Optimizing the specificity of nucleic acid hybridization
The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here...
Saved in:
Published in | Nature chemistry Vol. 4; no. 3; pp. 208 - 214 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.01.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg
2+
to 47 mM Mg
2+
, and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.
High-fidelity pairing of nucleic acid polymers is important in the development of sensors and for the application of DNA nanotechnology. Here, a set of hybridization probes is described that discriminates single-base changes with high specificity. The probes function robustly across many different temperatures, salinities and nucleic acid concentrations. |
---|---|
AbstractList | The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination. The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg 2+ to 47 mM Mg 2+ , and with nucleic acid concentrations from 1 nM to 5 μM. Experiments with RNA also showed effective single-base change discrimination. The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 degree C to 37 degree C, from 1 mM Mg super(2+) to 47 mM Mg super(2+), and with nucleic acid concentrations from 1 nM to 5 mu M. Experiments with RNA also showed effective single-base change discrimination. The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg 2+ to 47 mM Mg 2+ , and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination. High-fidelity pairing of nucleic acid polymers is important in the development of sensors and for the application of DNA nanotechnology. Here, a set of hybridization probes is described that discriminates single-base changes with high specificity. The probes function robustly across many different temperatures, salinities and nucleic acid concentrations. The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination.The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed 'toehold exchange' probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg(2+) to 47 mM Mg(2+), and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination. |
Author | Yin, Peng Chen, Sherry Xi Zhang, David Yu |
AuthorAffiliation | 3 Department of Electrical Engineering, University of Washington, Seattle, Washington, USA 2 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA 1 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA |
AuthorAffiliation_xml | – name: 2 Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA – name: 1 Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA – name: 3 Department of Electrical Engineering, University of Washington, Seattle, Washington, USA |
Author_xml | – sequence: 1 givenname: David Yu surname: Zhang fullname: Zhang, David Yu email: david.zhang@wyss.harvard.edu organization: Department of Systems Biology, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 2 givenname: Sherry Xi surname: Chen fullname: Chen, Sherry Xi organization: Department of Electrical Engineering, University of Washington – sequence: 3 givenname: Peng surname: Yin fullname: Yin, Peng email: py@hms.harvard.edu organization: Department of Systems Biology, Harvard Medical School, Wyss Institute for Biologically Inspired Engineering, Harvard University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22354435$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV1LHDEUhkNRump70x8gA14old0mk2RmclMQ0SoIe9Neh0zmZDfLTLImM4X115v9cFErvUogz3k4ed9jdOC8A4S-ETwhmFY_nJ5DNyE5Kz6hI1JyPmaUiYP9neIROo5xgXHBKSk-o1GeU84Y5Ueomi5729kn62ZZP4csLkFbY7XtV5k3mRt0C1ZnStsmm6_qYBv7pHrr3Rd0aFQb4evuPEF_bm9-X9-NH6a_7q-vHsaaM9yP65KaAogqmlKAqhujMWelyhUYQgtNsQJBOQBWnJTCYF7XjWC8qTktG0MUPUE_t97lUHfQaHB9UK1cBtupsJJeWfn2xdm5nPm_kuW0EgVJgvOdIPjHAWIvOxs1tK1y4IcoRU6JIGVVJvLivyTBKeJkxDihZ-_QhR-CS0EkigpcVZSvqdPXu--Xfok_Ad-3gA4-xgBmjxC8FlVy061cd5tg_A5OLW26SP-27ccjl9uRmLxuBuH1mv_QzwRLtuU |
CitedBy_id | crossref_primary_10_1016_j_ab_2023_115365 crossref_primary_10_1016_j_snb_2021_131081 crossref_primary_10_1038_s41551_021_00755_4 crossref_primary_10_1021_jacs_5b05351 crossref_primary_10_1093_nar_gkaa521 crossref_primary_10_1021_acs_langmuir_8b02134 crossref_primary_10_1080_00268976_2014_975293 crossref_primary_10_1039_C2SC21464D crossref_primary_10_1016_j_bios_2016_01_047 crossref_primary_10_1016_j_copbio_2012_11_011 crossref_primary_10_1039_C7RA07481F crossref_primary_10_1002_anie_201403615 crossref_primary_10_1038_nchem_1713 crossref_primary_10_1016_j_colsurfb_2017_06_021 crossref_primary_10_1016_j_nantod_2021_101308 crossref_primary_10_1039_C4SC03375B crossref_primary_10_1039_C8CC00838H crossref_primary_10_1021_acs_analchem_8b03736 crossref_primary_10_1021_acs_analchem_3c04778 crossref_primary_10_1021_ja311990w crossref_primary_10_1038_s41565_018_0130_2 crossref_primary_10_1038_nprot_2013_136 crossref_primary_10_1021_acssensors_0c00237 crossref_primary_10_1039_C6AN02731H crossref_primary_10_1002_anie_201206201 crossref_primary_10_1021_bm3017466 crossref_primary_10_1039_C7AN01224A crossref_primary_10_1016_j_aca_2022_339568 crossref_primary_10_1016_j_snb_2016_07_087 crossref_primary_10_1039_D4MH01158A crossref_primary_10_1021_jacs_1c06598 crossref_primary_10_1038_s41551_022_00928_9 crossref_primary_10_3389_fbioe_2019_00330 crossref_primary_10_1021_acs_analchem_7b02300 crossref_primary_10_1155_2021_9112407 crossref_primary_10_1016_j_trac_2015_03_008 crossref_primary_10_1007_s40484_017_0097_2 crossref_primary_10_1021_acs_analchem_2c04446 crossref_primary_10_1021_acsnano_5b07102 crossref_primary_10_1038_s41467_022_32387_w crossref_primary_10_1016_j_bios_2021_113596 crossref_primary_10_1093_nar_gkz580 crossref_primary_10_1073_pnas_1310092110 crossref_primary_10_1021_acs_analchem_8b05920 crossref_primary_10_1021_nn404305e crossref_primary_10_1039_D0CC05283C crossref_primary_10_1038_nchem_1283 crossref_primary_10_1021_acs_analchem_4c03409 crossref_primary_10_1016_j_aca_2020_07_022 crossref_primary_10_1021_acs_accounts_7b00040 crossref_primary_10_1021_acsami_8b15330 crossref_primary_10_1021_acsami_9b02107 crossref_primary_10_1021_acsnano_4c01511 crossref_primary_10_1016_j_ab_2013_09_032 crossref_primary_10_1021_nl4019512 crossref_primary_10_1039_c3sm52157e crossref_primary_10_1016_j_snb_2022_131462 crossref_primary_10_1016_j_snb_2024_137001 crossref_primary_10_1021_nn507282f crossref_primary_10_1126_scirobotics_adf1511 crossref_primary_10_1039_C9CC01228A crossref_primary_10_3390_bios13010119 crossref_primary_10_1016_j_talanta_2022_123367 crossref_primary_10_1021_acs_analchem_1c01677 crossref_primary_10_1021_acs_analchem_5b02468 crossref_primary_10_1021_acssensors_2c00183 crossref_primary_10_1016_j_bios_2024_116255 crossref_primary_10_1038_s41467_023_36156_1 crossref_primary_10_1016_j_snb_2018_11_149 crossref_primary_10_1039_C7CC07733E crossref_primary_10_1039_C3AN01436C crossref_primary_10_3390_cimb43020036 crossref_primary_10_1002_adma_201402314 crossref_primary_10_1021_acsbiomaterials_0c00038 crossref_primary_10_1002_ange_202217932 crossref_primary_10_1021_acs_analchem_7b01599 crossref_primary_10_1021_acs_langmuir_8b01248 crossref_primary_10_1002_ange_201609108 crossref_primary_10_1002_cjoc_202400444 crossref_primary_10_1073_pnas_2217330120 crossref_primary_10_1039_C5NR05124J crossref_primary_10_1371_journal_pone_0125494 crossref_primary_10_1002_advs_202412680 crossref_primary_10_1093_nar_gkae683 crossref_primary_10_1088_1361_6439_ac5a62 crossref_primary_10_1002_cbic_201402615 crossref_primary_10_1038_s41551_017_0126_5 crossref_primary_10_1007_s41061_019_0274_z crossref_primary_10_1002_ange_201309388 crossref_primary_10_1002_ange_202314386 crossref_primary_10_1002_jssc_202300123 crossref_primary_10_1016_j_ymeth_2021_06_014 crossref_primary_10_1007_s00216_020_02569_w crossref_primary_10_1002_smll_201903489 crossref_primary_10_1261_rna_045047_114 crossref_primary_10_1371_journal_pgen_1007872 crossref_primary_10_1021_acs_accounts_0c00621 crossref_primary_10_1021_acsnano_8b02864 crossref_primary_10_1021_acs_analchem_4c02124 crossref_primary_10_1088_1367_2630_ab4ff8 crossref_primary_10_1021_acs_analchem_7b03564 crossref_primary_10_3390_ijms23084265 crossref_primary_10_1093_nar_gkaa572 crossref_primary_10_1016_j_microc_2024_110581 crossref_primary_10_1039_D2NH00018K crossref_primary_10_1021_jacs_5b07453 crossref_primary_10_1109_TSP_2022_3172028 crossref_primary_10_1002_cac2_12597 crossref_primary_10_1016_j_bios_2020_112092 crossref_primary_10_1016_j_isci_2024_109453 crossref_primary_10_1016_j_snb_2020_128719 crossref_primary_10_1021_cr300340p crossref_primary_10_1093_nar_gkad601 crossref_primary_10_1021_acssensors_8b01373 crossref_primary_10_1039_c3nr01010d crossref_primary_10_1038_ncomms6324 crossref_primary_10_1016_j_cbpa_2012_05_179 crossref_primary_10_1126_science_aaa9483 crossref_primary_10_1021_acssynbio_2c00356 crossref_primary_10_1002_slct_201601075 crossref_primary_10_1016_j_bios_2021_112981 crossref_primary_10_1016_j_cclet_2020_06_009 crossref_primary_10_1016_j_trac_2019_115764 crossref_primary_10_1002_ange_201206201 crossref_primary_10_1016_j_jmoldx_2014_06_008 crossref_primary_10_3390_s20164648 crossref_primary_10_3390_molecules26082130 crossref_primary_10_1039_C6AY01575A crossref_primary_10_1016_j_aca_2023_342126 crossref_primary_10_1093_nar_gkaa303 crossref_primary_10_1021_acs_analchem_4c03002 crossref_primary_10_1038_nmeth_3626 crossref_primary_10_1016_j_biomaterials_2018_05_050 crossref_primary_10_1021_acs_analchem_5b03369 crossref_primary_10_1021_ja310991r crossref_primary_10_1038_ncomms2965 crossref_primary_10_1038_s41557_023_01345_4 crossref_primary_10_3748_wjg_v22_i20_4824 crossref_primary_10_1126_science_1259762 crossref_primary_10_1021_acsami_1c02429 crossref_primary_10_1038_nchem_2266 crossref_primary_10_1007_s00604_018_2941_0 crossref_primary_10_1021_acssensors_2c01526 crossref_primary_10_1146_annurev_anchem_061020_104216 crossref_primary_10_1002_celc_201600756 crossref_primary_10_1038_nchem_2820 crossref_primary_10_1039_D0AY01661F crossref_primary_10_1088_0957_4484_25_4_045101 crossref_primary_10_1039_D0CC03425H crossref_primary_10_1016_j_aca_2016_01_013 crossref_primary_10_1002_anie_201309388 crossref_primary_10_1002_smll_202402914 crossref_primary_10_1039_C9CS00438F crossref_primary_10_1038_srep01121 crossref_primary_10_3390_bios8010019 crossref_primary_10_1016_j_foodcont_2024_111036 crossref_primary_10_1021_ja508213d crossref_primary_10_1021_jacs_8b06685 crossref_primary_10_1002_anie_202314386 crossref_primary_10_1021_acsami_8b16694 crossref_primary_10_1021_acs_chemrev_8b00580 crossref_primary_10_3390_bios13030380 crossref_primary_10_1002_adma_201400451 crossref_primary_10_1021_acs_analchem_3c01064 crossref_primary_10_1039_C7NJ05141G crossref_primary_10_1016_j_fsigss_2013_10_061 crossref_primary_10_1038_ncomms10319 crossref_primary_10_1039_C5CC04347F crossref_primary_10_3390_mi12040390 crossref_primary_10_1002_anie_201205862 crossref_primary_10_1016_j_talanta_2022_124047 crossref_primary_10_1021_acs_analchem_5b01683 crossref_primary_10_1021_acsami_2c03341 crossref_primary_10_1016_j_bios_2023_115957 crossref_primary_10_1039_c3nr01601c crossref_primary_10_1371_journal_pone_0305002 crossref_primary_10_1016_j_bios_2017_12_024 crossref_primary_10_1039_C9NR01156K crossref_primary_10_1039_D0CC00882F crossref_primary_10_1021_ja505101a crossref_primary_10_1002_ange_201705330 crossref_primary_10_1021_jacs_6b00277 crossref_primary_10_1016_j_bioelechem_2021_107924 crossref_primary_10_1039_C5SC01870F crossref_primary_10_1016_j_mrrev_2016_09_003 crossref_primary_10_1002_anie_202217932 crossref_primary_10_1007_s12274_015_0893_9 crossref_primary_10_1016_j_snb_2021_131244 crossref_primary_10_1002_ange_202114581 crossref_primary_10_1039_C4CC07184K crossref_primary_10_1039_C9SC05084A crossref_primary_10_1088_1367_2630_abecb0 crossref_primary_10_1021_acsomega_7b00053 crossref_primary_10_1016_j_bpj_2016_02_027 crossref_primary_10_1039_c3cc45531a crossref_primary_10_1007_s00604_018_2693_x crossref_primary_10_1016_j_ccr_2023_215157 crossref_primary_10_1038_s41467_020_19673_1 crossref_primary_10_1016_j_bios_2021_113079 crossref_primary_10_1021_acs_analchem_8b00870 crossref_primary_10_1021_acssensors_8b01604 crossref_primary_10_1093_nsr_nwae118 crossref_primary_10_1016_j_jelechem_2021_115901 crossref_primary_10_1021_acs_accounts_9b00098 crossref_primary_10_34133_icomputing_0112 crossref_primary_10_1038_ncomms14378 crossref_primary_10_1021_jacs_5b05522 crossref_primary_10_1016_j_bbrc_2017_02_024 crossref_primary_10_1021_jacs_3c05879 crossref_primary_10_1007_s11082_024_07488_z crossref_primary_10_1039_C4CC07272C crossref_primary_10_1021_acsestengg_2c00063 crossref_primary_10_1021_jacs_6b05628 crossref_primary_10_1021_jacs_3c14673 crossref_primary_10_1016_j_bios_2016_03_070 crossref_primary_10_1038_srep13795 crossref_primary_10_1016_j_cell_2020_02_011 crossref_primary_10_1021_acsnano_0c02439 crossref_primary_10_1016_j_bios_2015_12_005 crossref_primary_10_1016_j_jmoldx_2022_04_015 crossref_primary_10_1016_j_colsurfb_2012_09_020 crossref_primary_10_1073_pnas_2120379119 crossref_primary_10_1002_ange_201403615 crossref_primary_10_1021_acssensors_9b01968 crossref_primary_10_1021_acsami_6b03896 crossref_primary_10_1088_1367_2630_18_5_055002 crossref_primary_10_1002_anie_201609108 crossref_primary_10_1021_acs_analchem_2c00575 crossref_primary_10_1039_C4CC10114F crossref_primary_10_1016_j_bios_2022_114677 crossref_primary_10_1371_journal_pcbi_1007537 crossref_primary_10_1002_imt2_143 crossref_primary_10_1021_acs_analchem_1c00507 crossref_primary_10_1038_s42003_023_05346_4 crossref_primary_10_1039_C4RA08873E crossref_primary_10_1016_j_bios_2021_113739 crossref_primary_10_1002_smll_201602983 crossref_primary_10_1038_nchem_2872 crossref_primary_10_1002_smll_201303558 crossref_primary_10_1038_nmeth_2589 crossref_primary_10_2139_ssrn_4167988 crossref_primary_10_1002_smll_202307985 crossref_primary_10_1039_c3nr04015a crossref_primary_10_1016_j_snb_2016_08_026 crossref_primary_10_1038_nbt_3246 crossref_primary_10_1039_c3lc50672j crossref_primary_10_1002_adbi_201700060 crossref_primary_10_1021_acs_analchem_4c06211 crossref_primary_10_1021_jacs_2c11208 crossref_primary_10_1093_nar_gkab499 crossref_primary_10_1039_C6SC03048C crossref_primary_10_1016_j_ymeth_2018_08_002 crossref_primary_10_1073_pnas_1904770116 crossref_primary_10_1007_s00253_021_11197_y crossref_primary_10_1042_ETLS20190100 crossref_primary_10_1039_C4AN00329B crossref_primary_10_3390_ijms23020666 crossref_primary_10_1039_C9NR09979D crossref_primary_10_1021_jacs_1c05236 crossref_primary_10_1021_acs_analchem_8b01078 crossref_primary_10_1021_acssynbio_9b00141 crossref_primary_10_1016_j_omto_2020_07_013 crossref_primary_10_1021_ja4009216 crossref_primary_10_1002_ange_201205862 crossref_primary_10_1016_j_snb_2020_127908 crossref_primary_10_1038_s41467_025_55986_9 crossref_primary_10_3390_molecules25040970 crossref_primary_10_1039_D0AY00946F crossref_primary_10_1016_j_bios_2013_05_037 crossref_primary_10_1038_s41467_020_19269_9 crossref_primary_10_1039_D3CC01743E crossref_primary_10_1016_j_aca_2024_342493 crossref_primary_10_1016_j_microc_2024_111955 crossref_primary_10_3390_s19163495 crossref_primary_10_1002_anie_201705330 crossref_primary_10_1016_j_acax_2020_100050 crossref_primary_10_1016_j_bios_2021_113433 crossref_primary_10_1002_anie_202114581 crossref_primary_10_1016_j_bmcl_2018_02_024 crossref_primary_10_1021_acsnano_8b04639 crossref_primary_10_1073_pnas_1814463116 crossref_primary_10_1021_acs_analchem_0c01134 crossref_primary_10_3390_s20113137 crossref_primary_10_1021_acs_analchem_0c01379 crossref_primary_10_1039_C8SC02761G crossref_primary_10_1039_C6RA17006D crossref_primary_10_1021_acssensors_7b00005 crossref_primary_10_1038_srep08721 crossref_primary_10_1016_j_bios_2022_114922 crossref_primary_10_1039_C7SM01722G crossref_primary_10_1021_acssensors_0c00052 crossref_primary_10_1039_D2LC01159J crossref_primary_10_1016_j_isci_2019_10_029 crossref_primary_10_1038_nchem_2544 crossref_primary_10_1039_D0AN01054E crossref_primary_10_1016_j_snb_2021_130933 crossref_primary_10_1016_j_trac_2018_08_015 crossref_primary_10_1016_j_bios_2016_06_057 crossref_primary_10_18632_oncotarget_16276 crossref_primary_10_1002_anie_201807956 crossref_primary_10_1016_j_bios_2013_08_005 crossref_primary_10_1021_ac300476k crossref_primary_10_1016_j_bios_2015_11_071 crossref_primary_10_6064_2012_928783 crossref_primary_10_1002_chem_201304891 crossref_primary_10_1002_smtd_202401102 crossref_primary_10_1016_j_snb_2023_135075 crossref_primary_10_1021_ja505519b crossref_primary_10_1039_C6AN01555G crossref_primary_10_1002_rmv_2356 crossref_primary_10_1021_acsnano_7b06728 crossref_primary_10_1016_j_lwt_2021_112901 crossref_primary_10_1021_jacs_1c12659 crossref_primary_10_1089_nat_2020_0847 crossref_primary_10_3390_chemosensors3030224 crossref_primary_10_1016_j_bios_2016_01_055 crossref_primary_10_1021_acs_analchem_3c02431 crossref_primary_10_1111_1755_0998_12986 crossref_primary_10_1021_acs_analchem_1c05280 crossref_primary_10_1002_adma_202311634 crossref_primary_10_1016_j_molcel_2022_02_026 crossref_primary_10_1021_am507059n crossref_primary_10_1021_acs_analchem_8b03963 crossref_primary_10_1002_ange_201807956 crossref_primary_10_1016_j_aca_2019_04_016 |
Cites_doi | 10.1126/science.1148532 10.1093/nar/gnf121 10.1038/nmeth.1321 10.1021/jp106754k 10.1038/nbt0198-49 10.1126/science.239.4839.487 10.1021/nl104555t 10.1126/science.270.5235.467 10.1093/nar/gkn087 10.1038/nature04586 10.1016/S0167-7799(02)00038-0 10.1093/nar/23.11.1841 10.1529/biophysj.105.070904 10.1038/nchem.957 10.1093/nar/gkg212 10.1038/ng1547 10.1021/ja906987s 10.1073/pnas.96.11.6171 10.1093/nar/28.9.1929 10.1021/ja900228j 10.1137/060651100 10.1038/35020524 10.1038/nbt986 10.1016/j.cell.2009.01.002 10.1128/jb.172.2.762-770.1990 10.1002/anie.200900369 10.1038/nature06451 10.1038/nature03702 10.1146/annurev.biophys.32.110601.141800 10.1038/nature08016 10.1038/nbt0396-303 10.1126/science.1154533 10.1146/annurev-biochem-060308-102244 10.1021/ja0628093 10.1093/nar/gkq088 10.1093/nar/30.2.e5 10.1093/nar/gkl422 10.1146/annurev.bioeng.9.060906.152037 10.1038/898 10.1126/science.2466341 10.1073/pnas.1006377107 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2012 Copyright Nature Publishing Group Mar 2012 2012 Macmillan Publishers Limited. All rights reserved. 2012 |
Copyright_xml | – notice: Springer Nature Limited 2012 – notice: Copyright Nature Publishing Group Mar 2012 – notice: 2012 Macmillan Publishers Limited. All rights reserved. 2012 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7TM 7X8 5PM |
DOI | 10.1038/nchem.1246 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Nucleic Acids Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Central Student MEDLINE Nucleic Acids Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1755-4349 |
EndPage | 214 |
ExternalDocumentID | PMC4238961 2758510601 22354435 10_1038_nchem_1246 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States--US Massachusetts |
GeographicLocations_xml | – name: United States--US – name: Massachusetts |
GrantInformation_xml | – fundername: Howard Hughes Medical Institute – fundername: NIH HHS grantid: 1DP2OD007292 – fundername: NIH HHS grantid: DP2 OD007292 |
GroupedDBID | --- 0R~ 123 29M 39C 4.4 53G 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABFSG ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACSTC ACUHS ADBBV ADNMO AENEX AEUYN AEZWR AFANA AFBBN AFHIU AFKRA AFSHS AFWHJ AGAYW AGGDT AGQPQ AHMBA AHOSX AHSBF AHWEU AIBTJ AIXLP AIYXT ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD ARMCB ASPBG ATHPR AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NFIDA NNMJJ O9- ODYON P2P PDBOC PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ALIPV CITATION CGR CUY CVF ECM EIF NPM 3V. 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS 7TM 7X8 5PM |
ID | FETCH-LOGICAL-c540t-b73f6e1a6d79eabdfc0547a2aef136c30ae935ee0a5179f05bbd945db537df1a3 |
IEDL.DBID | 7X7 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Thu Aug 21 18:19:27 EDT 2025 Fri Jul 11 06:23:11 EDT 2025 Tue Aug 05 10:22:43 EDT 2025 Sat Aug 23 14:25:11 EDT 2025 Mon Jul 21 06:06:30 EDT 2025 Tue Jul 01 01:32:38 EDT 2025 Thu Apr 24 23:06:52 EDT 2025 Sun Aug 31 08:58:40 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b73f6e1a6d79eabdfc0547a2aef136c30ae935ee0a5179f05bbd945db537df1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://doi.org/10.1038/nchem.1246 |
PMID | 22354435 |
PQID | 1039088350 |
PQPubID | 536302 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4238961 proquest_miscellaneous_923191787 proquest_miscellaneous_1024661300 proquest_journals_1039088350 pubmed_primary_22354435 crossref_primary_10_1038_nchem_1246 crossref_citationtrail_10_1038_nchem_1246 springer_journals_10_1038_nchem_1246 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20120122 |
PublicationDateYYYYMMDD | 2012-01-22 |
PublicationDate_xml | – month: 1 year: 2012 text: 20120122 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nature Chem |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2012 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Saiki (CR2) 1988; 239 Zhang, Seelig (CR13) 2011; 3 Xiao (CR19) 2009; 48 Lizardi (CR40) 1998; 19 Isaacs (CR41) 2004; 22 Venkataraman, Dirks, Ueda, Pierce (CR42) 2010; 107 Tyagi (CR16) 2009; 6 Tyagi, Bratu, Kramer (CR15) 1998; 16 Dave, Liu (CR21) 2010; 114 Schena, Shalon, Davis, Brown (CR3) 1995; 270 Aldaye, Palmer, Sleiman (CR11) 2008; 321 Tan, Chen (CR24) 2006; 90 Yurke, Turberfield, Mills, Simmel, Neumann (CR25) 2000; 406 Dirks, Bois, Schaeffer, Winfree, Pierce (CR31) 2007; 49 Temsamani, Kubert, Agrawal (CR33) 1995; 23 Gunderson, Steemers, Lee, Mendoza, Chee (CR4) 2005; 37 Bommarito, Peyret, SantaLucia (CR30) 2000; 28 Yin, Choi, Calvert, Pierce (CR12) 2008; 451 Kim, Misra (CR39) 2007; 9 SantaLucia, Hicks (CR22) 2004; 33 Kolpashchikov (CR20) 2006; 128 Zhang, Turberfield, Yurke, Winfree (CR27) 2007; 318 Tyagi, Kramer (CR14) 1996; 14 Petersen, Wengel (CR29) 2003; 21 Tsourkas, Behlke, Rose, Bao (CR18) 2003; 31 Lu (CR35) 2005; 435 Seeman (CR8) 2010; 79 Bartel (CR1) 2009; 136 Douglas (CR10) 2009; 459 Zhang, Winfree (CR26) 2009; 131 Amann, Krumholz, Stahl (CR7) 1990; 172 He, Rapireddy, Bahal, Sahu, Ly (CR28) 2009; 131 CR23 Marras, Kramer, Tyagi (CR34) 2002; 30 Bonnet, Tyagi, Libchaber, Kramer (CR17) 1999; 96 Zhang, Winfree (CR32) 2010; 38 Rothemund (CR9) 2006; 440 DeLong, Wickham, Pace (CR6) 1989; 243 Subramanian, Chakraborty, Sha, Seeman (CR37) 2010; 11 Gao, Wolf, Georgiadis (CR38) 2006; 34 Koltai, Weingarten-Baror (CR5) 2008; 36 Li, Luan, Guo, Liang (CR36) 2002; 30 P Rothemund (BFnchem1246_CR9) 2006; 440 H Koltai (BFnchem1246_CR5) 2008; 36 Y Xiao (BFnchem1246_CR19) 2009; 48 DY Zhang (BFnchem1246_CR13) 2011; 3 DP Bartel (BFnchem1246_CR1) 2009; 136 B Yurke (BFnchem1246_CR25) 2000; 406 NC Seeman (BFnchem1246_CR8) 2010; 79 RK Saiki (BFnchem1246_CR2) 1988; 239 G He (BFnchem1246_CR28) 2009; 131 M Petersen (BFnchem1246_CR29) 2003; 21 M Schena (BFnchem1246_CR3) 1995; 270 EF DeLong (BFnchem1246_CR6) 1989; 243 ZJ Tan (BFnchem1246_CR24) 2006; 90 KL Gunderson (BFnchem1246_CR4) 2005; 37 J Temsamani (BFnchem1246_CR33) 1995; 23 J Lu (BFnchem1246_CR35) 2005; 435 FA Aldaye (BFnchem1246_CR11) 2008; 321 S Tyagi (BFnchem1246_CR15) 1998; 16 S Tyagi (BFnchem1246_CR16) 2009; 6 FJ Isaacs (BFnchem1246_CR41) 2004; 22 RM Dirks (BFnchem1246_CR31) 2007; 49 S Tyagi (BFnchem1246_CR14) 1996; 14 Y Gao (BFnchem1246_CR38) 2006; 34 BFnchem1246_CR23 SA Marras (BFnchem1246_CR34) 2002; 30 HKK Subramanian (BFnchem1246_CR37) 2010; 11 S Venkataraman (BFnchem1246_CR42) 2010; 107 RI Amann (BFnchem1246_CR7) 1990; 172 A Tsourkas (BFnchem1246_CR18) 2003; 31 Q Li (BFnchem1246_CR36) 2002; 30 SM Douglas (BFnchem1246_CR10) 2009; 459 DY Zhang (BFnchem1246_CR27) 2007; 318 G Bonnet (BFnchem1246_CR17) 1999; 96 S Kim (BFnchem1246_CR39) 2007; 9 DY Zhang (BFnchem1246_CR26) 2009; 131 J SantaLucia (BFnchem1246_CR22) 2004; 33 S Bommarito (BFnchem1246_CR30) 2000; 28 P Yin (BFnchem1246_CR12) 2008; 451 N Dave (BFnchem1246_CR21) 2010; 114 DM Kolpashchikov (BFnchem1246_CR20) 2006; 128 DY Zhang (BFnchem1246_CR32) 2010; 38 PM Lizardi (BFnchem1246_CR40) 1998; 19 22354426 - Nat Chem. 2012 Feb 21;4(3):155-7. doi: 10.1038/nchem.1283. |
References_xml | – volume: 318 start-page: 1121 year: 2007 end-page: 1125 ident: CR27 article-title: Engineering entropy-driven reactions and networks catalyzed by DNA publication-title: Science doi: 10.1126/science.1148532 – volume: 30 start-page: e122 year: 2002 ident: CR34 article-title: Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnf121 – volume: 6 start-page: 331 year: 2009 end-page: 338 ident: CR16 article-title: Imaging intracellular RNA distribution and dynamics in living cells publication-title: Nature Methods doi: 10.1038/nmeth.1321 – volume: 114 start-page: 15694 year: 2010 end-page: 15699 ident: CR21 article-title: Fast molecular beacon hybridization in organic solvents with improved target specificity publication-title: J. Phys. Chem. B doi: 10.1021/jp106754k – volume: 16 start-page: 49 year: 1998 end-page: 53 ident: CR15 article-title: Multicolor molecular beacons for allele discrimination publication-title: Nature Biotechnol. doi: 10.1038/nbt0198-49 – volume: 239 start-page: 487 year: 1988 end-page: 491 ident: CR2 article-title: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase publication-title: Science doi: 10.1126/science.239.4839.487 – volume: 11 start-page: 910 year: 2010 end-page: 913 ident: CR37 article-title: The label-free unambiguous detection and symbolic display of single nucleotide polymorphisms on DNA origami publication-title: Nano Lett. doi: 10.1021/nl104555t – volume: 270 start-page: 467 year: 1995 end-page: 470 ident: CR3 article-title: Quantitative monitoring of gene expression patterns with a complementary DNA microarray publication-title: Science doi: 10.1126/science.270.5235.467 – volume: 36 start-page: 2395 year: 2008 end-page: 2405 ident: CR5 article-title: Specificity of DNA microarray hybridization: characterization, effectors, and approaches for data correction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn087 – volume: 440 start-page: 297 year: 2006 end-page: 302 ident: CR9 article-title: Folding DNA to create nanoscale shapes and patterns publication-title: Nature doi: 10.1038/nature04586 – volume: 21 start-page: 74 year: 2003 end-page: 81 ident: CR29 article-title: LNA: a versatile tool for therapeutics and genomics publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(02)00038-0 – volume: 23 start-page: 1841 year: 1995 end-page: 1844 ident: CR33 article-title: Sequence identity of the –1 product of a synthetic oligonucleotide publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.11.1841 – volume: 90 start-page: 1175 year: 2006 end-page: 1190 ident: CR24 article-title: Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length publication-title: Biophys. J. doi: 10.1529/biophysj.105.070904 – volume: 3 start-page: 103 year: 2011 end-page: 113 ident: CR13 article-title: Dynamic DNA nanotechnology using strand displacement reactions publication-title: Nature Chem. doi: 10.1038/nchem.957 – volume: 31 start-page: 1319 year: 2003 end-page: 1330 ident: CR18 article-title: Hybridization kinetics and thermodynamics of molecular beacons publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg212 – volume: 37 start-page: 549 year: 2005 end-page: 554 ident: CR4 article-title: A genome-wide scalable SNP genotyping assay using microarray technology publication-title: Nature Genet. doi: 10.1038/ng1547 – volume: 131 start-page: 17303 year: 2009 end-page: 17314 ident: CR26 article-title: Control of DNA strand displacement kinetics using toehold exchange publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906987s – volume: 96 start-page: 6171 year: 1999 end-page: 6176 ident: CR17 article-title: Thermodynamic basis of the enhanced specificity of structured DNA probes publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.11.6171 – volume: 28 start-page: 1929 year: 2000 end-page: 1934 ident: CR30 article-title: Thermodynamic parameters for DNA sequences with dangling ends publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.9.1929 – ident: CR23 – volume: 131 start-page: 12088 year: 2009 end-page: 12090 ident: CR28 article-title: Strand invasion of extended, mixed-sequence B-DNA by γPNAs publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900228j – volume: 49 start-page: 65 year: 2007 end-page: 88 ident: CR31 article-title: Thermodynamic analysis of interacting nucleic acid strands publication-title: SIAM Rev. doi: 10.1137/060651100 – volume: 406 start-page: 605 year: 2000 end-page: 608 ident: CR25 article-title: A DNA-fuelled molecular machine made of DNA publication-title: Nature doi: 10.1038/35020524 – volume: 22 start-page: 841 year: 2004 end-page: 847 ident: CR41 article-title: Engineered riboregulators enable post-transcriptional control of gene expression publication-title: Nature Biotechnol. doi: 10.1038/nbt986 – volume: 136 start-page: 215 year: 2009 end-page: 233 ident: CR1 article-title: MicroRNAs: target recognition and regulatory functions publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 172 start-page: 762 year: 1990 end-page: 770 ident: CR7 article-title: Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology publication-title: J. Bacteriol. doi: 10.1128/jb.172.2.762-770.1990 – volume: 48 start-page: 4354 year: 2009 end-page: 4358 ident: CR19 article-title: Fluorescence detection of single-nucleotide polymorphisms with a single, self-complementary, triple-stem DNA probe publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900369 – volume: 451 start-page: 318 year: 2008 end-page: 322 ident: CR12 article-title: Programming biomolecular self-assembly pathways publication-title: Nature doi: 10.1038/nature06451 – volume: 435 start-page: 834 year: 2005 end-page: 838 ident: CR35 article-title: MicroRNA expression profiles classify human cancers publication-title: Nature doi: 10.1038/nature03702 – volume: 33 start-page: 415 year: 2004 end-page: 440 ident: CR22 article-title: The thermodynamics of DNA structural motifs publication-title: Ann. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.32.110601.141800 – volume: 459 start-page: 414 year: 2009 end-page: 418 ident: CR10 article-title: Self-assembly of DNA into nanoscale three-dimensional shapes publication-title: Nature doi: 10.1038/nature08016 – volume: 14 start-page: 303 year: 1996 end-page: 308 ident: CR14 article-title: Molecular beacons: probes that fluoresce upon hybridization publication-title: Nature Biotechnol. doi: 10.1038/nbt0396-303 – volume: 321 start-page: 1795 year: 2008 end-page: 1799 ident: CR11 article-title: Assembling materials with DNA as the guide publication-title: Science doi: 10.1126/science.1154533 – volume: 79 start-page: 65 year: 2010 end-page: 87 ident: CR8 article-title: Nanomaterials based on DNA publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060308-102244 – volume: 128 start-page: 10625 year: 2006 end-page: 10628 ident: CR20 article-title: A binary DNA probe for highly specific nucleic acid recognition publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0628093 – volume: 38 start-page: 4182 year: 2010 end-page: 4197 ident: CR32 article-title: Robustness and modularity properties of a non-covalent DNA catalytic reaction publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq088 – volume: 30 start-page: e5 year: 2002 ident: CR36 article-title: A new class of homogeneous nucleic acid probe based on specific displacement hybridization publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.2.e5 – volume: 34 start-page: 3370 year: 2006 end-page: 3377 ident: CR38 article-title: Secondary structure effects on DNA hybridization kinetics: a solution versus surface comparison publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl422 – volume: 9 start-page: 289 year: 2007 end-page: 320 ident: CR39 article-title: SNP genotyping: technologies and biomedical applications publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.9.060906.152037 – volume: 19 start-page: 225 year: 1998 end-page: 232 ident: CR40 article-title: Mutation detection and single-molecule counting using isothermal rolling-circle amplification publication-title: Nature Genet. doi: 10.1038/898 – volume: 243 start-page: 1360 year: 1989 end-page: 1363 ident: CR6 article-title: Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells publication-title: Science doi: 10.1126/science.2466341 – volume: 107 start-page: 16777 year: 2010 end-page: 16782 ident: CR42 article-title: Selective cell death mediated by small conditional RNAs publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1006377107 – volume: 406 start-page: 605 year: 2000 ident: BFnchem1246_CR25 publication-title: Nature doi: 10.1038/35020524 – volume: 136 start-page: 215 year: 2009 ident: BFnchem1246_CR1 publication-title: Cell doi: 10.1016/j.cell.2009.01.002 – volume: 440 start-page: 297 year: 2006 ident: BFnchem1246_CR9 publication-title: Nature doi: 10.1038/nature04586 – volume: 435 start-page: 834 year: 2005 ident: BFnchem1246_CR35 publication-title: Nature doi: 10.1038/nature03702 – volume: 270 start-page: 467 year: 1995 ident: BFnchem1246_CR3 publication-title: Science doi: 10.1126/science.270.5235.467 – volume: 30 start-page: e5 year: 2002 ident: BFnchem1246_CR36 publication-title: Nucleic Acids Res. doi: 10.1093/nar/30.2.e5 – volume: 37 start-page: 549 year: 2005 ident: BFnchem1246_CR4 publication-title: Nature Genet. doi: 10.1038/ng1547 – volume: 11 start-page: 910 year: 2010 ident: BFnchem1246_CR37 publication-title: Nano Lett. doi: 10.1021/nl104555t – volume: 114 start-page: 15694 year: 2010 ident: BFnchem1246_CR21 publication-title: J. Phys. Chem. B doi: 10.1021/jp106754k – volume: 33 start-page: 415 year: 2004 ident: BFnchem1246_CR22 publication-title: Ann. Rev. Biophys. Biomol. Struct. doi: 10.1146/annurev.biophys.32.110601.141800 – volume: 239 start-page: 487 year: 1988 ident: BFnchem1246_CR2 publication-title: Science doi: 10.1126/science.239.4839.487 – volume: 21 start-page: 74 year: 2003 ident: BFnchem1246_CR29 publication-title: Trends Biotechnol. doi: 10.1016/S0167-7799(02)00038-0 – volume: 172 start-page: 762 year: 1990 ident: BFnchem1246_CR7 publication-title: J. Bacteriol. doi: 10.1128/jb.172.2.762-770.1990 – volume: 321 start-page: 1795 year: 2008 ident: BFnchem1246_CR11 publication-title: Science doi: 10.1126/science.1154533 – volume: 28 start-page: 1929 year: 2000 ident: BFnchem1246_CR30 publication-title: Nucleic Acids Res. doi: 10.1093/nar/28.9.1929 – ident: BFnchem1246_CR23 – volume: 9 start-page: 289 year: 2007 ident: BFnchem1246_CR39 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.9.060906.152037 – volume: 243 start-page: 1360 year: 1989 ident: BFnchem1246_CR6 publication-title: Science doi: 10.1126/science.2466341 – volume: 6 start-page: 331 year: 2009 ident: BFnchem1246_CR16 publication-title: Nature Methods doi: 10.1038/nmeth.1321 – volume: 131 start-page: 12088 year: 2009 ident: BFnchem1246_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja900228j – volume: 79 start-page: 65 year: 2010 ident: BFnchem1246_CR8 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060308-102244 – volume: 451 start-page: 318 year: 2008 ident: BFnchem1246_CR12 publication-title: Nature doi: 10.1038/nature06451 – volume: 90 start-page: 1175 year: 2006 ident: BFnchem1246_CR24 publication-title: Biophys. J. doi: 10.1529/biophysj.105.070904 – volume: 3 start-page: 103 year: 2011 ident: BFnchem1246_CR13 publication-title: Nature Chem. doi: 10.1038/nchem.957 – volume: 36 start-page: 2395 year: 2008 ident: BFnchem1246_CR5 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn087 – volume: 16 start-page: 49 year: 1998 ident: BFnchem1246_CR15 publication-title: Nature Biotechnol. doi: 10.1038/nbt0198-49 – volume: 30 start-page: e122 year: 2002 ident: BFnchem1246_CR34 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gnf121 – volume: 22 start-page: 841 year: 2004 ident: BFnchem1246_CR41 publication-title: Nature Biotechnol. doi: 10.1038/nbt986 – volume: 459 start-page: 414 year: 2009 ident: BFnchem1246_CR10 publication-title: Nature doi: 10.1038/nature08016 – volume: 318 start-page: 1121 year: 2007 ident: BFnchem1246_CR27 publication-title: Science doi: 10.1126/science.1148532 – volume: 34 start-page: 3370 year: 2006 ident: BFnchem1246_CR38 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl422 – volume: 49 start-page: 65 year: 2007 ident: BFnchem1246_CR31 publication-title: SIAM Rev. doi: 10.1137/060651100 – volume: 96 start-page: 6171 year: 1999 ident: BFnchem1246_CR17 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.96.11.6171 – volume: 131 start-page: 17303 year: 2009 ident: BFnchem1246_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906987s – volume: 19 start-page: 225 year: 1998 ident: BFnchem1246_CR40 publication-title: Nature Genet. doi: 10.1038/898 – volume: 14 start-page: 303 year: 1996 ident: BFnchem1246_CR14 publication-title: Nature Biotechnol. doi: 10.1038/nbt0396-303 – volume: 31 start-page: 1319 year: 2003 ident: BFnchem1246_CR18 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg212 – volume: 128 start-page: 10625 year: 2006 ident: BFnchem1246_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0628093 – volume: 48 start-page: 4354 year: 2009 ident: BFnchem1246_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200900369 – volume: 107 start-page: 16777 year: 2010 ident: BFnchem1246_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1006377107 – volume: 23 start-page: 1841 year: 1995 ident: BFnchem1246_CR33 publication-title: Nucleic Acids Res. doi: 10.1093/nar/23.11.1841 – volume: 38 start-page: 4182 year: 2010 ident: BFnchem1246_CR32 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq088 – reference: 22354426 - Nat Chem. 2012 Feb 21;4(3):155-7. doi: 10.1038/nchem.1283. |
SSID | ssj0065316 |
Score | 2.5230856 |
Snippet | The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 208 |
SubjectTerms | 631/1647/1888/1890 631/1647/666 639/638/45 639/925/927 Acids Analytical Chemistry Base Pairing Base Sequence Biochemistry Biology Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism Equilibrium Humans Hybridization Inorganic Chemistry Melting Molecular Sequence Data Nucleic Acid Hybridization - methods Nucleic Acid Probes - chemistry Nucleic Acid Probes - metabolism Nucleic acids Organic Chemistry Physical Chemistry Probes RNA - chemistry RNA - metabolism Salinity Substrate Specificity Temperature Thermodynamics |
Title | Optimizing the specificity of nucleic acid hybridization |
URI | https://link.springer.com/article/10.1038/nchem.1246 https://www.ncbi.nlm.nih.gov/pubmed/22354435 https://www.proquest.com/docview/1039088350 https://www.proquest.com/docview/1024661300 https://www.proquest.com/docview/923191787 https://pubmed.ncbi.nlm.nih.gov/PMC4238961 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BKwQXBOUV-pARvXAwdeL4kVNFqy4VEgUhKu0tcvxQV6LZQreH8uuZySaBbYFLLp5Ezowfnz0z3wDsamW8SZXiRcglL5MLvHKF484XTri8zMvuwu3jiT4-LT9M1bS_cLvswyqHNbFbqMPc0x35HrkscUZIJfYvvnOqGkXe1b6Exl1YJ-oyCuky0_HApXF8ddlFRinKDBIDPam0ey2q5Pwtbm56dUO6hTJvB0ve8Jh2G9HkETzsESR7tzT5Y7gT2w24t6wpeb0B9w-HEm5PwH7CBeF89hO_wxDoMUqrpNAgRN5snlhLXMYzz5yfBXZ2TblbfVbmUzidHH09POZ9qQTuEXIteGNk0jF3OpgquiYkj1DMoNJjyqX2UrhYSRWjcETJlYRqmlCVKjRKmpByJ5_BWjtv4wtgOjnlQxLRRiJTExZNaayovHBBxqrM4M2gr9r3POJUzuJb3fmzpa073dak2wxej7IXS_aMv0ptDWqv-xl0Wf-2dwavxmbUHzk0XBvnVySDb9MBCGXYP2QIwOKR1JoMni8NOfYEkRGx_6kMzIqJRwGi3l5taWdnHQU3glBb6TyD3WEw_Nnzmz_48v8_uAkPEIZRhAwvii1YW_y4itsIdRbNTjee8Wkn73dg_eDo5POXX4DxAqE |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlQuCAqU0AJGlAMHt04cx8kBIVRYtvTBpZV6Sx0_1JVottCt0PZH8RuZyWNhW-DWcyaWPR7bnz0z3wCsZ0pbHQrFExdLngbjeGESw41NjDBxGqfNg9vefjY8TD8fqaMF-NnnwlBYZb8nNhu1G1t6I98klyWuCKnEu7NvnKpGkXe1L6HRmsWOn_7AK9v52-0POL-vk2Tw8WBryLuqAtwiOpnwSsuQ-dhkThfeVC5YRC0a--dDLDMrhfGFVN4LQ-xVQaiqckWqXKWkdiE2Etu9BbdTKQtaUfngU7_zZ2jPTTaTVooykURPhyrzzRqn4HQDD9Ns_gC8hmqvB2de8dA2B9_gPtzrECt735rYA1jw9TLcaWtYTpdhaasvGfcQ8i-4AZ2OLrEdhsCSURonhSIh0mfjwGriTh5ZZuzIsZMp5Yp1WaCP4PBGlPgYFutx7Z8Ay4JR1gXhc0_kbSJH09G5KKwwTvoijeBNr6_SdrzlVD7ja9n4z2VeNrotSbcRvJrJnrVsHX-VWuvVXnYr9rz8bV8RvJx9Rv2RA8XUfnxBMvg3XbhQhv1DhgAzXoFzHcFKO5GzniASI7ZBFYGem-KZAFF9z3-pRycN5TeC3rzI4gjWe2P4s-dXB_j0_wN8AUvDg73dcnd7f2cV7iIEpOgcniRrsDj5fuGfIcyaVM8b22ZwfNOL6RfjyT7v |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOUVKGBEOXAw68RxnBwQQi2rlkLhQKW9pY4f6ko0W-hWaPlp_Dpm8oJtgVvPmVjOeMb-nJn5BmAjU9rqUCieuFjyNBjHC5MYbmxihInTOG1-uH3Yy7b303cTNVmBn30tDKVV9ntis1G7maV_5CMKWaJHSCVGoUuL-LQ1fn38lVMHKYq09u00WhPZ9YvveH07ebWzhWv9PEnGbz9vbvOuwwC3iFTmvNIyZD42mdOFN5ULFhGMxrn6EMvMSmF8IZX3whCTVRCqqlyRKlcpqV2IjcRxL8FlLVVMPqYnw2UvQ9tuKpu0UlSVJHpqVJmPalyOo5d4sGbLh-E5hHs-UfNMtLY5BMc34UaHXtmb1txuwYqv1-BK289ysQbXNvv2cbch_4ib0dH0B47DEGQyKumktCRE_WwWWE08ylPLjJ06drigurGuIvQO7F-IEu_Caj2r_X1gWTDKuiB87onITeRoRjoXhRXGSV-kEbzo9VXajsOcWml8KZtYuszLRrcl6TaCZ4Psccvc8Vep9V7tZee9J-VvW4vg6fAY9UfBFFP72SnJ4Nt0-UIZ9g8ZAs94Hc51BPfahRxmgqiMmAdVBHppiQcBov1eflJPDxv6bwTAeZHFEWz0xvDnzM9-4IP_f-ATuIpuVL7f2dt9CNcRDVKiDk-SdVidfzv1jxBxzavHjWkzOLhoX_oFSgVDHA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+the+specificity+of+nucleic+acid+hybridization&rft.jtitle=Nature+chemistry&rft.au=Zhang%2C+David+Yu&rft.au=Chen%2C+Sherry+Xi&rft.au=Yin%2C+Peng&rft.date=2012-01-22&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=4&rft.issue=3&rft.spage=208&rft.epage=214&rft_id=info:doi/10.1038%2Fnchem.1246&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_nchem_1246 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |