Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks

This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 16001 - 15
Main Authors Garcia-Uceda, Antonio, Selvan, Raghavendra, Saghir, Zaigham, Tiddens, Harm A. W. M., de Bruijne, Marleen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-95364-1

Cover

Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.
AbstractList This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.
Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT’09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT’09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT’09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.
This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We use a simple and low-memory 3D U-Net as backbone, which allows the method to process large 3D image patches, often comprising full lungs, in a single pass through the network. This makes the method simple, robust and efficient. We validated the proposed method on three datasets with very different characteristics and various airway abnormalities: (1) a dataset of pediatric patients including subjects with cystic fibrosis, (2) a subset of the Danish Lung Cancer Screening Trial, including subjects with chronic obstructive pulmonary disease, and (3) the EXACT'09 public dataset. We compared our method with other state-of-the-art airway segmentation methods, including relevant learning-based methods in the literature evaluated on the EXACT'09 data. We show that our method can extract highly complete airway trees with few false positive errors, on scans from both healthy and diseased subjects, and also that the method generalizes well across different datasets. On the EXACT'09 test set, our method achieved the second highest sensitivity score among all methods that reported good specificity.
ArticleNumber 16001
Author Garcia-Uceda, Antonio
Saghir, Zaigham
Tiddens, Harm A. W. M.
Selvan, Raghavendra
de Bruijne, Marleen
Author_xml – sequence: 1
  givenname: Antonio
  surname: Garcia-Uceda
  fullname: Garcia-Uceda, Antonio
  email: a.garciauceda@erasmusmc.nl
  organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital
– sequence: 2
  givenname: Raghavendra
  surname: Selvan
  fullname: Selvan, Raghavendra
  organization: Department of Computer Science, University of Copenhagen, Department of Neuroscience, University of Copenhagen
– sequence: 3
  givenname: Zaigham
  surname: Saghir
  fullname: Saghir, Zaigham
  organization: Department of Medicine, Section of Pulmonary Medicine, Herlev-Gentofte Hospital, Copenhagen University Hospital
– sequence: 4
  givenname: Harm A. W. M.
  surname: Tiddens
  fullname: Tiddens, Harm A. W. M.
  organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Department of Pediatric Pulmonology and Allergology, Erasmus MC-Sophia Children Hospital
– sequence: 5
  givenname: Marleen
  surname: de Bruijne
  fullname: de Bruijne, Marleen
  email: marleen.debruijne@erasmusmc.nl
  organization: Department of Radiology and Nuclear Medicine, Erasmus MC, Department of Computer Science, University of Copenhagen
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34362949$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARLaU_wAJZYsMmEL-TDVLV8qhUiQ2sLT9OUl8S-2Inrfr3-N6U0nZRb451PDM-Y8_r6iDEAFX1FjcfcUPbT5lh3rV1Q3DdcSpYjV9UR6RhvCaUkIMH-8PqJOdNUxYnHcPdq-qQMirKvjuq8ukyx0nP3iLt042-RRmGCcJcWjGgPsUJ2ThtlxkcKsg4JL29ukVL9mFAKZolz0gHh6DvvfWFiGh9XijhOo7LTkOPKMCS9mW-iel3flO97PWY4eSuHle_vn75efa9vvzx7eLs9LK2nDVzbZzFAoPTUjoj-kYQx0mrDeZCmq4TnFLcEyy1K84oNwx6DkCd6YnRvLH0uLpYdV3UG7VNftLpVkXt1b4R06B0Ks5HUA0zIHULQriWCUxbK4Q1VmqMpbMcitbnVWu7mAmcLUaLpUeij0-Cv1JDvFYtZYLLrgh8uBNI8c8CeVaTzxbGUQeIS1aE845R1glWoO-fQDdxSeUh96i2ZZLIHerdw4nuR_n3twVAVoBNMecE_T0EN2qXIbVmSJUMqX2GFC6k9gnJ-jULxZUfn6fSlZrLPWGA9H_sZ1h_AdfJ3ck
CitedBy_id crossref_primary_10_1109_TFUZZ_2024_3433506
crossref_primary_10_1016_j_media_2023_102957
crossref_primary_10_1109_TNNLS_2023_3269223
crossref_primary_10_1088_1361_6560_ad4300
crossref_primary_10_1016_j_ejrad_2024_111905
crossref_primary_10_1016_j_ejrad_2022_110460
crossref_primary_10_1186_s40001_024_02197_5
crossref_primary_10_1093_jmicro_dfad049
crossref_primary_10_1038_s44172_024_00296_z
crossref_primary_10_1186_s41747_021_00247_9
crossref_primary_10_1007_s11548_024_03215_x
crossref_primary_10_1148_radiol_232677
crossref_primary_10_1213_ANE_0000000000006969
crossref_primary_10_1109_TMI_2024_3448468
crossref_primary_10_1007_s11517_024_03169_x
crossref_primary_10_3390_diagnostics14171979
crossref_primary_10_1007_s00330_023_09615_y
crossref_primary_10_1371_journal_pone_0311416
crossref_primary_10_3390_bioengineering10080915
crossref_primary_10_1016_j_acra_2023_07_009
crossref_primary_10_1148_ryct_210311
crossref_primary_10_3390_diagnostics14131456
crossref_primary_10_1016_j_media_2024_103355
crossref_primary_10_1186_s40537_024_00974_x
crossref_primary_10_1016_j_compbiomed_2022_106241
crossref_primary_10_1016_j_jbiomech_2023_111713
crossref_primary_10_1007_s11548_022_02582_7
Cites_doi 10.1016/j.compmedimag.2009.04.012
10.1016/j.media.2014.02.004
10.1007/s00330-017-4819-7
10.1016/j.media.2017.07.005
10.1007/s00330-014-3261-3
10.1007/s00330-019-06606-w
10.1038/s41592-020-01008-z
10.1118/1.4703901
10.1109/TMI.2012.2209674
10.1097/JTO.0b013e3181a0d98f
10.1109/42.500140
10.1016/j.media.2018.10.006
10.1016/j.media.2020.101751
10.1088/0031-9155/58/17/R187
10.1016/j.media.2010.03.004
10.1016/0304-3975(94)00262-2
10.1109/TMI.2009.2035813
10.1118/1.4963214
10.1016/j.media.2016.11.001
10.1109/TMI.2020.3029013
10.1007/s11548-020-02293-x
10.1371/journal.pone.0226006
10.1088/1361-6560/aad2a1
10.1007/s11548-016-1492-2
10.1109/TMI.2004.826945
10.1007/978-3-319-67558-9_28
10.1007/978-3-319-46723-8_49
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2015.7298965
10.1007/978-3-030-32226-7_26
10.1007/978-3-030-32692-0_67
10.1109/TMI.2021.3062280
10.1109/3DV.2016.79
10.1109/ISBI45749.2020.9098537
10.1109/ISBI.2012.6235851
10.1007/978-3-030-32226-7_39
10.1007/978-3-030-32226-7_24
10.1007/978-3-319-66185-8_23
10.1007/978-3-319-67389-9_17
10.1007/978-3-030-32248-9_48
10.1007/978-3-642-04271-3_7
10.1109/ICPR.1996.547003
10.1007/978-3-030-59710-8_22
10.1007/978-3-030-00946-5_24
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-95364-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
Proquest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed

Publicly Available Content Database

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_04be7a8e66d846138c66cbc7a117dc5e
PMC8346579
34362949
10_1038_s41598_021_95364_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Innovative Medicines Initiative Joint Undertaking
  grantid: 115721; 115721
– fundername: ;
  grantid: 115721; 115721
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-bdc161eda77db6f062d528ab1567b9965331f217ad00535b4ef5ee3dbf2ba50c3
IEDL.DBID C6C
ISSN 2045-2322
IngestDate Wed Aug 27 01:31:58 EDT 2025
Thu Aug 21 17:36:06 EDT 2025
Fri Sep 05 07:49:11 EDT 2025
Wed Aug 13 06:23:00 EDT 2025
Mon Jul 21 05:25:07 EDT 2025
Tue Jul 01 03:49:04 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Fri Feb 21 02:39:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-bdc161eda77db6f062d528ab1567b9965331f217ad00535b4ef5ee3dbf2ba50c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.nature.com/articles/s41598-021-95364-1
PMID 34362949
PQID 2558847274
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_04be7a8e66d846138c66cbc7a117dc5e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8346579
proquest_miscellaneous_2559434964
proquest_journals_2558847274
pubmed_primary_34362949
crossref_primary_10_1038_s41598_021_95364_1
crossref_citationtrail_10_1038_s41598_021_95364_1
springer_journals_10_1038_s41598_021_95364_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-06
PublicationDateYYYYMMDD 2021-08-06
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Isensee, Jaeger, Kohl, Petersen, Maier-Hein (CR46) 2021; 18
Meng (CR16) 2017; 12
Selvan (CR37) 2020; 64
Fabijańska (CR7) 2009; 33
CR38
CR36
Zhou (CR31) 2021; 16
CR35
CR34
CR33
CR30
Gil, Sanchez, Borras, Diez-Ferrer, Rosell (CR45) 2019; 14
Paszke (CR39) 2019; 32
CR4
CR3
CR49
CR47
Fetita, Prêteux, Beigelman-Aubry, Grenier (CR6) 2004; 23
Litjens (CR17) 2017; 42
CR44
Fiorio, Gustedt (CR40) 1996; 154
Lee, Kashyap, Chu (CR48) 1994; 56
Graham, Gibbs, Cornish, Higgins (CR8) 2010; 29
Pedersen (CR41) 2009; 4
CR18
Charbonnier (CR19) 2017; 36
van Rikxoort, van Ginneken (CR12) 2013; 58
Bian (CR14) 2018; 63
CR10
Yun (CR20) 2019; 51
CR52
Nadeem (CR32) 2021; 40
CR51
Kuo, Perez-Rovira, Tiddens, de Bruijne (CR2) 2020; 30
Petersen (CR50) 2014; 24
Pu (CR11) 2012; 39
CR29
Lo, Sporring, Ashraf, Pedersen, de Bruijne (CR9) 2010; 14
Lo (CR13) 2012; 31
CR28
CR27
CR26
CR25
CR24
Perez-Rovira, Kuo, Petersen, Tiddens, de Bruijne (CR43) 2016; 43
CR23
Sonka, Park, Hoffman (CR5) 1996; 15
CR22
CR21
Petersen (CR42) 2014; 18
Kuo (CR1) 2017; 27
Inoue, Kitamura, Li, Ito (CR15) 2013; 8670
A Perez-Rovira (95364_CR43) 2016; 43
95364_CR44
95364_CR47
95364_CR49
95364_CR4
95364_CR3
Z Bian (95364_CR14) 2018; 63
W Kuo (95364_CR2) 2020; 30
J Yun (95364_CR20) 2019; 51
95364_CR10
T Inoue (95364_CR15) 2013; 8670
T Lee (95364_CR48) 1994; 56
J Petersen (95364_CR50) 2014; 24
95364_CR51
95364_CR52
F Isensee (95364_CR46) 2021; 18
J Pu (95364_CR11) 2012; 39
P Lo (95364_CR13) 2012; 31
J Petersen (95364_CR42) 2014; 18
K Zhou (95364_CR31) 2021; 16
95364_CR18
J Charbonnier (95364_CR19) 2017; 36
R Selvan (95364_CR37) 2020; 64
95364_CR21
95364_CR22
95364_CR23
95364_CR24
95364_CR25
95364_CR26
95364_CR27
95364_CR28
J Pedersen (95364_CR41) 2009; 4
D Gil (95364_CR45) 2019; 14
C Fiorio (95364_CR40) 1996; 154
95364_CR29
S Nadeem (95364_CR32) 2021; 40
M Graham (95364_CR8) 2010; 29
G Litjens (95364_CR17) 2017; 42
A Fabijańska (95364_CR7) 2009; 33
Q Meng (95364_CR16) 2017; 12
W Kuo (95364_CR1) 2017; 27
E van Rikxoort (95364_CR12) 2013; 58
95364_CR33
95364_CR34
95364_CR35
95364_CR36
M Sonka (95364_CR5) 1996; 15
95364_CR38
P Lo (95364_CR9) 2010; 14
A Paszke (95364_CR39) 2019; 32
C Fetita (95364_CR6) 2004; 23
95364_CR30
References_xml – ident: CR22
– volume: 33
  start-page: 537
  year: 2009
  end-page: 546
  ident: CR7
  article-title: Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2009.04.012
– ident: CR49
– ident: CR4
– ident: CR51
– volume: 18
  start-page: 531
  year: 2014
  end-page: 541
  ident: CR42
  article-title: Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.02.004
– volume: 8670
  start-page: 141
  year: 2013
  end-page: 149
  ident: CR15
  article-title: Robust airway extraction based on machine learning and minimum spanning tree
  publication-title: Int. Soc. Opt. Photonics (SPIE)
– ident: CR35
– ident: CR29
– ident: CR25
– volume: 27
  start-page: 4680
  year: 2017
  end-page: 4689
  ident: CR1
  article-title: Diagnosis of bronchiectasis and airway wall thickening in children with cystic fibrosis: Objective airway-artery quantification
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-4819-7
– ident: CR21
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR17
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 24
  start-page: 2319
  year: 2014
  end-page: 2325
  ident: CR50
  article-title: Effect of inspiration on airway dimensions measured in maximal inspiration CT images of subjects without airflow limitation
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-014-3261-3
– volume: 30
  start-page: 2703
  year: 2020
  end-page: 2711
  ident: CR2
  article-title: Airway tapering. An objective image biomarker for bronchiectasis
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06606-w
– ident: CR36
– volume: 18
  start-page: 203
  year: 2021
  end-page: 211
  ident: CR46
  article-title: nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 32
  start-page: 8026
  year: 2019
  end-page: 8037
  ident: CR39
  article-title: PyTorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 39
  start-page: 2603
  year: 2012
  end-page: 2616
  ident: CR11
  article-title: CT based computerized identification and analysis of human airways: A review
  publication-title: Med. Phys.
  doi: 10.1118/1.4703901
– ident: CR26
– volume: 31
  start-page: 2093
  year: 2012
  end-page: 2107
  ident: CR13
  article-title: Extraction of airways from CT (EXACT'09)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2209674
– volume: 56
  start-page: 462
  year: 1994
  end-page: 478
  ident: CR48
  article-title: Building skeleton models via 3-D medial surface axis thinning algorithms
  publication-title: CVGIP: Graph. Models Image Process.
– ident: CR18
– ident: CR47
– volume: 4
  start-page: 608
  year: 2009
  end-page: 614
  ident: CR41
  article-title: The Danish randomized lung cancer CT screening trial overall design and results of the prevalence round
  publication-title: J. Thorac. Oncol.
  doi: 10.1097/JTO.0b013e3181a0d98f
– volume: 15
  start-page: 314
  year: 1996
  end-page: 326
  ident: CR5
  article-title: Rule-based detection of intrathoracic airway trees
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.500140
– ident: CR30
– ident: CR10
– volume: 51
  start-page: 13
  year: 2019
  end-page: 20
  ident: CR20
  article-title: Improvement of fully automated airway segmentation on volumetric computed tomographic images using a 2.5 dimensional convolutional neural net
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.10.006
– volume: 64
  start-page: 101751
  year: 2020
  ident: CR37
  article-title: Graph refinement based airway extraction using mean-field networks and graph neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101751
– ident: CR33
– volume: 58
  start-page: 187
  year: 2013
  end-page: 220
  ident: CR12
  article-title: Automated segmentation of pulmonary structures in thoracic computed tomography scans: A review
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/R187
– volume: 14
  start-page: 527
  year: 2010
  end-page: 538
  ident: CR9
  article-title: Vessel-guided airway tree segmentation: A voxel classification approach
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.03.004
– ident: CR27
– ident: CR23
– volume: 154
  start-page: 165
  year: 1996
  end-page: 181
  ident: CR40
  article-title: Two linear time union-find strategies for image processing
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)00262-2
– volume: 29
  start-page: 982
  year: 2010
  end-page: 997
  ident: CR8
  article-title: Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035813
– volume: 43
  start-page: 5736
  year: 2016
  end-page: 5744
  ident: CR43
  article-title: Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis
  publication-title: Med. Phys.
  doi: 10.1118/1.4963214
– ident: CR44
– volume: 36
  start-page: 52
  year: 2017
  end-page: 60
  ident: CR19
  article-title: Improving airway segmentation in computed tomography using leak detection with convolutional networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.001
– ident: CR3
– ident: CR38
– ident: CR52
– volume: 40
  start-page: 405
  year: 2021
  end-page: 418
  ident: CR32
  article-title: A CT-based automated algorithm for airway segmentation using freeze-and-grow propagation and deep learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3029013
– ident: CR34
– volume: 16
  start-page: 219
  year: 2021
  end-page: 230
  ident: CR31
  article-title: Automatic airway tree segmentation based on multi-scale context information
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02293-x
– ident: CR28
– volume: 14
  start-page: 1
  year: 2019
  end-page: 17
  ident: CR45
  article-title: Segmentation of distal airways using structural analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0226006
– volume: 63
  start-page: 155024
  year: 2018
  ident: CR14
  article-title: Small airway segmentation in thoracic computed tomography scans: A machine learning approach
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aad2a1
– volume: 12
  start-page: 245
  year: 2017
  end-page: 261
  ident: CR16
  article-title: Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-016-1492-2
– ident: CR24
– volume: 23
  start-page: 1353
  year: 2004
  end-page: 1364
  ident: CR6
  article-title: Pulmonary airways: 3-D reconstruction from multislice CT and clinical investigation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.826945
– volume: 31
  start-page: 2093
  year: 2012
  ident: 95364_CR13
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2209674
– ident: 95364_CR38
  doi: 10.1007/978-3-319-67558-9_28
– volume: 18
  start-page: 203
  year: 2021
  ident: 95364_CR46
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01008-z
– volume: 18
  start-page: 531
  year: 2014
  ident: 95364_CR42
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2014.02.004
– ident: 95364_CR35
  doi: 10.1007/978-3-319-46723-8_49
– volume: 56
  start-page: 462
  year: 1994
  ident: 95364_CR48
  publication-title: CVGIP: Graph. Models Image Process.
– ident: 95364_CR34
  doi: 10.1007/978-3-319-24574-4_28
– volume: 43
  start-page: 5736
  year: 2016
  ident: 95364_CR43
  publication-title: Med. Phys.
  doi: 10.1118/1.4963214
– volume: 29
  start-page: 982
  year: 2010
  ident: 95364_CR8
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2009.2035813
– volume: 51
  start-page: 13
  year: 2019
  ident: 95364_CR20
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2018.10.006
– ident: 95364_CR18
  doi: 10.1109/CVPR.2015.7298965
– volume: 39
  start-page: 2603
  year: 2012
  ident: 95364_CR11
  publication-title: Med. Phys.
  doi: 10.1118/1.4703901
– ident: 95364_CR3
– volume: 30
  start-page: 2703
  year: 2020
  ident: 95364_CR2
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06606-w
– ident: 95364_CR26
  doi: 10.1007/978-3-030-32226-7_26
– volume: 23
  start-page: 1353
  year: 2004
  ident: 95364_CR6
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.826945
– volume: 14
  start-page: 1
  year: 2019
  ident: 95364_CR45
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0226006
– ident: 95364_CR47
– volume: 24
  start-page: 2319
  year: 2014
  ident: 95364_CR50
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-014-3261-3
– volume: 15
  start-page: 314
  year: 1996
  ident: 95364_CR5
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.500140
– ident: 95364_CR33
  doi: 10.1007/978-3-030-32692-0_67
– volume: 4
  start-page: 608
  year: 2009
  ident: 95364_CR41
  publication-title: J. Thorac. Oncol.
  doi: 10.1097/JTO.0b013e3181a0d98f
– ident: 95364_CR29
  doi: 10.1109/TMI.2021.3062280
– ident: 95364_CR36
  doi: 10.1109/3DV.2016.79
– volume: 40
  start-page: 405
  year: 2021
  ident: 95364_CR32
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3029013
– volume: 14
  start-page: 527
  year: 2010
  ident: 95364_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2010.03.004
– ident: 95364_CR44
– volume: 36
  start-page: 52
  year: 2017
  ident: 95364_CR19
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.11.001
– ident: 95364_CR25
  doi: 10.1109/ISBI45749.2020.9098537
– ident: 95364_CR51
  doi: 10.1109/ISBI.2012.6235851
– volume: 33
  start-page: 537
  year: 2009
  ident: 95364_CR7
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2009.04.012
– ident: 95364_CR27
  doi: 10.1007/978-3-030-32226-7_39
– volume: 63
  start-page: 155024
  year: 2018
  ident: 95364_CR14
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/aad2a1
– volume: 8670
  start-page: 141
  year: 2013
  ident: 95364_CR15
  publication-title: Int. Soc. Opt. Photonics (SPIE)
– volume: 16
  start-page: 219
  year: 2021
  ident: 95364_CR31
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-020-02293-x
– ident: 95364_CR24
  doi: 10.1007/978-3-030-32226-7_24
– volume: 154
  start-page: 165
  year: 1996
  ident: 95364_CR40
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)00262-2
– volume: 42
  start-page: 60
  year: 2017
  ident: 95364_CR17
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: 95364_CR22
  doi: 10.1007/978-3-319-66185-8_23
– ident: 95364_CR21
  doi: 10.1007/978-3-319-67389-9_17
– ident: 95364_CR30
– ident: 95364_CR52
  doi: 10.1007/978-3-030-32248-9_48
– volume: 64
  start-page: 101751
  year: 2020
  ident: 95364_CR37
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101751
– volume: 58
  start-page: 187
  year: 2013
  ident: 95364_CR12
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/17/R187
– ident: 95364_CR10
  doi: 10.1007/978-3-642-04271-3_7
– ident: 95364_CR4
  doi: 10.1109/ICPR.1996.547003
– ident: 95364_CR49
– volume: 32
  start-page: 8026
  year: 2019
  ident: 95364_CR39
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 27
  start-page: 4680
  year: 2017
  ident: 95364_CR1
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-017-4819-7
– ident: 95364_CR28
  doi: 10.1007/978-3-030-59710-8_22
– ident: 95364_CR23
  doi: 10.1007/978-3-030-00946-5_24
– volume: 12
  start-page: 245
  year: 2017
  ident: 95364_CR16
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-016-1492-2
SSID ssj0000529419
Score 2.5108333
Snippet This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net architecture. We...
Abstract This paper presents a fully automatic and end-to-end optimised airway segmentation method for thoracic computed tomography, based on the U-Net...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16001
SubjectTerms 639/705
692/700/1421
Cancer screening
Chronic obstructive pulmonary disease
Computed tomography
Cystic fibrosis
Datasets
Humanities and Social Sciences
Lung cancer
Lung diseases
Medical screening
multidisciplinary
Neural networks
Obstructive lung disease
Pediatrics
Respiratory tract
Science
Science (multidisciplinary)
Segmentation
Thorax
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR12frKhG8abOdRyed4_pYFkFPLuwt5DXrgvbIdA-y_36rksy44_PiqaFToUNVpasqqfqKkBdOeDRUrGWBqVY6CFC8EanlQQU8ZpDM4XnHh4_q5FS-P-vPrrX6wpywAg9cGHfYSZ-0G5JSEUwlE0NQKvigHWM6hj7h37cz3bVgqqB6cyOZqVUynRgOJ7BUWE2GGQm9ULJlO5YoA_b_zsv8NVnypxvTbIiO75Db1YOkR2Xl--RGGu-Sm6Wn5OU9Mh2t52XGYaXuYvXdXdIpnX-tFUYjxXISGkorh0iBskJWU0yAP6erpV9PM3VjpCmDS8BEKtq3FLPTq5bCxxEFMz9yDvl0n5wev_v05qStnRXaAPyfWx9BMixFpzWW4XWKx54PzkMwpz1EQOADsgUEKy5m_Bcv06JPSUS_4N71XRAPyN64HNMjQrnRIUbuI-8cVuU6GZVJXAkdhz6ZriFsw2UbKuw4dr_4YvP1txhskYwFydgsGcsa8nI751sB3fgr9WsU3pYSAbPzC1AjW9XI_kuNGnKwEb2tu3iyEG4NYL0hcG_I8-0w7D-8VHFjWq4zDULsGQU0D4umbFciJLgHRpqG6B0d2lnq7sh48TljfA9Cql7DzFcbbfuxrD-z4vH_YMUTcovjNsG8GHVA9ubVOj0Fz2v2z_ImuwLIKSs9
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIkXxE1KQUbiDaLGR-zkCZWjqpDgiUr7ZvnapVJJyiarqv-eGcebajn6tNJmrPVmZuw5vyHkjRUOLypWMs9UKS04KK4VseReeQwzSGYx3vH1mzo5lV8W9SIH3IZcVrk9E9NBHXqPMfJDMH0bOEnBiXp_8avEqVGYXc0jNG6TOwm6DORZL_QcY8EslmRt7pWpRHM4wH2FPWVYl1ALJUu2cx8l2P5_2Zp_l0z-kTdN19HxA3I_25H0aGL8Q3Irdo_I3Wmy5NVjMhxtxj6hsVJ7tr60V3SIq5-5z6ij2FRC_TTQIVCgzMDVFMvgV3Tdu80wUtsFGhPEBCykovxEsUY9yyr8OGJhpo9UST48IafHn79_PCnzfIXSAxfG0gXgD4vBao3NeJXioeaNdeDSaQd-EFiCbAkuiw0JBcbJuKxjFMEtubN15cVTstf1XXxOKG-1D4G7wCuLvblWBtVGroQOTR3bqiBs-5aNz-DjOAPj3KQkuGjMxBkDnDGJM4YV5O285mKC3riR-gMyb6ZE2Oz0Rb9emayFppIuattEpQLYXUw0XinvvLaM6eDrWJCDLetN1uXBXEteQV7Pj0ELMbViu9hvEg0C7bUKaJ5NkjLvREgwElrZFkTvyNDOVnefdGc_EtJ3I6SqNax8t5W26239_1Xs3_wvXpB7HBUA617UAdkb15v4Eiyr0b1K6vMbsVMiTw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG6WFcGL-Da6SgveNJp-pJMcRNbHsgjryYG9Nf2acWFNNMmg8--t6nRGRkfB00BSzTRdVVR96aqvCHlqhMVAxXLmmMqlAYBiGxFy7pTDzwySGfzecfZRnS7kh_Py_IDM447SAQ57oR3Ok1r0ly9-fNu8Bod_NbWM1y8HCELYKIbFBqVQMgc0dAUik0IwdpbS_YnrmzeSNal3Zv_SnfgUafz35Z5_llD-do8aw9PJDXI95ZX0eDKEm-QgtLfI1WnS5OY2GY7XYxfZWam56L-bDR3C6kvqO2opNplQNw148BQkE5E1xbL4Fe07ux5GalpPQ6ScgIVU5O8o1qwn24U_R27M-BMry4c7ZHHy_tPb0zzNW8gdaGXMrQd9seBNVWFzXqG4L3ltLEC8ygIugsyQLQHCGB9ZYawMyzIE4e2SW1MWTtwlh23XhvuE8qZy3nPreWGwV9dIr5rAlah8XYamyAibT1m7REaOMzEudbwUF7WeNKNBMzpqRrOMPNuu-TpRcfxT-g0qbyuJNNrxQdevdPJKXUgbKlMHpTzkYUzUTilnXWUYq7wrQ0aOZtXr2TQ1gLAaYjrA-Yw82b4Gr8SrFtOGbh1lkHivUSBzb7KU7U6EhKShkU1Gqh0b2tnq7pv24nNk_q6FVGUFK5_P1vZrW38_igf_J_6QXOPoEFgXo47I4divwyPIvEb7OLrTT3HdKbY
  priority: 102
  providerName: Scholars Portal
Title Automatic airway segmentation from computed tomography using robust and efficient 3-D convolutional neural networks
URI https://link.springer.com/article/10.1038/s41598-021-95364-1
https://www.ncbi.nlm.nih.gov/pubmed/34362949
https://www.proquest.com/docview/2558847274
https://www.proquest.com/docview/2559434964
https://pubmed.ncbi.nlm.nih.gov/PMC8346579
https://doaj.org/article/04be7a8e66d846138c66cbc7a117dc5e
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfCl-O1qPSL4poubj02yj9ezpRy0iFq4t5CvuxZ0V273KP3vnWT3Vk6r4MsGNhN2yEx2ZpKZXxB6a5iNhorkxBGRcwMBiq1YyKkTLm4zcGLifsf5hTi75PNFudhDdFsLk5L2E6Rl-k1vs8M-tGBoYjFYTCgomeA5RDwHCuK6qNUzMRv3VeLJFSfVUB9TMHXH0B0blKD67_Iv_0yT_O2sNJmg04focPAd8bTn9hHaC_VjdL-_TfL2CWqnm65JCKzYXK9vzC1uw-r7UFtU41hIgl1_iYPHQDmAVeOY-r7C68Zu2g6b2uOQYCVgIGb5Rxzz0gf9hI9H_MvUpOzx9im6PD35OjvLhzsVcgcz3-XWg0xI8EbKWIBXCOpLqoyFME5aiH3A-yNLCFOMT8gvlodlGQLzdkmtKQvHnqH9uqnDC4RpJZ331HpamFiPa7gXVaCCSa_KUBUZIttZ1m4AHI_3XnzT6eCbKd1LRoNkdJKMJhl6N4750cNt_JP6OApvpIxQ2elFs17pQXV0wW2QRgUhPPhahCknhLNOGkKkd2XI0NFW9HpYv62GQEuB3YaQPUNvxm5YefE4xdSh2SSaCK5XCaB53mvKyAnj4BhUvMqQ3NGhHVZ3e-rrq4TurRgXpYSR77fa9outv0_Fy_8jf4Ue0LggYu6LOEL73XoTXoN31dkJuicXcoIOptP5lzm0xycXnz5P0iKbpB0LeJ5z9ROlTSXt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVgguiDeBAkaCE0SNY8dJDgi1tNWWtiuEWqk349culSApm11V-6f4jcw4yVbLo7eeIiXjxPHM2GPPzDeEvNbc4ELFYmaZjIWGDYopuY9TKy0eMwim8bzjaCSHJ-LTaXa6Rn71uTAYVtnPiWGidrXFM_JNMH0LmElhE_Xh_GeMVaPQu9qX0GjF4sAvLmDL1rzf3wH-vknTvd3jj8O4qyoQW_j2LDYOesW803mOKWiJTF2WFtrARiY3YP2D_cPGYKhrF7BPjPDjzHvuzDg1Okssh_feIOsCM1oHZH17d_T5y_JUB_1mgpVddk7Ci80GVkjMYsNIiIxLEbOVFTAUCviXdft3kOYfntqwAO7dJXc6y5VutaJ2j6z56j652dayXDwgzdZ8Vgf8V6rPphd6QRs_-dFlNlUU01iobUtIOAqUHVQ2xcD7CZ3WZt7MqK4c9QHUAhpSHu9QjIrvtAM-juib4RJi15uH5ORaxv4RGVR15Z8Qmpa5dS41Lk00ZgNr4WTpU8lzV2S-TCLC-lFWtoM7x6ob31Vwu_NCtZxRwBkVOKNYRN4u25y3YB9XUm8j85aUCNQdbtTTier0XiXC-FwXXkoHlh7jhZXSGptrxnJnMx-RjZ71qps9GnUp6xF5tXwMeo_OHF35eh5oENqvlEDzuJWUZU-4ALOkFGVE8hUZWunq6pPq7FvAFi-4kFkOLd_10nbZrf8PxdOr_-IluTU8PjpUh_ujg2fkdorKgFE3coMMZtO5fw523cy86JSJkq_Xrb-_AYyjYVQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtNAcFWKQFwQzxIosEhwAiveXXvXPiBUCFFLoeJApdyWfSVUArvEiar8Gl_HzNpOFR699RQpnk3GO4-d2XkR8twIiwcVS5hjMskMOCi2FCHhTjq8ZsiYwfuOT0dy_zj7MMknW-RXXwuDaZW9ToyK2tcO78iHYPoWoEnBiRpOu7SIz6Pxm9OfCU6QwkhrP06jZZHDsDoD9615fTACWr_gfPz-y7v9pJswkDjAY5FYDxiy4I1SWI6WSu5zXhgLTo2y4AmALcSmYLQbH_ug2CxM8xCEt1NuTZ46Ab97hVxVAqwqkCU1Uev7HYygZazs6nRSUQwbOCuxng1zInIhs4RtnIVxZMC_7Ny_0zX_iNnGo3B8i9zsbFi61zLdbbIVqjvkWjvVcnWXNHvLRR07wVJzMj8zK9qE2Y-uxqmiWNBCXTtMwlOA7JpmU0zBn9F5bZfNgprK0xDbW8BCKpIRxfz4Tk7gz7EPZ_yIWezNPXJ8KTt_n2xXdRUeEMpL5bzn1vPUYF2wybwsA5dC-SIPZTogrN9l7brG5zh_47uOAXhR6JYyGiijI2U0G5CX6zWnbduPC6HfIvHWkNiyO35Rz2e60wA6zWxQpghSerD5mCiclM46ZRhT3uVhQHZ70utOjzT6nOsH5Nn6MWgADOuYKtTLCINN_koJMDstp6wxERkYKGVWDoja4KENVDefVCffYpfxQmQyV7DyVc9t52j9fyseXvwWT8l1kFr98eDo8BG5wVEWMP1G7pLtxXwZHoOBt7BPoiRR8vWyRfc31DpkGw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+airway+segmentation+from+computed+tomography+using+robust+and+efficient+3-D+convolutional+neural+networks&rft.jtitle=Scientific+reports&rft.au=Garcia-Uceda%2C+Antonio&rft.au=Selvan%2C+Raghavendra&rft.au=Saghir%2C+Zaigham&rft.au=Tiddens%2C+Harm+A.+W.+M.&rft.date=2021-08-06&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-95364-1&rft.externalDocID=10_1038_s41598_021_95364_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon