Synthesizing a ν=2/3 fractional quantum Hall effect edge state from counter-propagating ν=1 and ν=1/3 states
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 1920 - 6 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.04.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor,
ν
= 2/3, was originally proposed to harbor two counter-propagating modes: a downstream
v
= 1 and an upstream
v
= 1/3. However, charge equilibration between these two modes always led to an observed downstream
v
= 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a
v
= 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors,
v
l
and
v
u
. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field.
The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the
ν
=2/3 fractional quantum Hall state. |
---|---|
AbstractList | Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field.Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field. Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v and v . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field. Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v l and v u . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field. The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν =2/3 fractional quantum Hall state. The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν=2/3 fractional quantum Hall state. Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v l and v u . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field. Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field.The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν=2/3 fractional quantum Hall state. |
ArticleNumber | 1920 |
Author | Yang, Wenmin Banitt, Daniel Umansky, Vladimir Mirlin, Alexander D. Cohen, Yonatan Park, Jinhong Ronen, Yuval Gefen, Yuval Heiblum, Moty |
Author_xml | – sequence: 1 givenname: Yonatan surname: Cohen fullname: Cohen, Yonatan organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 2 givenname: Yuval surname: Ronen fullname: Ronen, Yuval organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Department of Physics, Harvard University – sequence: 3 givenname: Wenmin surname: Yang fullname: Yang, Wenmin organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 4 givenname: Daniel surname: Banitt fullname: Banitt, Daniel organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 5 givenname: Jinhong surname: Park fullname: Park, Jinhong organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 6 givenname: Moty surname: Heiblum fullname: Heiblum, Moty email: moty.heiblum@weizmann.ac.il organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 7 givenname: Alexander D. orcidid: 0000-0002-9986-3521 surname: Mirlin fullname: Mirlin, Alexander D. organization: Institut für Nanotechnologie, Karlsruhe Institute of Technology, L.D. Landau Institute for Theoretical Physics RAS – sequence: 8 givenname: Yuval surname: Gefen fullname: Gefen, Yuval organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 9 givenname: Vladimir surname: Umansky fullname: Umansky, Vladimir organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31015449$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhSNUREvpC7BAkdiwCfVfYmcBEqoKrVSJBbC2xs4kzVWufWs7lcq78Qp9JnxvSmm7qDce2d8cH2vO62LPeYdF8ZaSj5RwdRwFFY2sCG0r0raMVPWL4oARQSsqGd97UO8XRzGuSF68pUqIV8U-p4TWQrQHhf9x49IlxvH36IYSyts_n9gxL_sANo3ewVRezeDSvC7PYJpK7Hu0qcRuwDImSJhJvy6tn13CUG2C38AAaauVlWgJrtsVWXKHxzfFyx6miEd3-2Hx6-vpz5Oz6uL7t_OTLxeVrQVJlbE1gO0EocYAaZU0zDIkSlmrQDDCG0JAIlOAzChpVd0ZK5ntheGGqpofFueLbudhpTdhXEO40R5GvTvwYdAQ0mgn1BRt02HXMUKFMEy2xCJpRI3WNL2RTdb6vGhtZrPGzqJLAaZHoo9v3HipB3-tGyFVy7dmPtwJBH81Y0x6PUaL0wQO_Rw1YzSPphaSZ_T9E3Tl55DnkCneckKzPZmpdw8d3Vv5N9cMsAWwwccYsL9HKNHb_OglPzrnR-_yo7c21ZMmO-ah5RjkX43T8618aY35HTdg-G_7ma6_juvbsQ |
CitedBy_id | crossref_primary_10_35848_1882_0786_ac4c35 crossref_primary_10_1103_PhysRevB_110_245426 crossref_primary_10_1103_PhysRevLett_128_056802 crossref_primary_10_1038_s42254_021_00351_0 crossref_primary_10_1103_PhysRevB_103_L121302 crossref_primary_10_1103_PhysRevLett_132_136502 crossref_primary_10_1038_s42005_023_01491_8 crossref_primary_10_1103_PhysRevLett_125_157702 crossref_primary_10_1103_PhysRevB_107_245405 crossref_primary_10_1103_PhysRevB_107_245301 crossref_primary_10_1103_PhysRevB_110_155404 crossref_primary_10_1103_PhysRevB_105_165154 crossref_primary_10_1103_PhysRevLett_129_146801 crossref_primary_10_1142_S0217751X20300094 crossref_primary_10_1063_10_0010207 crossref_primary_10_7566_JPSJ_90_102001 crossref_primary_10_1103_PhysRevX_13_031024 crossref_primary_10_1103_PhysRevResearch_3_023083 crossref_primary_10_1038_s41467_023_37495_9 crossref_primary_10_1103_PhysRevResearch_4_043094 crossref_primary_10_1038_s41467_022_32956_z crossref_primary_10_1103_PhysRevB_99_161302 crossref_primary_10_1038_s41467_021_25631_2 crossref_primary_10_1103_PhysRevB_100_115153 crossref_primary_10_1103_PhysRevB_108_064402 crossref_primary_10_1103_PhysRevLett_123_137701 crossref_primary_10_1038_s41565_024_01751_w crossref_primary_10_1103_PhysRevLett_129_116803 crossref_primary_10_1103_PhysRevB_104_115416 crossref_primary_10_1007_s00220_022_04443_5 crossref_primary_10_1038_s41467_021_23160_6 crossref_primary_10_1103_PhysRevB_101_075308 crossref_primary_10_1103_PhysRevB_105_165145 crossref_primary_10_1103_PhysRevLett_126_216803 crossref_primary_10_1126_science_abg6116 crossref_primary_10_1038_s41467_021_27805_4 crossref_primary_10_1103_PhysRevLett_132_256601 crossref_primary_10_1103_PhysRevB_103_085103 crossref_primary_10_1103_PhysRevB_110_035402 crossref_primary_10_1103_PhysRevLett_126_256801 |
Cites_doi | 10.1103/PhysRevB.41.12838 10.1103/PhysRevLett.67.2060 10.1103/PhysRevB.51.13449 10.1103/PhysRevLett.72.4129 10.1103/PhysRevLett.111.246803 10.1038/s41467-017-02433-z 10.1103/PhysRevLett.113.266803 10.1103/PhysRevLett.72.2624 10.1038/nature09277 10.1038/ncomms5067 10.1103/PhysRevB.55.15832 10.1038/nphys4010 10.1103/PhysRevLett.48.1559 10.1103/PhysRevLett.64.216 10.1103/PhysRevB.98.115408 10.1103/PhysRevLett.108.226801 10.1038/ncomms2305 10.1038/nphys2384 10.1038/s41567-017-0035-2 10.1016/j.aop.2017.07.015 10.1103/PhysRevLett.64.220 10.1038/nature22052 10.1103/PhysRevB.99.161302 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-09920-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_1ec6dedd20144b2790ce0645ecb6fb76 PMC6478935 31015449 10_1038_s41467_019_09920_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-bc5aacd401bba0987b2c2e088cc8a4203600a7e28ae2b87c85dbc72cf4b3b1853 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:51 EDT 2025 Thu Aug 21 14:02:25 EDT 2025 Mon Jul 21 09:49:33 EDT 2025 Wed Aug 13 10:55:59 EDT 2025 Mon Jul 21 05:44:13 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Tue Jul 01 02:21:28 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-bc5aacd401bba0987b2c2e088cc8a4203600a7e28ae2b87c85dbc72cf4b3b1853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9986-3521 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09920-5 |
PMID | 31015449 |
PQID | 2393017907 |
PQPubID | 546298 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ec6dedd20144b2790ce0645ecb6fb76 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6478935 proquest_miscellaneous_2213915473 proquest_journals_2393017907 pubmed_primary_31015449 crossref_primary_10_1038_s41467_019_09920_5 crossref_citationtrail_10_1038_s41467_019_09920_5 springer_journals_10_1038_s41467_019_09920_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-23 |
PublicationDateYYYYMMDD | 2019-04-23 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Johnson, MacDonald (CR5) 1991; 67 Grivnin (CR8) 2014; 113 Nosiglia, Park, Rosenow, Gefen (CR14) 2018; 98 Kane, Fisher (CR21) 1997; 55 Meir (CR6) 1994; 72 MacDonald (CR4) 1990; 64 Protopopov, Gefen, Mirlin (CR13) 2017; 385 Beenakker (CR3) 1990; 64 Kane, Fisher (CR12) 1995; 51 Gurman, Sabo, Heiblum, Umansky, Mahalu (CR18) 2012; 3 CR23 CR22 Ronen, Cohen, Banitt, Heiblum, Umansky (CR20) 2018; 14 Venkatachalam, Hart, Pfeiffer, West, Yacoby (CR19) 2012; 8 Kane, Fisher, Polchinski (CR11) 1994; 72 Sabo (CR9) 2017; 13 Rosenblatt (CR10) 2017; 8 Wen (CR2) 1990; 41 Gross (CR17) 2012; 108 Wang, Meir, Gefen (CR7) 2013; 111 Tsui, Stormer, Gossard (CR1) 1982; 48 Bid (CR15) 2010; 466 Inoue (CR16) 2014; 5 A Grivnin (9920_CR8) 2014; 113 CL Kane (9920_CR11) 1994; 72 I Gurman (9920_CR18) 2012; 3 Y Ronen (9920_CR20) 2018; 14 9920_CR22 A Bid (9920_CR15) 2010; 466 9920_CR23 A Rosenblatt (9920_CR10) 2017; 8 AH MacDonald (9920_CR4) 1990; 64 CL Kane (9920_CR12) 1995; 51 C Nosiglia (9920_CR14) 2018; 98 CL Kane (9920_CR21) 1997; 55 MD Johnson (9920_CR5) 1991; 67 J Wang (9920_CR7) 2013; 111 IV Protopopov (9920_CR13) 2017; 385 Y Meir (9920_CR6) 1994; 72 XG Wen (9920_CR2) 1990; 41 H Inoue (9920_CR16) 2014; 5 V Venkatachalam (9920_CR19) 2012; 8 R Sabo (9920_CR9) 2017; 13 CWJ Beenakker (9920_CR3) 1990; 64 Y Gross (9920_CR17) 2012; 108 DC Tsui (9920_CR1) 1982; 48 |
References_xml | – ident: CR22 – volume: 41 start-page: 12838 year: 1990 end-page: 12844 ident: CR2 article-title: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.12838 – volume: 67 start-page: 2060 year: 1991 end-page: 2063 ident: CR5 article-title: Composite edges in v=2/3 fractional quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2060 – volume: 51 start-page: 13449 year: 1995 end-page: 13466 ident: CR12 article-title: Impurity scattering and transport of fractional quantum Hall edge states publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.13449 – volume: 72 start-page: 4129 year: 1994 end-page: 4132 ident: CR11 article-title: Randomness at the edge: theory of quantum Hall transport at filling v=2/3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.4129 – volume: 111 start-page: 246803 year: 2013 ident: CR7 article-title: Edge reconstruction in the ν=2/3 fractional quantum Hall state publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.246803 – volume: 8 year: 2017 ident: CR10 article-title: Transmission of heat modes across a potential barrier publication-title: Nat. Commun. doi: 10.1038/s41467-017-02433-z – volume: 113 start-page: 266803 year: 2014 ident: CR8 article-title: Nonequilibrated counterpropagating edge modes in the fractional quantum Hall regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.266803 – volume: 72 start-page: 2624 year: 1994 end-page: 2627 ident: CR6 article-title: Composite edge states in the ν=2/3 fractional quantum Hall regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2624 – volume: 466 start-page: 585 year: 2010 end-page: 590 ident: CR15 article-title: Observation of neutral modes in the fractional quantum Hall regime publication-title: Nature doi: 10.1038/nature09277 – volume: 5 year: 2014 ident: CR16 article-title: Proliferation of neutral modes in fractional quantum Hall states publication-title: Nat. Commun. doi: 10.1038/ncomms5067 – volume: 55 start-page: 15832 year: 1997 end-page: 15837 ident: CR21 article-title: Quantized thermal transport in the fractional quantum Hall effect publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.15832 – volume: 13 start-page: 491 year: 2017 end-page: 496 ident: CR9 article-title: Edge reconstruction in fractional quantum Hall states publication-title: Nat. Phys. doi: 10.1038/nphys4010 – volume: 48 start-page: 1559 year: 1982 end-page: 1562 ident: CR1 article-title: Two-dimensional magnetotransport in the extreme quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 64 start-page: 216 year: 1990 end-page: 219 ident: CR3 article-title: Edge channels for the fractional quantum Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.216 – volume: 98 start-page: 115408 year: 2018 ident: CR14 article-title: Incoherent transport on the = 2/3 quantum Hall edge publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.115408 – volume: 108 start-page: 226801 year: 2012 ident: CR17 article-title: Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles? publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.226801 – volume: 3 year: 2012 ident: CR18 article-title: Extracting net current from an upstream neutral mode in the fractional quantum Hall regime publication-title: Nat. Commun. doi: 10.1038/ncomms2305 – volume: 8 start-page: 676 year: 2012 end-page: 681 ident: CR19 article-title: Local thermometry of neutral modes on the quantum Hall edge publication-title: Nat. Phys. doi: 10.1038/nphys2384 – volume: 14 start-page: 411 year: 2018 end-page: 416 ident: CR20 article-title: Robust integer and fractional helical modes in the quantum Hall effect publication-title: Nat. Phys. doi: 10.1038/s41567-017-0035-2 – volume: 385 start-page: 287 year: 2017 end-page: 327 ident: CR13 article-title: Transport in a disordered ν=2∕3 fractional quantum Hall junction publication-title: Ann. Phys. (N. Y). doi: 10.1016/j.aop.2017.07.015 – ident: CR23 – volume: 64 start-page: 220 year: 1990 end-page: 223 ident: CR4 article-title: Edge states in fractional quantum Hall effect regime publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.220 – volume: 64 start-page: 220 year: 1990 ident: 9920_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.220 – volume: 8 year: 2017 ident: 9920_CR10 publication-title: Nat. Commun. doi: 10.1038/s41467-017-02433-z – volume: 72 start-page: 2624 year: 1994 ident: 9920_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.2624 – volume: 41 start-page: 12838 year: 1990 ident: 9920_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.41.12838 – volume: 466 start-page: 585 year: 2010 ident: 9920_CR15 publication-title: Nature doi: 10.1038/nature09277 – volume: 14 start-page: 411 year: 2018 ident: 9920_CR20 publication-title: Nat. Phys. doi: 10.1038/s41567-017-0035-2 – volume: 55 start-page: 15832 year: 1997 ident: 9920_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.55.15832 – volume: 3 year: 2012 ident: 9920_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms2305 – volume: 64 start-page: 216 year: 1990 ident: 9920_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.216 – volume: 108 start-page: 226801 year: 2012 ident: 9920_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.226801 – volume: 48 start-page: 1559 year: 1982 ident: 9920_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.48.1559 – volume: 8 start-page: 676 year: 2012 ident: 9920_CR19 publication-title: Nat. Phys. doi: 10.1038/nphys2384 – volume: 113 start-page: 266803 year: 2014 ident: 9920_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.266803 – volume: 5 year: 2014 ident: 9920_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms5067 – volume: 111 start-page: 246803 year: 2013 ident: 9920_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.246803 – volume: 13 start-page: 491 year: 2017 ident: 9920_CR9 publication-title: Nat. Phys. doi: 10.1038/nphys4010 – ident: 9920_CR22 doi: 10.1038/nature22052 – volume: 385 start-page: 287 year: 2017 ident: 9920_CR13 publication-title: Ann. Phys. (N. Y). doi: 10.1016/j.aop.2017.07.015 – volume: 67 start-page: 2060 year: 1991 ident: 9920_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.67.2060 – volume: 72 start-page: 4129 year: 1994 ident: 9920_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.72.4129 – volume: 51 start-page: 13449 year: 1995 ident: 9920_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.51.13449 – ident: 9920_CR23 doi: 10.1103/PhysRevB.99.161302 – volume: 98 start-page: 115408 year: 2018 ident: 9920_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.115408 |
SSID | ssj0000391844 |
Score | 2.5484326 |
Snippet | Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor,
ν
= 2/3, was... Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was... The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1920 |
SubjectTerms | 142/126 147/135 639/766/119/2794 639/925/927 Balancing Electromagnetism Humanities and Social Sciences Magnetic fields multidisciplinary Propagation modes Quantum Hall effect Quantum wells Science Science (multidisciplinary) Upstream |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbNpNO0p3OwYOKyyDoRRf2FpJKBhfGHp3HYf1v-xf2N1mV9Iw7Pi_ems6D6nql0kl9xdhTLQEgeo_27UWtVSdq1BtbA7pLpTGC7XIW_7v33fRYvz1pTy6V-qI7YQUeuDBu0iToYopRUugfpLECEmGsJQjdLJgMto1r3qXNVPbByuLWRY9ZMkL1k5XOPkFQzo61uGdq91aiDNj_uyjz18uSP52Y5oXo6Aa7PkaQ_GWh_Ca7koZb7GqpKXl2my0-nA0Y1K1Ov-Fo7vnF-Qs5UXy2LBkMOPLrBrm5-cynfj7n5T4Hp79qPCcXcUo44bmERFrWSCh6HE93o2mmhvsh5gecMndf3WHHR28-vp7WY1WFGjA6W9cBWu8h4r4qBC9sb4IEmdDZAPRe07mkEN4k2fskQ2-gb2MAI2Gmgwq0ut9lB8NiSPcZV9omI2OwYFptYhvaLjYSBIpdKdOLijVbDjsYIcep8sXc5aNv1bsiFYdScVkqrq3Ys92YLwVw46-9X5Hgdj0JLDu_QBVyowq5f6lQxQ63YnejBa8cQcORtxKmYk92zWh7dKDih7TYYB_ZEL6-Nqpi94qW7CjBsJmAjmzFzJ7-7JG63zKcfsr43pT-axV-2_Otpv0g68-sePA_WPGQXZPZRHQt1SE7WC836RFGXevwOBvYd5p_KPs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg2gT24mdA0KAWFZIcIFKvVn22EsrLUm72T20_61_gd_EjJPdann0FiV2ZHseHntmvmHspRIAEJxD-XZFrmRd5Mg3TQ6oLqVCC7ZOWfxfvtazA_X5sDocL9z6MaxyoxOTog4d0B35hKC6iHsK_fbkNKeqUeRdHUtoXGc3StxpKKTLTD9t71gI_dwoNebKFNJMepU0Q0GZO02DJ6dqZz9KsP3_sjX_Dpn8w2-atqPpHXZ7tCP5u4Hwd9m12N5jN4fKkmf3WfftrEXTrj8-x97c8V8Xb8RE8vlyyGPAnqdrXNP1Tz5ziwUfojo43a3xlGLEKe2Ep0IScZnjQFHvOIqQpj-V3LUhPeAvU_P-ATuYfvz-YZaPtRVyQBttlXuonIOApyvvXdEY7QWIiCoHwDhF3smicDoK46LwRoOpggctYK689LTHP2R7bdfGx4xL1UQtgm9AV0qHyld1KAUUSHwptSkyVm5W2MIIPE71LxY2OcClsQNVLFLFJqrYKmOvtn1OBtiNK1u_J8JtWxJkdnrRLX_YUQJtGaEOMQRBZ0gvkJMgElhfBF_Pva4ztr8hux3luLeXXJexF9vPKIHkVnFt7NbYRpSEsq-0zNijgUu2I0HjmeCOmozpHf7ZGerul_b4KKF8UxJwI3Furzecdjms_y_Fk6tn8ZTdEon5VS7kPttbLdfxGVpVK_88ic5vISofrw priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcKt4ECjISN4jq2E6cHDgsiGq1ElxKpd4svxYqLVnYx6H9b_wFfhMzzgMtFCRuUTK2Jp6Hx_bMZ4AXSnjvg7Vo35bnSlY8R71pco_uUiqMYKtUxf_-QzU9U7Pz8nwPxFALk5L2E6RlctNDdtjxWiWT5lRy0zS45ClvwAFBtaNuH0wms9PZuLNCmOe1Un2FDJf1NY13ZqEE1n9dhPlnouRvp6VpEjq5DYd99MgmHb93YC-2d-Fmd5_k5T1Ynl62GNCtL66wNbPsx_fX4liy-aqrXsCW37Y4ktsvbGoXC9blcjDaUWOpsIhRsQlL10fEVY6MorexlBdNPRXMtiE9YJeJfH0fzk7efXw7zfsbFXKPkdkmd7601gdcUzlneVNrJ7yI6Gi8r62iM0nOrY6itlG4Wvu6DM5r4efKSUcz-wPYb5dtfARMqiZqEVzjdal0KF1ZhUJ4jiKXUtc8g2IYYeN7uHG69WJh0rG3rE0nFYNSMUkqpszg5djmawe28U_qNyS4kZKAstOL5eqT6RXHFNFXIYYgaOXohG64jwTRF72r5k5XGRwNYje99a4NwcKRp-I6g-fjZ7Q7OkyxbVxukUYUhK2vtMzgYaclIycYMhPIUZOB3tGfHVZ3v7QXnxO2N5X-NhL_7dWgab_Y-vtQPP4_8idwSyRjULmQR7C_WW3jU4ytNu5Zb0w_ATQBHuI priority: 102 providerName: Springer Nature |
Title | Synthesizing a ν=2/3 fractional quantum Hall effect edge state from counter-propagating ν=1 and ν=1/3 states |
URI | https://link.springer.com/article/10.1038/s41467-019-09920-5 https://www.ncbi.nlm.nih.gov/pubmed/31015449 https://www.proquest.com/docview/2393017907 https://www.proquest.com/docview/2213915473 https://pubmed.ncbi.nlm.nih.gov/PMC6478935 https://doaj.org/article/1ec6dedd20144b2790ce0645ecb6fb76 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IO5kjMpIvEGYYztx8jChrlqpKm1CjEp9i2zHHZNKuqWtRPlv_AV-E8dOUlQoPPCSRIntOD4XnxP7fAfglWDGmEIplG9FQ8ETGiLfZKFBdckFWrCJj-I_v0gGIzEcx-MdaNMdNQM43-rauXxSo2r69uvt6h0K_EkdMp4ez4UXd-rCcbIM3aF4F_ZxZpIuo8F5Y-57zcwzdGhEEzuzveoB3EWLx2HUZBtTlUf032aG_rmb8rclVT9T9e_DvcbEJN2aJx7Aji0fwp066eTqEcwuVyVaffPrb1ibKPLj-wk75mRS1SEOWPN2icO9_EIGajol9YYP4n67ER99RFxECvE5JmwVYkdRJSm3edq1FBFVFv4Cm_TF549h1D_71BuETdqF0KD5tgi1iZUyBTpeWiuapVIzwyxqI2NSJdzCJaVKWpYqy3QqTRoX2khmJkJz7ab_J7BXzkr7DAgXmZWs0JmRsZBFrOOkiJihyBecy5QGELUjnJsGk9ylxpjmfm2cp3lNoBwJlHsC5XEAr9d1bmpEjn-WPnWEW5d0aNr-xqy6yhvhzCNrksIWBXPupWYyo8Y6HD9rdDLRMgngqCV73nJo7rDjnDqjMoCX68conG7FRZV2tsQyLHIA_ELyAJ7WXLLuSctlAcgN_tno6uaT8vqzBwB38cEZx29703Lar279fSgO__tFz-GAeRERIeNHsLeolvYF2mIL3YFdOZZ4TPvvO7Df7Q4vh3g-Pbv48BHv9pJex__l6HhB_AkGWDcA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYIXxE2ggJHgCaJNbCdOHirEtWzp8UIr9c31tVBpSdo9hJYfxT_gL_CbmHGOajn61rcosS3H8814xuOZIeSZYNZapzXwt05iwfMkBtyUsQVxyQVosHmI4t_dy0cH4uNhdrhGfnSxMHitspOJQVC72uIZ-QBTdSF6Evnq5DTGqlHoXe1KaDSw2PbLb2CyzTa33gF9nzM2fL__dhS3VQViC9rJPDY209o6sCuM0QmY3IZZ5oHZrC20QL9ckmjpWaE9M4W0ReaMlcyOheEGdzcY9xK5LDjs5BiZPvzQn-lgtvVCiDY2J-HFYCaCJEowUqgswVLLVva_UCbgX7rt31c0__DThu1veINcb_VW-roB2k2y5qtb5EpTyXJ5m9SflhWokrPj79Cbavrr5yYbcDqeNnET0PN0ATRcfKUjPZnQ5hYJxbM8GkKaKIa50FC4wk9jmCjIOY03snGklOrKhQcYMjSf3SEHF7Lqd8l6VVf-PqFclF4yZ0orMyFdZrLcpcwmADbOZZFEJO1WWNk20TnW25io4HDnhWqoooAqKlBFZRF50fc5adJ8nNv6DRKub4kpusOLevpZtRyvUm9z551jaLMaBsi1HpMDemvysZF5RDY6sqtWbszUGcoj8rT_DByPbhxd-XoBbViKWf2F5BG516Cknwko65heqYyIXMHPylRXv1THX0JWcQw6Ljn828sOaWfT-v9SPDj_L56Qq6P93R21s7W3_ZBcY4ERRMz4BlmfTxf-EWh0c_M4sBElRxfNt78B-GpdlQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2aztxcqgQpV1tKVQVUKk3YzteqLRk230ILT8Nib_Ab2LGSbZaHr31FiW25Xi-Gc_Y8wB4KrlzrjQG-dsksRRZEiNuitihuBQSNdgsRPG_288Gh_LNUXq0Bj_aWBhyq2xlYhDU5djRGXmXUnURehLVHTZuEQfb_ZcnpzFVkKKb1racRg2RPb_4hubbdHN3G2n9jPP-zsfXg7ipMBA71FRmsXWpMa5EG8Nak6D5bbnjHhnPudxIuqNLEqM8z43nNlcuT0vrFHdDaYWlnQ7HvQTriqyiDqxv7ewfvF-e8FDu9VzKJlInEXl3KoNcSihuqCjQbktXdsNQNOBfmu7fDpt_3NqGzbB_Ha41Wix7VcPuBqz56iZcrutaLm7B-MOiQsVyevwdezPDfv3c5F3BhpM6igJ7ns6RovOvbGBGI1b7lDA62WMhwIlR0AsLZSz8JMaJotQz5J9NI_WYqcrwgEOG5tPbcHgh634HOtW48veACVl4xUtbOJVKVaY2zcoedwlCTwiVJxH02hXWrkl7TtU3Rjpcv4tc11TRSBUdqKLTCJ4v-5zUST_Obb1FhFu2pITd4cV48lk3_K973mWlL0tOFqzliGPnKVWgdzYbWpVFsNGSXTdSZKrPMB_Bk-Vn5H-61DGVH8-xDe9Rjn-pRAR3a5QsZ4KqOyVbKiJQK_hZmerql-r4S8gxTiHIhcB_e9Ei7Wxa_1-K--f_xWO4gjyr3-7u7z2AqzzwgYy52IDObDL3D1G9m9lHDR8x-HTRrPsbEShjJw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesizing+a+%CE%BD%3D2%2F3+fractional+quantum+Hall+effect+edge+state+from+counter-propagating+%CE%BD%3D1+and+%CE%BD%3D1%2F3+states&rft.jtitle=Nature+communications&rft.au=Cohen%2C+Yonatan&rft.au=Ronen%2C+Yuval&rft.au=Yang%2C+Wenmin&rft.au=Banitt%2C+Daniel&rft.date=2019-04-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft_id=info:doi/10.1038%2Fs41467-019-09920-5&rft_id=info%3Apmid%2F31015449&rft.externalDocID=PMC6478935 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |