Testing short distance anisotropy in space
The isotropy of space is not a logical requirement but rather is an empirical question; indeed there is suggestive evidence that universe might be anisotropic. A plausible source of these anisotropies could be quantum gravity corrections. If these corrections happen to be between the electroweak sca...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; p. 7474 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The isotropy of space is not a logical requirement but rather is an empirical question; indeed there is suggestive evidence that universe might be anisotropic. A plausible source of these anisotropies could be quantum gravity corrections. If these corrections happen to be between the electroweak scale and the Planck scale, then these anisotropies can have measurable consequences at short distances and their effects can be measured using ultra sensitive condensed matter systems. We investigate how such anisotropic quantum gravity corrections modify low energy physics through an anisotropic deformation of the Heisenberg algebra. We discuss how such anisotropies might be observed using a scanning tunnelling microscope. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-021-86355-3 |