Confounders mediate AI prediction of demographics in medical imaging

Deep learning has been shown to accurately assess “hidden” phenotypes from medical imaging beyond traditional clinician interpretation. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age, race, and sex from cardiac ultrasound images using...

Full description

Saved in:
Bibliographic Details
Published inNPJ digital medicine Vol. 5; no. 1; p. 188
Main Authors Duffy, Grant, Clarke, Shoa L., Christensen, Matthew, He, Bryan, Yuan, Neal, Cheng, Susan, Ouyang, David
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning has been shown to accurately assess “hidden” phenotypes from medical imaging beyond traditional clinician interpretation. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age, race, and sex from cardiac ultrasound images using deep learning algorithms and assess the impact of varying confounding variables. Using a total of 433,469 videos from Cedars-Sinai Medical Center and 99,909 videos from Stanford Medical Center, we trained video-based convolutional neural networks to predict age, sex, and race. We found that deep learning models were able to identify age and sex, while unable to reliably predict race. Without considering confounding differences between categories, the AI model predicted sex with an AUC of 0.85 (95% CI 0.84–0.86), age with a mean absolute error of 9.12 years (95% CI 9.00–9.25), and race with AUCs ranging from 0.63 to 0.71. When predicting race, we show that tuning the proportion of confounding variables (age or sex) in the training data significantly impacts model AUC (ranging from 0.53 to 0.85), while sex and age prediction was not particularly impacted by adjusting race proportion in the training dataset AUC of 0.81–0.83 and 0.80–0.84, respectively. This suggests significant proportion of AI’s performance on predicting race could come from confounding features being detected. Further work remains to identify the particular imaging features that associate with demographic information and to better understand the risks of demographic identification in medical AI as it pertains to potentially perpetuating bias and disparities.
AbstractList Deep learning has been shown to accurately assess "hidden" phenotypes from medical imaging beyond traditional clinician interpretation. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age, race, and sex from cardiac ultrasound images using deep learning algorithms and assess the impact of varying confounding variables. Using a total of 433,469 videos from Cedars-Sinai Medical Center and 99,909 videos from Stanford Medical Center, we trained video-based convolutional neural networks to predict age, sex, and race. We found that deep learning models were able to identify age and sex, while unable to reliably predict race. Without considering confounding differences between categories, the AI model predicted sex with an AUC of 0.85 (95% CI 0.84-0.86), age with a mean absolute error of 9.12 years (95% CI 9.00-9.25), and race with AUCs ranging from 0.63 to 0.71. When predicting race, we show that tuning the proportion of confounding variables (age or sex) in the training data significantly impacts model AUC (ranging from 0.53 to 0.85), while sex and age prediction was not particularly impacted by adjusting race proportion in the training dataset AUC of 0.81-0.83 and 0.80-0.84, respectively. This suggests significant proportion of AI's performance on predicting race could come from confounding features being detected. Further work remains to identify the particular imaging features that associate with demographic information and to better understand the risks of demographic identification in medical AI as it pertains to potentially perpetuating bias and disparities.
Abstract Deep learning has been shown to accurately assess “hidden” phenotypes from medical imaging beyond traditional clinician interpretation. Using large echocardiography datasets from two healthcare systems, we test whether it is possible to predict age, race, and sex from cardiac ultrasound images using deep learning algorithms and assess the impact of varying confounding variables. Using a total of 433,469 videos from Cedars-Sinai Medical Center and 99,909 videos from Stanford Medical Center, we trained video-based convolutional neural networks to predict age, sex, and race. We found that deep learning models were able to identify age and sex, while unable to reliably predict race. Without considering confounding differences between categories, the AI model predicted sex with an AUC of 0.85 (95% CI 0.84–0.86), age with a mean absolute error of 9.12 years (95% CI 9.00–9.25), and race with AUCs ranging from 0.63 to 0.71. When predicting race, we show that tuning the proportion of confounding variables (age or sex) in the training data significantly impacts model AUC (ranging from 0.53 to 0.85), while sex and age prediction was not particularly impacted by adjusting race proportion in the training dataset AUC of 0.81–0.83 and 0.80–0.84, respectively. This suggests significant proportion of AI’s performance on predicting race could come from confounding features being detected. Further work remains to identify the particular imaging features that associate with demographic information and to better understand the risks of demographic identification in medical AI as it pertains to potentially perpetuating bias and disparities.
ArticleNumber 188
Author Yuan, Neal
Duffy, Grant
Cheng, Susan
Clarke, Shoa L.
Christensen, Matthew
He, Bryan
Ouyang, David
Author_xml – sequence: 1
  givenname: Grant
  surname: Duffy
  fullname: Duffy, Grant
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center
– sequence: 2
  givenname: Shoa L.
  orcidid: 0000-0002-6592-1172
  surname: Clarke
  fullname: Clarke, Shoa L.
  organization: Division of Cardiovascular Medicine, Department of Medicine, Stanford University
– sequence: 3
  givenname: Matthew
  surname: Christensen
  fullname: Christensen, Matthew
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center
– sequence: 4
  givenname: Bryan
  orcidid: 0000-0002-6150-761X
  surname: He
  fullname: He, Bryan
  organization: Department of Computer Science, Stanford University
– sequence: 5
  givenname: Neal
  orcidid: 0000-0001-5782-7437
  surname: Yuan
  fullname: Yuan, Neal
  organization: San Francisco Veteran Affairs Medical Center, University of California San Francisco
– sequence: 6
  givenname: Susan
  orcidid: 0000-0002-4977-036X
  surname: Cheng
  fullname: Cheng, Susan
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center
– sequence: 7
  givenname: David
  orcidid: 0000-0002-3813-7518
  surname: Ouyang
  fullname: Ouyang, David
  email: David.Ouyang@cshs.org
  organization: Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Division of Artificial Intelligence in Medicine, Department of Medicine, Cedars-Sinai Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36550271$$D View this record in MEDLINE/PubMed
BookMark eNp9kU-PFCEQxYlZ467rfgEPphMvXlqhgAYuJpvx3ySbeNEzoYHuZdIDI3Sb-O1lptd114MnKtTvvaJ4z9FZTNEj9JLgtwRT-a4wIljXYoAWYwG4lU_QBVAl245yOHtQn6OrUnYYY8BMKtY9Q-e04xyDIBfowybFIS3R-VyavXfBzL653jaHXGs7hxSbNDTO79OYzeE22NKEeAKtmZqwN2OI4wv0dDBT8Vd35yX6_unjt82X9ubr5-3m-qa1nOG57Z30QiniHRmUpw4k45b2woCkmFmnvGPO8X4AUtEegChCpcHcVpWVQC_RdvV1yez0Idfx-ZdOJujTRcqjNnkOdvIaDIfei076zjFimbG-lx3rHQVmBajq9X71Oix9Xcf6OGczPTJ93InhVo_pp1ZCYsp5NXhzZ5DTj8WXWe9DsX6aTPRpKRoEl1gpio_o63_QXVpyrF91pDopOMiuUrBSNqdSsh_uH0OwPmau18x1zVyfMteyil49XONe8ifhCtAVKLUVR5__zv6P7W810LiH
CitedBy_id crossref_primary_10_1001_jamacardio_2023_3701
crossref_primary_10_5604_01_3001_0053_9338
crossref_primary_10_2214_AJR_22_28802
crossref_primary_10_1093_eurheartj_ehae415
crossref_primary_10_1016_j_cell_2023_01_035
crossref_primary_10_1093_ehjci_jeae037
crossref_primary_10_1093_ehjdh_ztae014
crossref_primary_10_1007_s10278_024_01183_x
crossref_primary_10_1186_s12933_023_01985_3
crossref_primary_10_1007_s10278_023_00914_w
crossref_primary_10_1016_j_jacc_2024_05_003
crossref_primary_10_1016_j_jacadv_2024_100889
crossref_primary_10_1161_CIRCIMAGING_123_015495
crossref_primary_10_1016_j_echo_2024_04_017
crossref_primary_10_1126_science_adh4260
crossref_primary_10_1016_j_ebiom_2024_105075
Cites_doi 10.1186/1471-2342-9-2
10.1007/s11263-015-0816-y
10.1056/NEJMp2116224
10.1016/j.jcmg.2021.01.008
10.1038/s41591-020-01192-7
10.1161/CIRCIMAGING.108.819938
10.1126/science.aax2342
10.1038/s41591-021-01614-0
10.1016/j.echo.2019.08.012
10.1038/s41551-018-0195-0
10.1038/s41746-019-0216-8
10.1016/j.echo.2020.06.008
10.1161/CIRCEP.119.007284
10.1056/NEJMms2025396
10.1038/d41586-018-05707-8
10.1038/s41586-020-2145-8
10.1056/NEJMms2004740
10.1038/s41591-021-01312-x
10.1186/s12968-020-00683-3
10.1109/CVPR.2016.308
10.1038/s41591-022-01987-w
10.1142/9789811232701_0022
10.1016/j.ebiom.2021.103613
10.1007/s10140-021-01953-y
10.1109/CVPR.2016.90
10.1001/jamacardio.2021.6059
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
NPM
AAYXX
CITATION
3V.
7RV
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41746-022-00720-8
DatabaseName Springer Nature OA Free Journals
PubMed
CrossRef
ProQuest Central (Corporate)
Nursing & Allied Health Database (ProQuest)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni Edition)
Nursing & Allied Health Premium
Publicly Available Content (ProQuest)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
Publicly Available Content Database
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen website
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 7X7
  name: Health & Medical Collection (Proquest)
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2398-6352
EndPage 188
ExternalDocumentID oai_doaj_org_article_2a52be768e6d41c4aceb864bd324c729
10_1038_s41746_022_00720_8
36550271
Genre Journal Article
GroupedDBID 0R~
53G
7RV
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
C6C
CCPQU
EBLON
EBS
EIHBH
FYUFA
GROUPED_DOAJ
HMCUK
HYE
M~E
NAO
NAPCQ
NO~
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
UKHRP
NPM
AAYXX
CITATION
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-bd8e7991ed1f9e3d2845c3b7a28304cd9ed4dd5bf21bd8b2219138a05c799c823
IEDL.DBID RPM
ISSN 2398-6352
IngestDate Tue Oct 22 15:13:31 EDT 2024
Tue Sep 17 21:32:20 EDT 2024
Fri Oct 25 01:28:38 EDT 2024
Thu Oct 10 18:39:02 EDT 2024
Fri Nov 22 00:48:18 EST 2024
Sat Sep 28 08:19:29 EDT 2024
Fri Oct 11 20:44:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-bd8e7991ed1f9e3d2845c3b7a28304cd9ed4dd5bf21bd8b2219138a05c799c823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3813-7518
0000-0001-5782-7437
0000-0002-6592-1172
0000-0002-6150-761X
0000-0002-4977-036X
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9780355/
PMID 36550271
PQID 2756875286
PQPubID 5061815
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_2a52be768e6d41c4aceb864bd324c729
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780355
proquest_miscellaneous_2758099305
proquest_journals_2756875286
crossref_primary_10_1038_s41746_022_00720_8
pubmed_primary_36550271
springer_journals_10_1038_s41746_022_00720_8
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle NPJ digital medicine
PublicationTitleAbbrev npj Digit. Med
PublicationTitleAlternate NPJ Digit Med
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Cheng (CR20) 2009; 2
Ghorbani (CR8) 2020; 3
Obermeyer, Powers, Vogeli, Mullainathan (CR17) 2019; 366
CR19
CR14
CR12
Rajpurkar, Chen, Banerjee, Topol (CR1) 2022; 28
Poplin (CR6) 2018; 2
Raghu, Weiss, Hoffmann, Aerts, Lu (CR10) 2021; 14
Kawel-Boehm (CR23) 2020; 22
Zou, Schiebinger (CR13) 2018; 559
Russakovsky (CR2) 2015; 115
Deyrup, Graves (CR25) 2022; 386
CR4
Ouyang (CR18) 2020; 580
CR3
Vyas, Eisenstein, Jones (CR27) 2020; 383
CR5
Attia (CR11) 2019; 12
Cain (CR22) 2009; 9
CR7
CR29
CR9
Wu (CR16) 2021; 27
CR26
Asch (CR21) 2019; 32
Bailey, Feldman, Bassett (CR28) 2021; 384
Pierson, Cutler, Leskovec, Mullainathan, Obermeyer (CR15) 2021; 27
Miyoshi (CR24) 2020; 33
P Rajpurkar (720_CR1) 2022; 28
A Ghorbani (720_CR8) 2020; 3
720_CR12
720_CR4
720_CR3
720_CR5
720_CR7
720_CR14
E Wu (720_CR16) 2021; 27
J Zou (720_CR13) 2018; 559
E Pierson (720_CR15) 2021; 27
A Deyrup (720_CR25) 2022; 386
D Ouyang (720_CR18) 2020; 580
ZD Bailey (720_CR28) 2021; 384
DA Vyas (720_CR27) 2020; 383
720_CR29
R Poplin (720_CR6) 2018; 2
T Miyoshi (720_CR24) 2020; 33
FM Asch (720_CR21) 2019; 32
PA Cain (720_CR22) 2009; 9
720_CR26
ZI Attia (720_CR11) 2019; 12
S Cheng (720_CR20) 2009; 2
Z Obermeyer (720_CR17) 2019; 366
VK Raghu (720_CR10) 2021; 14
720_CR9
720_CR19
O Russakovsky (720_CR2) 2015; 115
N Kawel-Boehm (720_CR23) 2020; 22
References_xml – volume: 9
  year: 2009
  ident: CR22
  article-title: Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study
  publication-title: BMC Med. Imaging
  doi: 10.1186/1471-2342-9-2
  contributor:
    fullname: Cain
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR2
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: Russakovsky
– volume: 386
  start-page: 501
  year: 2022
  end-page: 503
  ident: CR25
  article-title: Racial biology and medical misconceptions
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp2116224
  contributor:
    fullname: Graves
– ident: CR4
– volume: 14
  start-page: 2226
  year: 2021
  end-page: 2236
  ident: CR10
  article-title: Deep learning to estimate biological age from chest radiographs
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2021.01.008
  contributor:
    fullname: Lu
– ident: CR14
– volume: 27
  start-page: 136
  year: 2021
  end-page: 140
  ident: CR15
  article-title: An algorithmic approach to reducing unexplained pain disparities in underserved populations
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01192-7
  contributor:
    fullname: Obermeyer
– ident: CR12
– volume: 2
  start-page: 191
  year: 2009
  end-page: 198
  ident: CR20
  article-title: Age-related left ventricular remodeling and associated risk for cardiovascular outcomes: the Multi-Ethnic Study of Atherosclerosis
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.108.819938
  contributor:
    fullname: Cheng
– volume: 366
  start-page: 447
  year: 2019
  end-page: 453
  ident: CR17
  article-title: Dissecting racial bias in an algorithm used to manage the health of populations
  publication-title: Science
  doi: 10.1126/science.aax2342
  contributor:
    fullname: Mullainathan
– volume: 28
  start-page: 31
  year: 2022
  end-page: 38
  ident: CR1
  article-title: AI in health and medicine
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01614-0
  contributor:
    fullname: Topol
– ident: CR29
– volume: 32
  start-page: 1396.e2
  year: 2019
  end-page: 1406.e2
  ident: CR21
  article-title: Similarities and differences in left ventricular size and function among races and nationalities: results of the World Alliance Societies of Echocardiography Normal Values Study
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2019.08.012
  contributor:
    fullname: Asch
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: CR6
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: Poplin
– volume: 3
  start-page: 10
  year: 2020
  ident: CR8
  article-title: Deep learning interpretation of echocardiograms
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0216-8
  contributor:
    fullname: Ghorbani
– ident: CR19
– ident: CR3
– volume: 33
  start-page: 1223
  year: 2020
  end-page: 1233
  ident: CR24
  article-title: Left ventricular diastolic function in healthy adult individuals: results of the World Alliance Societies of Echocardiography Normal Values Study
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2020.06.008
  contributor:
    fullname: Miyoshi
– volume: 12
  start-page: e007284
  year: 2019
  ident: CR11
  article-title: Age and sex estimation using artificial intelligence from standard 12-lead ECGs
  publication-title: Circ. Arrhythm. Electrophysiol.
  doi: 10.1161/CIRCEP.119.007284
  contributor:
    fullname: Attia
– volume: 384
  start-page: 768
  year: 2021
  end-page: 773
  ident: CR28
  article-title: How structural racism works - racist policies as a root cause of U.s. racial health inequities
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMms2025396
  contributor:
    fullname: Bassett
– ident: CR9
– volume: 559
  start-page: 324
  year: 2018
  end-page: 326
  ident: CR13
  article-title: AI can be sexist and racist — it’s time to make it fair
  publication-title: Nature
  doi: 10.1038/d41586-018-05707-8
  contributor:
    fullname: Schiebinger
– volume: 580
  start-page: 252
  year: 2020
  end-page: 256
  ident: CR18
  article-title: Video-based AI for beat-to-beat assessment of cardiac function
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
  contributor:
    fullname: Ouyang
– ident: CR5
– ident: CR7
– volume: 383
  start-page: 874
  year: 2020
  end-page: 882
  ident: CR27
  article-title: Hidden in plain sight - reconsidering the use of race correction in clinical algorithms
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMms2004740
  contributor:
    fullname: Jones
– volume: 27
  start-page: 582
  year: 2021
  end-page: 584
  ident: CR16
  article-title: How medical AI devices are evaluated: limitations and recommendations from an analysis of FDA approvals
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01312-x
  contributor:
    fullname: Wu
– ident: CR26
– volume: 22
  start-page: 1
  year: 2020
  end-page: 63
  ident: CR23
  article-title: Reference ranges (“normal values”) for cardiovascular magnetic resonance (CMR) in adults and children: 2020 update
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-020-00683-3
  contributor:
    fullname: Kawel-Boehm
– ident: 720_CR3
  doi: 10.1109/CVPR.2016.308
– volume: 2
  start-page: 191
  year: 2009
  ident: 720_CR20
  publication-title: Circ. Cardiovasc. Imaging
  doi: 10.1161/CIRCIMAGING.108.819938
  contributor:
    fullname: S Cheng
– ident: 720_CR26
  doi: 10.1038/s41591-022-01987-w
– volume: 559
  start-page: 324
  year: 2018
  ident: 720_CR13
  publication-title: Nature
  doi: 10.1038/d41586-018-05707-8
  contributor:
    fullname: J Zou
– volume: 366
  start-page: 447
  year: 2019
  ident: 720_CR17
  publication-title: Science
  doi: 10.1126/science.aax2342
  contributor:
    fullname: Z Obermeyer
– volume: 14
  start-page: 2226
  year: 2021
  ident: 720_CR10
  publication-title: JACC Cardiovasc. Imaging
  doi: 10.1016/j.jcmg.2021.01.008
  contributor:
    fullname: VK Raghu
– volume: 27
  start-page: 136
  year: 2021
  ident: 720_CR15
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-01192-7
  contributor:
    fullname: E Pierson
– volume: 115
  start-page: 211
  year: 2015
  ident: 720_CR2
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: O Russakovsky
– volume: 28
  start-page: 31
  year: 2022
  ident: 720_CR1
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01614-0
  contributor:
    fullname: P Rajpurkar
– volume: 384
  start-page: 768
  year: 2021
  ident: 720_CR28
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMms2025396
  contributor:
    fullname: ZD Bailey
– volume: 386
  start-page: 501
  year: 2022
  ident: 720_CR25
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp2116224
  contributor:
    fullname: A Deyrup
– volume: 27
  start-page: 582
  year: 2021
  ident: 720_CR16
  publication-title: Nat. Med.
  doi: 10.1038/s41591-021-01312-x
  contributor:
    fullname: E Wu
– ident: 720_CR29
– volume: 3
  start-page: 10
  year: 2020
  ident: 720_CR8
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0216-8
  contributor:
    fullname: A Ghorbani
– ident: 720_CR14
  doi: 10.1142/9789811232701_0022
– volume: 2
  start-page: 158
  year: 2018
  ident: 720_CR6
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
  contributor:
    fullname: R Poplin
– ident: 720_CR7
  doi: 10.1016/j.ebiom.2021.103613
– ident: 720_CR9
  doi: 10.1007/s10140-021-01953-y
– volume: 32
  start-page: 1396.e2
  year: 2019
  ident: 720_CR21
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2019.08.012
  contributor:
    fullname: FM Asch
– volume: 383
  start-page: 874
  year: 2020
  ident: 720_CR27
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMms2004740
  contributor:
    fullname: DA Vyas
– volume: 9
  year: 2009
  ident: 720_CR22
  publication-title: BMC Med. Imaging
  doi: 10.1186/1471-2342-9-2
  contributor:
    fullname: PA Cain
– volume: 580
  start-page: 252
  year: 2020
  ident: 720_CR18
  publication-title: Nature
  doi: 10.1038/s41586-020-2145-8
  contributor:
    fullname: D Ouyang
– volume: 33
  start-page: 1223
  year: 2020
  ident: 720_CR24
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/j.echo.2020.06.008
  contributor:
    fullname: T Miyoshi
– ident: 720_CR12
– ident: 720_CR4
  doi: 10.1109/CVPR.2016.90
– ident: 720_CR19
  doi: 10.1001/jamacardio.2021.6059
– ident: 720_CR5
– volume: 12
  start-page: e007284
  year: 2019
  ident: 720_CR11
  publication-title: Circ. Arrhythm. Electrophysiol.
  doi: 10.1161/CIRCEP.119.007284
  contributor:
    fullname: ZI Attia
– volume: 22
  start-page: 1
  year: 2020
  ident: 720_CR23
  publication-title: J. Cardiovasc. Magn. Reson.
  doi: 10.1186/s12968-020-00683-3
  contributor:
    fullname: N Kawel-Boehm
SSID ssj0002048946
Score 2.3876815
Snippet Deep learning has been shown to accurately assess “hidden” phenotypes from medical imaging beyond traditional clinician interpretation. Using large...
Deep learning has been shown to accurately assess "hidden" phenotypes from medical imaging beyond traditional clinician interpretation. Using large...
Abstract Deep learning has been shown to accurately assess “hidden” phenotypes from medical imaging beyond traditional clinician interpretation. Using large...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 188
SubjectTerms 631/114/1305
631/114/2397
Age
Artificial intelligence
Biomedicine
Biotechnology
Confounding (Statistics)
Deep learning
Demographics
Medical imaging
Medicine
Medicine & Public Health
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB4hDlUvFS2lDYXKSNxai_iRrHPkUQRIcAKJm-XHRCwSWcQu_5-xk11YWtQL13gijebz4xuN_Q3ArlZOC68Cl8JLrkUbuDfB8VCijKXDWpXpofD5RX1ypc-uq-sXrb7SnbBeHrgP3J50lfRIpBjrqEXQLqA3tfaRmEAgZph331K-SKZuc3lNm0bXwyuZUpm9qSbune7bSp7Usktulk6iLNj_L5b592XJVxXTfBAdr8GngUGy_d7zz7CC3Rf4cD7UyNfhKD3iS82SiNix_DBkhmz_lN0_JJOEA5u0LOJdL1Y9DlM27rIhwcXGd7lt0Ve4Ov5zeXjCh14JPBDnmnEfDY6I62EUbYMq0qlTBeVHLgl86RAbjDrGyreESTRe0kYllHFlFeivYKTagNVu0uF3YCEIJaJrnGobyr584yltUa1ApxosVSzg1zxu9r6XxLC5lK2M7aNsKco2R9maAg5SaBeWSc46fyCQ7QCy_R_IBWzNgbHDGpvaJFxP2ZY0dQE7i2FaHank4TqcPGYbQxyYNrUCvvU4LjxRNWVnciQKGC0hvOTq8kg3vskK3Em2iYhaAb_nc-HZrbdDsfkeofgBH2WaxEJyKbdgdfbwiNvEi2b-Z14CT42mCUA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BkRAX1PJMH8hI3MBq_EjinKryqApSOVFpb5ZfgT00WXa3_58ZJ7vV8romE8mZGXu-8djfALzRymnhVeBSeMm16AL3JjgeyiRj6VKtSroofPW1vrzWX2bVbNpwW03HKjdrYl6o4xBoj_yUaMoRW0tTny1-cuoaRdXVqYXGfXggJIZy9Odm1mz3WIiUttX1dFemVOZ0pRGB06lbyYkzu-RmJx5l2v6_Yc0_j0z-VjfN4ehiHx5POJKdj4Y_gHupfwIPr6ZK-VP4SFf5qGUSwjuWr4esEzv_zBZLEiFrsKFjMd2MlNXzsGLzPgui0dj8JjcvegbXF5--fbjkU8cEHhB5rbmPJjWI-FIUXZtUxNhTBeUbRzRfOsQ2RR1j5Tu0TDRe4nIllHFlFfCrYKR6Dnv90KeXwEIQSkTXOtW1mIP51mPyojqRnGpTqWIBbzd6s4uRGMPmgrYydtSyRS3brGVrCnhPqt1KEql1fjAsv9tpjljpKukT5j-pjloE7ULyptY-IugLmAQUcLwxjJ1m2sre-UUBr7evcY5Q4cP1abjNMgaRMC5tBbwY7bgdiaoxR5ONKKDZsfDOUHff9PMfmYebyJsQrhXwbuMLd8P6tyoO__8XR_BIknsKyaU8hr318jadIO5Z-1fZuX8B73UAZA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RkKpeUEtbSEsrI_XWWo0fSZwjbIsoEpyKxM3yK-oeyCJ2-f_MONmt0sKBazyWrJmx55uM5zPAF62cFl4FLoWXXIsucG-C46FMMpYu1aqkRuGLy_rsSp9fV9cjTQ71wkzq98p8X2qEzHRNVnIiuS65eQE7GIMb8uZZPdv8TyEC2lbXY1_M41MnsSdT9D-GK_-_HvlPjTSHntPXsDtiRnY8GPkNbKV-D15ejFXxt_CD2vboeSSEciy3gqwSO_7Fbu9IhDTPFh2L6Wagp56HJZv3WRANxOY3-aGid3B1-vP37IyPryPwgChrxX00qUF0l6Lo2qQixpkqKN84ovTSIbYp6hgr36EVovESjyahjCurgLOCkeo9bPeLPh0AC0EoEV3rVNdivuVbj4mK6kRyqk2ligV8XevN3g4kGDYXr5Wxg5YtatlmLVtTwAmpdiNJBNb5A9rVjvvBSldJnzDXSXXUImgXkje19hEBXkDAX8Dh2jB23FVLS1T1mF9JUxdwtBnG_UBFDtenxX2WMYh68RgrYH-w42YlqsZ8TDaigGZi4clSpyP9_E_m3CaiJoRmBXxb-8LfZT2tig_PE_8IryS5q5BcykPYXt3dp0-IeVb-c3b2B6DN-RM
  priority: 102
  providerName: Springer Nature
Title Confounders mediate AI prediction of demographics in medical imaging
URI https://link.springer.com/article/10.1038/s41746-022-00720-8
https://www.ncbi.nlm.nih.gov/pubmed/36550271
https://www.proquest.com/docview/2756875286
https://search.proquest.com/docview/2758099305
https://pubmed.ncbi.nlm.nih.gov/PMC9780355
https://doaj.org/article/2a52be768e6d41c4aceb864bd324c729
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB61RUJcEG9cSmQkbrCN92F7fUxDqxIpVQVUym21L0MQcaIk_f-dXduB8LhwsrRey6uZWc83nplvAd4KrgU13BJGDSOC1pYYaTWxmWcu077gWWgUnl4VlzdiMstnB5D3vTCxaN-a-WnzY3HazL_F2srVwg77OrHh9XQcWHPQTw4P4RDd7y8h-veYWROyEkXXIJNxOdwIhN2h1JaRQJSdkXBIHy8Qm7OS7vmjSNv_N6z5Z8nkb3nT6I4uHsHDDkemo3a9j-HAN0_g_rTLlD-FD6GVLxyZhPAuje0hW5-OPqardZgStJEu69T5RUtZPbebdN7Eiai0dL6Ihxc9g5uL8y_jS9KdmEAsIq8tMU76EhGfd7SuPHfoe3LLTakDzZewrvJOOJebGjXjpGH4uaJc6iy3-JSVjD-Ho2bZ-JeQWks5dbrSvK4wBjOVweCF19RrXvmMuwTe9XJTq5YYQ8WENpeqFbhCgasocCUTOAui3c0MpNZxYLn-qjrVKqZzZjzGP75wglqhrTeyEMYh6LMYBCRw0itGdTttowJ9PcZcTBYJvNndxj0SEh-68cvbOEciEsZPWwIvWj3uVtLbQQLlnob3lrp_B80y8nB3ZpjA-94Wfi7r36I4_u8XvYIHLBgxZYSxEzjarm_9a4REWzPAjTArB3BvNJp8nuD17Pzq-hOOjovxIP5mGMRNcgebew8s
link.rule.ids 230,314,727,780,784,864,885,2102,12056,21388,27924,27925,31719,31720,33744,33745,41120,42189,43310,43805,51576,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDCa2FNh2KfbsvLabB-y2CbUeduRT0a4t0q0JhqEFehP08pZD7SxJ_38pWUmRva42DcgkRX0UpY8AHwTXghpuCaOGEUEbS4y0mtjCM1doX_EiXBQeT6rRlfhyXV6nDbdFOla5iokxULvOhj3yg0BTjtiayepw9ouErlGhuppaaDyErcCcXg5g6_h08u37epcl0NLWokq3ZQouDxYCMXg4d8tIYM0uiNxYkSJx_9_Q5p-HJn-rnMYF6ewpbCckmR_1pn8GD3z7HB6NU638BZyEy3yhaRICvDxeEFn6_Og8n82DSLBH3jW58zc9afXULvJpGwXRbPn0JrYveglXZ6eXn0ck9UwgFrHXkhgn_RAxn3e0qT13uPqUlpuhDkRfwrraO-FcaRq0jZOGYcCiXOqitPiVlYy_gkHbtf415NZSTp2uNW9qzMJMbTB94Q31mte-4C6Djyu9qVlPjaFiSZtL1WtZoZZV1LKSGRwH1a4lA611fNDNf6g0SxTTJTMeMyBfOUGt0NYbWQnjEPZZTAMy2FsZRqW5tlD3npHB-_VrnCWh9KFb391GGYlYGINbBju9Hdcj4RVmaWxIMxhuWHhjqJtv2unPyMQd6JsQsGXwaeUL98P6tyre_P8v3sHj0eX4Ql2cT77uwhMWXJUywtgeDJbzW7-PKGhp3iZXvwOF1wS6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkSouiDeBAkbiBlbjR7LOsWxZtUArDlTqzfJjAntodrWb_n_GTnZhoRy4xmPJmhnb32Q83wC81cpp4VXgUnjJtWgD9yY4HkqUsXRYqzIVCp-d1ycX-tNldflbFX9-7b5JSQ41DYmlqesPl7Edi8TN4VoTkE6PZyVP1NclN7fhjibokJo3TOvp9i9LoqVtdD1Wy9w8dedGysT9N6HNvx9N_pE5zRfS7D7cG5EkOxpM_wBuYfcQ9s_GXPkjOE7FfKlpEgE8lgtEemRHp2y5SiLJHmzRsohXA2n1PKzZvMuCZDY2v8rtix7Dxezjt-kJH3sm8EDYq-c-GpwQ5sMo2gZVpNunCspPXCL60iE2GHWMlW_JNtF4SQeWUMaVVaBZwUj1BPa6RYfPgIUglIiucaptKArzjafwRbUCnWqwVLGAdxu92eVAjWFzSlsZO2jZkpZt1rI1BXxIqt1KJlrr_GGx-m7HXWKlq6RHioCwjloE7QJ6U2sfCfYFCgMKONgYxo57bW0TgT1FXdLUBbzZDtMuSakP1-HiOssYwsJ0uBXwdLDjdiWqpihNTkQBkx0L7yx1d6Sb_8hM3Im-iQBbAe83vvBrWf9WxfP_E38N-1-PZ_bL6fnnF3BXJs8Vkkt5AHv96hpfEijq_avs9z8BXAAESg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confounders+mediate+AI+prediction+of+demographics+in+medical+imaging&rft.jtitle=NPJ+digital+medicine&rft.au=Duffy%2C+Grant&rft.au=Clarke%2C+Shoa+L&rft.au=Christensen%2C+Matthew&rft.au=He%2C+Bryan&rft.date=2022-12-22&rft.eissn=2398-6352&rft.volume=5&rft.issue=1&rft.spage=188&rft_id=info:doi/10.1038%2Fs41746-022-00720-8&rft_id=info%3Apmid%2F36550271&rft.externalDocID=36550271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-6352&client=summon