Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 16001 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.08.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-95364-1 |
Cover
Abstract | This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity. |
---|---|
AbstractList | This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity. Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity. This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity. |
ArticleNumber | 16001 |
Author | Garcia-Uceda, Antonio Saghir, Zaigham Tiddens, Harm A. W. M. Selvan, Raghavendra de Bruijne, Marleen |
Author_xml | – sequence: 1 givenname: Antonio surname: Garcia-Uceda fullname: Garcia-Uceda, Antonio email: a.garciauceda@erasmusmc.nl organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital – sequence: 2 givenname: Raghavendra surname: Selvan fullname: Selvan, Raghavendra organization: Department of Computer Science, University of Copenhagen, Department of Neuroscience, University of Copenhagen – sequence: 3 givenname: Zaigham surname: Saghir fullname: Saghir, Zaigham organization: Department of Medicine, Section of Pulmonary Medicine, Herlev-Gentofte Hospital, Copenhagen University Hospital – sequence: 4 givenname: Harm A. W. M. surname: Tiddens fullname: Tiddens, Harm A. W. M. organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital – sequence: 5 givenname: Marleen surname: de Bruijne fullname: de Bruijne, Marleen email: marleen.debruijne@erasmusmc.nl organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Department of Computer Science, University of Copenhagen |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34362949$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUjFARLaU_wAJZYsMmEL-TDVLV8qhUiQ2sLT9OUl8S-2Inrfr3-N6U0nZRb451PDM-Y8_r6iDEAFX1FjcfcUPbT5lh3rV1Q3DdcSpYjV9UR6RhvCaUkIMH-8PqJOdNUxYnHcPdq-qQMirKvjuq8ukyx0nP3iLt042-RRmGCcJcWjGgPsUJ2ThtlxkcKsg4JL29ukVL9mFAKZolz0gHh6DvvfWFiGh9XijhOo7LTkOPKMCS9mW-iel3flO97PWY4eSuHle_vn75efa9vvzx7eLs9LK2nDVzbZzFAoPTUjoj-kYQx0mrDeZCmq4TnFLcEyy1K84oNwx6DkCd6YnRvLH0uLpYdV3UG7VNftLpVkXt1b4R06B0Ks5HUA0zIHULQriWCUxbK4Q1VmqMpbMcitbnVWu7mAmcLUaLpUeij0-Cv1JDvFYtZYLLrgh8uBNI8c8CeVaTzxbGUQeIS1aE845R1glWoO-fQDdxSeUh96i2ZZLIHerdw4nuR_n3twVAVoBNMecE_T0EN2qXIbVmSJUMqX2GFC6k9gnJ-jULxZUfn6fSlZrLPWGA9H_sZ1h_AdfJ3ck |
CitedBy_id | crossref_primary_10_1109_TFUZZ_2024_3433506 crossref_primary_10_1016_j_media_2023_102957 crossref_primary_10_1109_TNNLS_2023_3269223 crossref_primary_10_1088_1361_6560_ad4300 crossref_primary_10_1016_j_ejrad_2024_111905 crossref_primary_10_1016_j_ejrad_2022_110460 crossref_primary_10_1186_s40001_024_02197_5 crossref_primary_10_1093_jmicro_dfad049 crossref_primary_10_1038_s44172_024_00296_z crossref_primary_10_1186_s41747_021_00247_9 crossref_primary_10_1007_s11548_024_03215_x crossref_primary_10_1148_radiol_232677 crossref_primary_10_1213_ANE_0000000000006969 crossref_primary_10_1109_TMI_2024_3448468 crossref_primary_10_1007_s11517_024_03169_x crossref_primary_10_3390_diagnostics14171979 crossref_primary_10_1007_s00330_023_09615_y crossref_primary_10_1371_journal_pone_0311416 crossref_primary_10_3390_bioengineering10080915 crossref_primary_10_1016_j_acra_2023_07_009 crossref_primary_10_1148_ryct_210311 crossref_primary_10_3390_diagnostics14131456 crossref_primary_10_1016_j_media_2024_103355 crossref_primary_10_1186_s40537_024_00974_x crossref_primary_10_1016_j_compbiomed_2022_106241 crossref_primary_10_1016_j_jbiomech_2023_111713 crossref_primary_10_1007_s11548_022_02582_7 |
Cites_doi | 10.1016/j.compmedimag.2009.04.012 10.1016/j.media.2014.02.004 10.1007/s00330-017-4819-7 10.1016/j.media.2017.07.005 10.1007/s00330-014-3261-3 10.1007/s00330-019-06606-w 10.1038/s41592-020-01008-z 10.1118/1.4703901 10.1109/TMI.2012.2209674 10.1097/JTO.0b013e3181a0d98f 10.1109/42.500140 10.1016/j.media.2018.10.006 10.1016/j.media.2020.101751 10.1088/0031-9155/58/17/R187 10.1016/j.media.2010.03.004 10.1016/0304-3975(94)00262-2 10.1109/TMI.2009.2035813 10.1118/1.4963214 10.1016/j.media.2016.11.001 10.1109/TMI.2020.3029013 10.1007/s11548-020-02293-x 10.1371/journal.pone.0226006 10.1088/1361-6560/aad2a1 10.1007/s11548-016-1492-2 10.1109/TMI.2004.826945 10.1007/978-3-319-67558-9_28 10.1007/978-3-319-46723-8_49 10.1007/978-3-319-24574-4_28 10.1109/CVPR.2015.7298965 10.1007/978-3-030-32226-7_26 10.1007/978-3-030-32692-0_67 10.1109/TMI.2021.3062280 10.1109/3DV.2016.79 10.1109/ISBI45749.2020.9098537 10.1109/ISBI.2012.6235851 10.1007/978-3-030-32226-7_39 10.1007/978-3-030-32226-7_24 10.1007/978-3-319-66185-8_23 10.1007/978-3-319-67389-9_17 10.1007/978-3-030-32248-9_48 10.1007/978-3-642-04271-3_7 10.1109/ICPR.1996.547003 10.1007/978-3-030-59710-8_22 10.1007/978-3-030-00946-5_24 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-95364-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_04be7a8e66d846138c66cbc7a117dc5e PMC8346579 34362949 10_1038_s41598_021_95364_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Innovative Medicines Initiative Joint Undertaking grantid: 115721; 115721 – fundername: ; grantid: 115721; 115721 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-bdc161eda77db6f062d528ab1567b9965331f217ad00535b4ef5ee3dbf2ba50c3 |
IEDL.DBID | C6C |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 17:36:06 EDT 2025 Fri Sep 05 07:49:11 EDT 2025 Wed Aug 13 06:23:00 EDT 2025 Mon Jul 21 05:25:07 EDT 2025 Tue Jul 01 03:49:04 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Fri Feb 21 02:39:01 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-bdc161eda77db6f062d528ab1567b9965331f217ad00535b4ef5ee3dbf2ba50c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-021-95364-1 |
PMID | 34362949 |
PQID | 2558847274 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_04be7a8e66d846138c66cbc7a117dc5e pubmedcentral_primary_oai_pubmedcentral_nih_gov_8346579 proquest_miscellaneous_2559434964 proquest_journals_2558847274 pubmed_primary_34362949 crossref_primary_10_1038_s41598_021_95364_1 crossref_citationtrail_10_1038_s41598_021_95364_1 springer_journals_10_1038_s41598_021_95364_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-06 |
PublicationDateYYYYMMDD | 2021-08-06 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR46) 2021; 18 Meng (CR16) 2017; 12 Selvan (CR37) 2020; 64 Fabijańska (CR7) 2009; 33 CR38 CR36 Zhou (CR31) 2021; 16 CR35 CR34 CR33 CR30 Gil, Sanchez, Borras, Diez-Ferrer, Rosell (CR45) 2019; 14 Paszke (CR39) 2019; 32 CR4 CR3 CR49 CR47 Fetita, Prêteux, Beigelman-Aubry, Grenier (CR6) 2004; 23 Litjens (CR17) 2017; 42 CR44 Fiorio, Gustedt (CR40) 1996; 154 Lee, Kashyap, Chu (CR48) 1994; 56 Graham, Gibbs, Cornish, Higgins (CR8) 2010; 29 Pedersen (CR41) 2009; 4 CR18 Charbonnier (CR19) 2017; 36 van Rikxoort, van Ginneken (CR12) 2013; 58 Bian (CR14) 2018; 63 CR10 Yun (CR20) 2019; 51 CR52 Nadeem (CR32) 2021; 40 CR51 Kuo, Perez-Rovira, Tiddens, de Bruijne (CR2) 2020; 30 Petersen (CR50) 2014; 24 Pu (CR11) 2012; 39 CR29 Lo, Sporring, Ashraf, Pedersen, de Bruijne (CR9) 2010; 14 Lo (CR13) 2012; 31 CR28 CR27 CR26 CR25 CR24 Perez-Rovira, Kuo, Petersen, Tiddens, de Bruijne (CR43) 2016; 43 CR23 Sonka, Park, Hoffman (CR5) 1996; 15 CR22 CR21 Petersen (CR42) 2014; 18 Kuo (CR1) 2017; 27 Inoue, Kitamura, Li, Ito (CR15) 2013; 8670 A Perez-Rovira (95364_CR43) 2016; 43 95364_CR44 95364_CR47 95364_CR49 95364_CR4 95364_CR3 Z Bian (95364_CR14) 2018; 63 W Kuo (95364_CR2) 2020; 30 J Yun (95364_CR20) 2019; 51 95364_CR10 T Inoue (95364_CR15) 2013; 8670 T Lee (95364_CR48) 1994; 56 J Petersen (95364_CR50) 2014; 24 95364_CR51 95364_CR52 F Isensee (95364_CR46) 2021; 18 J Pu (95364_CR11) 2012; 39 P Lo (95364_CR13) 2012; 31 J Petersen (95364_CR42) 2014; 18 K Zhou (95364_CR31) 2021; 16 95364_CR18 J Charbonnier (95364_CR19) 2017; 36 R Selvan (95364_CR37) 2020; 64 95364_CR21 95364_CR22 95364_CR23 95364_CR24 95364_CR25 95364_CR26 95364_CR27 95364_CR28 J Pedersen (95364_CR41) 2009; 4 D Gil (95364_CR45) 2019; 14 C Fiorio (95364_CR40) 1996; 154 95364_CR29 S Nadeem (95364_CR32) 2021; 40 M Graham (95364_CR8) 2010; 29 G Litjens (95364_CR17) 2017; 42 A Fabijańska (95364_CR7) 2009; 33 Q Meng (95364_CR16) 2017; 12 W Kuo (95364_CR1) 2017; 27 E van Rikxoort (95364_CR12) 2013; 58 95364_CR33 95364_CR34 95364_CR35 95364_CR36 M Sonka (95364_CR5) 1996; 15 95364_CR38 P Lo (95364_CR9) 2010; 14 A Paszke (95364_CR39) 2019; 32 C Fetita (95364_CR6) 2004; 23 95364_CR30 |
References_xml | – ident: CR22 – volume: 33 start-page: 537 year: 2009 end-page: 546 ident: CR7 article-title: Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2009.04.012 – ident: CR49 – ident: CR4 – ident: CR51 – volume: 18 start-page: 531 year: 2014 end-page: 541 ident: CR42 article-title: Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.02.004 – volume: 8670 start-page: 141 year: 2013 end-page: 149 ident: CR15 article-title: Robust airway extraction based on machine learning and minimum spanning tree publication-title: Int. Soc. Opt. Photonics (SPIE) – ident: CR35 – ident: CR29 – ident: CR25 – volume: 27 start-page: 4680 year: 2017 end-page: 4689 ident: CR1 article-title: Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification publication-title: Eur. Radiol. doi: 10.1007/s00330-017-4819-7 – ident: CR21 – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR17 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 24 start-page: 2319 year: 2014 end-page: 2325 ident: CR50 article-title: Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation publication-title: Eur. Radiol. doi: 10.1007/s00330-014-3261-3 – volume: 30 start-page: 2703 year: 2020 end-page: 2711 ident: CR2 article-title: Airway tapering. An objective image biomarker for bronchiectasis publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06606-w – ident: CR36 – volume: 18 start-page: 203 year: 2021 end-page: 211 ident: CR46 article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 32 start-page: 8026 year: 2019 end-page: 8037 ident: CR39 article-title: PyTorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inform. Process. Syst. – volume: 39 start-page: 2603 year: 2012 end-page: 2616 ident: CR11 article-title: CT based computerized identification and analysis of human airways: A review publication-title: Med. Phys. doi: 10.1118/1.4703901 – ident: CR26 – volume: 31 start-page: 2093 year: 2012 end-page: 2107 ident: CR13 article-title: Extraction of airways from CT (EXACT'09) publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2209674 – volume: 56 start-page: 462 year: 1994 end-page: 478 ident: CR48 article-title: Building skeleton models via 3-D medial surface axis thinning algorithms publication-title: CVGIP: Graph. Models Image Process. – ident: CR18 – ident: CR47 – volume: 4 start-page: 608 year: 2009 end-page: 614 ident: CR41 article-title: The Danish randomized lung cancer CT screening trial overall design and results of the prevalence round publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181a0d98f – volume: 15 start-page: 314 year: 1996 end-page: 326 ident: CR5 article-title: Rule-based detection of intrathoracic airway trees publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.500140 – ident: CR30 – ident: CR10 – volume: 51 start-page: 13 year: 2019 end-page: 20 ident: CR20 article-title: Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.10.006 – volume: 64 start-page: 101751 year: 2020 ident: CR37 article-title: Graph refinement based airway extraction using mean-field networks and graph neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101751 – ident: CR33 – volume: 58 start-page: 187 year: 2013 end-page: 220 ident: CR12 article-title: Automated segmentation of pulmonary structures in thoracic computed tomography scans: A review publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/R187 – volume: 14 start-page: 527 year: 2010 end-page: 538 ident: CR9 article-title: Vessel-guided airway tree segmentation: A voxel classification approach publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.03.004 – ident: CR27 – ident: CR23 – volume: 154 start-page: 165 year: 1996 end-page: 181 ident: CR40 article-title: Two linear time union-find strategies for image processing publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)00262-2 – volume: 29 start-page: 982 year: 2010 end-page: 997 ident: CR8 article-title: Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035813 – volume: 43 start-page: 5736 year: 2016 end-page: 5744 ident: CR43 article-title: Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis publication-title: Med. Phys. doi: 10.1118/1.4963214 – ident: CR44 – volume: 36 start-page: 52 year: 2017 end-page: 60 ident: CR19 article-title: Improving airway segmentation in computed tomography using leak detection with convolutional networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.001 – ident: CR3 – ident: CR38 – ident: CR52 – volume: 40 start-page: 405 year: 2021 end-page: 418 ident: CR32 article-title: A CT-based automated algorithm for airway segmentation using freeze-and-grow propagation and deep learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3029013 – ident: CR34 – volume: 16 start-page: 219 year: 2021 end-page: 230 ident: CR31 article-title: Automatic airway tree segmentation based on multi-scale context information publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02293-x – ident: CR28 – volume: 14 start-page: 1 year: 2019 end-page: 17 ident: CR45 article-title: Segmentation of distal airways using structural analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0226006 – volume: 63 start-page: 155024 year: 2018 ident: CR14 article-title: Small airway segmentation in thoracic computed tomography scans: A machine learning approach publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aad2a1 – volume: 12 start-page: 245 year: 2017 end-page: 261 ident: CR16 article-title: Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1492-2 – ident: CR24 – volume: 23 start-page: 1353 year: 2004 end-page: 1364 ident: CR6 article-title: Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.826945 – volume: 31 start-page: 2093 year: 2012 ident: 95364_CR13 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2209674 – ident: 95364_CR38 doi: 10.1007/978-3-319-67558-9_28 – volume: 18 start-page: 203 year: 2021 ident: 95364_CR46 publication-title: Nat. Methods doi: 10.1038/s41592-020-01008-z – volume: 18 start-page: 531 year: 2014 ident: 95364_CR42 publication-title: Med. Image Anal. doi: 10.1016/j.media.2014.02.004 – ident: 95364_CR35 doi: 10.1007/978-3-319-46723-8_49 – volume: 56 start-page: 462 year: 1994 ident: 95364_CR48 publication-title: CVGIP: Graph. Models Image Process. – ident: 95364_CR34 doi: 10.1007/978-3-319-24574-4_28 – volume: 43 start-page: 5736 year: 2016 ident: 95364_CR43 publication-title: Med. Phys. doi: 10.1118/1.4963214 – volume: 29 start-page: 982 year: 2010 ident: 95364_CR8 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2009.2035813 – volume: 51 start-page: 13 year: 2019 ident: 95364_CR20 publication-title: Med. Image Anal. doi: 10.1016/j.media.2018.10.006 – ident: 95364_CR18 doi: 10.1109/CVPR.2015.7298965 – volume: 39 start-page: 2603 year: 2012 ident: 95364_CR11 publication-title: Med. Phys. doi: 10.1118/1.4703901 – ident: 95364_CR3 – volume: 30 start-page: 2703 year: 2020 ident: 95364_CR2 publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06606-w – ident: 95364_CR26 doi: 10.1007/978-3-030-32226-7_26 – volume: 23 start-page: 1353 year: 2004 ident: 95364_CR6 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.826945 – volume: 14 start-page: 1 year: 2019 ident: 95364_CR45 publication-title: PLoS ONE doi: 10.1371/journal.pone.0226006 – ident: 95364_CR47 – volume: 24 start-page: 2319 year: 2014 ident: 95364_CR50 publication-title: Eur. Radiol. doi: 10.1007/s00330-014-3261-3 – volume: 15 start-page: 314 year: 1996 ident: 95364_CR5 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.500140 – ident: 95364_CR33 doi: 10.1007/978-3-030-32692-0_67 – volume: 4 start-page: 608 year: 2009 ident: 95364_CR41 publication-title: J. Thorac. Oncol. doi: 10.1097/JTO.0b013e3181a0d98f – ident: 95364_CR29 doi: 10.1109/TMI.2021.3062280 – ident: 95364_CR36 doi: 10.1109/3DV.2016.79 – volume: 40 start-page: 405 year: 2021 ident: 95364_CR32 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3029013 – volume: 14 start-page: 527 year: 2010 ident: 95364_CR9 publication-title: Med. Image Anal. doi: 10.1016/j.media.2010.03.004 – ident: 95364_CR44 – volume: 36 start-page: 52 year: 2017 ident: 95364_CR19 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.11.001 – ident: 95364_CR25 doi: 10.1109/ISBI45749.2020.9098537 – ident: 95364_CR51 doi: 10.1109/ISBI.2012.6235851 – volume: 33 start-page: 537 year: 2009 ident: 95364_CR7 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2009.04.012 – ident: 95364_CR27 doi: 10.1007/978-3-030-32226-7_39 – volume: 63 start-page: 155024 year: 2018 ident: 95364_CR14 publication-title: Phys. Med. Biol. doi: 10.1088/1361-6560/aad2a1 – volume: 8670 start-page: 141 year: 2013 ident: 95364_CR15 publication-title: Int. Soc. Opt. Photonics (SPIE) – volume: 16 start-page: 219 year: 2021 ident: 95364_CR31 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-020-02293-x – ident: 95364_CR24 doi: 10.1007/978-3-030-32226-7_24 – volume: 154 start-page: 165 year: 1996 ident: 95364_CR40 publication-title: Theor. Comput. Sci. doi: 10.1016/0304-3975(94)00262-2 – volume: 42 start-page: 60 year: 2017 ident: 95364_CR17 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – ident: 95364_CR22 doi: 10.1007/978-3-319-66185-8_23 – ident: 95364_CR21 doi: 10.1007/978-3-319-67389-9_17 – ident: 95364_CR30 – ident: 95364_CR52 doi: 10.1007/978-3-030-32248-9_48 – volume: 64 start-page: 101751 year: 2020 ident: 95364_CR37 publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101751 – volume: 58 start-page: 187 year: 2013 ident: 95364_CR12 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/58/17/R187 – ident: 95364_CR10 doi: 10.1007/978-3-642-04271-3_7 – ident: 95364_CR4 doi: 10.1109/ICPR.1996.547003 – ident: 95364_CR49 – volume: 32 start-page: 8026 year: 2019 ident: 95364_CR39 publication-title: Adv. Neural Inform. Process. Syst. – volume: 27 start-page: 4680 year: 2017 ident: 95364_CR1 publication-title: Eur. Radiol. doi: 10.1007/s00330-017-4819-7 – ident: 95364_CR28 doi: 10.1007/978-3-030-59710-8_22 – ident: 95364_CR23 doi: 10.1007/978-3-030-00946-5_24 – volume: 12 start-page: 245 year: 2017 ident: 95364_CR16 publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-016-1492-2 |
SSID | ssj0000529419 |
Score | 2.5108333 |
Snippet | This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We... Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16001 |
SubjectTerms | 639/705 692/700/1421 Cancer screening Chronic obstructive pulmonary disease Computed tomography Cystic fibrosis Datasets Humanities and Social Sciences Lung cancer Lung diseases Medical screening multidisciplinary Neural networks Obstructive lung disease Pediatrics Respiratory tract Science Science (multidisciplinary) Segmentation Thorax Tomography |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR12frKhG8abOdRyed4_pYFkFPLuwt5DXrgvbIdA-y_36rksy44_PiqaFToUNVpasqqfqKkBdOeDRUrGWBqVY6CFC8EanlQQU8ZpDM4XnHh4_q5FS-P-vPrrX6wpywAg9cGHfYSZ-0G5JSEUwlE0NQKvigHWM6hj7h37cz3bVgqqB6cyOZqVUynRgOJ7BUWE2GGQm9ULJlO5YoA_b_zsv8NVnypxvTbIiO75Db1YOkR2Xl--RGGu-Sm6Wn5OU9Mh2t52XGYaXuYvXdXdIpnX-tFUYjxXISGkorh0iBskJWU0yAP6erpV9PM3VjpCmDS8BEKtq3FLPTq5bCxxEFMz9yDvl0n5wev_v05qStnRXaAPyfWx9BMixFpzWW4XWKx54PzkMwpz1EQOADsgUEKy5m_Bcv06JPSUS_4N71XRAPyN64HNMjQrnRIUbuI-8cVuU6GZVJXAkdhz6ZriFsw2UbKuw4dr_4YvP1txhskYwFydgsGcsa8nI751sB3fgr9WsU3pYSAbPzC1AjW9XI_kuNGnKwEb2tu3iyEG4NYL0hcG_I8-0w7D-8VHFjWq4zDULsGQU0D4umbFciJLgHRpqG6B0d2lnq7sh48TljfA9Cql7DzFcbbfuxrD-z4vH_YMUTcovjNsG8GHVA9ubVOj0Fz2v2z_ImuwLIKSs9 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIkXxE1KQUbiDaLGR-zkCZWjqpDgiUr7ZvnapVJJyiarqv-eGcebajn6tNJmrPVmZuw5vyHkjRUOLypWMs9UKS04KK4VseReeQwzSGYx3vH1mzo5lV8W9SIH3IZcVrk9E9NBHXqPMfJDMH0bOEnBiXp_8avEqVGYXc0jNG6TOwm6DORZL_QcY8EslmRt7pWpRHM4wH2FPWVYl1ALJUu2cx8l2P5_2Zp_l0z-kTdN19HxA3I_25H0aGL8Q3Irdo_I3Wmy5NVjMhxtxj6hsVJ7tr60V3SIq5-5z6ij2FRC_TTQIVCgzMDVFMvgV3Tdu80wUtsFGhPEBCykovxEsUY9yyr8OGJhpo9UST48IafHn79_PCnzfIXSAxfG0gXgD4vBao3NeJXioeaNdeDSaQd-EFiCbAkuiw0JBcbJuKxjFMEtubN15cVTstf1XXxOKG-1D4G7wCuLvblWBtVGroQOTR3bqiBs-5aNz-DjOAPj3KQkuGjMxBkDnDGJM4YV5O285mKC3riR-gMyb6ZE2Oz0Rb9emayFppIuattEpQLYXUw0XinvvLaM6eDrWJCDLetN1uXBXEteQV7Pj0ELMbViu9hvEg0C7bUKaJ5NkjLvREgwElrZFkTvyNDOVnefdGc_EtJ3I6SqNax8t5W26239_1Xs3_wvXpB7HBUA617UAdkb15v4Eiyr0b1K6vMbsVMiTw priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG6WFcGL-Da6SgveNJp-pJMcRNbHsgjryYG9Nf2acWFNNMmg8--t6nRGRkfB00BSzTRdVVR96aqvCHlqhMVAxXLmmMqlAYBiGxFy7pTDzwySGfzecfZRnS7kh_Py_IDM447SAQ57oR3Ok1r0ly9-fNu8Bod_NbWM1y8HCELYKIbFBqVQMgc0dAUik0IwdpbS_YnrmzeSNal3Zv_SnfgUafz35Z5_llD-do8aw9PJDXI95ZX0eDKEm-QgtLfI1WnS5OY2GY7XYxfZWam56L-bDR3C6kvqO2opNplQNw148BQkE5E1xbL4Fe07ux5GalpPQ6ScgIVU5O8o1qwn24U_R27M-BMry4c7ZHHy_tPb0zzNW8gdaGXMrQd9seBNVWFzXqG4L3ltLEC8ygIugsyQLQHCGB9ZYawMyzIE4e2SW1MWTtwlh23XhvuE8qZy3nPreWGwV9dIr5rAlah8XYamyAibT1m7REaOMzEudbwUF7WeNKNBMzpqRrOMPNuu-TpRcfxT-g0qbyuJNNrxQdevdPJKXUgbKlMHpTzkYUzUTilnXWUYq7wrQ0aOZtXr2TQ1gLAaYjrA-Yw82b4Gr8SrFtOGbh1lkHivUSBzb7KU7U6EhKShkU1Gqh0b2tnq7pv24nNk_q6FVGUFK5_P1vZrW38_igf_J_6QXOPoEFgXo47I4divwyPIvEb7OLrTT3HdKbY priority: 102 providerName: Scholars Portal |
Title | Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks |
URI | https://link.springer.com/article/10.1038/s41598-021-95364-1 https://www.ncbi.nlm.nih.gov/pubmed/34362949 https://www.proquest.com/docview/2558847274 https://www.proquest.com/docview/2559434964 https://pubmed.ncbi.nlm.nih.gov/PMC8346579 https://doaj.org/article/04be7a8e66d846138c66cbc7a117dc5e |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfCl-O1qPSL4poubj02yj9ezpRy0iFq4t5CvuxZ0V273KP3vnWT3Vk6r4MsGNhN2yEx2ZpKZXxB6a5iNhorkxBGRcwMBiq1YyKkTLm4zcGLifsf5hTi75PNFudhDdFsLk5L2E6Rl-k1vs8M-tGBoYjFYTCgomeA5RDwHCuK6qNUzMRv3VeLJFSfVUB9TMHXH0B0blKD67_Iv_0yT_O2sNJmg04focPAd8bTn9hHaC_VjdL-_TfL2CWqnm65JCKzYXK9vzC1uw-r7UFtU41hIgl1_iYPHQDmAVeOY-r7C68Zu2g6b2uOQYCVgIGb5Rxzz0gf9hI9H_MvUpOzx9im6PD35OjvLhzsVcgcz3-XWg0xI8EbKWIBXCOpLqoyFME5aiH3A-yNLCFOMT8gvlodlGQLzdkmtKQvHnqH9uqnDC4RpJZ331HpamFiPa7gXVaCCSa_KUBUZIttZ1m4AHI_3XnzT6eCbKd1LRoNkdJKMJhl6N4750cNt_JP6OApvpIxQ2elFs17pQXV0wW2QRgUhPPhahCknhLNOGkKkd2XI0NFW9HpYv62GQEuB3YaQPUNvxm5YefE4xdSh2SSaCK5XCaB53mvKyAnj4BhUvMqQ3NGhHVZ3e-rrq4TurRgXpYSR77fa9outv0_Fy_8jf4Ue0LggYu6LOEL73XoTXoN31dkJuicXcoIOptP5lzm0xycXnz5P0iKbpB0LeJ5z9ROlTSXt |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0SNY8dJDgi1tNWWtiuEWqk349culSApm11V-6f4jcw4yVbLo7eeIiXjxPHM2GPPzDeEvNbc4ELFYmaZjIWGDYopuY9TKy0eMwim8bzjaCSHJ-LTaXa6Rn71uTAYVtnPiWGidrXFM_JNMH0LmElhE_Xh_GeMVaPQu9qX0GjF4sAvLmDL1rzf3wH-vknTvd3jj8O4qyoQW_j2LDYOesW803mOKWiJTF2WFtrARiY3YP2D_cPGYKhrF7BPjPDjzHvuzDg1Okssh_feIOsCM1oHZH17d_T5y_JUB_1mgpVddk7Ci80GVkjMYsNIiIxLEbOVFTAUCviXdft3kOYfntqwAO7dJXc6y5VutaJ2j6z56j652dayXDwgzdZ8Vgf8V6rPphd6QRs_-dFlNlUU01iobUtIOAqUHVQ2xcD7CZ3WZt7MqK4c9QHUAhpSHu9QjIrvtAM-juib4RJi15uH5ORaxv4RGVR15Z8Qmpa5dS41Lk00ZgNr4WTpU8lzV2S-TCLC-lFWtoM7x6ob31Vwu_NCtZxRwBkVOKNYRN4u25y3YB9XUm8j85aUCNQdbtTTier0XiXC-FwXXkoHlh7jhZXSGptrxnJnMx-RjZ71qps9GnUp6xF5tXwMeo_OHF35eh5oENqvlEDzuJWUZU-4ALOkFGVE8hUZWunq6pPq7FvAFi-4kFkOLd_10nbZrf8PxdOr_-IluTU8PjpUh_ujg2fkdorKgFE3coMMZtO5fw523cy86JSJkq_Xrb-_AYyjYVQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWKQFwQzxIosEhwAiveXXvXPiBUCFFLoeJApdyWfSVUArvEiar8Gl_HzNpOFR699RQpnk3GO4-d2XkR8twIiwcVS5hjMskMOCi2FCHhTjq8ZsiYwfuOT0dy_zj7MMknW-RXXwuDaZW9ToyK2tcO78iHYPoWoEnBiRpOu7SIz6Pxm9OfCU6QwkhrP06jZZHDsDoD9615fTACWr_gfPz-y7v9pJswkDjAY5FYDxiy4I1SWI6WSu5zXhgLTo2y4AmALcSmYLQbH_ug2CxM8xCEt1NuTZ46Ab97hVxVAqwqkCU1Uev7HYygZazs6nRSUQwbOCuxng1zInIhs4RtnIVxZMC_7Ny_0zX_iNnGo3B8i9zsbFi61zLdbbIVqjvkWjvVcnWXNHvLRR07wVJzMj8zK9qE2Y-uxqmiWNBCXTtMwlOA7JpmU0zBn9F5bZfNgprK0xDbW8BCKpIRxfz4Tk7gz7EPZ_yIWezNPXJ8KTt_n2xXdRUeEMpL5bzn1vPUYF2wybwsA5dC-SIPZTogrN9l7brG5zh_47uOAXhR6JYyGiijI2U0G5CX6zWnbduPC6HfIvHWkNiyO35Rz2e60wA6zWxQpghSerD5mCiclM46ZRhT3uVhQHZ70utOjzT6nOsH5Nn6MWgADOuYKtTLCINN_koJMDstp6wxERkYKGVWDoja4KENVDefVCffYpfxQmQyV7DyVc9t52j9fyseXvwWT8l1kFr98eDo8BG5wVEWMP1G7pLtxXwZHoOBt7BPoiRR8vWyRfc31DpkGw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+airway+segmentation+from+computed+tomography+using+robust+and+efficient+3-D+convolutional+neural+networks&rft.jtitle=Scientific+reports&rft.au=Garcia-Uceda%2C+Antonio&rft.au=Selvan%2C+Raghavendra&rft.au=Saghir%2C+Zaigham&rft.au=Tiddens%2C+Harm+A.+W.+M.&rft.date=2021-08-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-95364-1&rft.externalDocID=10_1038_s41598_021_95364_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |