Optimizing the specificity of nucleic acid hybridization

The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 4; no. 3; pp. 208 - 214
Main Authors Zhang, David Yu, Chen, Sherry Xi, Yin, Peng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.01.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg 2+ to 47 mM Mg 2+ , and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination. High-fidelity pairing of nucleic acid polymers is important in the development of sensors and for the application of DNA nanotechnology. Here, a set of hybridization probes is described that discriminates single-base changes with high specificity. The probes function robustly across many different temperatures, salinities and nucleic acid concentrations.
AbstractList The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg 2+ to 47 mM Mg 2+ , and with nucleic acid concentrations from 1 nM to 5 μM. Experiments with RNA also showed effective single-base change discrimination.
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 degree C to 37 degree C, from 1 mM Mg super(2+) to 47 mM Mg super(2+), and with nucleic acid concentrations from 1 nM to 5 mu M. Experiments with RNA also showed effective single-base change discrimination.
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg 2+ to 47 mM Mg 2+ , and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination. High-fidelity pairing of nucleic acid polymers is important in the development of sensors and for the application of DNA nanotechnology. Here, a set of hybridization probes is described that discriminates single-base changes with high specificity. The probes function robustly across many different temperatures, salinities and nucleic acid concentrations.
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.
Author Yin, Peng
Chen, Sherry Xi
Zhang, David Yu
AuthorAffiliation 3 Department of Electrical Engineering, University of Washington, Seattle, Washington, USA
2 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
1 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
AuthorAffiliation_xml – name: 2 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
– name: 1 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA
– name: 3 Department of Electrical Engineering, University of Washington, Seattle, Washington, USA
Author_xml – sequence: 1
  givenname: David Yu
  surname: Zhang
  fullname: Zhang, David Yu
  email: david.zhang@wyss.harvard.edu
  organization: Department of Systems Biology, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 2
  givenname: Sherry Xi
  surname: Chen
  fullname: Chen, Sherry Xi
  organization: Department of Electrical Engineering, University of Washington
– sequence: 3
  givenname: Peng
  surname: Yin
  fullname: Yin, Peng
  email: py@hms.harvard.edu
  organization: Department of Systems Biology, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22354435$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1LHDEUhkNRump70x8gA14old0mk2RmclMQ0SoIe9Neh0zmZDfLTLImM4X115v9cFErvUogz3k4ed9jdOC8A4S-ETwhmFY_nJ5DNyE5Kz6hI1JyPmaUiYP9neIROo5xgXHBKSk-o1GeU84Y5Ueomi5729kn62ZZP4csLkFbY7XtV5k3mRt0C1ZnStsmm6_qYBv7pHrr3Rd0aFQb4evuPEF_bm9-X9-NH6a_7q-vHsaaM9yP65KaAogqmlKAqhujMWelyhUYQgtNsQJBOQBWnJTCYF7XjWC8qTktG0MUPUE_t97lUHfQaHB9UK1cBtupsJJeWfn2xdm5nPm_kuW0EgVJgvOdIPjHAWIvOxs1tK1y4IcoRU6JIGVVJvLivyTBKeJkxDihZ-_QhR-CS0EkigpcVZSvqdPXu--Xfok_Ad-3gA4-xgBmjxC8FlVy061cd5tg_A5OLW26SP-27ccjl9uRmLxuBuH1mv_QzwRLtuU
CitedBy_id crossref_primary_10_1016_j_ab_2023_115365
crossref_primary_10_1016_j_snb_2021_131081
crossref_primary_10_1038_s41551_021_00755_4
crossref_primary_10_1021_jacs_5b05351
crossref_primary_10_1093_nar_gkaa521
crossref_primary_10_1021_acs_langmuir_8b02134
crossref_primary_10_1080_00268976_2014_975293
crossref_primary_10_1039_C2SC21464D
crossref_primary_10_1016_j_bios_2016_01_047
crossref_primary_10_1016_j_copbio_2012_11_011
crossref_primary_10_1039_C7RA07481F
crossref_primary_10_1002_anie_201403615
crossref_primary_10_1038_nchem_1713
crossref_primary_10_1016_j_colsurfb_2017_06_021
crossref_primary_10_1016_j_nantod_2021_101308
crossref_primary_10_1039_C4SC03375B
crossref_primary_10_1039_C8CC00838H
crossref_primary_10_1021_acs_analchem_8b03736
crossref_primary_10_1021_acs_analchem_3c04778
crossref_primary_10_1021_ja311990w
crossref_primary_10_1038_s41565_018_0130_2
crossref_primary_10_1038_nprot_2013_136
crossref_primary_10_1021_acssensors_0c00237
crossref_primary_10_1039_C6AN02731H
crossref_primary_10_1002_anie_201206201
crossref_primary_10_1021_bm3017466
crossref_primary_10_1039_C7AN01224A
crossref_primary_10_1016_j_aca_2022_339568
crossref_primary_10_1016_j_snb_2016_07_087
crossref_primary_10_1039_D4MH01158A
crossref_primary_10_1021_jacs_1c06598
crossref_primary_10_1038_s41551_022_00928_9
crossref_primary_10_3389_fbioe_2019_00330
crossref_primary_10_1021_acs_analchem_7b02300
crossref_primary_10_1155_2021_9112407
crossref_primary_10_1016_j_trac_2015_03_008
crossref_primary_10_1007_s40484_017_0097_2
crossref_primary_10_1021_acs_analchem_2c04446
crossref_primary_10_1021_acsnano_5b07102
crossref_primary_10_1038_s41467_022_32387_w
crossref_primary_10_1016_j_bios_2021_113596
crossref_primary_10_1093_nar_gkz580
crossref_primary_10_1073_pnas_1310092110
crossref_primary_10_1021_acs_analchem_8b05920
crossref_primary_10_1021_nn404305e
crossref_primary_10_1039_D0CC05283C
crossref_primary_10_1038_nchem_1283
crossref_primary_10_1021_acs_analchem_4c03409
crossref_primary_10_1016_j_aca_2020_07_022
crossref_primary_10_1021_acs_accounts_7b00040
crossref_primary_10_1021_acsami_8b15330
crossref_primary_10_1021_acsami_9b02107
crossref_primary_10_1021_acsnano_4c01511
crossref_primary_10_1016_j_ab_2013_09_032
crossref_primary_10_1021_nl4019512
crossref_primary_10_1039_c3sm52157e
crossref_primary_10_1016_j_snb_2022_131462
crossref_primary_10_1016_j_snb_2024_137001
crossref_primary_10_1021_nn507282f
crossref_primary_10_1126_scirobotics_adf1511
crossref_primary_10_1039_C9CC01228A
crossref_primary_10_3390_bios13010119
crossref_primary_10_1016_j_talanta_2022_123367
crossref_primary_10_1021_acs_analchem_1c01677
crossref_primary_10_1021_acs_analchem_5b02468
crossref_primary_10_1021_acssensors_2c00183
crossref_primary_10_1016_j_bios_2024_116255
crossref_primary_10_1038_s41467_023_36156_1
crossref_primary_10_1016_j_snb_2018_11_149
crossref_primary_10_1039_C7CC07733E
crossref_primary_10_1039_C3AN01436C
crossref_primary_10_3390_cimb43020036
crossref_primary_10_1002_adma_201402314
crossref_primary_10_1021_acsbiomaterials_0c00038
crossref_primary_10_1002_ange_202217932
crossref_primary_10_1021_acs_analchem_7b01599
crossref_primary_10_1021_acs_langmuir_8b01248
crossref_primary_10_1002_ange_201609108
crossref_primary_10_1002_cjoc_202400444
crossref_primary_10_1073_pnas_2217330120
crossref_primary_10_1039_C5NR05124J
crossref_primary_10_1371_journal_pone_0125494
crossref_primary_10_1002_advs_202412680
crossref_primary_10_1093_nar_gkae683
crossref_primary_10_1088_1361_6439_ac5a62
crossref_primary_10_1002_cbic_201402615
crossref_primary_10_1038_s41551_017_0126_5
crossref_primary_10_1007_s41061_019_0274_z
crossref_primary_10_1002_ange_201309388
crossref_primary_10_1002_ange_202314386
crossref_primary_10_1002_jssc_202300123
crossref_primary_10_1016_j_ymeth_2021_06_014
crossref_primary_10_1007_s00216_020_02569_w
crossref_primary_10_1002_smll_201903489
crossref_primary_10_1261_rna_045047_114
crossref_primary_10_1371_journal_pgen_1007872
crossref_primary_10_1021_acs_accounts_0c00621
crossref_primary_10_1021_acsnano_8b02864
crossref_primary_10_1021_acs_analchem_4c02124
crossref_primary_10_1088_1367_2630_ab4ff8
crossref_primary_10_1021_acs_analchem_7b03564
crossref_primary_10_3390_ijms23084265
crossref_primary_10_1093_nar_gkaa572
crossref_primary_10_1016_j_microc_2024_110581
crossref_primary_10_1039_D2NH00018K
crossref_primary_10_1021_jacs_5b07453
crossref_primary_10_1109_TSP_2022_3172028
crossref_primary_10_1002_cac2_12597
crossref_primary_10_1016_j_bios_2020_112092
crossref_primary_10_1016_j_isci_2024_109453
crossref_primary_10_1016_j_snb_2020_128719
crossref_primary_10_1021_cr300340p
crossref_primary_10_1093_nar_gkad601
crossref_primary_10_1021_acssensors_8b01373
crossref_primary_10_1039_c3nr01010d
crossref_primary_10_1038_ncomms6324
crossref_primary_10_1016_j_cbpa_2012_05_179
crossref_primary_10_1126_science_aaa9483
crossref_primary_10_1021_acssynbio_2c00356
crossref_primary_10_1002_slct_201601075
crossref_primary_10_1016_j_bios_2021_112981
crossref_primary_10_1016_j_cclet_2020_06_009
crossref_primary_10_1016_j_trac_2019_115764
crossref_primary_10_1002_ange_201206201
crossref_primary_10_1016_j_jmoldx_2014_06_008
crossref_primary_10_3390_s20164648
crossref_primary_10_3390_molecules26082130
crossref_primary_10_1039_C6AY01575A
crossref_primary_10_1016_j_aca_2023_342126
crossref_primary_10_1093_nar_gkaa303
crossref_primary_10_1021_acs_analchem_4c03002
crossref_primary_10_1038_nmeth_3626
crossref_primary_10_1016_j_biomaterials_2018_05_050
crossref_primary_10_1021_acs_analchem_5b03369
crossref_primary_10_1021_ja310991r
crossref_primary_10_1038_ncomms2965
crossref_primary_10_1038_s41557_023_01345_4
crossref_primary_10_3748_wjg_v22_i20_4824
crossref_primary_10_1126_science_1259762
crossref_primary_10_1021_acsami_1c02429
crossref_primary_10_1038_nchem_2266
crossref_primary_10_1007_s00604_018_2941_0
crossref_primary_10_1021_acssensors_2c01526
crossref_primary_10_1146_annurev_anchem_061020_104216
crossref_primary_10_1002_celc_201600756
crossref_primary_10_1038_nchem_2820
crossref_primary_10_1039_D0AY01661F
crossref_primary_10_1088_0957_4484_25_4_045101
crossref_primary_10_1039_D0CC03425H
crossref_primary_10_1016_j_aca_2016_01_013
crossref_primary_10_1002_anie_201309388
crossref_primary_10_1002_smll_202402914
crossref_primary_10_1039_C9CS00438F
crossref_primary_10_1038_srep01121
crossref_primary_10_3390_bios8010019
crossref_primary_10_1016_j_foodcont_2024_111036
crossref_primary_10_1021_ja508213d
crossref_primary_10_1021_jacs_8b06685
crossref_primary_10_1002_anie_202314386
crossref_primary_10_1021_acsami_8b16694
crossref_primary_10_1021_acs_chemrev_8b00580
crossref_primary_10_3390_bios13030380
crossref_primary_10_1002_adma_201400451
crossref_primary_10_1021_acs_analchem_3c01064
crossref_primary_10_1039_C7NJ05141G
crossref_primary_10_1016_j_fsigss_2013_10_061
crossref_primary_10_1038_ncomms10319
crossref_primary_10_1039_C5CC04347F
crossref_primary_10_3390_mi12040390
crossref_primary_10_1002_anie_201205862
crossref_primary_10_1016_j_talanta_2022_124047
crossref_primary_10_1021_acs_analchem_5b01683
crossref_primary_10_1021_acsami_2c03341
crossref_primary_10_1016_j_bios_2023_115957
crossref_primary_10_1039_c3nr01601c
crossref_primary_10_1371_journal_pone_0305002
crossref_primary_10_1016_j_bios_2017_12_024
crossref_primary_10_1039_C9NR01156K
crossref_primary_10_1039_D0CC00882F
crossref_primary_10_1021_ja505101a
crossref_primary_10_1002_ange_201705330
crossref_primary_10_1021_jacs_6b00277
crossref_primary_10_1016_j_bioelechem_2021_107924
crossref_primary_10_1039_C5SC01870F
crossref_primary_10_1016_j_mrrev_2016_09_003
crossref_primary_10_1002_anie_202217932
crossref_primary_10_1007_s12274_015_0893_9
crossref_primary_10_1016_j_snb_2021_131244
crossref_primary_10_1002_ange_202114581
crossref_primary_10_1039_C4CC07184K
crossref_primary_10_1039_C9SC05084A
crossref_primary_10_1088_1367_2630_abecb0
crossref_primary_10_1021_acsomega_7b00053
crossref_primary_10_1016_j_bpj_2016_02_027
crossref_primary_10_1039_c3cc45531a
crossref_primary_10_1007_s00604_018_2693_x
crossref_primary_10_1016_j_ccr_2023_215157
crossref_primary_10_1038_s41467_020_19673_1
crossref_primary_10_1016_j_bios_2021_113079
crossref_primary_10_1021_acs_analchem_8b00870
crossref_primary_10_1021_acssensors_8b01604
crossref_primary_10_1093_nsr_nwae118
crossref_primary_10_1016_j_jelechem_2021_115901
crossref_primary_10_1021_acs_accounts_9b00098
crossref_primary_10_34133_icomputing_0112
crossref_primary_10_1038_ncomms14378
crossref_primary_10_1021_jacs_5b05522
crossref_primary_10_1016_j_bbrc_2017_02_024
crossref_primary_10_1021_jacs_3c05879
crossref_primary_10_1007_s11082_024_07488_z
crossref_primary_10_1039_C4CC07272C
crossref_primary_10_1021_acsestengg_2c00063
crossref_primary_10_1021_jacs_6b05628
crossref_primary_10_1021_jacs_3c14673
crossref_primary_10_1016_j_bios_2016_03_070
crossref_primary_10_1038_srep13795
crossref_primary_10_1016_j_cell_2020_02_011
crossref_primary_10_1021_acsnano_0c02439
crossref_primary_10_1016_j_bios_2015_12_005
crossref_primary_10_1016_j_jmoldx_2022_04_015
crossref_primary_10_1016_j_colsurfb_2012_09_020
crossref_primary_10_1073_pnas_2120379119
crossref_primary_10_1002_ange_201403615
crossref_primary_10_1021_acssensors_9b01968
crossref_primary_10_1021_acsami_6b03896
crossref_primary_10_1088_1367_2630_18_5_055002
crossref_primary_10_1002_anie_201609108
crossref_primary_10_1021_acs_analchem_2c00575
crossref_primary_10_1039_C4CC10114F
crossref_primary_10_1016_j_bios_2022_114677
crossref_primary_10_1371_journal_pcbi_1007537
crossref_primary_10_1002_imt2_143
crossref_primary_10_1021_acs_analchem_1c00507
crossref_primary_10_1038_s42003_023_05346_4
crossref_primary_10_1039_C4RA08873E
crossref_primary_10_1016_j_bios_2021_113739
crossref_primary_10_1002_smll_201602983
crossref_primary_10_1038_nchem_2872
crossref_primary_10_1002_smll_201303558
crossref_primary_10_1038_nmeth_2589
crossref_primary_10_2139_ssrn_4167988
crossref_primary_10_1002_smll_202307985
crossref_primary_10_1039_c3nr04015a
crossref_primary_10_1016_j_snb_2016_08_026
crossref_primary_10_1038_nbt_3246
crossref_primary_10_1039_c3lc50672j
crossref_primary_10_1002_adbi_201700060
crossref_primary_10_1021_acs_analchem_4c06211
crossref_primary_10_1021_jacs_2c11208
crossref_primary_10_1093_nar_gkab499
crossref_primary_10_1039_C6SC03048C
crossref_primary_10_1016_j_ymeth_2018_08_002
crossref_primary_10_1073_pnas_1904770116
crossref_primary_10_1007_s00253_021_11197_y
crossref_primary_10_1042_ETLS20190100
crossref_primary_10_1039_C4AN00329B
crossref_primary_10_3390_ijms23020666
crossref_primary_10_1039_C9NR09979D
crossref_primary_10_1021_jacs_1c05236
crossref_primary_10_1021_acs_analchem_8b01078
crossref_primary_10_1021_acssynbio_9b00141
crossref_primary_10_1016_j_omto_2020_07_013
crossref_primary_10_1021_ja4009216
crossref_primary_10_1002_ange_201205862
crossref_primary_10_1016_j_snb_2020_127908
crossref_primary_10_1038_s41467_025_55986_9
crossref_primary_10_3390_molecules25040970
crossref_primary_10_1039_D0AY00946F
crossref_primary_10_1016_j_bios_2013_05_037
crossref_primary_10_1038_s41467_020_19269_9
crossref_primary_10_1039_D3CC01743E
crossref_primary_10_1016_j_aca_2024_342493
crossref_primary_10_1016_j_microc_2024_111955
crossref_primary_10_3390_s19163495
crossref_primary_10_1002_anie_201705330
crossref_primary_10_1016_j_acax_2020_100050
crossref_primary_10_1016_j_bios_2021_113433
crossref_primary_10_1002_anie_202114581
crossref_primary_10_1016_j_bmcl_2018_02_024
crossref_primary_10_1021_acsnano_8b04639
crossref_primary_10_1073_pnas_1814463116
crossref_primary_10_1021_acs_analchem_0c01134
crossref_primary_10_3390_s20113137
crossref_primary_10_1021_acs_analchem_0c01379
crossref_primary_10_1039_C8SC02761G
crossref_primary_10_1039_C6RA17006D
crossref_primary_10_1021_acssensors_7b00005
crossref_primary_10_1038_srep08721
crossref_primary_10_1016_j_bios_2022_114922
crossref_primary_10_1039_C7SM01722G
crossref_primary_10_1021_acssensors_0c00052
crossref_primary_10_1039_D2LC01159J
crossref_primary_10_1016_j_isci_2019_10_029
crossref_primary_10_1038_nchem_2544
crossref_primary_10_1039_D0AN01054E
crossref_primary_10_1016_j_snb_2021_130933
crossref_primary_10_1016_j_trac_2018_08_015
crossref_primary_10_1016_j_bios_2016_06_057
crossref_primary_10_18632_oncotarget_16276
crossref_primary_10_1002_anie_201807956
crossref_primary_10_1016_j_bios_2013_08_005
crossref_primary_10_1021_ac300476k
crossref_primary_10_1016_j_bios_2015_11_071
crossref_primary_10_6064_2012_928783
crossref_primary_10_1002_chem_201304891
crossref_primary_10_1002_smtd_202401102
crossref_primary_10_1016_j_snb_2023_135075
crossref_primary_10_1021_ja505519b
crossref_primary_10_1039_C6AN01555G
crossref_primary_10_1002_rmv_2356
crossref_primary_10_1021_acsnano_7b06728
crossref_primary_10_1016_j_lwt_2021_112901
crossref_primary_10_1021_jacs_1c12659
crossref_primary_10_1089_nat_2020_0847
crossref_primary_10_3390_chemosensors3030224
crossref_primary_10_1016_j_bios_2016_01_055
crossref_primary_10_1021_acs_analchem_3c02431
crossref_primary_10_1111_1755_0998_12986
crossref_primary_10_1021_acs_analchem_1c05280
crossref_primary_10_1002_adma_202311634
crossref_primary_10_1016_j_molcel_2022_02_026
crossref_primary_10_1021_am507059n
crossref_primary_10_1021_acs_analchem_8b03963
crossref_primary_10_1002_ange_201807956
crossref_primary_10_1016_j_aca_2019_04_016
Cites_doi 10.1126/science.1148532
10.1093/nar/gnf121
10.1038/nmeth.1321
10.1021/jp106754k
10.1038/nbt0198-49
10.1126/science.239.4839.487
10.1021/nl104555t
10.1126/science.270.5235.467
10.1093/nar/gkn087
10.1038/nature04586
10.1016/S0167-7799(02)00038-0
10.1093/nar/23.11.1841
10.1529/biophysj.105.070904
10.1038/nchem.957
10.1093/nar/gkg212
10.1038/ng1547
10.1021/ja906987s
10.1073/pnas.96.11.6171
10.1093/nar/28.9.1929
10.1021/ja900228j
10.1137/060651100
10.1038/35020524
10.1038/nbt986
10.1016/j.cell.2009.01.002
10.1128/jb.172.2.762-770.1990
10.1002/anie.200900369
10.1038/nature06451
10.1038/nature03702
10.1146/annurev.biophys.32.110601.141800
10.1038/nature08016
10.1038/nbt0396-303
10.1126/science.1154533
10.1146/annurev-biochem-060308-102244
10.1021/ja0628093
10.1093/nar/gkq088
10.1093/nar/30.2.e5
10.1093/nar/gkl422
10.1146/annurev.bioeng.9.060906.152037
10.1038/898
10.1126/science.2466341
10.1073/pnas.1006377107
ContentType Journal Article
Copyright Springer Nature Limited 2012
Copyright Nature Publishing Group Mar 2012
2012 Macmillan Publishers Limited. All rights reserved. 2012
Copyright_xml – notice: Springer Nature Limited 2012
– notice: Copyright Nature Publishing Group Mar 2012
– notice: 2012 Macmillan Publishers Limited. All rights reserved. 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7TM
7X8
5PM
DOI 10.1038/nchem.1246
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Nucleic Acids Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE

Nucleic Acids Abstracts

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1755-4349
EndPage 214
ExternalDocumentID PMC4238961
2758510601
22354435
10_1038_nchem_1246
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States--US
Massachusetts
GeographicLocations_xml – name: United States--US
– name: Massachusetts
GrantInformation_xml – fundername: Howard Hughes Medical Institute
– fundername: NIH HHS
  grantid: 1DP2OD007292
– fundername: NIH HHS
  grantid: DP2 OD007292
GroupedDBID ---
0R~
123
29M
39C
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACSTC
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGQPQ
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
AIYXT
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NFIDA
NNMJJ
O9-
ODYON
P2P
PDBOC
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
7TM
7X8
5PM
ID FETCH-LOGICAL-c540t-b73f6e1a6d79eabdfc0547a2aef136c30ae935ee0a5179f05bbd945db537df1a3
IEDL.DBID 7X7
ISSN 1755-4330
1755-4349
IngestDate Thu Aug 21 18:19:27 EDT 2025
Fri Jul 11 06:23:11 EDT 2025
Tue Aug 05 10:22:43 EDT 2025
Sat Aug 23 14:25:11 EDT 2025
Mon Jul 21 06:06:30 EDT 2025
Tue Jul 01 01:32:38 EDT 2025
Thu Apr 24 23:06:52 EDT 2025
Sun Aug 31 08:58:40 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b73f6e1a6d79eabdfc0547a2aef136c30ae935ee0a5179f05bbd945db537df1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink http://doi.org/10.1038/nchem.1246
PMID 22354435
PQID 1039088350
PQPubID 536302
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238961
proquest_miscellaneous_923191787
proquest_miscellaneous_1024661300
proquest_journals_1039088350
pubmed_primary_22354435
crossref_primary_10_1038_nchem_1246
crossref_citationtrail_10_1038_nchem_1246
springer_journals_10_1038_nchem_1246
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20120122
PublicationDateYYYYMMDD 2012-01-22
PublicationDate_xml – month: 1
  year: 2012
  text: 20120122
  day: 22
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nature Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2012
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Saiki (CR2) 1988; 239
Zhang, Seelig (CR13) 2011; 3
Xiao (CR19) 2009; 48
Lizardi (CR40) 1998; 19
Isaacs (CR41) 2004; 22
Venkataraman, Dirks, Ueda, Pierce (CR42) 2010; 107
Tyagi (CR16) 2009; 6
Tyagi, Bratu, Kramer (CR15) 1998; 16
Dave, Liu (CR21) 2010; 114
Schena, Shalon, Davis, Brown (CR3) 1995; 270
Aldaye, Palmer, Sleiman (CR11) 2008; 321
Tan, Chen (CR24) 2006; 90
Yurke, Turberfield, Mills, Simmel, Neumann (CR25) 2000; 406
Dirks, Bois, Schaeffer, Winfree, Pierce (CR31) 2007; 49
Temsamani, Kubert, Agrawal (CR33) 1995; 23
Gunderson, Steemers, Lee, Mendoza, Chee (CR4) 2005; 37
Bommarito, Peyret, SantaLucia (CR30) 2000; 28
Yin, Choi, Calvert, Pierce (CR12) 2008; 451
Kim, Misra (CR39) 2007; 9
SantaLucia, Hicks (CR22) 2004; 33
Kolpashchikov (CR20) 2006; 128
Zhang, Turberfield, Yurke, Winfree (CR27) 2007; 318
Tyagi, Kramer (CR14) 1996; 14
Petersen, Wengel (CR29) 2003; 21
Tsourkas, Behlke, Rose, Bao (CR18) 2003; 31
Lu (CR35) 2005; 435
Seeman (CR8) 2010; 79
Bartel (CR1) 2009; 136
Douglas (CR10) 2009; 459
Zhang, Winfree (CR26) 2009; 131
Amann, Krumholz, Stahl (CR7) 1990; 172
He, Rapireddy, Bahal, Sahu, Ly (CR28) 2009; 131
CR23
Marras, Kramer, Tyagi (CR34) 2002; 30
Bonnet, Tyagi, Libchaber, Kramer (CR17) 1999; 96
Zhang, Winfree (CR32) 2010; 38
Rothemund (CR9) 2006; 440
DeLong, Wickham, Pace (CR6) 1989; 243
Subramanian, Chakraborty, Sha, Seeman (CR37) 2010; 11
Gao, Wolf, Georgiadis (CR38) 2006; 34
Koltai, Weingarten-Baror (CR5) 2008; 36
Li, Luan, Guo, Liang (CR36) 2002; 30
P Rothemund (BFnchem1246_CR9) 2006; 440
H Koltai (BFnchem1246_CR5) 2008; 36
Y Xiao (BFnchem1246_CR19) 2009; 48
DY Zhang (BFnchem1246_CR13) 2011; 3
DP Bartel (BFnchem1246_CR1) 2009; 136
B Yurke (BFnchem1246_CR25) 2000; 406
NC Seeman (BFnchem1246_CR8) 2010; 79
RK Saiki (BFnchem1246_CR2) 1988; 239
G He (BFnchem1246_CR28) 2009; 131
M Petersen (BFnchem1246_CR29) 2003; 21
M Schena (BFnchem1246_CR3) 1995; 270
EF DeLong (BFnchem1246_CR6) 1989; 243
ZJ Tan (BFnchem1246_CR24) 2006; 90
KL Gunderson (BFnchem1246_CR4) 2005; 37
J Temsamani (BFnchem1246_CR33) 1995; 23
J Lu (BFnchem1246_CR35) 2005; 435
FA Aldaye (BFnchem1246_CR11) 2008; 321
S Tyagi (BFnchem1246_CR15) 1998; 16
S Tyagi (BFnchem1246_CR16) 2009; 6
FJ Isaacs (BFnchem1246_CR41) 2004; 22
RM Dirks (BFnchem1246_CR31) 2007; 49
S Tyagi (BFnchem1246_CR14) 1996; 14
Y Gao (BFnchem1246_CR38) 2006; 34
BFnchem1246_CR23
SA Marras (BFnchem1246_CR34) 2002; 30
HKK Subramanian (BFnchem1246_CR37) 2010; 11
S Venkataraman (BFnchem1246_CR42) 2010; 107
RI Amann (BFnchem1246_CR7) 1990; 172
A Tsourkas (BFnchem1246_CR18) 2003; 31
Q Li (BFnchem1246_CR36) 2002; 30
SM Douglas (BFnchem1246_CR10) 2009; 459
DY Zhang (BFnchem1246_CR27) 2007; 318
G Bonnet (BFnchem1246_CR17) 1999; 96
S Kim (BFnchem1246_CR39) 2007; 9
DY Zhang (BFnchem1246_CR26) 2009; 131
J SantaLucia (BFnchem1246_CR22) 2004; 33
S Bommarito (BFnchem1246_CR30) 2000; 28
P Yin (BFnchem1246_CR12) 2008; 451
N Dave (BFnchem1246_CR21) 2010; 114
DM Kolpashchikov (BFnchem1246_CR20) 2006; 128
DY Zhang (BFnchem1246_CR32) 2010; 38
PM Lizardi (BFnchem1246_CR40) 1998; 19
22354426 - Nat Chem. 2012 Feb 21;4(3):155-7. doi: 10.1038/nchem.1283.
References_xml – volume: 318
  start-page: 1121
  year: 2007
  end-page: 1125
  ident: CR27
  article-title: Engineering entropy-driven reactions and networks catalyzed by DNA
  publication-title: Science
  doi: 10.1126/science.1148532
– volume: 30
  start-page: e122
  year: 2002
  ident: CR34
  article-title: Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnf121
– volume: 6
  start-page: 331
  year: 2009
  end-page: 338
  ident: CR16
  article-title: Imaging intracellular RNA distribution and dynamics in living cells
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1321
– volume: 114
  start-page: 15694
  year: 2010
  end-page: 15699
  ident: CR21
  article-title: Fast molecular beacon hybridization in organic solvents with improved target specificity
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp106754k
– volume: 16
  start-page: 49
  year: 1998
  end-page: 53
  ident: CR15
  article-title: Multicolor molecular beacons for allele discrimination
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt0198-49
– volume: 239
  start-page: 487
  year: 1988
  end-page: 491
  ident: CR2
  article-title: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase
  publication-title: Science
  doi: 10.1126/science.239.4839.487
– volume: 11
  start-page: 910
  year: 2010
  end-page: 913
  ident: CR37
  article-title: The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami
  publication-title: Nano Lett.
  doi: 10.1021/nl104555t
– volume: 270
  start-page: 467
  year: 1995
  end-page: 470
  ident: CR3
  article-title: Quantitative monitoring of gene expression patterns with a complementary DNA microarray
  publication-title: Science
  doi: 10.1126/science.270.5235.467
– volume: 36
  start-page: 2395
  year: 2008
  end-page: 2405
  ident: CR5
  article-title: Specificity of DNA microarray hybridization: characterization, effectors, and approaches for data correction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn087
– volume: 440
  start-page: 297
  year: 2006
  end-page: 302
  ident: CR9
  article-title: Folding DNA to create nanoscale shapes and patterns
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 21
  start-page: 74
  year: 2003
  end-page: 81
  ident: CR29
  article-title: LNA: a versatile tool for therapeutics and genomics
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(02)00038-0
– volume: 23
  start-page: 1841
  year: 1995
  end-page: 1844
  ident: CR33
  article-title: Sequence identity of the –1 product of a synthetic oligonucleotide
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.11.1841
– volume: 90
  start-page: 1175
  year: 2006
  end-page: 1190
  ident: CR24
  article-title: Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.070904
– volume: 3
  start-page: 103
  year: 2011
  end-page: 113
  ident: CR13
  article-title: Dynamic DNA nanotechnology using strand displacement reactions
  publication-title: Nature Chem.
  doi: 10.1038/nchem.957
– volume: 31
  start-page: 1319
  year: 2003
  end-page: 1330
  ident: CR18
  article-title: Hybridization kinetics and thermodynamics of molecular beacons
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg212
– volume: 37
  start-page: 549
  year: 2005
  end-page: 554
  ident: CR4
  article-title: A genome-wide scalable SNP genotyping assay using microarray technology
  publication-title: Nature Genet.
  doi: 10.1038/ng1547
– volume: 131
  start-page: 17303
  year: 2009
  end-page: 17314
  ident: CR26
  article-title: Control of DNA strand displacement kinetics using toehold exchange
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906987s
– volume: 96
  start-page: 6171
  year: 1999
  end-page: 6176
  ident: CR17
  article-title: Thermodynamic basis of the enhanced specificity of structured DNA probes
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.11.6171
– volume: 28
  start-page: 1929
  year: 2000
  end-page: 1934
  ident: CR30
  article-title: Thermodynamic parameters for DNA sequences with dangling ends
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.9.1929
– ident: CR23
– volume: 131
  start-page: 12088
  year: 2009
  end-page: 12090
  ident: CR28
  article-title: Strand invasion of extended, mixed-sequence B-DNA by γPNAs
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900228j
– volume: 49
  start-page: 65
  year: 2007
  end-page: 88
  ident: CR31
  article-title: Thermodynamic analysis of interacting nucleic acid strands
  publication-title: SIAM Rev.
  doi: 10.1137/060651100
– volume: 406
  start-page: 605
  year: 2000
  end-page: 608
  ident: CR25
  article-title: A DNA-fuelled molecular machine made of DNA
  publication-title: Nature
  doi: 10.1038/35020524
– volume: 22
  start-page: 841
  year: 2004
  end-page: 847
  ident: CR41
  article-title: Engineered riboregulators enable post-transcriptional control of gene expression
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt986
– volume: 136
  start-page: 215
  year: 2009
  end-page: 233
  ident: CR1
  article-title: MicroRNAs: target recognition and regulatory functions
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 172
  start-page: 762
  year: 1990
  end-page: 770
  ident: CR7
  article-title: Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.2.762-770.1990
– volume: 48
  start-page: 4354
  year: 2009
  end-page: 4358
  ident: CR19
  article-title: Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200900369
– volume: 451
  start-page: 318
  year: 2008
  end-page: 322
  ident: CR12
  article-title: Programming biomolecular self-assembly pathways
  publication-title: Nature
  doi: 10.1038/nature06451
– volume: 435
  start-page: 834
  year: 2005
  end-page: 838
  ident: CR35
  article-title: MicroRNA expression profiles classify human cancers
  publication-title: Nature
  doi: 10.1038/nature03702
– volume: 33
  start-page: 415
  year: 2004
  end-page: 440
  ident: CR22
  article-title: The thermodynamics of DNA structural motifs
  publication-title: Ann. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.32.110601.141800
– volume: 459
  start-page: 414
  year: 2009
  end-page: 418
  ident: CR10
  article-title: Self-assembly of DNA into nanoscale three-dimensional shapes
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 14
  start-page: 303
  year: 1996
  end-page: 308
  ident: CR14
  article-title: Molecular beacons: probes that fluoresce upon hybridization
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt0396-303
– volume: 321
  start-page: 1795
  year: 2008
  end-page: 1799
  ident: CR11
  article-title: Assembling materials with DNA as the guide
  publication-title: Science
  doi: 10.1126/science.1154533
– volume: 79
  start-page: 65
  year: 2010
  end-page: 87
  ident: CR8
  article-title: Nanomaterials based on DNA
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060308-102244
– volume: 128
  start-page: 10625
  year: 2006
  end-page: 10628
  ident: CR20
  article-title: A binary DNA probe for highly specific nucleic acid recognition
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0628093
– volume: 38
  start-page: 4182
  year: 2010
  end-page: 4197
  ident: CR32
  article-title: Robustness and modularity properties of a non-covalent DNA catalytic reaction
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq088
– volume: 30
  start-page: e5
  year: 2002
  ident: CR36
  article-title: A new class of homogeneous nucleic acid probe based on specific displacement hybridization
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.2.e5
– volume: 34
  start-page: 3370
  year: 2006
  end-page: 3377
  ident: CR38
  article-title: Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl422
– volume: 9
  start-page: 289
  year: 2007
  end-page: 320
  ident: CR39
  article-title: SNP genotyping: technologies and biomedical applications
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.9.060906.152037
– volume: 19
  start-page: 225
  year: 1998
  end-page: 232
  ident: CR40
  article-title: Mutation detection and single-molecule counting using isothermal rolling-circle amplification
  publication-title: Nature Genet.
  doi: 10.1038/898
– volume: 243
  start-page: 1360
  year: 1989
  end-page: 1363
  ident: CR6
  article-title: Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells
  publication-title: Science
  doi: 10.1126/science.2466341
– volume: 107
  start-page: 16777
  year: 2010
  end-page: 16782
  ident: CR42
  article-title: Selective cell death mediated by small conditional RNAs
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1006377107
– volume: 406
  start-page: 605
  year: 2000
  ident: BFnchem1246_CR25
  publication-title: Nature
  doi: 10.1038/35020524
– volume: 136
  start-page: 215
  year: 2009
  ident: BFnchem1246_CR1
  publication-title: Cell
  doi: 10.1016/j.cell.2009.01.002
– volume: 440
  start-page: 297
  year: 2006
  ident: BFnchem1246_CR9
  publication-title: Nature
  doi: 10.1038/nature04586
– volume: 435
  start-page: 834
  year: 2005
  ident: BFnchem1246_CR35
  publication-title: Nature
  doi: 10.1038/nature03702
– volume: 270
  start-page: 467
  year: 1995
  ident: BFnchem1246_CR3
  publication-title: Science
  doi: 10.1126/science.270.5235.467
– volume: 30
  start-page: e5
  year: 2002
  ident: BFnchem1246_CR36
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/30.2.e5
– volume: 37
  start-page: 549
  year: 2005
  ident: BFnchem1246_CR4
  publication-title: Nature Genet.
  doi: 10.1038/ng1547
– volume: 11
  start-page: 910
  year: 2010
  ident: BFnchem1246_CR37
  publication-title: Nano Lett.
  doi: 10.1021/nl104555t
– volume: 114
  start-page: 15694
  year: 2010
  ident: BFnchem1246_CR21
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp106754k
– volume: 33
  start-page: 415
  year: 2004
  ident: BFnchem1246_CR22
  publication-title: Ann. Rev. Biophys. Biomol. Struct.
  doi: 10.1146/annurev.biophys.32.110601.141800
– volume: 239
  start-page: 487
  year: 1988
  ident: BFnchem1246_CR2
  publication-title: Science
  doi: 10.1126/science.239.4839.487
– volume: 21
  start-page: 74
  year: 2003
  ident: BFnchem1246_CR29
  publication-title: Trends Biotechnol.
  doi: 10.1016/S0167-7799(02)00038-0
– volume: 172
  start-page: 762
  year: 1990
  ident: BFnchem1246_CR7
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.172.2.762-770.1990
– volume: 321
  start-page: 1795
  year: 2008
  ident: BFnchem1246_CR11
  publication-title: Science
  doi: 10.1126/science.1154533
– volume: 28
  start-page: 1929
  year: 2000
  ident: BFnchem1246_CR30
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/28.9.1929
– ident: BFnchem1246_CR23
– volume: 9
  start-page: 289
  year: 2007
  ident: BFnchem1246_CR39
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.9.060906.152037
– volume: 243
  start-page: 1360
  year: 1989
  ident: BFnchem1246_CR6
  publication-title: Science
  doi: 10.1126/science.2466341
– volume: 6
  start-page: 331
  year: 2009
  ident: BFnchem1246_CR16
  publication-title: Nature Methods
  doi: 10.1038/nmeth.1321
– volume: 131
  start-page: 12088
  year: 2009
  ident: BFnchem1246_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja900228j
– volume: 79
  start-page: 65
  year: 2010
  ident: BFnchem1246_CR8
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060308-102244
– volume: 451
  start-page: 318
  year: 2008
  ident: BFnchem1246_CR12
  publication-title: Nature
  doi: 10.1038/nature06451
– volume: 90
  start-page: 1175
  year: 2006
  ident: BFnchem1246_CR24
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.105.070904
– volume: 3
  start-page: 103
  year: 2011
  ident: BFnchem1246_CR13
  publication-title: Nature Chem.
  doi: 10.1038/nchem.957
– volume: 36
  start-page: 2395
  year: 2008
  ident: BFnchem1246_CR5
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn087
– volume: 16
  start-page: 49
  year: 1998
  ident: BFnchem1246_CR15
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt0198-49
– volume: 30
  start-page: e122
  year: 2002
  ident: BFnchem1246_CR34
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gnf121
– volume: 22
  start-page: 841
  year: 2004
  ident: BFnchem1246_CR41
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt986
– volume: 459
  start-page: 414
  year: 2009
  ident: BFnchem1246_CR10
  publication-title: Nature
  doi: 10.1038/nature08016
– volume: 318
  start-page: 1121
  year: 2007
  ident: BFnchem1246_CR27
  publication-title: Science
  doi: 10.1126/science.1148532
– volume: 34
  start-page: 3370
  year: 2006
  ident: BFnchem1246_CR38
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl422
– volume: 49
  start-page: 65
  year: 2007
  ident: BFnchem1246_CR31
  publication-title: SIAM Rev.
  doi: 10.1137/060651100
– volume: 96
  start-page: 6171
  year: 1999
  ident: BFnchem1246_CR17
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.96.11.6171
– volume: 131
  start-page: 17303
  year: 2009
  ident: BFnchem1246_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906987s
– volume: 19
  start-page: 225
  year: 1998
  ident: BFnchem1246_CR40
  publication-title: Nature Genet.
  doi: 10.1038/898
– volume: 14
  start-page: 303
  year: 1996
  ident: BFnchem1246_CR14
  publication-title: Nature Biotechnol.
  doi: 10.1038/nbt0396-303
– volume: 31
  start-page: 1319
  year: 2003
  ident: BFnchem1246_CR18
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg212
– volume: 128
  start-page: 10625
  year: 2006
  ident: BFnchem1246_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0628093
– volume: 48
  start-page: 4354
  year: 2009
  ident: BFnchem1246_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200900369
– volume: 107
  start-page: 16777
  year: 2010
  ident: BFnchem1246_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1006377107
– volume: 23
  start-page: 1841
  year: 1995
  ident: BFnchem1246_CR33
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/23.11.1841
– volume: 38
  start-page: 4182
  year: 2010
  ident: BFnchem1246_CR32
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq088
– reference: 22354426 - Nat Chem. 2012 Feb 21;4(3):155-7. doi: 10.1038/nchem.1283.
SSID ssj0065316
Score 2.5230856
Snippet The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 208
SubjectTerms 631/1647/1888/1890
631/1647/666
639/638/45
639/925/927
Acids
Analytical Chemistry
Base Pairing
Base Sequence
Biochemistry
Biology
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - metabolism
Equilibrium
Humans
Hybridization
Inorganic Chemistry
Melting
Molecular Sequence Data
Nucleic Acid Hybridization - methods
Nucleic Acid Probes - chemistry
Nucleic Acid Probes - metabolism
Nucleic acids
Organic Chemistry
Physical Chemistry
Probes
RNA - chemistry
RNA - metabolism
Salinity
Substrate Specificity
Temperature
Thermodynamics
Title Optimizing the specificity of nucleic acid hybridization
URI https://link.springer.com/article/10.1038/nchem.1246
https://www.ncbi.nlm.nih.gov/pubmed/22354435
https://www.proquest.com/docview/1039088350
https://www.proquest.com/docview/1024661300
https://www.proquest.com/docview/923191787
https://pubmed.ncbi.nlm.nih.gov/PMC4238961
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKwQXBOUV-pARvXAwdeL4kVNFqy4VEgUhKu0tcvxQV6LZQreH8uuZySaBbYFLLp5Ezowfnz0z3wDsamW8SZXiRcglL5MLvHKF484XTri8zMvuwu3jiT4-LT9M1bS_cLvswyqHNbFbqMPc0x35HrkscUZIJfYvvnOqGkXe1b6Exl1YJ-oyCuky0_HApXF8ddlFRinKDBIDPam0ey2q5Pwtbm56dUO6hTJvB0ve8Jh2G9HkETzsESR7tzT5Y7gT2w24t6wpeb0B9w-HEm5PwH7CBeF89hO_wxDoMUqrpNAgRN5snlhLXMYzz5yfBXZ2TblbfVbmUzidHH09POZ9qQTuEXIteGNk0jF3OpgquiYkj1DMoNJjyqX2UrhYSRWjcETJlYRqmlCVKjRKmpByJ5_BWjtv4wtgOjnlQxLRRiJTExZNaayovHBBxqrM4M2gr9r3POJUzuJb3fmzpa073dak2wxej7IXS_aMv0ptDWqv-xl0Wf-2dwavxmbUHzk0XBvnVySDb9MBCGXYP2QIwOKR1JoMni8NOfYEkRGx_6kMzIqJRwGi3l5taWdnHQU3glBb6TyD3WEw_Nnzmz_48v8_uAkPEIZRhAwvii1YW_y4itsIdRbNTjee8Wkn73dg_eDo5POXX4DxAqE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCAqU0AJGlAMHt04cx8kBIVRYtvTBpZV6Sx0_1JVottCt0PZH8RuZyWNhW-DWcyaWPR7bnz0z3wCsZ0pbHQrFExdLngbjeGESw41NjDBxGqfNg9vefjY8TD8fqaMF-NnnwlBYZb8nNhu1G1t6I98klyWuCKnEu7NvnKpGkXe1L6HRmsWOn_7AK9v52-0POL-vk2Tw8WBryLuqAtwiOpnwSsuQ-dhkThfeVC5YRC0a--dDLDMrhfGFVN4LQ-xVQaiqckWqXKWkdiE2Etu9BbdTKQtaUfngU7_zZ2jPTTaTVooykURPhyrzzRqn4HQDD9Ns_gC8hmqvB2de8dA2B9_gPtzrECt735rYA1jw9TLcaWtYTpdhaasvGfcQ8i-4AZ2OLrEdhsCSURonhSIh0mfjwGriTh5ZZuzIsZMp5Yp1WaCP4PBGlPgYFutx7Z8Ay4JR1gXhc0_kbSJH09G5KKwwTvoijeBNr6_SdrzlVD7ja9n4z2VeNrotSbcRvJrJnrVsHX-VWuvVXnYr9rz8bV8RvJx9Rv2RA8XUfnxBMvg3XbhQhv1DhgAzXoFzHcFKO5GzniASI7ZBFYGem-KZAFF9z3-pRycN5TeC3rzI4gjWe2P4s-dXB_j0_wN8AUvDg73dcnd7f2cV7iIEpOgcniRrsDj5fuGfIcyaVM8b22ZwfNOL6RfjyT7v
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOUVKGBEOXAw68RxnBwQQi2rlkLhQKW9pY4f6ko0W-hWaPlp_Dpm8oJtgVvPmVjOeMb-nJn5BmAjU9rqUCieuFjyNBjHC5MYbmxihInTOG1-uH3Yy7b303cTNVmBn30tDKVV9ntis1G7maV_5CMKWaJHSCVGoUuL-LQ1fn38lVMHKYq09u00WhPZ9YvveH07ebWzhWv9PEnGbz9vbvOuwwC3iFTmvNIyZD42mdOFN5ULFhGMxrn6EMvMSmF8IZX3whCTVRCqqlyRKlcpqV2IjcRxL8FlLVVMPqYnw2UvQ9tuKpu0UlSVJHpqVJmPalyOo5d4sGbLh-E5hHs-UfNMtLY5BMc34UaHXtmb1txuwYqv1-BK289ysQbXNvv2cbch_4ib0dH0B47DEGQyKumktCRE_WwWWE08ylPLjJ06drigurGuIvQO7F-IEu_Caj2r_X1gWTDKuiB87onITeRoRjoXhRXGSV-kEbzo9VXajsOcWml8KZtYuszLRrcl6TaCZ4Psccvc8Vep9V7tZee9J-VvW4vg6fAY9UfBFFP72SnJ4Nt0-UIZ9g8ZAs94Hc51BPfahRxmgqiMmAdVBHppiQcBov1eflJPDxv6bwTAeZHFEWz0xvDnzM9-4IP_f-ATuIpuVL7f2dt9CNcRDVKiDk-SdVidfzv1jxBxzavHjWkzOLhoX_oFSgVDHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+specificity+of+nucleic+acid+hybridization&rft.jtitle=Nature+chemistry&rft.au=Zhang%2C+David+Yu&rft.au=Chen%2C+Sherry+Xi&rft.au=Yin%2C+Peng&rft.date=2012-01-22&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=4&rft.issue=3&rft.spage=208&rft.epage=214&rft_id=info:doi/10.1038%2Fnchem.1246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nchem_1246
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon