Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates
Various colloidal Ag nanoparticles that were synthesized by M. sativa seed exudates in aqueous system under mild and non-photomediated conditions. [Display omitted] ► Medicago sativa seed exudate is effective at reducing Ag salts to form and stabilize Ag(0) nanoparticles ► The particle size and shap...
Saved in:
Published in | Journal of colloid and interface science Vol. 353; no. 2; pp. 433 - 444 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.01.2011
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Various colloidal Ag nanoparticles that were synthesized by
M. sativa seed exudates in aqueous system under mild and non-photomediated conditions.
[Display omitted]
►
Medicago
sativa seed exudate is effective at reducing Ag salts to form and stabilize Ag(0) nanoparticles ► The particle size and shape can be modulated by varying Ag concentration, quantity of exudate, and pH ► The Ag particles were spherical, flower-like and triangular in shape, ranging from 5 to 108
nm in size ► Unpurified Ag nanoparticles have the capacity to inhibit the growth of certain bacteria.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO
3 with
Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag
+ ions was observed in <1
min with Ag nanoparticle formation reaching 90% completion in <50
min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag
+]
=
0.01
M and 30
°C, largely spherical nanoparticles with diameters in the range of 5–51
nm were generated, while flower-like particle clusters (mean size
=
104
nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86–108
nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12
nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet–visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography–mass spectroscopy. To our knowledge, this is the first account of
M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents. |
---|---|
AbstractList | The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO sub(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag super(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag super(+)] = 0.01 M and 30 C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size = 104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents. The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents. Various colloidal Ag nanoparticles that were synthesized by M. sativa seed exudates in aqueous system under mild and non-photomediated conditions. [Display omitted] ► Medicago sativa seed exudate is effective at reducing Ag salts to form and stabilize Ag(0) nanoparticles ► The particle size and shape can be modulated by varying Ag concentration, quantity of exudate, and pH ► The Ag particles were spherical, flower-like and triangular in shape, ranging from 5 to 108 nm in size ► Unpurified Ag nanoparticles have the capacity to inhibit the growth of certain bacteria. The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO 3 with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag + ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag +] = 0.01 M and 30 °C, largely spherical nanoparticles with diameters in the range of 5–51 nm were generated, while flower-like particle clusters (mean size = 104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86–108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet–visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography–mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents. The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO₃ with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag⁺ ions was observed in <1min with Ag nanoparticle formation reaching 90% completion in <50min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag⁺]=0.01M and 30°C, largely spherical nanoparticles with diameters in the range of 5–51nm were generated, while flower-like particle clusters (mean size=104nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86–108nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet–visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography–mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents. The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents. |
Author | Marjo, Christopher E. Lukman, Audra I. Gong, Bin Harris, Andrew T. Roessner, Ute |
Author_xml | – sequence: 1 givenname: Audra I. surname: Lukman fullname: Lukman, Audra I. organization: Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia – sequence: 2 givenname: Bin surname: Gong fullname: Gong, Bin organization: UNSW Analytical Centre, Room G61, Chemical Sciences Building F10, University of New South Wales, Kensington, NSW 2052, Australia – sequence: 3 givenname: Christopher E. surname: Marjo fullname: Marjo, Christopher E. organization: UNSW Analytical Centre, Room G61, Chemical Sciences Building F10, University of New South Wales, Kensington, NSW 2052, Australia – sequence: 4 givenname: Ute surname: Roessner fullname: Roessner, Ute organization: Metabolomics Australia, School of Botany, University of Melbourne, VIC 3010, Australia – sequence: 5 givenname: Andrew T. surname: Harris fullname: Harris, Andrew T. email: a.harris@usyd.edu.au organization: Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23750987$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/20974473$$D View this record in MEDLINE/PubMed |
BookMark | eNqFksFvFCEYxYmpsdvqP-BBuRg9dFYYmGFIemkaqyY1HrRn8g18s7KZHVZgG-upf3pZdxsTD-uBkMDvPb7w3gk5msKEhLzkbM4Zb98v50vr07xm5YDpOeu6J2TGmW4qxZk4IjPGal5ppdUxOUlpyRjnTaOfkeOaaSWlEjNyfwXWj0jT3ZR_YPLpjKYMvR_9b8g-TGcUJldW9lUPNmP0MNI1xiHEFUwWaRio88lGzEgvFnSCKawhZm9HTHST_LSgX9B5C4tAU7G8BZoQHcVfGwcZ03PydIAx4Yv9fkpurj58v_xUXX_9-Pny4rqyjWS56luB0jXCyt5KZbXoGq5VzQfeYweDqrUchOWuAaG0E9yCU9Y52VkLsgcnTsnbne86hp8bTNmsytg4jjBh2CTTSS2VbKX-L6lawVUrOS_ku4Mkb1vRct21TUFf7dFNv0Jn1tGvIN6ZxyQK8GYPQLIwDrH8rk9_OaEapjtVuG7H2RhSijgY6_OfqHIEPxrOzLYcZmm25TDbchimTSlHkdb_SB_dD4pe70QDBAOLWK5vvhWgYYwpVsYqxPmOwBLfrcdokvVYuuF8RJuNC_7QAw882d2P |
CODEN | JCISA5 |
CitedBy_id | crossref_primary_10_1142_S1793292020300017 crossref_primary_10_1002_admi_202300257 crossref_primary_10_1016_j_proeng_2016_06_512 crossref_primary_10_1039_C7NJ00764G crossref_primary_10_3233_MGC_220003 crossref_primary_10_1016_j_apmt_2016_09_009 crossref_primary_10_1038_s41598_019_57097_0 crossref_primary_10_1016_j_sajb_2023_04_019 crossref_primary_10_1016_j_biortech_2012_01_015 crossref_primary_10_1016_j_indcrop_2015_03_015 crossref_primary_10_1016_j_hermed_2017_09_004 crossref_primary_10_1016_j_surfin_2017_03_004 crossref_primary_10_1080_19430892_2012_656040 crossref_primary_10_1186_s11671_023_03914_5 crossref_primary_10_1016_j_jiec_2022_04_031 crossref_primary_10_1021_acsanm_0c01164 crossref_primary_10_1038_s41598_023_34944_9 crossref_primary_10_1080_21622515_2022_2147454 crossref_primary_10_1186_1556_276X_9_101 crossref_primary_10_1016_j_apt_2017_02_003 crossref_primary_10_1016_j_jphotobiol_2015_12_008 crossref_primary_10_1016_j_matpr_2017_06_133 crossref_primary_10_3109_15419061_2014_926476 crossref_primary_10_1016_j_molstruc_2018_10_044 crossref_primary_10_4028_www_scientific_net_NH_7_69 crossref_primary_10_1016_j_jece_2022_108065 crossref_primary_10_1021_sc4000972 crossref_primary_10_1007_s13762_017_1530_9 crossref_primary_10_1039_D4SU00460D crossref_primary_10_1155_2022_9845022 crossref_primary_10_3390_antiox10121959 crossref_primary_10_1016_j_inoche_2023_111998 crossref_primary_10_1016_j_indcrop_2013_01_019 crossref_primary_10_1515_revic_2018_0004 crossref_primary_10_1007_s12010_014_0831_4 crossref_primary_10_1016_j_jphotobiol_2016_12_013 crossref_primary_10_1038_s41598_025_85545_7 crossref_primary_10_1007_s10924_021_02071_z crossref_primary_10_1039_c3ra22959a crossref_primary_10_1080_10826068_2021_1894441 crossref_primary_10_1016_j_matpr_2024_04_052 crossref_primary_10_1016_j_molliq_2016_07_087 crossref_primary_10_1080_10667857_2021_1976363 crossref_primary_10_3109_21691401_2014_982802 crossref_primary_10_1007_s11814_014_0277_y crossref_primary_10_1039_C9EN01162E crossref_primary_10_1049_iet_nbt_2016_0144 crossref_primary_10_3390_molecules26247709 crossref_primary_10_1155_2016_2715026 crossref_primary_10_1080_21691401_2017_1366335 crossref_primary_10_1039_C7RA12280B crossref_primary_10_1016_j_solener_2022_08_065 crossref_primary_10_1016_j_saa_2014_10_010 crossref_primary_10_12677_ms_2011_11002 crossref_primary_10_1016_j_biotechadv_2018_08_008 crossref_primary_10_1016_j_mtcomm_2020_101442 crossref_primary_10_1039_C4RA13117G crossref_primary_10_1007_s11356_023_27437_9 crossref_primary_10_1007_s00253_016_7657_7 crossref_primary_10_1007_s13204_014_0341_2 crossref_primary_10_1016_j_inoche_2022_109977 crossref_primary_10_1016_j_physe_2011_09_018 crossref_primary_10_1155_2024_9721166 crossref_primary_10_1080_14786419_2014_918124 crossref_primary_10_1186_2193_8865_3_8 crossref_primary_10_1007_s12011_020_02170_3 crossref_primary_10_1039_c3ra23133j crossref_primary_10_1080_10667857_2015_1105575 crossref_primary_10_3390_nano8030163 crossref_primary_10_1007_s13562_012_0172_8 crossref_primary_10_1007_s40097_014_0082_5 crossref_primary_10_1049_mnl_2018_0055 crossref_primary_10_1088_1757_899X_162_1_012033 crossref_primary_10_1016_j_btre_2021_e00612 crossref_primary_10_1002_slct_201600191 crossref_primary_10_1111_1748_5967_12574 crossref_primary_10_1021_acs_chemrev_6b00164 crossref_primary_10_5155_eurjchem_14_2_223_230_2403 crossref_primary_10_1007_s13204_013_0203_3 crossref_primary_10_31594_commagene_941022 crossref_primary_10_1016_j_micron_2013_07_003 crossref_primary_10_1007_s10973_017_6555_2 crossref_primary_10_1016_j_saa_2012_02_009 crossref_primary_10_1016_j_msec_2020_111153 crossref_primary_10_1016_j_ntm_2024_100050 crossref_primary_10_3390_ma11091673 crossref_primary_10_1016_j_cis_2011_08_004 crossref_primary_10_1016_j_molliq_2015_03_029 crossref_primary_10_1007_s11051_018_4330_3 crossref_primary_10_1007_s40097_015_0166_x crossref_primary_10_1016_j_matlet_2015_05_062 crossref_primary_10_1016_j_ultsonch_2016_10_018 crossref_primary_10_3389_fchem_2020_00799 crossref_primary_10_1007_s11157_012_9278_7 crossref_primary_10_1021_acssuschemeng_8b04465 crossref_primary_10_1016_j_jsse_2023_04_002 crossref_primary_10_1039_C9RA04711E crossref_primary_10_1016_j_mimet_2019_105766 crossref_primary_10_1021_acs_est_5b01147 crossref_primary_10_1007_s13204_017_0615_6 crossref_primary_10_1049_iet_nbt_2013_0001 crossref_primary_10_1007_s00436_013_3288_4 crossref_primary_10_3109_17435390_2013_812258 crossref_primary_10_1016_j_saa_2012_02_001 crossref_primary_10_1016_j_materresbull_2011_10_018 crossref_primary_10_1016_j_biopha_2023_116083 crossref_primary_10_1016_j_jksus_2020_09_024 crossref_primary_10_1080_24701556_2020_1735432 crossref_primary_10_1016_j_seppur_2012_10_008 crossref_primary_10_1007_s11483_014_9343_6 crossref_primary_10_1016_j_jcomc_2022_100331 crossref_primary_10_3390_molecules18055954 crossref_primary_10_3390_surfaces5010003 crossref_primary_10_1080_10584587_2012_686405 crossref_primary_10_32725_jab_2019_010 crossref_primary_10_1016_j_colsurfb_2011_03_009 crossref_primary_10_1016_j_apsusc_2015_07_209 crossref_primary_10_1021_acs_iecr_6b00861 crossref_primary_10_1016_j_renene_2021_03_054 crossref_primary_10_1039_C5RA26124D crossref_primary_10_1080_19430892_2012_678706 crossref_primary_10_1039_C8DT01152D crossref_primary_10_1007_s42452_020_2477_x crossref_primary_10_1080_21691401_2016_1215328 crossref_primary_10_1016_j_jobaz_2016_02_002 crossref_primary_10_1088_1361_6528_acda35 crossref_primary_10_1021_acs_est_5b03306 crossref_primary_10_1080_1040841X_2021_1977779 crossref_primary_10_1002_jobm_201600175 crossref_primary_10_1016_j_jphotobiol_2015_05_015 crossref_primary_10_3390_magnetochemistry6040068 crossref_primary_10_1007_s13204_022_02538_y crossref_primary_10_1016_j_ijhydene_2019_03_040 crossref_primary_10_1049_mnl_2017_0703 crossref_primary_10_1016_j_matchemphys_2021_125507 crossref_primary_10_1515_ijcre_2014_0149 crossref_primary_10_1080_10942912_2016_1188826 crossref_primary_10_1039_D1NJ02858H crossref_primary_10_1246_bcsj_20140255 crossref_primary_10_1007_s10311_020_01074_x crossref_primary_10_1016_j_cej_2013_05_046 crossref_primary_10_1055_a_1801_6793 crossref_primary_10_1007_s40097_018_0267_4 crossref_primary_10_1155_2014_692461 crossref_primary_10_1016_j_saa_2012_10_015 crossref_primary_10_1016_j_msec_2014_10_041 crossref_primary_10_1016_j_jes_2016_05_044 crossref_primary_10_1038_s41598_024_68979_3 crossref_primary_10_1016_j_seppur_2015_07_012 crossref_primary_10_1088_2043_6262_7_1_015018 crossref_primary_10_1007_s13204_014_0381_7 crossref_primary_10_1080_21691401_2017_1354302 crossref_primary_10_1016_j_msec_2020_110922 crossref_primary_10_1016_j_msec_2016_09_038 crossref_primary_10_18311_jnr_2024_36484 crossref_primary_10_3390_molecules27154754 crossref_primary_10_1016_j_indcrop_2012_08_013 crossref_primary_10_1007_s13204_020_01369_z crossref_primary_10_1016_j_jcis_2011_05_009 crossref_primary_10_3390_ijms21239028 crossref_primary_10_1007_s10876_017_1266_1 crossref_primary_10_1371_journal_pone_0218104 crossref_primary_10_1007_s10853_012_6964_3 crossref_primary_10_1049_iet_nbt_2015_0078 crossref_primary_10_1016_j_apsusc_2011_03_056 crossref_primary_10_1002_bit_24570 crossref_primary_10_1016_j_jcis_2013_10_018 crossref_primary_10_3390_biom12050627 crossref_primary_10_1007_s00436_017_5711_8 crossref_primary_10_1016_j_scitotenv_2019_135002 crossref_primary_10_1002_aoc_6778 crossref_primary_10_1080_15533174_2013_862644 crossref_primary_10_1016_j_jcis_2015_04_053 crossref_primary_10_3390_molecules21111498 crossref_primary_10_1007_s40495_023_00340_0 crossref_primary_10_1016_j_jphotobiol_2017_05_031 crossref_primary_10_1080_07388551_2023_2225131 crossref_primary_10_4103_japtr_japtr_181_22 crossref_primary_10_1016_j_colsurfb_2012_03_023 crossref_primary_10_1007_s00396_013_3008_8 crossref_primary_10_1016_j_jcis_2014_06_030 crossref_primary_10_1039_c3gc36831a crossref_primary_10_1007_s40097_018_0285_2 crossref_primary_10_1049_iet_nbt_2015_0072 crossref_primary_10_3390_separations10090518 crossref_primary_10_1088_1361_6528_abb6a8 crossref_primary_10_1002_app_42070 crossref_primary_10_1016_j_cis_2020_102236 crossref_primary_10_3390_molecules20046002 crossref_primary_10_1016_j_apsusc_2018_02_116 |
Cites_doi | 10.1021/jp9535506 10.1016/S0168-6445(03)00047-0 10.1016/S0965-9773(98)00005-1 10.1021/ac991142i 10.1517/14712598.3.4.655 10.1021/jp002435e 10.1021/jp0570216 10.1002/andp.19083300302 10.1039/b615357g 10.1016/S1047-8477(03)00039-X 10.17660/ActaHortic.1994.381.14 10.1007/s003390201712 10.1007/BF01223998 10.1126/science.1077229 10.1166/jnn.2006.608 10.1021/bp0501423 10.3923/pjn.2009.83.85 10.1007/s00216-007-1295-y 10.1023/A:1010008915465 10.1016/j.matchemphys.2005.08.015 10.1007/s11051-007-9220-z 10.1007/s11051-009-9606-1 10.1007/BF02277944 10.1007/s00449-007-0112-5 10.1021/la020835i 10.1107/S0021889887086916 10.1016/j.colsurfa.2009.02.008 10.1016/S0254-0584(03)00147-0 10.3109/10715769509145649 10.1042/bj3301173 10.1021/nl015673+ 10.1128/aem.57.5.1485-1488.1991 10.1016/j.matchemphys.2005.05.029 10.1093/jexbot/52.362.1741 10.1104/pp.95.3.797 10.1126/science.1075094 10.1007/s11051-004-6575-2 10.1016/S0927-7757(99)00513-0 10.1016/j.matlet.2008.08.044 10.1038/nmat1152 10.1021/nn7000883 10.1002/app.20561 10.1016/S0169-4332(02)01230-8 10.1088/0957-4484/18/10/105104 10.1002/app.31168 10.1016/j.biotechadv.2008.09.002 10.1126/science.1066541 10.1088/0957-4484/16/10/059 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS Copyright © 2010 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2010 Elsevier Inc. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QL 7T7 8FD C1K FR3 P64 |
DOI | 10.1016/j.jcis.2010.09.088 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Engineering Research Database Technology Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Bacteriology Abstracts (Microbiology B) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Engineering Research Database MEDLINE AGRICOLA MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1095-7103 |
EndPage | 444 |
ExternalDocumentID | 20974473 23750987 10_1016_j_jcis_2010_09_088 US201500070237 S0021979710011616 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARLI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABNUV ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q G8K GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M24 M41 MAGPM MO0 N9A NDZJH NEJ O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SCB SCC SCE SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSG SSK SSM SSQ SSZ T5K TWZ VH1 WH7 WUQ XFK XPP YQT ZGI ZMT ZU3 ZXP ~02 ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 7QL 7T7 8FD C1K FR3 P64 |
ID | FETCH-LOGICAL-c540t-b63e4d53c4bc47c938519721f1be8af7294f3c1d5a379d31cad7cdd48cca4bad3 |
IEDL.DBID | .~1 |
ISSN | 0021-9797 1095-7103 |
IngestDate | Mon Jul 21 10:37:06 EDT 2025 Fri Jul 11 07:58:39 EDT 2025 Fri Jul 11 15:08:19 EDT 2025 Mon Jul 21 05:33:02 EDT 2025 Mon Jul 21 09:13:21 EDT 2025 Thu Apr 24 23:04:14 EDT 2025 Tue Jul 01 01:17:58 EDT 2025 Wed Dec 27 19:19:04 EST 2023 Fri Feb 23 02:28:08 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Bio-reduction Seed exudate Alfalfa Ag nanoparticles Colloidal silver Medicago sativa Atomic force microscopy Particle size Electron diffraction Film Nanoparticle Stabilization X ray Powder Chemical reduction Synthesis pH Photoelectron spectrometry Particle shape Chemical synthesis Diameter Scanning electron microscopy Ions Transition metal X ray diffraction Silver Gas chromatography Dilution Transmission electron microscopy Environment Monodispersed particle Kinetics |
Language | English |
License | CC BY 4.0 Copyright © 2010 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b63e4d53c4bc47c938519721f1be8af7294f3c1d5a379d31cad7cdd48cca4bad3 |
Notes | http://dx.doi.org/10.1016/j.jcis.2010.09.088 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 20974473 |
PQID | 1663619865 |
PQPubID | 24069 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_849474649 proquest_miscellaneous_763176411 proquest_miscellaneous_1663619865 pubmed_primary_20974473 pascalfrancis_primary_23750987 crossref_citationtrail_10_1016_j_jcis_2010_09_088 crossref_primary_10_1016_j_jcis_2010_09_088 fao_agris_US201500070237 elsevier_sciencedirect_doi_10_1016_j_jcis_2010_09_088 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-01-15 |
PublicationDateYYYYMMDD | 2011-01-15 |
PublicationDate_xml | – month: 01 year: 2011 text: 2011-01-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Journal of colloid and interface science |
PublicationTitleAlternate | J Colloid Interface Sci |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Gardea-Torresdey, Tiemann, Gamez, Dokken, Tehuacanero, Jose-Yacaman (b0150) 1999; 1 Egorova, Revina (b0210) 2000; 168 Bar, Bhui, Sahoo, Sarkar, De, Misra (b0130) 2009; 339 Tsuji, Kakita, Tsuji (b0035) 2003; 206 Jiang, Manolache, Wong, Denes, Silver (b0015) 2004; 93 Jensen, Malinsky, Haynes, Duyne (b0040) 2000; 104 NIST X-ray Photoelectron Spectroscopy Database. Duran, Marcato, Alves, Da Silva, De Souza, Rodrigues, Esposito (b0020) 2010; 12 Bergfors (b0155) 2003; 142 Tsai, Phillips (b0200) 1991; 57 Gardea-Torresdey, Gomez, Peralta-Videa, Parsons, Troiani, Jose-Yacaman, Gardea-Torresdey, Parsons, Gomez, Peralta-Videa, Troiani, Santiago, Jose-Yacaman (b0095) 2003; 19 Yagi (b0165) 1987; 20 Muentz, Belozersky, Dunaevsky, Schlereth, Tiedemann (b0080) 2001; 52 Ghule, Ghule, Liu, Ling (b0090) 2006; 6 Li, Shen, Xie, Yu, Qiu, Zhang, Zhang (b0190) 2007; 9 Minaeian, Shahverdi, Nohi, Shahverdi (b0250) 2007; 17 Rai, Yadav, Gade (b0030) 2009; 27 Narayanan, Sakthivel (b0055) 2008; 68 Mie (b0140) 1908; 25 Fiehn, Kopka, Trethewey, Willmitzer (b0105) 2002; 72 Shankar, Rai, Ahmad, Sastry (b0050) 2004; 275 Chou, Lu, Lee (b0175) 2005; 94 Shankar, Rai, Ankamwar, Singh, Ahmad, Sastry (b0230) 2004; 3 Mass Spectra Library of Max-Planck-Institute for Plant Physiology, Germany. Yasseen, Barringer, Splittstoesser, Costanza (b0215) 1994; 60 Stenesh (b0185) 1998 Kumar, Ilavarasan, Jayachandran, Decaraman, Aravindhan, Padmanabhan, Krishnan (b0170) 2009; 8 Rice-Evans, Miller, Bolwell, Bramley, Pridham (b0115) 1995; 22 Panigrahi, Kundu, Ghosh, Nath, Pal (b0135) 2004; 6 Zhang, Shen, Xie, Li, Jin, Zhang (b0180) 2006; 110 Parry, Edwards (b0235) 1994; 381 Huang, Li, Sun, Lu, Su, Yang, Wang, Wang, Shao, He, Hong, Chen, Li, Shen, Xie, Yu, Qui, Zhang, Zhang (b0060) 2007; 18 Alivisatos, Jin, Cao, Mirkin, Kelly, Schatz, Zheng, Sun, Xia, Simi, Abraham, Botti, Coppola, Gourbilleau, May, Rizk, Valli, Campbell, Parker, Starr, Emerich, Thanos, Dong, Cui, Zhang (b0005) 1996; 100 Minaeian, Shahverdi, Nohi, Shahverdi (b0100) 2008; 17 Canizal, Schabes-Retchkiman, Pal, Liu, Ascencio (b0160) 2006; 97 . Wang, Zhou, Zhu, Huang, Li (b0205) 2007; 388 Xie, Lee, Wang, Ting (b0120) 2007; 1 Brown, Khodr, Hider, Rice-Evans (b0225) 1998; 330 Lu, Liu, Wang, Qian, Yin, Zhu (b0045) 2003; 81 Morones, Elechiguerra, Camacho, Holt, Kouri, Ramirez, Yacaman (b0240) 2005; 16 Chen, Wu, Ding (b0125) 2008; 10 Miller, Hibbard (b0085) 1926; 1 Tankhiwale, Bajpai (b0025) 2005; 115 Feigl, Gentil (b0220) 1955; 43 Odunfa, Hartwig, Joseph, Phillips (b0065) 1979; 52 Sondi, Salopek-Sondi (b0245) 2004; 275 Chandran, Chaudhary, Pasricha, Ahmad, Sastry (b0145) 2006; 22 Huang (10.1016/j.jcis.2010.09.088_b0060_1) 2007; 18 Li (10.1016/j.jcis.2010.09.088_b0190) 2007; 9 Alivisatos (10.1016/j.jcis.2010.09.088_b0005_1) 1996; 100 Tsuji (10.1016/j.jcis.2010.09.088_b0035) 2003; 206 Narayanan (10.1016/j.jcis.2010.09.088_b0055) 2008; 68 Chou (10.1016/j.jcis.2010.09.088_b0175) 2005; 94 Bergfors (10.1016/j.jcis.2010.09.088_b0155) 2003; 142 Mie (10.1016/j.jcis.2010.09.088_b0140) 1908; 25 Silver (10.1016/j.jcis.2010.09.088_b0015_2) 2003; 27 Stenesh (10.1016/j.jcis.2010.09.088_b0185) 1998 10.1016/j.jcis.2010.09.088_b0110 Rice-Evans (10.1016/j.jcis.2010.09.088_b0115) 1995; 22 Campbell (10.1016/j.jcis.2010.09.088_b0005_6) 2002; 298 Xie (10.1016/j.jcis.2010.09.088_b0120) 2007; 1 10.1016/j.jcis.2010.09.088_b0195 Odunfa (10.1016/j.jcis.2010.09.088_b0070) 1979; 52 Ghule (10.1016/j.jcis.2010.09.088_b0090) 2006; 6 Yagi (10.1016/j.jcis.2010.09.088_b0165) 1987; 20 Duran (10.1016/j.jcis.2010.09.088_b0020) 2010; 12 Gardea-Torresdey (10.1016/j.jcis.2010.09.088_b0150) 1999; 1 Chandran (10.1016/j.jcis.2010.09.088_b0145) 2006; 22 Minaeian (10.1016/j.jcis.2010.09.088_b0250) 2007; 17 Morones (10.1016/j.jcis.2010.09.088_b0240) 2005; 16 Jin (10.1016/j.jcis.2010.09.088_b0010) 2001; 294 Sondi (10.1016/j.jcis.2010.09.088_b0245) 2004; 275 Shankar (10.1016/j.jcis.2010.09.088_b0230) 2004; 3 Brown (10.1016/j.jcis.2010.09.088_b0225) 1998; 330 Zhang (10.1016/j.jcis.2010.09.088_b0180) 2006; 110 Dong (10.1016/j.jcis.2010.09.088_b0005_8) 1997; 8 Tsai (10.1016/j.jcis.2010.09.088_b0200) 1991; 57 Canizal (10.1016/j.jcis.2010.09.088_b0160) 2006; 97 Li (10.1016/j.jcis.2010.09.088_b0060_2) 2007; 9 Jiang (10.1016/j.jcis.2010.09.088_b0015_1) 2004; 93 Rai (10.1016/j.jcis.2010.09.088_b0030) 2009; 27 Miller (10.1016/j.jcis.2010.09.088_b0085) 1926; 1 Fiehn (10.1016/j.jcis.2010.09.088_b0105) 2002; 72 Parry (10.1016/j.jcis.2010.09.088_b0235) 1994; 381 Simi (10.1016/j.jcis.2010.09.088_b0005_4) 2007; 30 Hartwig (10.1016/j.jcis.2010.09.088_b0075) 1991; 95 Chen (10.1016/j.jcis.2010.09.088_b0125) 2008; 10 Sun (10.1016/j.jcis.2010.09.088_b0005_3) 2002; 298 Gardea-Torresdey (10.1016/j.jcis.2010.09.088_b0095_2) 2002; 2 Lu (10.1016/j.jcis.2010.09.088_b0045) 2003; 81 Gardea-Torresdey (10.1016/j.jcis.2010.09.088_b0095_1) 2003; 19 Botti (10.1016/j.jcis.2010.09.088_b0005_5) 2002; 74 Bar (10.1016/j.jcis.2010.09.088_b0130) 2009; 339 Muentz (10.1016/j.jcis.2010.09.088_b0080) 2001; 52 Feigl (10.1016/j.jcis.2010.09.088_b0220) 1955; 43 Jensen (10.1016/j.jcis.2010.09.088_b0040) 2000; 104 Minaeian (10.1016/j.jcis.2010.09.088_b0100) 2008; 17 Yasseen (10.1016/j.jcis.2010.09.088_b0215) 1994; 60 Panigrahi (10.1016/j.jcis.2010.09.088_b0135) 2004; 6 Tankhiwale (10.1016/j.jcis.2010.09.088_b0025) 2005; 115 Shankar (10.1016/j.jcis.2010.09.088_b0050) 2004; 275 Egorova (10.1016/j.jcis.2010.09.088_b0210) 2000; 168 Wang (10.1016/j.jcis.2010.09.088_b0205) 2007; 388 Emerich (10.1016/j.jcis.2010.09.088_b0005_7) 2003; 3 Kumar (10.1016/j.jcis.2010.09.088_b0170) 2009; 8 |
References_xml | – volume: 100 start-page: 13226 year: 1996 ident: b0005 publication-title: J. Phys. Chem. – volume: 94 start-page: 429 year: 2005 ident: b0175 publication-title: Mat. Chem. Phys. – volume: 17 start-page: 1 year: 2007 ident: b0250 publication-title: JSIAU – volume: 43 start-page: 1004 year: 1955 ident: b0220 publication-title: Microchim. Acta – volume: 52 start-page: 1741 year: 2001 ident: b0080 publication-title: J. Exp. Bot. – volume: 1 start-page: 429 year: 2007 ident: b0120 publication-title: ACS Nano – volume: 339 start-page: 134 year: 2009 ident: b0130 publication-title: Colloids Surf., A – volume: 17 start-page: 1 year: 2008 ident: b0100 publication-title: JSIAU – volume: 25 start-page: 377 year: 1908 ident: b0140 publication-title: Ann. Phys. – volume: 8 start-page: 83 year: 2009 ident: b0170 publication-title: Pak. J. Nutr. – volume: 10 start-page: 207 year: 2008 ident: b0125 publication-title: J. Nanopart. Res. – volume: 9 start-page: 852 year: 2007 ident: b0190 publication-title: Green Chem. – volume: 12 start-page: 285 year: 2010 ident: b0020 publication-title: J. Nanopart. Res. – volume: 6 start-page: 3746 year: 2006 ident: b0090 publication-title: J. Nanosci. Nanotech. – volume: 93 start-page: 1411 year: 2004 ident: b0015 publication-title: J. Appl. Polym. Sci. – volume: 381 start-page: 154 year: 1994 ident: b0235 publication-title: Acta Horticult. – volume: 18 start-page: 105104 year: 2007 ident: b0060 publication-title: Nanotechnology – volume: 68 start-page: 4588 year: 2008 ident: b0055 publication-title: Mat. Lett. – volume: 206 start-page: 314 year: 2003 ident: b0035 publication-title: Appl. Surf. Sci. – volume: 275 start-page: 496 year: 2004 ident: b0050 publication-title: JCIS – volume: 1 start-page: 409 year: 1926 ident: b0085 publication-title: Am. Soc. Plant Biologists – reference: Mass Spectra Library of Max-Planck-Institute for Plant Physiology, Germany. – volume: 16 start-page: 2346 year: 2005 ident: b0240 publication-title: Nanotechnology – volume: 110 start-page: 6615 year: 2006 ident: b0180 publication-title: J. Phys. Chem. B. – volume: 168 start-page: 87 year: 2000 ident: b0210 publication-title: Colloids Surf., A – volume: 3 start-page: 482 year: 2004 ident: b0230 publication-title: Nat. Mater. – volume: 142 start-page: 66 year: 2003 ident: b0155 publication-title: J. Struct. Biol. – volume: 22 start-page: 577 year: 2006 ident: b0145 publication-title: Biotechnol. Prog. – volume: 81 start-page: 104 year: 2003 ident: b0045 publication-title: Mat. Chem. Phys. – volume: 72 start-page: 3573 year: 2002 ident: b0105 publication-title: Anal. Chem. – year: 1998 ident: b0185 article-title: Biochemistry: Solutions Manual 2 – volume: 6 start-page: 411 year: 2004 ident: b0135 publication-title: J. Nanopart. Res. – volume: 60 start-page: 427 year: 1994 ident: b0215 publication-title: Bot. Rev. – volume: 19 start-page: 1357 year: 2003 ident: b0095 publication-title: Langmuir – volume: 20 start-page: 147 year: 1987 ident: b0165 publication-title: J. Appl. Crystallogr. – reference: NIST X-ray Photoelectron Spectroscopy Database. – volume: 52 start-page: 491 year: 1979 ident: b0065 publication-title: Plant and Soil. – volume: 22 start-page: 375 year: 1995 ident: b0115 publication-title: Free Rad. Res. – volume: 115 start-page: 1894 year: 2005 ident: b0025 publication-title: J. Appl. Poly. Sci. – volume: 275 start-page: 177 year: 2004 ident: b0245 publication-title: JCIS – volume: 1 start-page: 397 year: 1999 ident: b0150 publication-title: J. Nanopart. Res. – volume: 97 start-page: 321 year: 2006 ident: b0160 publication-title: Mater. Chem. Phys. – volume: 104 start-page: 10549 year: 2000 ident: b0040 publication-title: J. Phys. Chem. B. – volume: 57 start-page: 1485 year: 1991 ident: b0200 publication-title: Appl. Environ. Microbiol. – volume: 27 start-page: 76 year: 2009 ident: b0030 publication-title: Biotechnol. Advan. – reference: . – volume: 388 start-page: 1199 year: 2007 ident: b0205 publication-title: Anal. Bioanal. Chem. – volume: 330 start-page: 1173 year: 1998 ident: b0225 publication-title: Biochem. J. – volume: 100 start-page: 13226 year: 1996 ident: 10.1016/j.jcis.2010.09.088_b0005_1 publication-title: J. Phys. Chem. doi: 10.1021/jp9535506 – volume: 27 start-page: 341 year: 2003 ident: 10.1016/j.jcis.2010.09.088_b0015_2 publication-title: FEMS Microbiol. Rev. doi: 10.1016/S0168-6445(03)00047-0 – volume: 8 start-page: 815 year: 1997 ident: 10.1016/j.jcis.2010.09.088_b0005_8 publication-title: Nanostruct. Mater. doi: 10.1016/S0965-9773(98)00005-1 – volume: 72 start-page: 3573 year: 2002 ident: 10.1016/j.jcis.2010.09.088_b0105 publication-title: Anal. Chem. doi: 10.1021/ac991142i – volume: 3 start-page: 655 year: 2003 ident: 10.1016/j.jcis.2010.09.088_b0005_7 publication-title: Exp. Opin. Biol. Ther. doi: 10.1517/14712598.3.4.655 – volume: 104 start-page: 10549 year: 2000 ident: 10.1016/j.jcis.2010.09.088_b0040 publication-title: J. Phys. Chem. B. doi: 10.1021/jp002435e – volume: 110 start-page: 6615 year: 2006 ident: 10.1016/j.jcis.2010.09.088_b0180 publication-title: J. Phys. Chem. B. doi: 10.1021/jp0570216 – volume: 25 start-page: 377 year: 1908 ident: 10.1016/j.jcis.2010.09.088_b0140 publication-title: Ann. Phys. doi: 10.1002/andp.19083300302 – volume: 9 start-page: 852 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0190 publication-title: Green Chem. doi: 10.1039/b615357g – volume: 142 start-page: 66 year: 2003 ident: 10.1016/j.jcis.2010.09.088_b0155 publication-title: J. Struct. Biol. doi: 10.1016/S1047-8477(03)00039-X – volume: 9 start-page: 852 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0060_2 publication-title: Green Chem. doi: 10.1039/b615357g – ident: 10.1016/j.jcis.2010.09.088_b0195 – volume: 381 start-page: 154 year: 1994 ident: 10.1016/j.jcis.2010.09.088_b0235 publication-title: Acta Horticult. doi: 10.17660/ActaHortic.1994.381.14 – volume: 74 start-page: 1230 year: 2002 ident: 10.1016/j.jcis.2010.09.088_b0005_5 publication-title: Appl. Phys. A. doi: 10.1007/s003390201712 – year: 1998 ident: 10.1016/j.jcis.2010.09.088_b0185 – volume: 17 start-page: 1 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0250 publication-title: JSIAU – volume: 43 start-page: 1004 year: 1955 ident: 10.1016/j.jcis.2010.09.088_b0220 publication-title: Microchim. Acta doi: 10.1007/BF01223998 – volume: 298 start-page: 2176 year: 2002 ident: 10.1016/j.jcis.2010.09.088_b0005_3 publication-title: Science doi: 10.1126/science.1077229 – volume: 6 start-page: 3746 year: 2006 ident: 10.1016/j.jcis.2010.09.088_b0090 publication-title: J. Nanosci. Nanotech. doi: 10.1166/jnn.2006.608 – volume: 22 start-page: 577 year: 2006 ident: 10.1016/j.jcis.2010.09.088_b0145 publication-title: Biotechnol. Prog. doi: 10.1021/bp0501423 – volume: 8 start-page: 83 year: 2009 ident: 10.1016/j.jcis.2010.09.088_b0170 publication-title: Pak. J. Nutr. doi: 10.3923/pjn.2009.83.85 – volume: 388 start-page: 1199 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0205 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-007-1295-y – volume: 1 start-page: 397 year: 1999 ident: 10.1016/j.jcis.2010.09.088_b0150 publication-title: J. Nanopart. Res. doi: 10.1023/A:1010008915465 – volume: 97 start-page: 321 year: 2006 ident: 10.1016/j.jcis.2010.09.088_b0160 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2005.08.015 – volume: 10 start-page: 207 year: 2008 ident: 10.1016/j.jcis.2010.09.088_b0125 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-007-9220-z – volume: 12 start-page: 285 year: 2010 ident: 10.1016/j.jcis.2010.09.088_b0020 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-009-9606-1 – volume: 52 start-page: 491 year: 1979 ident: 10.1016/j.jcis.2010.09.088_b0070 publication-title: Plant and Soil. doi: 10.1007/BF02277944 – volume: 30 start-page: 173 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0005_4 publication-title: Bioprocess. Biosyst. Eng. doi: 10.1007/s00449-007-0112-5 – volume: 19 start-page: 1357 year: 2003 ident: 10.1016/j.jcis.2010.09.088_b0095_1 publication-title: Langmuir doi: 10.1021/la020835i – volume: 20 start-page: 147 year: 1987 ident: 10.1016/j.jcis.2010.09.088_b0165 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889887086916 – volume: 339 start-page: 134 year: 2009 ident: 10.1016/j.jcis.2010.09.088_b0130 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2009.02.008 – volume: 81 start-page: 104 year: 2003 ident: 10.1016/j.jcis.2010.09.088_b0045 publication-title: Mat. Chem. Phys. doi: 10.1016/S0254-0584(03)00147-0 – volume: 22 start-page: 375 year: 1995 ident: 10.1016/j.jcis.2010.09.088_b0115 publication-title: Free Rad. Res. doi: 10.3109/10715769509145649 – volume: 330 start-page: 1173 year: 1998 ident: 10.1016/j.jcis.2010.09.088_b0225 publication-title: Biochem. J. doi: 10.1042/bj3301173 – volume: 2 start-page: 397 year: 2002 ident: 10.1016/j.jcis.2010.09.088_b0095_2 publication-title: Nano Lett. doi: 10.1021/nl015673+ – volume: 57 start-page: 1485 year: 1991 ident: 10.1016/j.jcis.2010.09.088_b0200 publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.57.5.1485-1488.1991 – volume: 94 start-page: 429 year: 2005 ident: 10.1016/j.jcis.2010.09.088_b0175 publication-title: Mat. Chem. Phys. doi: 10.1016/j.matchemphys.2005.05.029 – volume: 52 start-page: 1741 year: 2001 ident: 10.1016/j.jcis.2010.09.088_b0080 publication-title: J. Exp. Bot. doi: 10.1093/jexbot/52.362.1741 – volume: 60 start-page: 427 year: 1994 ident: 10.1016/j.jcis.2010.09.088_b0215 publication-title: Bot. Rev. – volume: 95 start-page: 797 year: 1991 ident: 10.1016/j.jcis.2010.09.088_b0075 publication-title: Plant Physiol. doi: 10.1104/pp.95.3.797 – volume: 298 start-page: 811 year: 2002 ident: 10.1016/j.jcis.2010.09.088_b0005_6 publication-title: Science. doi: 10.1126/science.1075094 – volume: 6 start-page: 411 year: 2004 ident: 10.1016/j.jcis.2010.09.088_b0135 publication-title: J. Nanopart. Res. doi: 10.1007/s11051-004-6575-2 – volume: 1 start-page: 409 year: 1926 ident: 10.1016/j.jcis.2010.09.088_b0085 publication-title: Am. Soc. Plant Biologists – volume: 168 start-page: 87 year: 2000 ident: 10.1016/j.jcis.2010.09.088_b0210 publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(99)00513-0 – volume: 17 start-page: 1 year: 2008 ident: 10.1016/j.jcis.2010.09.088_b0100 publication-title: JSIAU – volume: 68 start-page: 4588 year: 2008 ident: 10.1016/j.jcis.2010.09.088_b0055 publication-title: Mat. Lett. doi: 10.1016/j.matlet.2008.08.044 – volume: 3 start-page: 482 year: 2004 ident: 10.1016/j.jcis.2010.09.088_b0230 publication-title: Nat. Mater. doi: 10.1038/nmat1152 – volume: 1 start-page: 429 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0120 publication-title: ACS Nano doi: 10.1021/nn7000883 – ident: 10.1016/j.jcis.2010.09.088_b0110 – volume: 275 start-page: 177 year: 2004 ident: 10.1016/j.jcis.2010.09.088_b0245 publication-title: JCIS – volume: 93 start-page: 1411 year: 2004 ident: 10.1016/j.jcis.2010.09.088_b0015_1 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.20561 – volume: 206 start-page: 314 year: 2003 ident: 10.1016/j.jcis.2010.09.088_b0035 publication-title: Appl. Surf. Sci. doi: 10.1016/S0169-4332(02)01230-8 – volume: 275 start-page: 496 year: 2004 ident: 10.1016/j.jcis.2010.09.088_b0050 publication-title: JCIS – volume: 18 start-page: 105104 year: 2007 ident: 10.1016/j.jcis.2010.09.088_b0060_1 publication-title: Nanotechnology doi: 10.1088/0957-4484/18/10/105104 – volume: 115 start-page: 1894 year: 2005 ident: 10.1016/j.jcis.2010.09.088_b0025 publication-title: J. Appl. Poly. Sci. doi: 10.1002/app.31168 – volume: 27 start-page: 76 year: 2009 ident: 10.1016/j.jcis.2010.09.088_b0030 publication-title: Biotechnol. Advan. doi: 10.1016/j.biotechadv.2008.09.002 – volume: 294 start-page: 1901 year: 2001 ident: 10.1016/j.jcis.2010.09.088_b0010 publication-title: Science doi: 10.1126/science.1066541 – volume: 16 start-page: 2346 year: 2005 ident: 10.1016/j.jcis.2010.09.088_b0240 publication-title: Nanotechnology doi: 10.1088/0957-4484/16/10/059 |
SSID | ssj0011559 |
Score | 2.4594698 |
Snippet | Various colloidal Ag nanoparticles that were synthesized by
M. sativa seed exudates in aqueous system under mild and non-photomediated conditions.
[Display... The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag)... |
SourceID | proquest pubmed pascalfrancis crossref fao elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 433 |
SubjectTerms | Ag nanoparticles Alfalfa Anti-Bacterial Agents Anti-Bacterial Agents - chemistry Anti-Bacterial Agents - pharmacology antibacterial properties antibiotics atomic force microscopy Bacteria Bacteria - drug effects Bacterial Infections Bacterial Infections - drug therapy Bio-reduction centrifugation Chemistry Colloidal silver Colloidal state and disperse state colloids dispersions drug effects drug therapy Exact sciences and technology films (materials) gas chromatography Gas Chromatography-Mass Spectrometry General and physical chemistry ions mass spectrometry Medicago sativa Medicago sativa - chemistry metabolites Metal Nanoparticles Metal Nanoparticles - chemistry Metal Nanoparticles - ultrastructure methods nanoparticles nanosilver Nanotechnology Nanotechnology - methods Oxidation-Reduction Particle Size pharmacology Physical and chemical studies. Granulometry. Electrokinetic phenomena plant extracts Plant Extracts - chemistry Powder Diffraction scanning electron microscopy Seed exudate seeds Seeds - chemistry silver Silver - chemistry silver nitrate sustainable technology synthesis temperature transmission electron microscopy ultrastructure ultraviolet-visible spectroscopy vascular plants water X-radiation X-Ray Diffraction X-ray photoelectron spectroscopy |
Title | Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates |
URI | https://dx.doi.org/10.1016/j.jcis.2010.09.088 https://www.ncbi.nlm.nih.gov/pubmed/20974473 https://www.proquest.com/docview/1663619865 https://www.proquest.com/docview/763176411 https://www.proquest.com/docview/849474649 |
Volume | 353 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tywE4IFgeGx6Vkbix2a0bJ7aPVUVVQOwFKu3Ncmyn6gol1aZFcEH8dGbqpMtKdA8cckkmkZOZzHy2v5kBeFuKKhdS-hRDlU5FiWasHBFdS-VD4XzIJeU7fz4vZnPx8SK_OIBJnwtDtMrO90efvvXW3Zmz7muerZZLyvHFv01qKk_DEbdQ2W0hJFn56a8dzYPTtlukefCUpLvEmcjxunTLtqN36dPhtvvKP4PTnco2xJq0LX64Kna82A9Jt6Fp-ggedpiSjeOwH8NBqI_g3qRv5XYED_6qOvgEfk-tQ1_A2p81or922Z4whIhEko0pmSfM1h6PNU6bYy1nfPjqOsGANRWjZN4rxNtsvGC1rXHm3RHsGBHpFyzu_ywaRmSh75a1GCRZ-LGh9YX2Kcyn779OZmnXiCF1COjWaVlkQfg8c6J0QjqdKUp3HfGKl0HZCvG5qDLHfW4zqX3GnfXSeS8Umocorc-ewWHd1OEYmJRShUrYoBQqyzsrCxeU1K4cKRSvEuC9BozrqpRTs4xvpqejXRrSmiGtmaE2qLUE3u3uWcUaHbdK571izQ1LMxhEbr3vGK3A2AU6XzP_MqKlIiqWNMpkAoMbprEbBV5DQKZQ4E1vKwZVT3sytg7NpjUcER_OYVWRJ8D2yGAI4LIQnO8XUUILKQqhE3geTfF6DEOcMgqZvfjP934J9-M6Ok95_goO11eb8BqB2LocbP-0Adwdf_g0O_8DUVYy2Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t42HwgMaALcCGkXhj2erGiZ3HqVpVYNsLq7Q3y7GdqhNKqqVF8IL46dzVScekdQ889CW9RE7ufPfZ_u4O4GMhylRI6WIMVXksCjRjZYnoWijnM-t8Kinf-eIyG43Fl-v0egMGXS4M0Spb3x98-tJbt1dO2q95MptOKccXZ5vMqTwNR9ySbcITgdOX2hgc_17xPDiduwWeB49JvM2cCSSvGzttWn5Xftxbtl95MDptlqYm2qRp8MuVoeXFeky6jE3DHXjegkp2Gsb9AjZ8tQvbg66X2y48-6fs4Ev4MzQWnQFrflUI_5ppc8QQIxJLNuRkHjFTOfzNcd0cijnjw2d3GQasLhll894i4GanE1aZCpfeLcOOEZN-wsIB0KRmxBb6YViDUZL5nwvaYGhewXh4djUYxW0nhtgiopvHRZZ44dLEisIKafNEUb5rn5e88MqUCNBFmVjuUpPI3CXcGietc0KhfYjCuOQ1bFV15feBSSmVL4XxSgkhnTUys17J3BZ9heJlBLzTgLZtmXLqlvFdd3y0G01a06Q13cs1ai2CT6t7ZqFIx6PSaadYfc_UNEaRR-_bRyvQZoLeV4-_9WmviKol9RMZweE901iNAv9DRKZQ4ENnKxpVT4cypvL1otEcIR8uYlWWRsDWyGAM4DITnK8XUSIXUmQij2AvmOLdGHq4ZhQyefOf7_0etkdXF-f6_PPl17fwNGyq85in72BrfrvwB4jK5sXhctb9BQTlNGc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis%2C+stabilization%2C+and+anti-bacterial+performance+of+discrete+Ag+nanoparticles+using+Medicago+sativa+seed+exudates&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lukman%2C+Audra+I.&rft.au=Gong%2C+Bin&rft.au=Marjo%2C+Christopher+E.&rft.au=Roessner%2C+Ute&rft.date=2011-01-15&rft.issn=0021-9797&rft.volume=353&rft.issue=2&rft.spage=433&rft.epage=444&rft_id=info:doi/10.1016%2Fj.jcis.2010.09.088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2010_09_088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon |