Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates

Various colloidal Ag nanoparticles that were synthesized by M. sativa seed exudates in aqueous system under mild and non-photomediated conditions. [Display omitted] ► Medicago sativa seed exudate is effective at reducing Ag salts to form and stabilize Ag(0) nanoparticles ► The particle size and shap...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 353; no. 2; pp. 433 - 444
Main Authors Lukman, Audra I., Gong, Bin, Marjo, Christopher E., Roessner, Ute, Harris, Andrew T.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.01.2011
Elsevier
Subjects
pH
Online AccessGet full text

Cover

Loading…
Abstract Various colloidal Ag nanoparticles that were synthesized by M. sativa seed exudates in aqueous system under mild and non-photomediated conditions. [Display omitted] ► Medicago sativa seed exudate is effective at reducing Ag salts to form and stabilize Ag(0) nanoparticles ► The particle size and shape can be modulated by varying Ag concentration, quantity of exudate, and pH ► The Ag particles were spherical, flower-like and triangular in shape, ranging from 5 to 108 nm in size ► Unpurified Ag nanoparticles have the capacity to inhibit the growth of certain bacteria. The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO 3 with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag + ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag +] = 0.01 M and 30 °C, largely spherical nanoparticles with diameters in the range of 5–51 nm were generated, while flower-like particle clusters (mean size = 104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86–108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet–visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography–mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.
AbstractList The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO sub(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag super(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag super(+)] = 0.01 M and 30 C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size = 104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.
Various colloidal Ag nanoparticles that were synthesized by M. sativa seed exudates in aqueous system under mild and non-photomediated conditions. [Display omitted] ► Medicago sativa seed exudate is effective at reducing Ag salts to form and stabilize Ag(0) nanoparticles ► The particle size and shape can be modulated by varying Ag concentration, quantity of exudate, and pH ► The Ag particles were spherical, flower-like and triangular in shape, ranging from 5 to 108 nm in size ► Unpurified Ag nanoparticles have the capacity to inhibit the growth of certain bacteria. The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO 3 with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag + ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag +] = 0.01 M and 30 °C, largely spherical nanoparticles with diameters in the range of 5–51 nm were generated, while flower-like particle clusters (mean size = 104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86–108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet–visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography–mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO₃ with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag⁺ ions was observed in <1min with Ag nanoparticle formation reaching 90% completion in <50min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag⁺]=0.01M and 30°C, largely spherical nanoparticles with diameters in the range of 5–51nm were generated, while flower-like particle clusters (mean size=104nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86–108nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet–visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography–mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag) nanoparticles were synthesized by reacting aqueous AgNO(3) with Medicago sativa seed exudates under non-photomediated conditions. Upon contact, rapid reduction of Ag(+) ions was observed in <1 min with Ag nanoparticle formation reaching 90% completion in <50 min. Effect of Ag concentration, quantity of exudate and pH on the particle size and shape were investigated. At [Ag(+)]=0.01 M and 30°C, largely spherical nanoparticles with diameters in the range of 5-51 nm were generated, while flower-like particle clusters (mean size=104 nm) were observed on treatment at higher Ag concentrations. Pre-dilution of the exudate induced the formation of single-crystalline Ag nanoplates, forming hexagonal particles and nanotriangles with edge lengths of 86-108 nm, while pH adjustment to 11 resulted in monodisperse Ag nanoparticles with an average size of 12 nm. Repeated centrifugation and redispersion enhanced the percentage of nanoplates from 10% to 75% in solution. The kinetics of nanoparticle formation were monitored using ultraviolet-visible spectroscopy and the Ag products were characterized using transmission electron microscopy, selected-area electron diffraction, scanning electron microscopy, X-ray powder diffraction, and atomic force microscopy. X-ray photoelectron spectroscopy was used to investigate the elements and chemical environment in the top layers of the as-synthesized Ag nanoparticles, while the metabolites in the exudate were analyzed using gas chromatography-mass spectroscopy. To our knowledge, this is the first account of M. sativa seed exudate assisted synthesis and stabilization of biogenic Ag nanoparticles; the nanoplates are notably smaller and better faceted compared with those synthesized by vascular plant extracts previously reported. Stabilized films of exudate synthesized Ag nanoparticles were effective anti-bacterial agents.
Author Marjo, Christopher E.
Lukman, Audra I.
Gong, Bin
Harris, Andrew T.
Roessner, Ute
Author_xml – sequence: 1
  givenname: Audra I.
  surname: Lukman
  fullname: Lukman, Audra I.
  organization: Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
– sequence: 2
  givenname: Bin
  surname: Gong
  fullname: Gong, Bin
  organization: UNSW Analytical Centre, Room G61, Chemical Sciences Building F10, University of New South Wales, Kensington, NSW 2052, Australia
– sequence: 3
  givenname: Christopher E.
  surname: Marjo
  fullname: Marjo, Christopher E.
  organization: UNSW Analytical Centre, Room G61, Chemical Sciences Building F10, University of New South Wales, Kensington, NSW 2052, Australia
– sequence: 4
  givenname: Ute
  surname: Roessner
  fullname: Roessner, Ute
  organization: Metabolomics Australia, School of Botany, University of Melbourne, VIC 3010, Australia
– sequence: 5
  givenname: Andrew T.
  surname: Harris
  fullname: Harris, Andrew T.
  email: a.harris@usyd.edu.au
  organization: Laboratory for Sustainable Technology, School of Chemical and Biomolecular Engineering, University of Sydney, NSW 2006, Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23750987$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20974473$$D View this record in MEDLINE/PubMed
BookMark eNqFksFvFCEYxYmpsdvqP-BBuRg9dFYYmGFIemkaqyY1HrRn8g18s7KZHVZgG-upf3pZdxsTD-uBkMDvPb7w3gk5msKEhLzkbM4Zb98v50vr07xm5YDpOeu6J2TGmW4qxZk4IjPGal5ppdUxOUlpyRjnTaOfkeOaaSWlEjNyfwXWj0jT3ZR_YPLpjKYMvR_9b8g-TGcUJldW9lUPNmP0MNI1xiHEFUwWaRio88lGzEgvFnSCKawhZm9HTHST_LSgX9B5C4tAU7G8BZoQHcVfGwcZ03PydIAx4Yv9fkpurj58v_xUXX_9-Pny4rqyjWS56luB0jXCyt5KZbXoGq5VzQfeYweDqrUchOWuAaG0E9yCU9Y52VkLsgcnTsnbne86hp8bTNmsytg4jjBh2CTTSS2VbKX-L6lawVUrOS_ku4Mkb1vRct21TUFf7dFNv0Jn1tGvIN6ZxyQK8GYPQLIwDrH8rk9_OaEapjtVuG7H2RhSijgY6_OfqHIEPxrOzLYcZmm25TDbchimTSlHkdb_SB_dD4pe70QDBAOLWK5vvhWgYYwpVsYqxPmOwBLfrcdokvVYuuF8RJuNC_7QAw882d2P
CODEN JCISA5
CitedBy_id crossref_primary_10_1142_S1793292020300017
crossref_primary_10_1002_admi_202300257
crossref_primary_10_1016_j_proeng_2016_06_512
crossref_primary_10_1039_C7NJ00764G
crossref_primary_10_3233_MGC_220003
crossref_primary_10_1016_j_apmt_2016_09_009
crossref_primary_10_1038_s41598_019_57097_0
crossref_primary_10_1016_j_sajb_2023_04_019
crossref_primary_10_1016_j_biortech_2012_01_015
crossref_primary_10_1016_j_indcrop_2015_03_015
crossref_primary_10_1016_j_hermed_2017_09_004
crossref_primary_10_1016_j_surfin_2017_03_004
crossref_primary_10_1080_19430892_2012_656040
crossref_primary_10_1186_s11671_023_03914_5
crossref_primary_10_1016_j_jiec_2022_04_031
crossref_primary_10_1021_acsanm_0c01164
crossref_primary_10_1038_s41598_023_34944_9
crossref_primary_10_1080_21622515_2022_2147454
crossref_primary_10_1186_1556_276X_9_101
crossref_primary_10_1016_j_apt_2017_02_003
crossref_primary_10_1016_j_jphotobiol_2015_12_008
crossref_primary_10_1016_j_matpr_2017_06_133
crossref_primary_10_3109_15419061_2014_926476
crossref_primary_10_1016_j_molstruc_2018_10_044
crossref_primary_10_4028_www_scientific_net_NH_7_69
crossref_primary_10_1016_j_jece_2022_108065
crossref_primary_10_1021_sc4000972
crossref_primary_10_1007_s13762_017_1530_9
crossref_primary_10_1039_D4SU00460D
crossref_primary_10_1155_2022_9845022
crossref_primary_10_3390_antiox10121959
crossref_primary_10_1016_j_inoche_2023_111998
crossref_primary_10_1016_j_indcrop_2013_01_019
crossref_primary_10_1515_revic_2018_0004
crossref_primary_10_1007_s12010_014_0831_4
crossref_primary_10_1016_j_jphotobiol_2016_12_013
crossref_primary_10_1038_s41598_025_85545_7
crossref_primary_10_1007_s10924_021_02071_z
crossref_primary_10_1039_c3ra22959a
crossref_primary_10_1080_10826068_2021_1894441
crossref_primary_10_1016_j_matpr_2024_04_052
crossref_primary_10_1016_j_molliq_2016_07_087
crossref_primary_10_1080_10667857_2021_1976363
crossref_primary_10_3109_21691401_2014_982802
crossref_primary_10_1007_s11814_014_0277_y
crossref_primary_10_1039_C9EN01162E
crossref_primary_10_1049_iet_nbt_2016_0144
crossref_primary_10_3390_molecules26247709
crossref_primary_10_1155_2016_2715026
crossref_primary_10_1080_21691401_2017_1366335
crossref_primary_10_1039_C7RA12280B
crossref_primary_10_1016_j_solener_2022_08_065
crossref_primary_10_1016_j_saa_2014_10_010
crossref_primary_10_12677_ms_2011_11002
crossref_primary_10_1016_j_biotechadv_2018_08_008
crossref_primary_10_1016_j_mtcomm_2020_101442
crossref_primary_10_1039_C4RA13117G
crossref_primary_10_1007_s11356_023_27437_9
crossref_primary_10_1007_s00253_016_7657_7
crossref_primary_10_1007_s13204_014_0341_2
crossref_primary_10_1016_j_inoche_2022_109977
crossref_primary_10_1016_j_physe_2011_09_018
crossref_primary_10_1155_2024_9721166
crossref_primary_10_1080_14786419_2014_918124
crossref_primary_10_1186_2193_8865_3_8
crossref_primary_10_1007_s12011_020_02170_3
crossref_primary_10_1039_c3ra23133j
crossref_primary_10_1080_10667857_2015_1105575
crossref_primary_10_3390_nano8030163
crossref_primary_10_1007_s13562_012_0172_8
crossref_primary_10_1007_s40097_014_0082_5
crossref_primary_10_1049_mnl_2018_0055
crossref_primary_10_1088_1757_899X_162_1_012033
crossref_primary_10_1016_j_btre_2021_e00612
crossref_primary_10_1002_slct_201600191
crossref_primary_10_1111_1748_5967_12574
crossref_primary_10_1021_acs_chemrev_6b00164
crossref_primary_10_5155_eurjchem_14_2_223_230_2403
crossref_primary_10_1007_s13204_013_0203_3
crossref_primary_10_31594_commagene_941022
crossref_primary_10_1016_j_micron_2013_07_003
crossref_primary_10_1007_s10973_017_6555_2
crossref_primary_10_1016_j_saa_2012_02_009
crossref_primary_10_1016_j_msec_2020_111153
crossref_primary_10_1016_j_ntm_2024_100050
crossref_primary_10_3390_ma11091673
crossref_primary_10_1016_j_cis_2011_08_004
crossref_primary_10_1016_j_molliq_2015_03_029
crossref_primary_10_1007_s11051_018_4330_3
crossref_primary_10_1007_s40097_015_0166_x
crossref_primary_10_1016_j_matlet_2015_05_062
crossref_primary_10_1016_j_ultsonch_2016_10_018
crossref_primary_10_3389_fchem_2020_00799
crossref_primary_10_1007_s11157_012_9278_7
crossref_primary_10_1021_acssuschemeng_8b04465
crossref_primary_10_1016_j_jsse_2023_04_002
crossref_primary_10_1039_C9RA04711E
crossref_primary_10_1016_j_mimet_2019_105766
crossref_primary_10_1021_acs_est_5b01147
crossref_primary_10_1007_s13204_017_0615_6
crossref_primary_10_1049_iet_nbt_2013_0001
crossref_primary_10_1007_s00436_013_3288_4
crossref_primary_10_3109_17435390_2013_812258
crossref_primary_10_1016_j_saa_2012_02_001
crossref_primary_10_1016_j_materresbull_2011_10_018
crossref_primary_10_1016_j_biopha_2023_116083
crossref_primary_10_1016_j_jksus_2020_09_024
crossref_primary_10_1080_24701556_2020_1735432
crossref_primary_10_1016_j_seppur_2012_10_008
crossref_primary_10_1007_s11483_014_9343_6
crossref_primary_10_1016_j_jcomc_2022_100331
crossref_primary_10_3390_molecules18055954
crossref_primary_10_3390_surfaces5010003
crossref_primary_10_1080_10584587_2012_686405
crossref_primary_10_32725_jab_2019_010
crossref_primary_10_1016_j_colsurfb_2011_03_009
crossref_primary_10_1016_j_apsusc_2015_07_209
crossref_primary_10_1021_acs_iecr_6b00861
crossref_primary_10_1016_j_renene_2021_03_054
crossref_primary_10_1039_C5RA26124D
crossref_primary_10_1080_19430892_2012_678706
crossref_primary_10_1039_C8DT01152D
crossref_primary_10_1007_s42452_020_2477_x
crossref_primary_10_1080_21691401_2016_1215328
crossref_primary_10_1016_j_jobaz_2016_02_002
crossref_primary_10_1088_1361_6528_acda35
crossref_primary_10_1021_acs_est_5b03306
crossref_primary_10_1080_1040841X_2021_1977779
crossref_primary_10_1002_jobm_201600175
crossref_primary_10_1016_j_jphotobiol_2015_05_015
crossref_primary_10_3390_magnetochemistry6040068
crossref_primary_10_1007_s13204_022_02538_y
crossref_primary_10_1016_j_ijhydene_2019_03_040
crossref_primary_10_1049_mnl_2017_0703
crossref_primary_10_1016_j_matchemphys_2021_125507
crossref_primary_10_1515_ijcre_2014_0149
crossref_primary_10_1080_10942912_2016_1188826
crossref_primary_10_1039_D1NJ02858H
crossref_primary_10_1246_bcsj_20140255
crossref_primary_10_1007_s10311_020_01074_x
crossref_primary_10_1016_j_cej_2013_05_046
crossref_primary_10_1055_a_1801_6793
crossref_primary_10_1007_s40097_018_0267_4
crossref_primary_10_1155_2014_692461
crossref_primary_10_1016_j_saa_2012_10_015
crossref_primary_10_1016_j_msec_2014_10_041
crossref_primary_10_1016_j_jes_2016_05_044
crossref_primary_10_1038_s41598_024_68979_3
crossref_primary_10_1016_j_seppur_2015_07_012
crossref_primary_10_1088_2043_6262_7_1_015018
crossref_primary_10_1007_s13204_014_0381_7
crossref_primary_10_1080_21691401_2017_1354302
crossref_primary_10_1016_j_msec_2020_110922
crossref_primary_10_1016_j_msec_2016_09_038
crossref_primary_10_18311_jnr_2024_36484
crossref_primary_10_3390_molecules27154754
crossref_primary_10_1016_j_indcrop_2012_08_013
crossref_primary_10_1007_s13204_020_01369_z
crossref_primary_10_1016_j_jcis_2011_05_009
crossref_primary_10_3390_ijms21239028
crossref_primary_10_1007_s10876_017_1266_1
crossref_primary_10_1371_journal_pone_0218104
crossref_primary_10_1007_s10853_012_6964_3
crossref_primary_10_1049_iet_nbt_2015_0078
crossref_primary_10_1016_j_apsusc_2011_03_056
crossref_primary_10_1002_bit_24570
crossref_primary_10_1016_j_jcis_2013_10_018
crossref_primary_10_3390_biom12050627
crossref_primary_10_1007_s00436_017_5711_8
crossref_primary_10_1016_j_scitotenv_2019_135002
crossref_primary_10_1002_aoc_6778
crossref_primary_10_1080_15533174_2013_862644
crossref_primary_10_1016_j_jcis_2015_04_053
crossref_primary_10_3390_molecules21111498
crossref_primary_10_1007_s40495_023_00340_0
crossref_primary_10_1016_j_jphotobiol_2017_05_031
crossref_primary_10_1080_07388551_2023_2225131
crossref_primary_10_4103_japtr_japtr_181_22
crossref_primary_10_1016_j_colsurfb_2012_03_023
crossref_primary_10_1007_s00396_013_3008_8
crossref_primary_10_1016_j_jcis_2014_06_030
crossref_primary_10_1039_c3gc36831a
crossref_primary_10_1007_s40097_018_0285_2
crossref_primary_10_1049_iet_nbt_2015_0072
crossref_primary_10_3390_separations10090518
crossref_primary_10_1088_1361_6528_abb6a8
crossref_primary_10_1002_app_42070
crossref_primary_10_1016_j_cis_2020_102236
crossref_primary_10_3390_molecules20046002
crossref_primary_10_1016_j_apsusc_2018_02_116
Cites_doi 10.1021/jp9535506
10.1016/S0168-6445(03)00047-0
10.1016/S0965-9773(98)00005-1
10.1021/ac991142i
10.1517/14712598.3.4.655
10.1021/jp002435e
10.1021/jp0570216
10.1002/andp.19083300302
10.1039/b615357g
10.1016/S1047-8477(03)00039-X
10.17660/ActaHortic.1994.381.14
10.1007/s003390201712
10.1007/BF01223998
10.1126/science.1077229
10.1166/jnn.2006.608
10.1021/bp0501423
10.3923/pjn.2009.83.85
10.1007/s00216-007-1295-y
10.1023/A:1010008915465
10.1016/j.matchemphys.2005.08.015
10.1007/s11051-007-9220-z
10.1007/s11051-009-9606-1
10.1007/BF02277944
10.1007/s00449-007-0112-5
10.1021/la020835i
10.1107/S0021889887086916
10.1016/j.colsurfa.2009.02.008
10.1016/S0254-0584(03)00147-0
10.3109/10715769509145649
10.1042/bj3301173
10.1021/nl015673+
10.1128/aem.57.5.1485-1488.1991
10.1016/j.matchemphys.2005.05.029
10.1093/jexbot/52.362.1741
10.1104/pp.95.3.797
10.1126/science.1075094
10.1007/s11051-004-6575-2
10.1016/S0927-7757(99)00513-0
10.1016/j.matlet.2008.08.044
10.1038/nmat1152
10.1021/nn7000883
10.1002/app.20561
10.1016/S0169-4332(02)01230-8
10.1088/0957-4484/18/10/105104
10.1002/app.31168
10.1016/j.biotechadv.2008.09.002
10.1126/science.1066541
10.1088/0957-4484/16/10/059
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright © 2010 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QL
7T7
8FD
C1K
FR3
P64
DOI 10.1016/j.jcis.2010.09.088
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Engineering Research Database
Technology Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Bacteriology Abstracts (Microbiology B)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Engineering Research Database
MEDLINE

AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 444
ExternalDocumentID 20974473
23750987
10_1016_j_jcis_2010_09_088
US201500070237
S0021979710011616
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
-~X
.GJ
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
53G
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXDB
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
NDZJH
NEJ
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCB
SCC
SCE
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
VH1
WH7
WUQ
XFK
XPP
YQT
ZGI
ZMT
ZU3
ZXP
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7S9
L.6
7X8
7QL
7T7
8FD
C1K
FR3
P64
ID FETCH-LOGICAL-c540t-b63e4d53c4bc47c938519721f1be8af7294f3c1d5a379d31cad7cdd48cca4bad3
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Mon Jul 21 10:37:06 EDT 2025
Fri Jul 11 07:58:39 EDT 2025
Fri Jul 11 15:08:19 EDT 2025
Mon Jul 21 05:33:02 EDT 2025
Mon Jul 21 09:13:21 EDT 2025
Thu Apr 24 23:04:14 EDT 2025
Tue Jul 01 01:17:58 EDT 2025
Wed Dec 27 19:19:04 EST 2023
Fri Feb 23 02:28:08 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Bio-reduction
Seed exudate
Alfalfa
Ag nanoparticles
Colloidal silver
Medicago sativa
Atomic force microscopy
Particle size
Electron diffraction
Film
Nanoparticle
Stabilization
X ray
Powder
Chemical reduction
Synthesis
pH
Photoelectron spectrometry
Particle shape
Chemical synthesis
Diameter
Scanning electron microscopy
Ions
Transition metal
X ray diffraction
Silver
Gas chromatography
Dilution
Transmission electron microscopy
Environment
Monodispersed particle
Kinetics
Language English
License CC BY 4.0
Copyright © 2010 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b63e4d53c4bc47c938519721f1be8af7294f3c1d5a379d31cad7cdd48cca4bad3
Notes http://dx.doi.org/10.1016/j.jcis.2010.09.088
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 20974473
PQID 1663619865
PQPubID 24069
PageCount 12
ParticipantIDs proquest_miscellaneous_849474649
proquest_miscellaneous_763176411
proquest_miscellaneous_1663619865
pubmed_primary_20974473
pascalfrancis_primary_23750987
crossref_citationtrail_10_1016_j_jcis_2010_09_088
crossref_primary_10_1016_j_jcis_2010_09_088
fao_agris_US201500070237
elsevier_sciencedirect_doi_10_1016_j_jcis_2010_09_088
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-15
PublicationDateYYYYMMDD 2011-01-15
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Journal of colloid and interface science
PublicationTitleAlternate J Colloid Interface Sci
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Gardea-Torresdey, Tiemann, Gamez, Dokken, Tehuacanero, Jose-Yacaman (b0150) 1999; 1
Egorova, Revina (b0210) 2000; 168
Bar, Bhui, Sahoo, Sarkar, De, Misra (b0130) 2009; 339
Tsuji, Kakita, Tsuji (b0035) 2003; 206
Jiang, Manolache, Wong, Denes, Silver (b0015) 2004; 93
Jensen, Malinsky, Haynes, Duyne (b0040) 2000; 104
NIST X-ray Photoelectron Spectroscopy Database.
Duran, Marcato, Alves, Da Silva, De Souza, Rodrigues, Esposito (b0020) 2010; 12
Bergfors (b0155) 2003; 142
Tsai, Phillips (b0200) 1991; 57
Gardea-Torresdey, Gomez, Peralta-Videa, Parsons, Troiani, Jose-Yacaman, Gardea-Torresdey, Parsons, Gomez, Peralta-Videa, Troiani, Santiago, Jose-Yacaman (b0095) 2003; 19
Yagi (b0165) 1987; 20
Muentz, Belozersky, Dunaevsky, Schlereth, Tiedemann (b0080) 2001; 52
Ghule, Ghule, Liu, Ling (b0090) 2006; 6
Li, Shen, Xie, Yu, Qiu, Zhang, Zhang (b0190) 2007; 9
Minaeian, Shahverdi, Nohi, Shahverdi (b0250) 2007; 17
Rai, Yadav, Gade (b0030) 2009; 27
Narayanan, Sakthivel (b0055) 2008; 68
Mie (b0140) 1908; 25
Fiehn, Kopka, Trethewey, Willmitzer (b0105) 2002; 72
Shankar, Rai, Ahmad, Sastry (b0050) 2004; 275
Chou, Lu, Lee (b0175) 2005; 94
Shankar, Rai, Ankamwar, Singh, Ahmad, Sastry (b0230) 2004; 3
Mass Spectra Library of Max-Planck-Institute for Plant Physiology, Germany.
Yasseen, Barringer, Splittstoesser, Costanza (b0215) 1994; 60
Stenesh (b0185) 1998
Kumar, Ilavarasan, Jayachandran, Decaraman, Aravindhan, Padmanabhan, Krishnan (b0170) 2009; 8
Rice-Evans, Miller, Bolwell, Bramley, Pridham (b0115) 1995; 22
Panigrahi, Kundu, Ghosh, Nath, Pal (b0135) 2004; 6
Zhang, Shen, Xie, Li, Jin, Zhang (b0180) 2006; 110
Parry, Edwards (b0235) 1994; 381
Huang, Li, Sun, Lu, Su, Yang, Wang, Wang, Shao, He, Hong, Chen, Li, Shen, Xie, Yu, Qui, Zhang, Zhang (b0060) 2007; 18
Alivisatos, Jin, Cao, Mirkin, Kelly, Schatz, Zheng, Sun, Xia, Simi, Abraham, Botti, Coppola, Gourbilleau, May, Rizk, Valli, Campbell, Parker, Starr, Emerich, Thanos, Dong, Cui, Zhang (b0005) 1996; 100
Minaeian, Shahverdi, Nohi, Shahverdi (b0100) 2008; 17
Canizal, Schabes-Retchkiman, Pal, Liu, Ascencio (b0160) 2006; 97
.
Wang, Zhou, Zhu, Huang, Li (b0205) 2007; 388
Xie, Lee, Wang, Ting (b0120) 2007; 1
Brown, Khodr, Hider, Rice-Evans (b0225) 1998; 330
Lu, Liu, Wang, Qian, Yin, Zhu (b0045) 2003; 81
Morones, Elechiguerra, Camacho, Holt, Kouri, Ramirez, Yacaman (b0240) 2005; 16
Chen, Wu, Ding (b0125) 2008; 10
Miller, Hibbard (b0085) 1926; 1
Tankhiwale, Bajpai (b0025) 2005; 115
Feigl, Gentil (b0220) 1955; 43
Odunfa, Hartwig, Joseph, Phillips (b0065) 1979; 52
Sondi, Salopek-Sondi (b0245) 2004; 275
Chandran, Chaudhary, Pasricha, Ahmad, Sastry (b0145) 2006; 22
Huang (10.1016/j.jcis.2010.09.088_b0060_1) 2007; 18
Li (10.1016/j.jcis.2010.09.088_b0190) 2007; 9
Alivisatos (10.1016/j.jcis.2010.09.088_b0005_1) 1996; 100
Tsuji (10.1016/j.jcis.2010.09.088_b0035) 2003; 206
Narayanan (10.1016/j.jcis.2010.09.088_b0055) 2008; 68
Chou (10.1016/j.jcis.2010.09.088_b0175) 2005; 94
Bergfors (10.1016/j.jcis.2010.09.088_b0155) 2003; 142
Mie (10.1016/j.jcis.2010.09.088_b0140) 1908; 25
Silver (10.1016/j.jcis.2010.09.088_b0015_2) 2003; 27
Stenesh (10.1016/j.jcis.2010.09.088_b0185) 1998
10.1016/j.jcis.2010.09.088_b0110
Rice-Evans (10.1016/j.jcis.2010.09.088_b0115) 1995; 22
Campbell (10.1016/j.jcis.2010.09.088_b0005_6) 2002; 298
Xie (10.1016/j.jcis.2010.09.088_b0120) 2007; 1
10.1016/j.jcis.2010.09.088_b0195
Odunfa (10.1016/j.jcis.2010.09.088_b0070) 1979; 52
Ghule (10.1016/j.jcis.2010.09.088_b0090) 2006; 6
Yagi (10.1016/j.jcis.2010.09.088_b0165) 1987; 20
Duran (10.1016/j.jcis.2010.09.088_b0020) 2010; 12
Gardea-Torresdey (10.1016/j.jcis.2010.09.088_b0150) 1999; 1
Chandran (10.1016/j.jcis.2010.09.088_b0145) 2006; 22
Minaeian (10.1016/j.jcis.2010.09.088_b0250) 2007; 17
Morones (10.1016/j.jcis.2010.09.088_b0240) 2005; 16
Jin (10.1016/j.jcis.2010.09.088_b0010) 2001; 294
Sondi (10.1016/j.jcis.2010.09.088_b0245) 2004; 275
Shankar (10.1016/j.jcis.2010.09.088_b0230) 2004; 3
Brown (10.1016/j.jcis.2010.09.088_b0225) 1998; 330
Zhang (10.1016/j.jcis.2010.09.088_b0180) 2006; 110
Dong (10.1016/j.jcis.2010.09.088_b0005_8) 1997; 8
Tsai (10.1016/j.jcis.2010.09.088_b0200) 1991; 57
Canizal (10.1016/j.jcis.2010.09.088_b0160) 2006; 97
Li (10.1016/j.jcis.2010.09.088_b0060_2) 2007; 9
Jiang (10.1016/j.jcis.2010.09.088_b0015_1) 2004; 93
Rai (10.1016/j.jcis.2010.09.088_b0030) 2009; 27
Miller (10.1016/j.jcis.2010.09.088_b0085) 1926; 1
Fiehn (10.1016/j.jcis.2010.09.088_b0105) 2002; 72
Parry (10.1016/j.jcis.2010.09.088_b0235) 1994; 381
Simi (10.1016/j.jcis.2010.09.088_b0005_4) 2007; 30
Hartwig (10.1016/j.jcis.2010.09.088_b0075) 1991; 95
Chen (10.1016/j.jcis.2010.09.088_b0125) 2008; 10
Sun (10.1016/j.jcis.2010.09.088_b0005_3) 2002; 298
Gardea-Torresdey (10.1016/j.jcis.2010.09.088_b0095_2) 2002; 2
Lu (10.1016/j.jcis.2010.09.088_b0045) 2003; 81
Gardea-Torresdey (10.1016/j.jcis.2010.09.088_b0095_1) 2003; 19
Botti (10.1016/j.jcis.2010.09.088_b0005_5) 2002; 74
Bar (10.1016/j.jcis.2010.09.088_b0130) 2009; 339
Muentz (10.1016/j.jcis.2010.09.088_b0080) 2001; 52
Feigl (10.1016/j.jcis.2010.09.088_b0220) 1955; 43
Jensen (10.1016/j.jcis.2010.09.088_b0040) 2000; 104
Minaeian (10.1016/j.jcis.2010.09.088_b0100) 2008; 17
Yasseen (10.1016/j.jcis.2010.09.088_b0215) 1994; 60
Panigrahi (10.1016/j.jcis.2010.09.088_b0135) 2004; 6
Tankhiwale (10.1016/j.jcis.2010.09.088_b0025) 2005; 115
Shankar (10.1016/j.jcis.2010.09.088_b0050) 2004; 275
Egorova (10.1016/j.jcis.2010.09.088_b0210) 2000; 168
Wang (10.1016/j.jcis.2010.09.088_b0205) 2007; 388
Emerich (10.1016/j.jcis.2010.09.088_b0005_7) 2003; 3
Kumar (10.1016/j.jcis.2010.09.088_b0170) 2009; 8
References_xml – volume: 100
  start-page: 13226
  year: 1996
  ident: b0005
  publication-title: J. Phys. Chem.
– volume: 94
  start-page: 429
  year: 2005
  ident: b0175
  publication-title: Mat. Chem. Phys.
– volume: 17
  start-page: 1
  year: 2007
  ident: b0250
  publication-title: JSIAU
– volume: 43
  start-page: 1004
  year: 1955
  ident: b0220
  publication-title: Microchim. Acta
– volume: 52
  start-page: 1741
  year: 2001
  ident: b0080
  publication-title: J. Exp. Bot.
– volume: 1
  start-page: 429
  year: 2007
  ident: b0120
  publication-title: ACS Nano
– volume: 339
  start-page: 134
  year: 2009
  ident: b0130
  publication-title: Colloids Surf., A
– volume: 17
  start-page: 1
  year: 2008
  ident: b0100
  publication-title: JSIAU
– volume: 25
  start-page: 377
  year: 1908
  ident: b0140
  publication-title: Ann. Phys.
– volume: 8
  start-page: 83
  year: 2009
  ident: b0170
  publication-title: Pak. J. Nutr.
– volume: 10
  start-page: 207
  year: 2008
  ident: b0125
  publication-title: J. Nanopart. Res.
– volume: 9
  start-page: 852
  year: 2007
  ident: b0190
  publication-title: Green Chem.
– volume: 12
  start-page: 285
  year: 2010
  ident: b0020
  publication-title: J. Nanopart. Res.
– volume: 6
  start-page: 3746
  year: 2006
  ident: b0090
  publication-title: J. Nanosci. Nanotech.
– volume: 93
  start-page: 1411
  year: 2004
  ident: b0015
  publication-title: J. Appl. Polym. Sci.
– volume: 381
  start-page: 154
  year: 1994
  ident: b0235
  publication-title: Acta Horticult.
– volume: 18
  start-page: 105104
  year: 2007
  ident: b0060
  publication-title: Nanotechnology
– volume: 68
  start-page: 4588
  year: 2008
  ident: b0055
  publication-title: Mat. Lett.
– volume: 206
  start-page: 314
  year: 2003
  ident: b0035
  publication-title: Appl. Surf. Sci.
– volume: 275
  start-page: 496
  year: 2004
  ident: b0050
  publication-title: JCIS
– volume: 1
  start-page: 409
  year: 1926
  ident: b0085
  publication-title: Am. Soc. Plant Biologists
– reference: Mass Spectra Library of Max-Planck-Institute for Plant Physiology, Germany.
– volume: 16
  start-page: 2346
  year: 2005
  ident: b0240
  publication-title: Nanotechnology
– volume: 110
  start-page: 6615
  year: 2006
  ident: b0180
  publication-title: J. Phys. Chem. B.
– volume: 168
  start-page: 87
  year: 2000
  ident: b0210
  publication-title: Colloids Surf., A
– volume: 3
  start-page: 482
  year: 2004
  ident: b0230
  publication-title: Nat. Mater.
– volume: 142
  start-page: 66
  year: 2003
  ident: b0155
  publication-title: J. Struct. Biol.
– volume: 22
  start-page: 577
  year: 2006
  ident: b0145
  publication-title: Biotechnol. Prog.
– volume: 81
  start-page: 104
  year: 2003
  ident: b0045
  publication-title: Mat. Chem. Phys.
– volume: 72
  start-page: 3573
  year: 2002
  ident: b0105
  publication-title: Anal. Chem.
– year: 1998
  ident: b0185
  article-title: Biochemistry: Solutions Manual 2
– volume: 6
  start-page: 411
  year: 2004
  ident: b0135
  publication-title: J. Nanopart. Res.
– volume: 60
  start-page: 427
  year: 1994
  ident: b0215
  publication-title: Bot. Rev.
– volume: 19
  start-page: 1357
  year: 2003
  ident: b0095
  publication-title: Langmuir
– volume: 20
  start-page: 147
  year: 1987
  ident: b0165
  publication-title: J. Appl. Crystallogr.
– reference: NIST X-ray Photoelectron Spectroscopy Database.
– volume: 52
  start-page: 491
  year: 1979
  ident: b0065
  publication-title: Plant and Soil.
– volume: 22
  start-page: 375
  year: 1995
  ident: b0115
  publication-title: Free Rad. Res.
– volume: 115
  start-page: 1894
  year: 2005
  ident: b0025
  publication-title: J. Appl. Poly. Sci.
– volume: 275
  start-page: 177
  year: 2004
  ident: b0245
  publication-title: JCIS
– volume: 1
  start-page: 397
  year: 1999
  ident: b0150
  publication-title: J. Nanopart. Res.
– volume: 97
  start-page: 321
  year: 2006
  ident: b0160
  publication-title: Mater. Chem. Phys.
– volume: 104
  start-page: 10549
  year: 2000
  ident: b0040
  publication-title: J. Phys. Chem. B.
– volume: 57
  start-page: 1485
  year: 1991
  ident: b0200
  publication-title: Appl. Environ. Microbiol.
– volume: 27
  start-page: 76
  year: 2009
  ident: b0030
  publication-title: Biotechnol. Advan.
– reference: .
– volume: 388
  start-page: 1199
  year: 2007
  ident: b0205
  publication-title: Anal. Bioanal. Chem.
– volume: 330
  start-page: 1173
  year: 1998
  ident: b0225
  publication-title: Biochem. J.
– volume: 100
  start-page: 13226
  year: 1996
  ident: 10.1016/j.jcis.2010.09.088_b0005_1
  publication-title: J. Phys. Chem.
  doi: 10.1021/jp9535506
– volume: 27
  start-page: 341
  year: 2003
  ident: 10.1016/j.jcis.2010.09.088_b0015_2
  publication-title: FEMS Microbiol. Rev.
  doi: 10.1016/S0168-6445(03)00047-0
– volume: 8
  start-page: 815
  year: 1997
  ident: 10.1016/j.jcis.2010.09.088_b0005_8
  publication-title: Nanostruct. Mater.
  doi: 10.1016/S0965-9773(98)00005-1
– volume: 72
  start-page: 3573
  year: 2002
  ident: 10.1016/j.jcis.2010.09.088_b0105
  publication-title: Anal. Chem.
  doi: 10.1021/ac991142i
– volume: 3
  start-page: 655
  year: 2003
  ident: 10.1016/j.jcis.2010.09.088_b0005_7
  publication-title: Exp. Opin. Biol. Ther.
  doi: 10.1517/14712598.3.4.655
– volume: 104
  start-page: 10549
  year: 2000
  ident: 10.1016/j.jcis.2010.09.088_b0040
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp002435e
– volume: 110
  start-page: 6615
  year: 2006
  ident: 10.1016/j.jcis.2010.09.088_b0180
  publication-title: J. Phys. Chem. B.
  doi: 10.1021/jp0570216
– volume: 25
  start-page: 377
  year: 1908
  ident: 10.1016/j.jcis.2010.09.088_b0140
  publication-title: Ann. Phys.
  doi: 10.1002/andp.19083300302
– volume: 9
  start-page: 852
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0190
  publication-title: Green Chem.
  doi: 10.1039/b615357g
– volume: 142
  start-page: 66
  year: 2003
  ident: 10.1016/j.jcis.2010.09.088_b0155
  publication-title: J. Struct. Biol.
  doi: 10.1016/S1047-8477(03)00039-X
– volume: 9
  start-page: 852
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0060_2
  publication-title: Green Chem.
  doi: 10.1039/b615357g
– ident: 10.1016/j.jcis.2010.09.088_b0195
– volume: 381
  start-page: 154
  year: 1994
  ident: 10.1016/j.jcis.2010.09.088_b0235
  publication-title: Acta Horticult.
  doi: 10.17660/ActaHortic.1994.381.14
– volume: 74
  start-page: 1230
  year: 2002
  ident: 10.1016/j.jcis.2010.09.088_b0005_5
  publication-title: Appl. Phys. A.
  doi: 10.1007/s003390201712
– year: 1998
  ident: 10.1016/j.jcis.2010.09.088_b0185
– volume: 17
  start-page: 1
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0250
  publication-title: JSIAU
– volume: 43
  start-page: 1004
  year: 1955
  ident: 10.1016/j.jcis.2010.09.088_b0220
  publication-title: Microchim. Acta
  doi: 10.1007/BF01223998
– volume: 298
  start-page: 2176
  year: 2002
  ident: 10.1016/j.jcis.2010.09.088_b0005_3
  publication-title: Science
  doi: 10.1126/science.1077229
– volume: 6
  start-page: 3746
  year: 2006
  ident: 10.1016/j.jcis.2010.09.088_b0090
  publication-title: J. Nanosci. Nanotech.
  doi: 10.1166/jnn.2006.608
– volume: 22
  start-page: 577
  year: 2006
  ident: 10.1016/j.jcis.2010.09.088_b0145
  publication-title: Biotechnol. Prog.
  doi: 10.1021/bp0501423
– volume: 8
  start-page: 83
  year: 2009
  ident: 10.1016/j.jcis.2010.09.088_b0170
  publication-title: Pak. J. Nutr.
  doi: 10.3923/pjn.2009.83.85
– volume: 388
  start-page: 1199
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0205
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-007-1295-y
– volume: 1
  start-page: 397
  year: 1999
  ident: 10.1016/j.jcis.2010.09.088_b0150
  publication-title: J. Nanopart. Res.
  doi: 10.1023/A:1010008915465
– volume: 97
  start-page: 321
  year: 2006
  ident: 10.1016/j.jcis.2010.09.088_b0160
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.08.015
– volume: 10
  start-page: 207
  year: 2008
  ident: 10.1016/j.jcis.2010.09.088_b0125
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-007-9220-z
– volume: 12
  start-page: 285
  year: 2010
  ident: 10.1016/j.jcis.2010.09.088_b0020
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-009-9606-1
– volume: 52
  start-page: 491
  year: 1979
  ident: 10.1016/j.jcis.2010.09.088_b0070
  publication-title: Plant and Soil.
  doi: 10.1007/BF02277944
– volume: 30
  start-page: 173
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0005_4
  publication-title: Bioprocess. Biosyst. Eng.
  doi: 10.1007/s00449-007-0112-5
– volume: 19
  start-page: 1357
  year: 2003
  ident: 10.1016/j.jcis.2010.09.088_b0095_1
  publication-title: Langmuir
  doi: 10.1021/la020835i
– volume: 20
  start-page: 147
  year: 1987
  ident: 10.1016/j.jcis.2010.09.088_b0165
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889887086916
– volume: 339
  start-page: 134
  year: 2009
  ident: 10.1016/j.jcis.2010.09.088_b0130
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2009.02.008
– volume: 81
  start-page: 104
  year: 2003
  ident: 10.1016/j.jcis.2010.09.088_b0045
  publication-title: Mat. Chem. Phys.
  doi: 10.1016/S0254-0584(03)00147-0
– volume: 22
  start-page: 375
  year: 1995
  ident: 10.1016/j.jcis.2010.09.088_b0115
  publication-title: Free Rad. Res.
  doi: 10.3109/10715769509145649
– volume: 330
  start-page: 1173
  year: 1998
  ident: 10.1016/j.jcis.2010.09.088_b0225
  publication-title: Biochem. J.
  doi: 10.1042/bj3301173
– volume: 2
  start-page: 397
  year: 2002
  ident: 10.1016/j.jcis.2010.09.088_b0095_2
  publication-title: Nano Lett.
  doi: 10.1021/nl015673+
– volume: 57
  start-page: 1485
  year: 1991
  ident: 10.1016/j.jcis.2010.09.088_b0200
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/aem.57.5.1485-1488.1991
– volume: 94
  start-page: 429
  year: 2005
  ident: 10.1016/j.jcis.2010.09.088_b0175
  publication-title: Mat. Chem. Phys.
  doi: 10.1016/j.matchemphys.2005.05.029
– volume: 52
  start-page: 1741
  year: 2001
  ident: 10.1016/j.jcis.2010.09.088_b0080
  publication-title: J. Exp. Bot.
  doi: 10.1093/jexbot/52.362.1741
– volume: 60
  start-page: 427
  year: 1994
  ident: 10.1016/j.jcis.2010.09.088_b0215
  publication-title: Bot. Rev.
– volume: 95
  start-page: 797
  year: 1991
  ident: 10.1016/j.jcis.2010.09.088_b0075
  publication-title: Plant Physiol.
  doi: 10.1104/pp.95.3.797
– volume: 298
  start-page: 811
  year: 2002
  ident: 10.1016/j.jcis.2010.09.088_b0005_6
  publication-title: Science.
  doi: 10.1126/science.1075094
– volume: 6
  start-page: 411
  year: 2004
  ident: 10.1016/j.jcis.2010.09.088_b0135
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-004-6575-2
– volume: 1
  start-page: 409
  year: 1926
  ident: 10.1016/j.jcis.2010.09.088_b0085
  publication-title: Am. Soc. Plant Biologists
– volume: 168
  start-page: 87
  year: 2000
  ident: 10.1016/j.jcis.2010.09.088_b0210
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(99)00513-0
– volume: 17
  start-page: 1
  year: 2008
  ident: 10.1016/j.jcis.2010.09.088_b0100
  publication-title: JSIAU
– volume: 68
  start-page: 4588
  year: 2008
  ident: 10.1016/j.jcis.2010.09.088_b0055
  publication-title: Mat. Lett.
  doi: 10.1016/j.matlet.2008.08.044
– volume: 3
  start-page: 482
  year: 2004
  ident: 10.1016/j.jcis.2010.09.088_b0230
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1152
– volume: 1
  start-page: 429
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0120
  publication-title: ACS Nano
  doi: 10.1021/nn7000883
– ident: 10.1016/j.jcis.2010.09.088_b0110
– volume: 275
  start-page: 177
  year: 2004
  ident: 10.1016/j.jcis.2010.09.088_b0245
  publication-title: JCIS
– volume: 93
  start-page: 1411
  year: 2004
  ident: 10.1016/j.jcis.2010.09.088_b0015_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.20561
– volume: 206
  start-page: 314
  year: 2003
  ident: 10.1016/j.jcis.2010.09.088_b0035
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/S0169-4332(02)01230-8
– volume: 275
  start-page: 496
  year: 2004
  ident: 10.1016/j.jcis.2010.09.088_b0050
  publication-title: JCIS
– volume: 18
  start-page: 105104
  year: 2007
  ident: 10.1016/j.jcis.2010.09.088_b0060_1
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/18/10/105104
– volume: 115
  start-page: 1894
  year: 2005
  ident: 10.1016/j.jcis.2010.09.088_b0025
  publication-title: J. Appl. Poly. Sci.
  doi: 10.1002/app.31168
– volume: 27
  start-page: 76
  year: 2009
  ident: 10.1016/j.jcis.2010.09.088_b0030
  publication-title: Biotechnol. Advan.
  doi: 10.1016/j.biotechadv.2008.09.002
– volume: 294
  start-page: 1901
  year: 2001
  ident: 10.1016/j.jcis.2010.09.088_b0010
  publication-title: Science
  doi: 10.1126/science.1066541
– volume: 16
  start-page: 2346
  year: 2005
  ident: 10.1016/j.jcis.2010.09.088_b0240
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/16/10/059
SSID ssj0011559
Score 2.4594698
Snippet Various colloidal Ag nanoparticles that were synthesized by M. sativa seed exudates in aqueous system under mild and non-photomediated conditions. [Display...
The biogenic synthesis of metal nanomaterials offers an environmentally benign alternative to the traditional chemical synthesis routes. Colloidal silver (Ag)...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 433
SubjectTerms Ag nanoparticles
Alfalfa
Anti-Bacterial Agents
Anti-Bacterial Agents - chemistry
Anti-Bacterial Agents - pharmacology
antibacterial properties
antibiotics
atomic force microscopy
Bacteria
Bacteria - drug effects
Bacterial Infections
Bacterial Infections - drug therapy
Bio-reduction
centrifugation
Chemistry
Colloidal silver
Colloidal state and disperse state
colloids
dispersions
drug effects
drug therapy
Exact sciences and technology
films (materials)
gas chromatography
Gas Chromatography-Mass Spectrometry
General and physical chemistry
ions
mass spectrometry
Medicago sativa
Medicago sativa - chemistry
metabolites
Metal Nanoparticles
Metal Nanoparticles - chemistry
Metal Nanoparticles - ultrastructure
methods
nanoparticles
nanosilver
Nanotechnology
Nanotechnology - methods
Oxidation-Reduction
Particle Size
pharmacology
Physical and chemical studies. Granulometry. Electrokinetic phenomena
plant extracts
Plant Extracts - chemistry
Powder Diffraction
scanning electron microscopy
Seed exudate
seeds
Seeds - chemistry
silver
Silver - chemistry
silver nitrate
sustainable technology
synthesis
temperature
transmission electron microscopy
ultrastructure
ultraviolet-visible spectroscopy
vascular plants
water
X-radiation
X-Ray Diffraction
X-ray photoelectron spectroscopy
Title Facile synthesis, stabilization, and anti-bacterial performance of discrete Ag nanoparticles using Medicago sativa seed exudates
URI https://dx.doi.org/10.1016/j.jcis.2010.09.088
https://www.ncbi.nlm.nih.gov/pubmed/20974473
https://www.proquest.com/docview/1663619865
https://www.proquest.com/docview/763176411
https://www.proquest.com/docview/849474649
Volume 353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tywE4IFgeGx6Vkbix2a0bJ7aPVUVVQOwFKu3Ncmyn6gol1aZFcEH8dGbqpMtKdA8cckkmkZOZzHy2v5kBeFuKKhdS-hRDlU5FiWasHBFdS-VD4XzIJeU7fz4vZnPx8SK_OIBJnwtDtMrO90efvvXW3Zmz7muerZZLyvHFv01qKk_DEbdQ2W0hJFn56a8dzYPTtlukefCUpLvEmcjxunTLtqN36dPhtvvKP4PTnco2xJq0LX64Kna82A9Jt6Fp-ggedpiSjeOwH8NBqI_g3qRv5XYED_6qOvgEfk-tQ1_A2p81or922Z4whIhEko0pmSfM1h6PNU6bYy1nfPjqOsGANRWjZN4rxNtsvGC1rXHm3RHsGBHpFyzu_ywaRmSh75a1GCRZ-LGh9YX2Kcyn779OZmnXiCF1COjWaVlkQfg8c6J0QjqdKUp3HfGKl0HZCvG5qDLHfW4zqX3GnfXSeS8Umocorc-ewWHd1OEYmJRShUrYoBQqyzsrCxeU1K4cKRSvEuC9BozrqpRTs4xvpqejXRrSmiGtmaE2qLUE3u3uWcUaHbdK571izQ1LMxhEbr3vGK3A2AU6XzP_MqKlIiqWNMpkAoMbprEbBV5DQKZQ4E1vKwZVT3sytg7NpjUcER_OYVWRJ8D2yGAI4LIQnO8XUUILKQqhE3geTfF6DEOcMgqZvfjP934J9-M6Ok95_goO11eb8BqB2LocbP-0Adwdf_g0O_8DUVYy2Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED5t42HwgMaALcCGkXhj2erGiZ3HqVpVYNsLq7Q3y7GdqhNKqqVF8IL46dzVScekdQ889CW9RE7ufPfZ_u4O4GMhylRI6WIMVXksCjRjZYnoWijnM-t8Kinf-eIyG43Fl-v0egMGXS4M0Spb3x98-tJbt1dO2q95MptOKccXZ5vMqTwNR9ySbcITgdOX2hgc_17xPDiduwWeB49JvM2cCSSvGzttWn5Xftxbtl95MDptlqYm2qRp8MuVoeXFeky6jE3DHXjegkp2Gsb9AjZ8tQvbg66X2y48-6fs4Ev4MzQWnQFrflUI_5ppc8QQIxJLNuRkHjFTOfzNcd0cijnjw2d3GQasLhll894i4GanE1aZCpfeLcOOEZN-wsIB0KRmxBb6YViDUZL5nwvaYGhewXh4djUYxW0nhtgiopvHRZZ44dLEisIKafNEUb5rn5e88MqUCNBFmVjuUpPI3CXcGietc0KhfYjCuOQ1bFV15feBSSmVL4XxSgkhnTUys17J3BZ9heJlBLzTgLZtmXLqlvFdd3y0G01a06Q13cs1ai2CT6t7ZqFIx6PSaadYfc_UNEaRR-_bRyvQZoLeV4-_9WmviKol9RMZweE901iNAv9DRKZQ4ENnKxpVT4cypvL1otEcIR8uYlWWRsDWyGAM4DITnK8XUSIXUmQij2AvmOLdGHq4ZhQyefOf7_0etkdXF-f6_PPl17fwNGyq85in72BrfrvwB4jK5sXhctb9BQTlNGc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis%2C+stabilization%2C+and+anti-bacterial+performance+of+discrete+Ag+nanoparticles+using+Medicago+sativa+seed+exudates&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Lukman%2C+Audra+I.&rft.au=Gong%2C+Bin&rft.au=Marjo%2C+Christopher+E.&rft.au=Roessner%2C+Ute&rft.date=2011-01-15&rft.issn=0021-9797&rft.volume=353&rft.issue=2&rft.spage=433&rft.epage=444&rft_id=info:doi/10.1016%2Fj.jcis.2010.09.088&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2010_09_088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon