Synthesizing a ν=2/3 fractional quantum Hall effect edge state from counter-propagating ν=1 and ν=1/3 states

Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν  = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v  = 1 and an upstream v  = 1/3. However, charge equilibration between...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 1920 - 6
Main Authors Cohen, Yonatan, Ronen, Yuval, Yang, Wenmin, Banitt, Daniel, Park, Jinhong, Heiblum, Moty, Mirlin, Alexander D., Gefen, Yuval, Umansky, Vladimir
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.04.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν  = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v  = 1 and an upstream v  = 1/3. However, charge equilibration between these two modes always led to an observed downstream v  = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v  = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v l and v u . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field. The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν =2/3 fractional quantum Hall state.
AbstractList Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field.Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field.
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v and v . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates' voltage and the magnetic field.
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν  = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v  = 1 and an upstream v  = 1/3. However, charge equilibration between these two modes always led to an observed downstream v  = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v  = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v l and v u . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field. The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν =2/3 fractional quantum Hall state.
The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν=2/3 fractional quantum Hall state.
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν  = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v  = 1 and an upstream v  = 1/3. However, charge equilibration between these two modes always led to an observed downstream v  = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v  = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, v l and v u . By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field.
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was originally proposed to harbor two counter-propagating modes: a downstream v = 1 and an upstream v = 1/3. However, charge equilibration between these two modes always led to an observed downstream v = 2/3 charge mode accompanied by an upstream neutral mode. Here, we present an approach to synthetize a v = 2/3 edge mode from its basic counter-propagating charged constituents, allowing a controlled equilibration between the two counter-propagating charge modes. This platform is based on a carefully designed double-quantum-well, which hosts two populated electronic sub-bands (lower and upper), with corresponding filling factors, vl and vu. By separating the 2D plane to two gated intersecting halves, each with different fillings, counter-propagating chiral modes can be formed along the intersection line. Equilibration between these modes can be controlled with the top gates’ voltage and the magnetic field.The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν=2/3 fractional quantum Hall state.
ArticleNumber 1920
Author Yang, Wenmin
Banitt, Daniel
Umansky, Vladimir
Mirlin, Alexander D.
Cohen, Yonatan
Park, Jinhong
Ronen, Yuval
Gefen, Yuval
Heiblum, Moty
Author_xml – sequence: 1
  givenname: Yonatan
  surname: Cohen
  fullname: Cohen, Yonatan
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 2
  givenname: Yuval
  surname: Ronen
  fullname: Ronen, Yuval
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science, Department of Physics, Harvard University
– sequence: 3
  givenname: Wenmin
  surname: Yang
  fullname: Yang, Wenmin
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 4
  givenname: Daniel
  surname: Banitt
  fullname: Banitt, Daniel
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 5
  givenname: Jinhong
  surname: Park
  fullname: Park, Jinhong
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 6
  givenname: Moty
  surname: Heiblum
  fullname: Heiblum, Moty
  email: moty.heiblum@weizmann.ac.il
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 7
  givenname: Alexander D.
  orcidid: 0000-0002-9986-3521
  surname: Mirlin
  fullname: Mirlin, Alexander D.
  organization: Institut für Nanotechnologie, Karlsruhe Institute of Technology, L.D. Landau Institute for Theoretical Physics RAS
– sequence: 8
  givenname: Yuval
  surname: Gefen
  fullname: Gefen, Yuval
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 9
  givenname: Vladimir
  surname: Umansky
  fullname: Umansky, Vladimir
  organization: Braun Center for Submicron Research, Department of Condensed Matter Physics, Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31015449$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhSNUREvpC7BAkdiwCfVfYmcBEqoKrVSJBbC2xs4kzVWufWs7lcq78Qp9JnxvSmm7qDce2d8cH2vO62LPeYdF8ZaSj5RwdRwFFY2sCG0r0raMVPWL4oARQSsqGd97UO8XRzGuSF68pUqIV8U-p4TWQrQHhf9x49IlxvH36IYSyts_n9gxL_sANo3ewVRezeDSvC7PYJpK7Hu0qcRuwDImSJhJvy6tn13CUG2C38AAaauVlWgJrtsVWXKHxzfFyx6miEd3-2Hx6-vpz5Oz6uL7t_OTLxeVrQVJlbE1gO0EocYAaZU0zDIkSlmrQDDCG0JAIlOAzChpVd0ZK5ntheGGqpofFueLbudhpTdhXEO40R5GvTvwYdAQ0mgn1BRt02HXMUKFMEy2xCJpRI3WNL2RTdb6vGhtZrPGzqJLAaZHoo9v3HipB3-tGyFVy7dmPtwJBH81Y0x6PUaL0wQO_Rw1YzSPphaSZ_T9E3Tl55DnkCneckKzPZmpdw8d3Vv5N9cMsAWwwccYsL9HKNHb_OglPzrnR-_yo7c21ZMmO-ah5RjkX43T8618aY35HTdg-G_7ma6_juvbsQ
CitedBy_id crossref_primary_10_35848_1882_0786_ac4c35
crossref_primary_10_1103_PhysRevB_110_245426
crossref_primary_10_1103_PhysRevLett_128_056802
crossref_primary_10_1038_s42254_021_00351_0
crossref_primary_10_1103_PhysRevB_103_L121302
crossref_primary_10_1103_PhysRevLett_132_136502
crossref_primary_10_1038_s42005_023_01491_8
crossref_primary_10_1103_PhysRevLett_125_157702
crossref_primary_10_1103_PhysRevB_107_245405
crossref_primary_10_1103_PhysRevB_107_245301
crossref_primary_10_1103_PhysRevB_110_155404
crossref_primary_10_1103_PhysRevB_105_165154
crossref_primary_10_1103_PhysRevLett_129_146801
crossref_primary_10_1142_S0217751X20300094
crossref_primary_10_1063_10_0010207
crossref_primary_10_7566_JPSJ_90_102001
crossref_primary_10_1103_PhysRevX_13_031024
crossref_primary_10_1103_PhysRevResearch_3_023083
crossref_primary_10_1038_s41467_023_37495_9
crossref_primary_10_1103_PhysRevResearch_4_043094
crossref_primary_10_1038_s41467_022_32956_z
crossref_primary_10_1103_PhysRevB_99_161302
crossref_primary_10_1038_s41467_021_25631_2
crossref_primary_10_1103_PhysRevB_100_115153
crossref_primary_10_1103_PhysRevB_108_064402
crossref_primary_10_1103_PhysRevLett_123_137701
crossref_primary_10_1038_s41565_024_01751_w
crossref_primary_10_1103_PhysRevLett_129_116803
crossref_primary_10_1103_PhysRevB_104_115416
crossref_primary_10_1007_s00220_022_04443_5
crossref_primary_10_1038_s41467_021_23160_6
crossref_primary_10_1103_PhysRevB_101_075308
crossref_primary_10_1103_PhysRevB_105_165145
crossref_primary_10_1103_PhysRevLett_126_216803
crossref_primary_10_1126_science_abg6116
crossref_primary_10_1038_s41467_021_27805_4
crossref_primary_10_1103_PhysRevLett_132_256601
crossref_primary_10_1103_PhysRevB_103_085103
crossref_primary_10_1103_PhysRevB_110_035402
crossref_primary_10_1103_PhysRevLett_126_256801
Cites_doi 10.1103/PhysRevB.41.12838
10.1103/PhysRevLett.67.2060
10.1103/PhysRevB.51.13449
10.1103/PhysRevLett.72.4129
10.1103/PhysRevLett.111.246803
10.1038/s41467-017-02433-z
10.1103/PhysRevLett.113.266803
10.1103/PhysRevLett.72.2624
10.1038/nature09277
10.1038/ncomms5067
10.1103/PhysRevB.55.15832
10.1038/nphys4010
10.1103/PhysRevLett.48.1559
10.1103/PhysRevLett.64.216
10.1103/PhysRevB.98.115408
10.1103/PhysRevLett.108.226801
10.1038/ncomms2305
10.1038/nphys2384
10.1038/s41567-017-0035-2
10.1016/j.aop.2017.07.015
10.1103/PhysRevLett.64.220
10.1038/nature22052
10.1103/PhysRevB.99.161302
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-09920-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed


CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 6
ExternalDocumentID oai_doaj_org_article_1ec6dedd20144b2790ce0645ecb6fb76
PMC6478935
31015449
10_1038_s41467_019_09920_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-bc5aacd401bba0987b2c2e088cc8a4203600a7e28ae2b87c85dbc72cf4b3b1853
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:51 EDT 2025
Thu Aug 21 14:02:25 EDT 2025
Mon Jul 21 09:49:33 EDT 2025
Wed Aug 13 10:55:59 EDT 2025
Mon Jul 21 05:44:13 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Tue Jul 01 02:21:28 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-bc5aacd401bba0987b2c2e088cc8a4203600a7e28ae2b87c85dbc72cf4b3b1853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9986-3521
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09920-5
PMID 31015449
PQID 2393017907
PQPubID 546298
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_1ec6dedd20144b2790ce0645ecb6fb76
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6478935
proquest_miscellaneous_2213915473
proquest_journals_2393017907
pubmed_primary_31015449
crossref_primary_10_1038_s41467_019_09920_5
crossref_citationtrail_10_1038_s41467_019_09920_5
springer_journals_10_1038_s41467_019_09920_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-23
PublicationDateYYYYMMDD 2019-04-23
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-23
  day: 23
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Johnson, MacDonald (CR5) 1991; 67
Grivnin (CR8) 2014; 113
Nosiglia, Park, Rosenow, Gefen (CR14) 2018; 98
Kane, Fisher (CR21) 1997; 55
Meir (CR6) 1994; 72
MacDonald (CR4) 1990; 64
Protopopov, Gefen, Mirlin (CR13) 2017; 385
Beenakker (CR3) 1990; 64
Kane, Fisher (CR12) 1995; 51
Gurman, Sabo, Heiblum, Umansky, Mahalu (CR18) 2012; 3
CR23
CR22
Ronen, Cohen, Banitt, Heiblum, Umansky (CR20) 2018; 14
Venkatachalam, Hart, Pfeiffer, West, Yacoby (CR19) 2012; 8
Kane, Fisher, Polchinski (CR11) 1994; 72
Sabo (CR9) 2017; 13
Rosenblatt (CR10) 2017; 8
Wen (CR2) 1990; 41
Gross (CR17) 2012; 108
Wang, Meir, Gefen (CR7) 2013; 111
Tsui, Stormer, Gossard (CR1) 1982; 48
Bid (CR15) 2010; 466
Inoue (CR16) 2014; 5
A Grivnin (9920_CR8) 2014; 113
CL Kane (9920_CR11) 1994; 72
I Gurman (9920_CR18) 2012; 3
Y Ronen (9920_CR20) 2018; 14
9920_CR22
A Bid (9920_CR15) 2010; 466
9920_CR23
A Rosenblatt (9920_CR10) 2017; 8
AH MacDonald (9920_CR4) 1990; 64
CL Kane (9920_CR12) 1995; 51
C Nosiglia (9920_CR14) 2018; 98
CL Kane (9920_CR21) 1997; 55
MD Johnson (9920_CR5) 1991; 67
J Wang (9920_CR7) 2013; 111
IV Protopopov (9920_CR13) 2017; 385
Y Meir (9920_CR6) 1994; 72
XG Wen (9920_CR2) 1990; 41
H Inoue (9920_CR16) 2014; 5
V Venkatachalam (9920_CR19) 2012; 8
R Sabo (9920_CR9) 2017; 13
CWJ Beenakker (9920_CR3) 1990; 64
Y Gross (9920_CR17) 2012; 108
DC Tsui (9920_CR1) 1982; 48
References_xml – ident: CR22
– volume: 41
  start-page: 12838
  year: 1990
  end-page: 12844
  ident: CR2
  article-title: Chiral Luttinger liquid and the edge excitations in the fractional quantum Hall states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.12838
– volume: 67
  start-page: 2060
  year: 1991
  end-page: 2063
  ident: CR5
  article-title: Composite edges in v=2/3 fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.2060
– volume: 51
  start-page: 13449
  year: 1995
  end-page: 13466
  ident: CR12
  article-title: Impurity scattering and transport of fractional quantum Hall edge states
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.13449
– volume: 72
  start-page: 4129
  year: 1994
  end-page: 4132
  ident: CR11
  article-title: Randomness at the edge: theory of quantum Hall transport at filling v=2/3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.4129
– volume: 111
  start-page: 246803
  year: 2013
  ident: CR7
  article-title: Edge reconstruction in the ν=2/3 fractional quantum Hall state
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246803
– volume: 8
  year: 2017
  ident: CR10
  article-title: Transmission of heat modes across a potential barrier
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02433-z
– volume: 113
  start-page: 266803
  year: 2014
  ident: CR8
  article-title: Nonequilibrated counterpropagating edge modes in the fractional quantum Hall regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.266803
– volume: 72
  start-page: 2624
  year: 1994
  end-page: 2627
  ident: CR6
  article-title: Composite edge states in the ν=2/3 fractional quantum Hall regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2624
– volume: 466
  start-page: 585
  year: 2010
  end-page: 590
  ident: CR15
  article-title: Observation of neutral modes in the fractional quantum Hall regime
  publication-title: Nature
  doi: 10.1038/nature09277
– volume: 5
  year: 2014
  ident: CR16
  article-title: Proliferation of neutral modes in fractional quantum Hall states
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5067
– volume: 55
  start-page: 15832
  year: 1997
  end-page: 15837
  ident: CR21
  article-title: Quantized thermal transport in the fractional quantum Hall effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.15832
– volume: 13
  start-page: 491
  year: 2017
  end-page: 496
  ident: CR9
  article-title: Edge reconstruction in fractional quantum Hall states
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4010
– volume: 48
  start-page: 1559
  year: 1982
  end-page: 1562
  ident: CR1
  article-title: Two-dimensional magnetotransport in the extreme quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 64
  start-page: 216
  year: 1990
  end-page: 219
  ident: CR3
  article-title: Edge channels for the fractional quantum Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.216
– volume: 98
  start-page: 115408
  year: 2018
  ident: CR14
  article-title: Incoherent transport on the  = 2/3 quantum Hall edge
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.115408
– volume: 108
  start-page: 226801
  year: 2012
  ident: CR17
  article-title: Upstream neutral modes in the fractional quantum Hall effect regime: heat waves or coherent dipoles?
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.226801
– volume: 3
  year: 2012
  ident: CR18
  article-title: Extracting net current from an upstream neutral mode in the fractional quantum Hall regime
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2305
– volume: 8
  start-page: 676
  year: 2012
  end-page: 681
  ident: CR19
  article-title: Local thermometry of neutral modes on the quantum Hall edge
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2384
– volume: 14
  start-page: 411
  year: 2018
  end-page: 416
  ident: CR20
  article-title: Robust integer and fractional helical modes in the quantum Hall effect
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0035-2
– volume: 385
  start-page: 287
  year: 2017
  end-page: 327
  ident: CR13
  article-title: Transport in a disordered ν=2∕3 fractional quantum Hall junction
  publication-title: Ann. Phys. (N. Y).
  doi: 10.1016/j.aop.2017.07.015
– ident: CR23
– volume: 64
  start-page: 220
  year: 1990
  end-page: 223
  ident: CR4
  article-title: Edge states in fractional quantum Hall effect regime
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.220
– volume: 64
  start-page: 220
  year: 1990
  ident: 9920_CR4
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.220
– volume: 8
  year: 2017
  ident: 9920_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02433-z
– volume: 72
  start-page: 2624
  year: 1994
  ident: 9920_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.2624
– volume: 41
  start-page: 12838
  year: 1990
  ident: 9920_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.41.12838
– volume: 466
  start-page: 585
  year: 2010
  ident: 9920_CR15
  publication-title: Nature
  doi: 10.1038/nature09277
– volume: 14
  start-page: 411
  year: 2018
  ident: 9920_CR20
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-017-0035-2
– volume: 55
  start-page: 15832
  year: 1997
  ident: 9920_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.55.15832
– volume: 3
  year: 2012
  ident: 9920_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2305
– volume: 64
  start-page: 216
  year: 1990
  ident: 9920_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.216
– volume: 108
  start-page: 226801
  year: 2012
  ident: 9920_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.226801
– volume: 48
  start-page: 1559
  year: 1982
  ident: 9920_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.48.1559
– volume: 8
  start-page: 676
  year: 2012
  ident: 9920_CR19
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2384
– volume: 113
  start-page: 266803
  year: 2014
  ident: 9920_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.266803
– volume: 5
  year: 2014
  ident: 9920_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5067
– volume: 111
  start-page: 246803
  year: 2013
  ident: 9920_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.246803
– volume: 13
  start-page: 491
  year: 2017
  ident: 9920_CR9
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4010
– ident: 9920_CR22
  doi: 10.1038/nature22052
– volume: 385
  start-page: 287
  year: 2017
  ident: 9920_CR13
  publication-title: Ann. Phys. (N. Y).
  doi: 10.1016/j.aop.2017.07.015
– volume: 67
  start-page: 2060
  year: 1991
  ident: 9920_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.67.2060
– volume: 72
  start-page: 4129
  year: 1994
  ident: 9920_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.72.4129
– volume: 51
  start-page: 13449
  year: 1995
  ident: 9920_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.51.13449
– ident: 9920_CR23
  doi: 10.1103/PhysRevB.99.161302
– volume: 98
  start-page: 115408
  year: 2018
  ident: 9920_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.115408
SSID ssj0000391844
Score 2.5484326
Snippet Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν  = 2/3, was...
Topological edge-reconstruction occurs in hole-conjugate states of the fractional quantum Hall effect. The frequently studied filling factor, ν = 2/3, was...
The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1920
SubjectTerms 142/126
147/135
639/766/119/2794
639/925/927
Balancing
Electromagnetism
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Propagation modes
Quantum Hall effect
Quantum wells
Science
Science (multidisciplinary)
Upstream
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbNpNO0p3OwYOKyyDoRRf2FpJKBhfGHp3HYf1v-xf2N1mV9Iw7Pi_ems6D6nql0kl9xdhTLQEgeo_27UWtVSdq1BtbA7pLpTGC7XIW_7v33fRYvz1pTy6V-qI7YQUeuDBu0iToYopRUugfpLECEmGsJQjdLJgMto1r3qXNVPbByuLWRY9ZMkL1k5XOPkFQzo61uGdq91aiDNj_uyjz18uSP52Y5oXo6Aa7PkaQ_GWh_Ca7koZb7GqpKXl2my0-nA0Y1K1Ov-Fo7vnF-Qs5UXy2LBkMOPLrBrm5-cynfj7n5T4Hp79qPCcXcUo44bmERFrWSCh6HE93o2mmhvsh5gecMndf3WHHR28-vp7WY1WFGjA6W9cBWu8h4r4qBC9sb4IEmdDZAPRe07mkEN4k2fskQ2-gb2MAI2Gmgwq0ut9lB8NiSPcZV9omI2OwYFptYhvaLjYSBIpdKdOLijVbDjsYIcep8sXc5aNv1bsiFYdScVkqrq3Ys92YLwVw46-9X5Hgdj0JLDu_QBVyowq5f6lQxQ63YnejBa8cQcORtxKmYk92zWh7dKDih7TYYB_ZEL6-Nqpi94qW7CjBsJmAjmzFzJ7-7JG63zKcfsr43pT-axV-2_Otpv0g68-sePA_WPGQXZPZRHQt1SE7WC836RFGXevwOBvYd5p_KPs
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg2gT24mdA0KAWFZIcIFKvVn22EsrLUm72T20_61_gd_EjJPdann0FiV2ZHseHntmvmHspRIAEJxD-XZFrmRd5Mg3TQ6oLqVCC7ZOWfxfvtazA_X5sDocL9z6MaxyoxOTog4d0B35hKC6iHsK_fbkNKeqUeRdHUtoXGc3StxpKKTLTD9t71gI_dwoNebKFNJMepU0Q0GZO02DJ6dqZz9KsP3_sjX_Dpn8w2-atqPpHXZ7tCP5u4Hwd9m12N5jN4fKkmf3WfftrEXTrj8-x97c8V8Xb8RE8vlyyGPAnqdrXNP1Tz5ziwUfojo43a3xlGLEKe2Ep0IScZnjQFHvOIqQpj-V3LUhPeAvU_P-ATuYfvz-YZaPtRVyQBttlXuonIOApyvvXdEY7QWIiCoHwDhF3smicDoK46LwRoOpggctYK689LTHP2R7bdfGx4xL1UQtgm9AV0qHyld1KAUUSHwptSkyVm5W2MIIPE71LxY2OcClsQNVLFLFJqrYKmOvtn1OBtiNK1u_J8JtWxJkdnrRLX_YUQJtGaEOMQRBZ0gvkJMgElhfBF_Pva4ztr8hux3luLeXXJexF9vPKIHkVnFt7NbYRpSEsq-0zNijgUu2I0HjmeCOmozpHf7ZGerul_b4KKF8UxJwI3Furzecdjms_y_Fk6tn8ZTdEon5VS7kPttbLdfxGVpVK_88ic5vISofrw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcKt4ECjISN4jq2E6cHDgsiGq1ElxKpd4svxYqLVnYx6H9b_wFfhMzzgMtFCRuUTK2Jp6Hx_bMZ4AXSnjvg7Vo35bnSlY8R71pco_uUiqMYKtUxf_-QzU9U7Pz8nwPxFALk5L2E6RlctNDdtjxWiWT5lRy0zS45ClvwAFBtaNuH0wms9PZuLNCmOe1Un2FDJf1NY13ZqEE1n9dhPlnouRvp6VpEjq5DYd99MgmHb93YC-2d-Fmd5_k5T1Ynl62GNCtL66wNbPsx_fX4liy-aqrXsCW37Y4ktsvbGoXC9blcjDaUWOpsIhRsQlL10fEVY6MorexlBdNPRXMtiE9YJeJfH0fzk7efXw7zfsbFXKPkdkmd7601gdcUzlneVNrJ7yI6Gi8r62iM0nOrY6itlG4Wvu6DM5r4efKSUcz-wPYb5dtfARMqiZqEVzjdal0KF1ZhUJ4jiKXUtc8g2IYYeN7uHG69WJh0rG3rE0nFYNSMUkqpszg5djmawe28U_qNyS4kZKAstOL5eqT6RXHFNFXIYYgaOXohG64jwTRF72r5k5XGRwNYje99a4NwcKRp-I6g-fjZ7Q7OkyxbVxukUYUhK2vtMzgYaclIycYMhPIUZOB3tGfHVZ3v7QXnxO2N5X-NhL_7dWgab_Y-vtQPP4_8idwSyRjULmQR7C_WW3jU4ytNu5Zb0w_ATQBHuI
  priority: 102
  providerName: Springer Nature
Title Synthesizing a ν=2/3 fractional quantum Hall effect edge state from counter-propagating ν=1 and ν=1/3 states
URI https://link.springer.com/article/10.1038/s41467-019-09920-5
https://www.ncbi.nlm.nih.gov/pubmed/31015449
https://www.proquest.com/docview/2393017907
https://www.proquest.com/docview/2213915473
https://pubmed.ncbi.nlm.nih.gov/PMC6478935
https://doaj.org/article/1ec6dedd20144b2790ce0645ecb6fb76
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD7aRaC9IO5kjMpIvEGYYztx8jChrlqpKm1CjEp9i2zHHZNKuqWtRPlv_AV-E8dOUlQoPPCSRIntOD4XnxP7fAfglWDGmEIplG9FQ8ETGiLfZKFBdckFWrCJj-I_v0gGIzEcx-MdaNMdNQM43-rauXxSo2r69uvt6h0K_EkdMp4ez4UXd-rCcbIM3aF4F_ZxZpIuo8F5Y-57zcwzdGhEEzuzveoB3EWLx2HUZBtTlUf032aG_rmb8rclVT9T9e_DvcbEJN2aJx7Aji0fwp066eTqEcwuVyVaffPrb1ibKPLj-wk75mRS1SEOWPN2icO9_EIGajol9YYP4n67ER99RFxECvE5JmwVYkdRJSm3edq1FBFVFv4Cm_TF549h1D_71BuETdqF0KD5tgi1iZUyBTpeWiuapVIzwyxqI2NSJdzCJaVKWpYqy3QqTRoX2khmJkJz7ab_J7BXzkr7DAgXmZWs0JmRsZBFrOOkiJihyBecy5QGELUjnJsGk9ylxpjmfm2cp3lNoBwJlHsC5XEAr9d1bmpEjn-WPnWEW5d0aNr-xqy6yhvhzCNrksIWBXPupWYyo8Y6HD9rdDLRMgngqCV73nJo7rDjnDqjMoCX68conG7FRZV2tsQyLHIA_ELyAJ7WXLLuSctlAcgN_tno6uaT8vqzBwB38cEZx29703Lar279fSgO__tFz-GAeRERIeNHsLeolvYF2mIL3YFdOZZ4TPvvO7Df7Q4vh3g-Pbv48BHv9pJex__l6HhB_AkGWDcA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZKEYIXxE2ggJHgCaJNbCdOHirEtWzp8UIr9c31tVBpSdo9hJYfxT_gL_CbmHGOajn61rcosS3H8814xuOZIeSZYNZapzXwt05iwfMkBtyUsQVxyQVosHmI4t_dy0cH4uNhdrhGfnSxMHitspOJQVC72uIZ-QBTdSF6Evnq5DTGqlHoXe1KaDSw2PbLb2CyzTa33gF9nzM2fL__dhS3VQViC9rJPDY209o6sCuM0QmY3IZZ5oHZrC20QL9ckmjpWaE9M4W0ReaMlcyOheEGdzcY9xK5LDjs5BiZPvzQn-lgtvVCiDY2J-HFYCaCJEowUqgswVLLVva_UCbgX7rt31c0__DThu1veINcb_VW-roB2k2y5qtb5EpTyXJ5m9SflhWokrPj79Cbavrr5yYbcDqeNnET0PN0ATRcfKUjPZnQ5hYJxbM8GkKaKIa50FC4wk9jmCjIOY03snGklOrKhQcYMjSf3SEHF7Lqd8l6VVf-PqFclF4yZ0orMyFdZrLcpcwmADbOZZFEJO1WWNk20TnW25io4HDnhWqoooAqKlBFZRF50fc5adJ8nNv6DRKub4kpusOLevpZtRyvUm9z551jaLMaBsi1HpMDemvysZF5RDY6sqtWbszUGcoj8rT_DByPbhxd-XoBbViKWf2F5BG516Cknwko65heqYyIXMHPylRXv1THX0JWcQw6Ljn828sOaWfT-v9SPDj_L56Qq6P93R21s7W3_ZBcY4ERRMz4BlmfTxf-EWh0c_M4sBElRxfNt78B-GpdlQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2aztxcqgQpV1tKVQVUKk3YzteqLRk230ILT8Nib_Ab2LGSbZaHr31FiW25Xi-Gc_Y8wB4KrlzrjQG-dsksRRZEiNuitihuBQSNdgsRPG_288Gh_LNUXq0Bj_aWBhyq2xlYhDU5djRGXmXUnURehLVHTZuEQfb_ZcnpzFVkKKb1racRg2RPb_4hubbdHN3G2n9jPP-zsfXg7ipMBA71FRmsXWpMa5EG8Nak6D5bbnjHhnPudxIuqNLEqM8z43nNlcuT0vrFHdDaYWlnQ7HvQTriqyiDqxv7ewfvF-e8FDu9VzKJlInEXl3KoNcSihuqCjQbktXdsNQNOBfmu7fDpt_3NqGzbB_Ha41Wix7VcPuBqz56iZcrutaLm7B-MOiQsVyevwdezPDfv3c5F3BhpM6igJ7ns6RovOvbGBGI1b7lDA62WMhwIlR0AsLZSz8JMaJotQz5J9NI_WYqcrwgEOG5tPbcHgh634HOtW48veACVl4xUtbOJVKVaY2zcoedwlCTwiVJxH02hXWrkl7TtU3Rjpcv4tc11TRSBUdqKLTCJ4v-5zUST_Obb1FhFu2pITd4cV48lk3_K973mWlL0tOFqzliGPnKVWgdzYbWpVFsNGSXTdSZKrPMB_Bk-Vn5H-61DGVH8-xDe9Rjn-pRAR3a5QsZ4KqOyVbKiJQK_hZmerql-r4S8gxTiHIhcB_e9Ei7Wxa_1-K--f_xWO4gjyr3-7u7z2AqzzwgYy52IDObDL3D1G9m9lHDR8x-HTRrPsbEShjJw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesizing+a+%CE%BD%3D2%2F3+fractional+quantum+Hall+effect+edge+state+from+counter-propagating+%CE%BD%3D1+and+%CE%BD%3D1%2F3+states&rft.jtitle=Nature+communications&rft.au=Cohen%2C+Yonatan&rft.au=Ronen%2C+Yuval&rft.au=Yang%2C+Wenmin&rft.au=Banitt%2C+Daniel&rft.date=2019-04-23&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft_id=info:doi/10.1038%2Fs41467-019-09920-5&rft_id=info%3Apmid%2F31015449&rft.externalDocID=PMC6478935
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon