Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly

Human islet amyloid polypeptide (hIAPP) self-assembles into amyloid fibrils which deposit in pancreatic islets of type 2 diabetes (T2D) patients. Here, we applied chemical kinetics to study the mechanism of amyloid assembly of wild-type hIAPP and its more amyloidogenic natural variant S20G. We show...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 1040 - 15
Main Authors Xu, Yong, Maya-Martinez, Roberto, Guthertz, Nicolas, Heath, George R., Manfield, Iain W., Breeze, Alexander L., Sobott, Frank, Foster, Richard, Radford, Sheena E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.02.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Human islet amyloid polypeptide (hIAPP) self-assembles into amyloid fibrils which deposit in pancreatic islets of type 2 diabetes (T2D) patients. Here, we applied chemical kinetics to study the mechanism of amyloid assembly of wild-type hIAPP and its more amyloidogenic natural variant S20G. We show that the aggregation of both peptides involves primary nucleation, secondary nucleation and elongation. We also report the discovery of two structurally distinct small-molecule modulators of hIAPP assembly, one delaying the aggregation of wt hIAPP, but not S20G; while the other enhances the rate of aggregation of both variants at substoichiometric concentrations. Investigation into the inhibition mechanism(s) using chemical kinetics, native mass spectrometry, fluorescence titration, SPR and NMR revealed that the inhibitor retards primary nucleation, secondary nucleation and elongation, by binding peptide monomers. By contrast, the accelerator predominantly interacts with species formed in the lag phase. These compounds represent useful chemical tools to study hIAPP aggregation and may serve as promising starting-points for the development of therapeutics for T2D. Here the authors carry out chemical kinetic studies revealing that aggregation of hIAPP and its variant S20G involves secondary nucleation. Two small molecules with novel scaffolds are shown to inhibit or accelerate aggregation by binding different molecular species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-28660-7