocQmjryIERQTRQmVoiwPM7S8KVSo5qzsVftMDS3VlLIUkTTl8Hb6TEOKlopcV3Y7HsZxFnK6Axe9k4waVIUpaYUkkF14B4Hqh4-6b59TcTdGBxx_mYy-DA60r1afzfF-f-JX8ATSb5ORWv4DI53t_vwGoHTrnmTRsodglURtg
  priority: 102
  providerName: Springer Nature
Title A dynamic lesion model for differentiation of malignant and benign pathologies
URI https://link.springer.com/article/10.1038/s41598-021-83095-2
https://www.ncbi.nlm.nih.gov/pubmed/33568762
https://www.proquest.com/docview/2488040645
https://www.proquest.com/docview/2488554486
https://pubmed.ncbi.nlm.nih.gov/PMC7875978
https://doaj.org/article/6eeeb9f0e11e4bf18f7064c086038263
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-NTaC9IL4JjMpIvEEgThzbeUCoqzZNlagQUKlvluPYG1JJt7aT2H_P2U6KCh1PURInOp3v43dxfD-AN2WtJWMayxIckTKBdUrVCJ6aUmuD6Z5mNnT7nPCzKRvPytke9HRHnQJXO0s7zyc1Xc7f_7q6-YQO_zFuGZcfVpiE_EaxnKayQMiQYkg-wMwkvKN-7uB-7PWdV4xW3d6Z3Y8ewr2iKLkPElupKnT03wVD__2b8q8l1ZCpTh_A_Q5ikmG0iYewZ9tHcDeSTt48hsmQNJGGnsyt_1ZGAhsOQfRKerqUdZwwsnDkJwL1c_-3DNFtQ2rb4hnxPMYhatrVE5iennwfnaUdqwLqn2Xr1OSZFaWmttaGaUeNliW3VJcVy3TOXSFFVTc6axCr5EY6qUuDTtowxw3jriqewn67aO1zIM7h_Od-dyznTBhd-84vTYMIw8nKZkUCtFegMl3Lcc98MVdh6buQKupfof5V0L_KE3i7eeYyNtz47-hjPy-bkb5ZdriwWJ6rzvcUt9bWlcsspZbVjkonEIgZLObwpTlHMY_6WVW9AarcRzbmu_kl8HpzG33PL6jo1i6u4xiEY0zyBJ5FI9hI0htRAmLLPLZE3b7T_rgI_b0xhmKZJxN41xvSH7FuV8WLW0V4CYe5t3BPY5Mdwf56eW1fIZRa1wO4I2ZiAAfD4fjbGI_HJ5MvX_HqiI8G4fPEIHjQb9fkHNU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWyG4IN4EChgJThA1cRzHOSDUQqstLSuEWqk34zh2QSpJ6W6F-qf4jcw4j2p59NZjEm_iHX-eh8eeD-BFXhklhMGwBFvEosA4pawLGdvcGIvmPk1cqPY5k9MD8eEwP1yBX8NZGNpWOejEoKjr1tIa-TonpAmqrvb25EdMrFGUXR0oNDpY7Lrznxiyzd_svMfxfcn59tb-u2ncswrg90WyiC1PXJGb1FXGCuNTa1QuXWryUiSGS5-poqxqk9Roq7lVXpncIkhr4aUV0lPxJVT5qyLDUGYCq5tbs0-fx1UdypuJtOxP5ySZWp-jhaRTbDyNVYb-TMyXLGAgCviXd_v3Js0_MrXBAG7fgpu958o2OqjdhhXX3IFrHZfl-V2YbbC6Y7dnx46W4Fgg2WHoFLOBhWXR4YC1nn1H__-INuEw09Sscg1eMaJHDsrYze_BwZWI9T5MmrZxD4F5j7DidOhWSlFYU1FBmbpGx8Wr0iVZBOkgQG37SuZEqHGsQ0Y9U7oTukah6yB0zSN4Nf7mpKvjcWnrTRqXsSXV4A432tMj3U9pLZ1zVekTl6ZOVD5VvkB4WowR8aVcYjfXhlHVvWKY6wsYR_B8fIxTmvI0pnHtWdcGvTyhZAQPOhCMPcmyXJIBi6BYgsdSV5efNN--hrLhqJoxelQRvB6AdNGt_4vi0eX_4hlcn-5_3NN7O7Pdx3CDE86JLidZg8ni9Mw9QZdtUT3t5wmDL1c9NX8DTfJTAw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRSAuiDeBAkaCE0QbO47jHBAqlFVL0YoDlfZmHMcuSCVbuluh_jV-HTPOo1oevfW4G-_KGX_z8tjzATwvaqultJiW4IhUlpinVE2pUldY69Dd88zHbp8ztXsgP8yL-Qb8Gu7C0LHKwSZGQ90sHO2RTwQhTVJ3tUnoj0V82pm-Of6REoMUVVoHOo0OIvv-7Cemb8vXezu41i-EmL7__G437RkGcC4yW6VOZL4sLPe1ddIG7qwulOe2qGRmhQq5Lqu6sVmDfls4HbQtHAK2kUE5qQI1YkLzf6XMC046Vs7LcX-HKmiSV_09nSzXkyX6SrrPJniqc4xsUrHmCyNlwL_i3L-Pa_5Rs42ucHoTbvQxLNvuQHcLNnx7G652rJZnd2C2zZqO554dedqMY5Fuh2F4zAY-llWHCLYI7DtmAod0HIfZtmG1b_ETI6LkaJb98i4cXIpQ78Fmu2j9A2AhIMAEXb9VSpbO1tRapmkwhAm68lmeAB8EaFzf05yoNY5MrK3n2nRCNyh0E4VuRAIvx98cdx09Lhz9ltZlHEnduOMXi5ND0yu3Ud77ugqZ59zLOnAdSgSqw2wR_1QonObWsKqmNxFLcw7oBJ6Nj1G5qWJjW7847cZgvCe1SuB-B4JxJnleKHJlCZRr8Fib6vqT9tvX2EAcjTTmkTqBVwOQzqf1f1E8vPgtnsI1VEjzcW-2_wiuC4I58eZkW7C5Ojn1jzF2W9VPopIw-HLZWvkbWVBV0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+dynamic+lesion+model+for+differentiation+of+malignant+and+benign+pathologies&rft.jtitle=Scientific+reports&rft.au=Cao%2C+Weiguo&rft.au=Liang%2C+Zhengrong&rft.au=Gao%2C+Yongfeng&rft.au=Pomeroy%2C+Marc+J&rft.date=2021-02-10&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=3485&rft_id=info:doi/10.1038%2Fs41598-021-83095-2&rft_id=info%3Apmid%2F33568762&rft.externalDocID=33568762
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon