Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths

Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defec...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 7501 - 10
Main Authors Lee, Yeonghun, Hu, Yaoqiao, Lang, Xiuyao, Kim, Dongwook, Li, Kejun, Ping, Yuan, Fu, Kai-Mei C., Cho, Kyeongjae
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths.
AbstractList Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths.
Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths.
Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.
Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.
Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths.
ArticleNumber 7501
Author Hu, Yaoqiao
Kim, Dongwook
Li, Kejun
Lang, Xiuyao
Ping, Yuan
Fu, Kai-Mei C.
Cho, Kyeongjae
Lee, Yeonghun
Author_xml – sequence: 1
  givenname: Yeonghun
  orcidid: 0000-0002-6058-1316
  surname: Lee
  fullname: Lee, Yeonghun
  email: y.lee@inu.ac.kr
  organization: Department of Materials Science and Engineering, The University of Texas at Dallas, Department of Electronics Engineering, Incheon National University
– sequence: 2
  givenname: Yaoqiao
  surname: Hu
  fullname: Hu, Yaoqiao
  organization: Department of Materials Science and Engineering, The University of Texas at Dallas
– sequence: 3
  givenname: Xiuyao
  surname: Lang
  fullname: Lang, Xiuyao
  organization: Department of Materials Science and Engineering, The University of Texas at Dallas
– sequence: 4
  givenname: Dongwook
  surname: Kim
  fullname: Kim, Dongwook
  organization: Department of Materials Science and Engineering, The University of Texas at Dallas
– sequence: 5
  givenname: Kejun
  surname: Li
  fullname: Li, Kejun
  organization: Department of Physics, University of California
– sequence: 6
  givenname: Yuan
  orcidid: 0000-0002-0123-3389
  surname: Ping
  fullname: Ping, Yuan
  organization: Department of Chemistry and Biochemistry, University of California
– sequence: 7
  givenname: Kai-Mei C.
  orcidid: 0000-0003-4775-8524
  surname: Fu
  fullname: Fu, Kai-Mei C.
  organization: Department of Physics, University of Washington, Department of Electrical and Computer Engineering, University of Washington
– sequence: 8
  givenname: Kyeongjae
  orcidid: 0000-0003-2698-7774
  surname: Cho
  fullname: Cho, Kyeongjae
  email: kjcho@utdallas.edu
  organization: Department of Materials Science and Engineering, The University of Texas at Dallas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36473851$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAQjVARfdAfYIEisWET8DN2NkioglKpEgtgbTn2JNdXiX1rO6369_g2LbRd1BuPx-ccj2fOcXXgg4eqeofRJ4yo_JwYZq1oECEN5YjJBr2qjghiuMGC0INH8WF1mtIWlUU7LBl7Ux3SlgkqOT6qxl875xsLA5hcXy29y6l2vs43obFuBp9c8Hqqc9QlzOVQz5BLwjqz0ZMJI3hnIdVhB1Fn58da5zrDBCbM9Y2-LpEf8ya9rV4Pekpwer-fVH--f_t99qO5_Hl-cfb1sjGcodz0DDpiCaaM0lYK2fO-47bvrKRcDMZqjgj0uoVOaGI0wkjg8kdkBOm0HDg9qS5WXRv0Vu2im3W8VUE7dZcIcVQ6ZmcmUITCQIs85V15Flupac-l1gThnqDBFK0vq9Zu6WewBnxpw_RE9OmNdxs1hmvVla63ghaBj_cCMVwtkLKaXTIwTdpDWJIiglPSIcLbAv3wDLoNSyyt36OYwBQzKQvq_eOK_pXyMM8CkCvAxJBShEEZl_V-bqVANymM1N49anWPKu5Rd-5RqFDJM-qD-oskupJSAfsR4v-yX2D9Be042AA
CitedBy_id crossref_primary_10_1016_j_mssp_2024_108639
crossref_primary_10_1103_PhysRevA_110_032606
crossref_primary_10_1021_jacs_4c02738
crossref_primary_10_1038_s41467_024_47039_4
crossref_primary_10_1063_5_0230736
crossref_primary_10_1103_PhysRevB_111_045416
crossref_primary_10_1021_acs_jpcc_4c04339
crossref_primary_10_1021_acs_jpcc_4c03404
crossref_primary_10_1038_s41524_025_01558_w
crossref_primary_10_1103_PhysRevMaterials_9_026201
crossref_primary_10_1002_smll_202400737
crossref_primary_10_1021_acs_jpclett_2c03674
crossref_primary_10_1002_adfm_202400313
crossref_primary_10_1039_D4CP04017A
crossref_primary_10_1021_acs_nanolett_4c06343
crossref_primary_10_1021_acsnano_4c07212
crossref_primary_10_1103_PhysRevB_111_024108
crossref_primary_10_1088_2633_4356_ad1d38
crossref_primary_10_1021_acs_jpcc_4c05614
crossref_primary_10_3390_ma17164122
crossref_primary_10_1126_sciadv_adk8495
crossref_primary_10_1039_D3RA07759D
crossref_primary_10_1080_23746149_2023_2206049
crossref_primary_10_1088_1361_648X_ad2588
crossref_primary_10_1038_s41467_023_44494_3
crossref_primary_10_1038_s41467_024_47876_3
Cites_doi 10.1038/s41467-022-28133-x
10.1038/nature10401
10.1063/1.5124153
10.1126/science.1255541
10.1063/1.4906792
10.1021/cr200148b
10.1038/s41699-020-0136-0
10.1515/nanoph-2019-0154
10.1088/1367-2630/14/10/103033
10.1103/PhysRev.140.A1133
10.1038/s41524-021-00525-5
10.1038/nnano.2015.67
10.1103/PhysRevMaterials.1.075002
10.1155/2019/5434935
10.1038/s41524-020-0305-x
10.1557/mrs.2013.229
10.1038/nature12385
10.1038/s41467-022-28169-z
10.1088/1361-6633/ab6310
10.1103/PhysRevLett.109.267401
10.1002/wcms.81
10.1146/annurev-physchem-040513-103659
10.1016/j.jlumin.2010.12.015
10.1063/PT.3.3297
10.1103/PhysRevResearch.2.023071
10.1088/1367-2630/16/7/073026
10.1103/RevModPhys.86.253
10.1016/j.commatsci.2016.12.032
10.1038/s41586-021-04273-w
10.1126/science.aad2114
10.1103/PhysRevB.86.045112
10.1103/PhysRevB.77.155206
10.1016/j.adt.2005.04.001
10.1103/RevModPhys.89.035002
10.1103/PhysRevLett.77.3865
10.1021/acs.nanolett.8b04159
10.1016/0927-0256(96)00008-0
10.1063/5.0006075
10.1021/acs.jctc.8b00841
10.1515/nanoph-2019-0211
10.1126/sciadv.abf3630
10.1021/acs.jctc.7b01072
10.1103/PhysRevLett.123.183602
10.1063/5.0004454
10.1038/ncomms2141
10.1103/PhysRev.136.B864
10.1038/s41586-018-0200-5
10.1364/JOSA.11.000459
10.1016/j.cpc.2018.01.011
10.1063/1.2943282
10.1103/PhysRevB.90.235205
10.1038/s41524-019-0182-3
10.1021/acs.jpclett.1c02457
10.1126/science.abg1919
10.1103/PhysRevB.54.11169
10.1038/s41598-020-61675-y
10.1038/ncomms7293
10.1063/1.4812323
10.1116/5.0025186
10.1103/PhysRevB.59.1758
10.1038/s41467-019-10632-z
10.1039/D0CP04585C
10.1063/1.1564060
10.1016/j.cpc.2021.108056
10.1063/1.2404663
10.1103/PhysRevLett.71.1387
10.1103/PhysRevB.97.094304
10.1103/PhysRevB.50.17953
10.1038/srep10013
10.1039/C5RA19747C
10.1515/nanoph-2018-0041
10.1038/s41467-020-15138-7
10.1038/s41566-018-0232-2
10.1063/1.4817409
10.1103/PhysRevA.71.060310
10.1103/PhysRevB.96.081115
10.1038/nature07127
10.1038/nnano.2015.104
10.1073/pnas.1003052107
10.1002/pssb.201046289
10.1021/acs.jpcc.7b09882
10.1116/1.5047939
10.1103/PhysRevMaterials.1.071001
10.1146/annurev-matsci-070317-124453
10.1103/PhysRev.69.37
10.1038/s41578-021-00306-y
10.1021/acsphotonics.7b01442
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-35048-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_23ef3b95359b4e1d8a3b58aa201b20fc
PMC9723673
36473851
10_1038_s41467_022_35048_0
Genre Journal Article
GrantInformation_xml – fundername: SRC | Microelectronics Advanced Research Corporation (MARCO)
  grantid: 2018-JU-2776
  funderid: https://doi.org/10.13039/100007245
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2015M3D1A1068062; 2016M3A7B4909942
  funderid: https://doi.org/10.13039/501100003725
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-18-1-0431
  funderid: https://doi.org/10.13039/100000183
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2015M3D1A1068062
– fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO)
  grantid: W911NF-18-1-0431
– fundername: SRC | Microelectronics Advanced Research Corporation (MARCO)
  grantid: 2018-JU-2776
– fundername: National Research Foundation of Korea (NRF)
  grantid: 2016M3A7B4909942
– fundername: ;
  grantid: 2015M3D1A1068062; 2016M3A7B4909942
– fundername: ;
  grantid: W911NF-18-1-0431
– fundername: ;
  grantid: 2018-JU-2776
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-b4e92d2134336878b5b95db9d8357fcda502eba6e97a2ca010711720c729a8f53
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:24 EDT 2025
Thu Aug 21 18:38:35 EDT 2025
Fri Jul 11 16:27:57 EDT 2025
Wed Aug 13 01:50:54 EDT 2025
Thu Apr 03 07:08:44 EDT 2025
Tue Jul 01 00:58:34 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Fri Feb 21 02:38:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b4e92d2134336878b5b95db9d8357fcda502eba6e97a2ca010711720c729a8f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2698-7774
0000-0003-4775-8524
0000-0002-6058-1316
0000-0002-0123-3389
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35048-0
PMID 36473851
PQID 2747131488
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_23ef3b95359b4e1d8a3b58aa201b20fc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9723673
proquest_miscellaneous_2753290256
proquest_journals_2747131488
pubmed_primary_36473851
crossref_citationtrail_10_1038_s41467_022_35048_0
crossref_primary_10_1038_s41467_022_35048_0
springer_journals_10_1038_s41467_022_35048_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-06
PublicationDateYYYYMMDD 2022-12-06
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Heyd, Scuseria, Ernzerhof (CR34) 2003; 118
Robledo (CR74) 2011; 477
Oliver, Welander (CR62) 2013; 38
Bradley (CR68) 2019; 9
Tsai, Pan, Lin, Bansil, Yan (CR71) 2022; 13
Freysoldt (CR36) 2014; 86
Cho, Joannopoulos (CR14) 1993; 71
Seo, Ma, Govoni, Galli (CR30) 2017; 1
Alkauskas, Lyons, Steiauf, Van de Walle (CR51) 2012; 109
Stern (CR22) 2022; 13
Xue (CR63) 2022; 601
Komsa, Rantala, Pasquarello (CR42) 2012; 86
Smart, Li, Xu, Ping (CR72) 2021; 7
Kimble (CR4) 2008; 453
Perdew, Burke, Ernzerhof (CR38) 1996; 77
Kresse, Furthmüller (CR78) 1996; 6
Peng (CR76) 2016; 6
Derbenyova, Burdov (CR69) 2018; 122
Weber (CR29) 2010; 107
Klein (CR24) 2019; 10
Hwang, Zhang, Kim, Wallace, Cho (CR45) 2020; 10
Zhang, Cheng, Chou, Gali (CR56) 2020; 7
Raha (CR6) 2020; 11
Dang (CR25) 2020; 4
Robertson (CR17) 2012; 3
Freysoldt, Neugebauer, Van de Walle (CR41) 2011; 248
CR3
Gottscholl (CR21) 2021; 7
Kresse, Furthmüller (CR79) 1996; 54
Liu (CR16) 2019; 2019
Neese (CR84) 2012; 2
Kaduk, Kowalczyk, Van Voorhis (CR53) 2012; 112
CR89
Krukau, Vydrov, Izmaylov, Scuseria (CR35) 2006; 125
Gali (CR32) 2019; 8
Dreyer, Alkauskas, Lyons, Janotti, Van de Walle (CR31) 2018; 48
Naik, Jain (CR43) 2018; 226
Gali, Fyta, Kaxiras (CR66) 2008; 77
Stone (CR67) 2005; 90
Hohenberg, Kohn (CR27) 1964; 136
Amani (CR48) 2015; 350
Dai, Zhao, Wang, Xu, Yang (CR75) 2015; 5
Degen, Reinhard, Cappellaro (CR58) 2017; 89
Reimers, Sajid, Kobayashi, Ford (CR40) 2018; 14
Purcell (CR64) 1946; 69
Biktagirov, Gerstmann (CR65) 2020; 2
Blöchl (CR80) 1994; 50
Nguyen (CR9) 2019; 123
Pompili (CR8) 2021; 372
Kresse, Joubert (CR81) 1999; 59
Son (CR10) 2020; 116
Humphreys (CR50) 2018; 558
Han (CR86) 2021; 12
Perebeinos (CR54) 2015; 10
Ma, Sheng, Govoni, Galli (CR33) 2020; 22
Turiansky (CR83) 2021; 267
Wrachtrup, Jelezko (CR7) 2006; 18
Randall (CR15) 2018; 36
Gong (CR37) 2013; 103
Ajayan, Kim, Banerjee (CR12) 2016; 69
Laporte, Meggers (CR70) 1925; 11
Schirhagl, Chang, Loretz, Degen (CR57) 2014; 65
Ye, Seo, Galli (CR13) 2019; 5
Koperski (CR55) 2015; 10
Lee (CR39) 2015; 5
Ivády (CR20) 2020; 6
de Souza, Farias, Neese, Izsák (CR85) 2019; 15
Khan, Leuenberger (CR47) 2018; 7
Mackoit-Sinkevičienė, Maciaszek, Van de Walle, Alkauskas (CR82) 2019; 115
Ivády, Simon, Maze, Abrikosov, Gali (CR61) 2014; 90
Gupta, Yang, Yakobson (CR23) 2019; 19
Hong (CR46) 2015; 6
Geim, Grigorieva (CR11) 2013; 499
Norambuena (CR77) 2018; 97
Fu, Iwata, Wickenbrock, Budker (CR60) 2020; 2
Bassett (CR87) 2014; 345
Wu, Galatas, Sundararaman, Rocca, Ping (CR19) 2017; 1
Jain (CR44) 2013; 1
Barrett, Kok (CR49) 2005; 71
Thiel, Böttger, Cone (CR5) 2011; 131
Cheng (CR18) 2017; 129
Thiering, Gali (CR73) 2017; 96
Tetienne (CR88) 2012; 14
Alkauskas, Buckley, Awschalom, Van de Walle (CR52) 2014; 16
Sajid, Ford, Reimers (CR26) 2020; 83
Awschalom, Hanson, Wrachtrup, Zhou (CR1) 2018; 12
Degen (CR59) 2008; 92
Kohn, Sham (CR28) 1965; 140
Bassett, Alkauskas, Exarhos, Fu (CR2) 2019; 8
G Zhang (35048_CR56) 2020; 7
EM Purcell (35048_CR64) 1946; 69
L Robledo (35048_CR74) 2011; 477
F Neese (35048_CR84) 2012; 2
C Gong (35048_CR37) 2013; 103
LC Bassett (35048_CR2) 2019; 8
K Cho (35048_CR14) 1993; 71
J Wrachtrup (35048_CR7) 2006; 18
A Sajid (35048_CR26) 2020; 83
35048_CR89
G Kresse (35048_CR81) 1999; 59
J Dang (35048_CR25) 2020; 4
JR Reimers (35048_CR40) 2018; 14
S Gupta (35048_CR23) 2019; 19
CE Bradley (35048_CR68) 2019; 9
WD Oliver (35048_CR62) 2013; 38
HJ Kimble (35048_CR4) 2008; 453
35048_CR3
CW Thiel (35048_CR5) 2011; 131
NT Son (35048_CR10) 2020; 116
V Perebeinos (35048_CR54) 2015; 10
M Pompili (35048_CR8) 2021; 372
H-P Komsa (35048_CR42) 2012; 86
NV Derbenyova (35048_CR69) 2018; 122
B de Souza (35048_CR85) 2019; 15
P Hohenberg (35048_CR27) 1964; 136
W Kohn (35048_CR28) 1965; 140
SD Barrett (35048_CR49) 2005; 71
CT Nguyen (35048_CR9) 2019; 123
H Seo (35048_CR30) 2017; 1
DD Awschalom (35048_CR1) 2018; 12
G Kresse (35048_CR78) 1996; 6
M Raha (35048_CR6) 2020; 11
J Hwang (35048_CR45) 2020; 10
P Ajayan (35048_CR12) 2016; 69
H Ma (35048_CR33) 2020; 22
B Kaduk (35048_CR53) 2012; 112
T Biktagirov (35048_CR65) 2020; 2
K-MC Fu (35048_CR60) 2020; 2
B Peng (35048_CR76) 2016; 6
M Amani (35048_CR48) 2015; 350
CL Degen (35048_CR59) 2008; 92
M Ye (35048_CR13) 2019; 5
Á Gali (35048_CR32) 2019; 8
N Han (35048_CR86) 2021; 12
AK Geim (35048_CR11) 2013; 499
NJ Stone (35048_CR67) 2005; 90
M Koperski (35048_CR55) 2015; 10
J Klein (35048_CR24) 2019; 10
J Hong (35048_CR46) 2015; 6
LC Bassett (35048_CR87) 2014; 345
TJ Smart (35048_CR72) 2021; 7
CL Degen (35048_CR58) 2017; 89
A Alkauskas (35048_CR52) 2014; 16
R Schirhagl (35048_CR57) 2014; 65
ME Turiansky (35048_CR83) 2021; 267
MA Khan (35048_CR47) 2018; 7
JR Weber (35048_CR29) 2010; 107
AW Robertson (35048_CR17) 2012; 3
MH Naik (35048_CR43) 2018; 226
A Jain (35048_CR44) 2013; 1
X Xue (35048_CR63) 2022; 601
GD Cheng (35048_CR18) 2017; 129
P Liu (35048_CR16) 2019; 2019
A Alkauskas (35048_CR51) 2012; 109
A Gali (35048_CR66) 2008; 77
G Thiering (35048_CR73) 2017; 96
Y Dai (35048_CR75) 2015; 5
JP Perdew (35048_CR38) 1996; 77
F Wu (35048_CR19) 2017; 1
C-H Lee (35048_CR39) 2015; 5
C Freysoldt (35048_CR41) 2011; 248
PC Humphreys (35048_CR50) 2018; 558
AV Krukau (35048_CR35) 2006; 125
V Ivády (35048_CR20) 2020; 6
A Gottscholl (35048_CR21) 2021; 7
CE Dreyer (35048_CR31) 2018; 48
J Heyd (35048_CR34) 2003; 118
J-P Tetienne (35048_CR88) 2012; 14
PE Blöchl (35048_CR80) 1994; 50
J-Y Tsai (35048_CR71) 2022; 13
V Ivády (35048_CR61) 2014; 90
A Norambuena (35048_CR77) 2018; 97
HL Stern (35048_CR22) 2022; 13
G Kresse (35048_CR79) 1996; 54
O Laporte (35048_CR70) 1925; 11
JN Randall (35048_CR15) 2018; 36
M Mackoit-Sinkevičienė (35048_CR82) 2019; 115
C Freysoldt (35048_CR36) 2014; 86
References_xml – volume: 13
  year: 2022
  ident: CR71
  article-title: Antisite defect qubits in monolayer transition metal dichalcogenides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28133-x
– volume: 477
  start-page: 574
  year: 2011
  end-page: 578
  ident: CR74
  article-title: High-fidelity projective read-out of a solid-state spin quantum register
  publication-title: Nature
  doi: 10.1038/nature10401
– volume: 115
  start-page: 212101
  year: 2019
  ident: CR82
  article-title: Carbon dimer defect as a source of the 4.1 eV luminescence in hexagonal boron nitride
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5124153
– volume: 345
  start-page: 1333
  year: 2014
  end-page: 1337
  ident: CR87
  article-title: Ultrafast optical control of orbital and spin dynamics in a solid-state defect
  publication-title: Science
  doi: 10.1126/science.1255541
– volume: 5
  start-page: 017133
  year: 2015
  ident: CR75
  article-title: First principle simulations on the effects of oxygen vacancy in HfO -based RRAM
  publication-title: AIP Adv.
  doi: 10.1063/1.4906792
– volume: 112
  start-page: 321
  year: 2012
  end-page: 370
  ident: CR53
  article-title: Constrained density functional theory
  publication-title: Chem. Rev.
  doi: 10.1021/cr200148b
– volume: 4
  year: 2020
  ident: CR25
  article-title: Identifying defect-related quantum emitters in monolayer WSe2
  publication-title: npj 2D Mater. Appl
  doi: 10.1038/s41699-020-0136-0
– volume: 8
  start-page: 1907
  year: 2019
  end-page: 1943
  ident: CR32
  article-title: Ab initio theory of the nitrogen-vacancy center in diamond
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0154
– volume: 14
  start-page: 103033
  year: 2012
  ident: CR88
  article-title: Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/14/10/103033
– volume: 140
  start-page: A1133
  year: 1965
  end-page: A1138
  ident: CR28
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 7
  start-page: 59
  year: 2021
  ident: CR72
  article-title: Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00525-5
– volume: 10
  start-page: 503
  year: 2015
  end-page: 506
  ident: CR55
  article-title: Single photon emitters in exfoliated WSe2 structures
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.67
– volume: 1
  start-page: 075002
  year: 2017
  ident: CR30
  article-title: Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.075002
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 7
  ident: CR16
  article-title: First-principle prediction on STM tip manipulation of Ti adatom on two-dimensional monolayer YBr
  publication-title: Scanning
  doi: 10.1155/2019/5434935
– volume: 6
  start-page: 41
  year: 2020
  ident: CR20
  article-title: Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0305-x
– volume: 38
  start-page: 816
  year: 2013
  end-page: 825
  ident: CR62
  article-title: Materials in superconducting quantum bits
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.229
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR11
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 13
  year: 2022
  ident: CR22
  article-title: Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28169-z
– volume: 83
  start-page: 044501
  year: 2020
  ident: CR26
  article-title: Single-photon emitters in hexagonal boron nitride: a review of progress
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab6310
– volume: 109
  start-page: 267401
  year: 2012
  ident: CR51
  article-title: First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.267401
– volume: 2
  start-page: 73
  year: 2012
  end-page: 78
  ident: CR84
  article-title: The ORCA program system
  publication-title: WIREs Comput Mol. Sci.
  doi: 10.1002/wcms.81
– volume: 65
  start-page: 83
  year: 2014
  end-page: 105
  ident: CR57
  article-title: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040513-103659
– volume: 131
  start-page: 353
  year: 2011
  end-page: 361
  ident: CR5
  article-title: Rare-earth-doped materials for applications in quantum information storage and signal processing
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2010.12.015
– volume: 69
  start-page: 38
  year: 2016
  end-page: 44
  ident: CR12
  article-title: Two-dimensional van der Waals materials
  publication-title: Phys. Today
  doi: 10.1063/PT.3.3297
– volume: 2
  start-page: 023071
  year: 2020
  ident: CR65
  article-title: Spin-orbit driven electrical manipulation of the zero-field splitting in high-spin centers in solids
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023071
– volume: 16
  start-page: 073026
  year: 2014
  ident: CR52
  article-title: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/16/7/073026
– volume: 86
  start-page: 253
  year: 2014
  end-page: 305
  ident: CR36
  article-title: First-principles calculations for point defects in solids
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.253
– volume: 129
  start-page: 247
  year: 2017
  end-page: 251
  ident: CR18
  article-title: A paramagnetic neutral CBVN center in hexagonal boron nitride monolayer for spin qubit application
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.12.032
– volume: 601
  start-page: 343
  year: 2022
  end-page: 347
  ident: CR63
  article-title: Quantum logic with spin qubits crossing the surface code threshold
  publication-title: Nature
  doi: 10.1038/s41586-021-04273-w
– volume: 350
  start-page: 1065
  year: 2015
  end-page: 1068
  ident: CR48
  article-title: Near-unity photoluminescence quantum yield in MoS2
  publication-title: Science
  doi: 10.1126/science.aad2114
– volume: 86
  start-page: 045112
  year: 2012
  ident: CR42
  article-title: Finite-size supercell correction schemes for charged defect calculations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.045112
– volume: 77
  start-page: 155206
  year: 2008
  ident: CR66
  article-title: Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.155206
– volume: 90
  start-page: 75
  year: 2005
  end-page: 176
  ident: CR67
  article-title: Table of nuclear magnetic dipole and electric quadrupole moments
  publication-title: At. Data Nucl. Data
  doi: 10.1016/j.adt.2005.04.001
– volume: 89
  start-page: 035002
  year: 2017
  ident: CR58
  article-title: Quantum sensing
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035002
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR38
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 19
  start-page: 408
  year: 2019
  end-page: 414
  ident: CR23
  article-title: Two-level quantum systems in two-dimensional materials for single photon emission
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04159
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR78
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 7
  start-page: 031308
  year: 2020
  ident: CR56
  article-title: Material platforms for defect qubits and single-photon emitters
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0006075
– volume: 15
  start-page: 1896
  year: 2019
  end-page: 1904
  ident: CR85
  article-title: Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00841
– volume: 8
  start-page: 1867
  year: 2019
  end-page: 1888
  ident: CR2
  article-title: Quantum defects by design
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0211
– volume: 7
  start-page: eabf3630
  year: 2021
  ident: CR21
  article-title: Room temperature coherent control of spin defects in hexagonal boron nitride
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf3630
– volume: 14
  start-page: 1602
  year: 2018
  end-page: 1613
  ident: CR40
  article-title: Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01072
– volume: 69
  start-page: 681
  year: 1946
  ident: CR64
  article-title: Spontaneous emission probabilities at radio frequencies
  publication-title: Phys. Rev.
– volume: 123
  start-page: 183602
  year: 2019
  ident: CR9
  article-title: Quantum network nodes based on diamond qubits with an efficient nanophotonic interface
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.183602
– volume: 116
  start-page: 190501
  year: 2020
  ident: CR10
  article-title: Developing silicon carbide for quantum spintronics
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0004454
– volume: 3
  year: 2012
  ident: CR17
  article-title: Spatial control of defect creation in graphene at the nanoscale
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2141
– volume: 136
  start-page: B864
  year: 1964
  end-page: B871
  ident: CR27
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 558
  start-page: 268
  year: 2018
  end-page: 273
  ident: CR50
  article-title: Deterministic delivery of remote entanglement on a quantum network
  publication-title: Nature
  doi: 10.1038/s41586-018-0200-5
– volume: 11
  start-page: 459
  year: 1925
  ident: CR70
  article-title: Some rules of spectral structure*
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.11.000459
– volume: 226
  start-page: 114
  year: 2018
  end-page: 126
  ident: CR43
  article-title: CoFFEE: corrections for formation energy and eigenvalues for charged defect simulations
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.01.011
– volume: 92
  start-page: 243111
  year: 2008
  ident: CR59
  article-title: Scanning magnetic field microscope with a diamond single-spin sensor
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2943282
– volume: 90
  start-page: 235205
  year: 2014
  ident: CR61
  article-title: Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: a first-principles study
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235205
– volume: 5
  start-page: 44
  year: 2019
  ident: CR13
  article-title: Spin coherence in two-dimensional materials
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0182-3
– volume: 12
  start-page: 8046
  year: 2021
  end-page: 8052
  ident: CR86
  article-title: Remote passivation in two-dimensional materials: the case of the monolayer–bilayer lateral junction of MoSe
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02457
– volume: 372
  start-page: 259
  year: 2021
  end-page: 264
  ident: CR8
  article-title: Realization of a multinode quantum network of remote solid-state qubits
  publication-title: Science
  doi: 10.1126/science.abg1919
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR79
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  year: 2020
  ident: CR45
  article-title: Giant renormalization of dopant impurity levels in 2D semiconductor MoS2
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61675-y
– ident: CR89
– volume: 6
  year: 2015
  ident: CR46
  article-title: Exploring atomic defects in molybdenum disulphide monolayers
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7293
– volume: 1
  start-page: 011002
  year: 2013
  ident: CR44
  article-title: Commentary: the materials project: a materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 2
  start-page: 044702
  year: 2020
  ident: CR60
  article-title: Sensitive magnetometry in challenging environments
  publication-title: AVS Quantum Sci.
  doi: 10.1116/5.0025186
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR81
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 10
  year: 2019
  ident: CR24
  article-title: Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10632-z
– volume: 22
  start-page: 25522
  year: 2020
  end-page: 25527
  ident: CR33
  article-title: First-principles studies of strongly correlated states in defect spin qubits in diamond
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04585C
– volume: 118
  start-page: 8207
  year: 2003
  end-page: 8215
  ident: CR34
  article-title: Hybrid functionals based on a screened Coulomb potential
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 267
  start-page: 108056
  year: 2021
  ident: CR83
  article-title: Nonrad: Computing nonradiative capture coefficients from first principles
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108056
– volume: 125
  start-page: 224106
  year: 2006
  ident: CR35
  article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 71
  start-page: 1387
  year: 1993
  end-page: 1390
  ident: CR14
  article-title: Tip-surface interactions in scanning tunneling microscopy
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1387
– volume: 97
  start-page: 094304
  year: 2018
  ident: CR77
  article-title: Spin-lattice relaxation of individual solid-state spins
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.094304
– volume: 18
  start-page: S807
  year: 2006
  end-page: S824
  ident: CR7
  article-title: Processing quantum information in diamond
  publication-title: J. Phys.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR80
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 5
  year: 2015
  ident: CR39
  article-title: Tungsten Ditelluride: a layered semimetal
  publication-title: Sci. Rep.
  doi: 10.1038/srep10013
– volume: 6
  start-page: 5767
  year: 2016
  end-page: 5773
  ident: CR76
  article-title: Thermal conductivity of monolayer MoS , MoSe , and WS : interplay of mass effect, interatomic bonding and anharmonicity
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19747C
– volume: 7
  start-page: 1589
  year: 2018
  end-page: 1600
  ident: CR47
  article-title: Optoelectronics with single layer group-VIB transition metal dichalcogenides
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0041
– volume: 11
  year: 2020
  ident: CR6
  article-title: Optical quantum nondemolition measurement of a single rare earth ion qubit
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15138-7
– volume: 12
  start-page: 516
  year: 2018
  end-page: 527
  ident: CR1
  article-title: Quantum technologies with optically interfaced solid-state spins
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0232-2
– volume: 9
  start-page: 031045
  year: 2019
  ident: CR68
  article-title: A ten-qubit solid-state spin register with quantum memory up to one minute
  publication-title: Phys. Rev. X
– ident: CR3
– volume: 103
  start-page: 053513
  year: 2013
  ident: CR37
  article-title: Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4817409
– volume: 71
  start-page: 060310
  year: 2005
  ident: CR49
  article-title: Efficient high-fidelity quantum computation using matter qubits and linear optics
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.060310
– volume: 96
  start-page: 081115
  year: 2017
  ident: CR73
  article-title: Ab initio calculation of spin-orbit coupling for an NV center in diamond exhibiting dynamic Jahn-Teller effect
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.081115
– volume: 453
  start-page: 1023
  year: 2008
  end-page: 1030
  ident: CR4
  article-title: The quantum internet
  publication-title: Nature
  doi: 10.1038/nature07127
– volume: 10
  start-page: 485
  year: 2015
  end-page: 486
  ident: CR54
  article-title: Two dimensions and one photon
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.104
– volume: 107
  start-page: 8513
  year: 2010
  end-page: 8518
  ident: CR29
  article-title: Quantum computing with defects
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1003052107
– volume: 248
  start-page: 1067
  year: 2011
  end-page: 1076
  ident: CR41
  article-title: Electrostatic interactions between charged defects in supercells
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201046289
– volume: 122
  start-page: 850
  year: 2018
  end-page: 858
  ident: CR69
  article-title: Effect of doping with shallow donors on radiative and nonradiative relaxation in silicon nanocrystals: ab initio study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b09882
– volume: 36
  start-page: 06JL05
  year: 2018
  ident: CR15
  article-title: Highly parallel scanning tunneling microscope based hydrogen depassivation lithography
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.5047939
– volume: 1
  start-page: 071001
  year: 2017
  ident: CR19
  article-title: First-principles engineering of charged defects for two-dimensional quantum technologies
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.071001
– volume: 48
  start-page: 1
  year: 2018
  end-page: 26
  ident: CR31
  article-title: First-principles calculations of point defects for quantum technologies
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124453
– volume: 345
  start-page: 1333
  year: 2014
  ident: 35048_CR87
  publication-title: Science
  doi: 10.1126/science.1255541
– volume: 109
  start-page: 267401
  year: 2012
  ident: 35048_CR51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.267401
– volume: 12
  start-page: 8046
  year: 2021
  ident: 35048_CR86
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c02457
– volume: 4
  year: 2020
  ident: 35048_CR25
  publication-title: npj 2D Mater. Appl
  doi: 10.1038/s41699-020-0136-0
– volume: 136
  start-page: B864
  year: 1964
  ident: 35048_CR27
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 89
  start-page: 035002
  year: 2017
  ident: 35048_CR58
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035002
– volume: 226
  start-page: 114
  year: 2018
  ident: 35048_CR43
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.01.011
– volume: 1
  start-page: 071001
  year: 2017
  ident: 35048_CR19
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.071001
– volume: 125
  start-page: 224106
  year: 2006
  ident: 35048_CR35
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2404663
– volume: 77
  start-page: 155206
  year: 2008
  ident: 35048_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.155206
– volume: 71
  start-page: 060310
  year: 2005
  ident: 35048_CR49
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.71.060310
– volume: 69
  start-page: 681
  year: 1946
  ident: 35048_CR64
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.69.37
– volume: 50
  start-page: 17953
  year: 1994
  ident: 35048_CR80
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 6
  start-page: 41
  year: 2020
  ident: 35048_CR20
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-0305-x
– ident: 35048_CR3
  doi: 10.1038/s41578-021-00306-y
– volume: 248
  start-page: 1067
  year: 2011
  ident: 35048_CR41
  publication-title: Phys. Status Solidi B
  doi: 10.1002/pssb.201046289
– volume: 558
  start-page: 268
  year: 2018
  ident: 35048_CR50
  publication-title: Nature
  doi: 10.1038/s41586-018-0200-5
– volume: 5
  year: 2015
  ident: 35048_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/srep10013
– volume: 11
  year: 2020
  ident: 35048_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15138-7
– volume: 77
  start-page: 3865
  year: 1996
  ident: 35048_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 90
  start-page: 235205
  year: 2014
  ident: 35048_CR61
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.235205
– volume: 10
  start-page: 485
  year: 2015
  ident: 35048_CR54
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.104
– volume: 499
  start-page: 419
  year: 2013
  ident: 35048_CR11
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 129
  start-page: 247
  year: 2017
  ident: 35048_CR18
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.12.032
– volume: 601
  start-page: 343
  year: 2022
  ident: 35048_CR63
  publication-title: Nature
  doi: 10.1038/s41586-021-04273-w
– volume: 13
  year: 2022
  ident: 35048_CR71
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28133-x
– volume: 14
  start-page: 1602
  year: 2018
  ident: 35048_CR40
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.7b01072
– volume: 86
  start-page: 253
  year: 2014
  ident: 35048_CR36
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.86.253
– volume: 10
  year: 2020
  ident: 35048_CR45
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61675-y
– volume: 10
  start-page: 503
  year: 2015
  ident: 35048_CR55
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.67
– volume: 115
  start-page: 212101
  year: 2019
  ident: 35048_CR82
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5124153
– volume: 103
  start-page: 053513
  year: 2013
  ident: 35048_CR37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4817409
– volume: 59
  start-page: 1758
  year: 1999
  ident: 35048_CR81
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 71
  start-page: 1387
  year: 1993
  ident: 35048_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.71.1387
– volume: 90
  start-page: 75
  year: 2005
  ident: 35048_CR67
  publication-title: At. Data Nucl. Data
  doi: 10.1016/j.adt.2005.04.001
– volume: 9
  start-page: 031045
  year: 2019
  ident: 35048_CR68
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 44
  year: 2019
  ident: 35048_CR13
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-019-0182-3
– volume: 11
  start-page: 459
  year: 1925
  ident: 35048_CR70
  publication-title: J. Opt. Soc. Am.
  doi: 10.1364/JOSA.11.000459
– ident: 35048_CR89
  doi: 10.1021/acsphotonics.7b01442
– volume: 86
  start-page: 045112
  year: 2012
  ident: 35048_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.045112
– volume: 16
  start-page: 073026
  year: 2014
  ident: 35048_CR52
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/16/7/073026
– volume: 22
  start-page: 25522
  year: 2020
  ident: 35048_CR33
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP04585C
– volume: 97
  start-page: 094304
  year: 2018
  ident: 35048_CR77
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.97.094304
– volume: 123
  start-page: 183602
  year: 2019
  ident: 35048_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.183602
– volume: 54
  start-page: 11169
  year: 1996
  ident: 35048_CR79
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 118
  start-page: 8207
  year: 2003
  ident: 35048_CR34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1564060
– volume: 12
  start-page: 516
  year: 2018
  ident: 35048_CR1
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0232-2
– volume: 477
  start-page: 574
  year: 2011
  ident: 35048_CR74
  publication-title: Nature
  doi: 10.1038/nature10401
– volume: 2019
  start-page: 1
  year: 2019
  ident: 35048_CR16
  publication-title: Scanning
  doi: 10.1155/2019/5434935
– volume: 1
  start-page: 011002
  year: 2013
  ident: 35048_CR44
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 2
  start-page: 044702
  year: 2020
  ident: 35048_CR60
  publication-title: AVS Quantum Sci.
  doi: 10.1116/5.0025186
– volume: 350
  start-page: 1065
  year: 2015
  ident: 35048_CR48
  publication-title: Science
  doi: 10.1126/science.aad2114
– volume: 1
  start-page: 075002
  year: 2017
  ident: 35048_CR30
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.075002
– volume: 372
  start-page: 259
  year: 2021
  ident: 35048_CR8
  publication-title: Science
  doi: 10.1126/science.abg1919
– volume: 6
  start-page: 15
  year: 1996
  ident: 35048_CR78
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 83
  start-page: 044501
  year: 2020
  ident: 35048_CR26
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/1361-6633/ab6310
– volume: 8
  start-page: 1907
  year: 2019
  ident: 35048_CR32
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0154
– volume: 2
  start-page: 73
  year: 2012
  ident: 35048_CR84
  publication-title: WIREs Comput Mol. Sci.
  doi: 10.1002/wcms.81
– volume: 96
  start-page: 081115
  year: 2017
  ident: 35048_CR73
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.081115
– volume: 6
  start-page: 5767
  year: 2016
  ident: 35048_CR76
  publication-title: RSC Adv.
  doi: 10.1039/C5RA19747C
– volume: 267
  start-page: 108056
  year: 2021
  ident: 35048_CR83
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108056
– volume: 116
  start-page: 190501
  year: 2020
  ident: 35048_CR10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0004454
– volume: 69
  start-page: 38
  year: 2016
  ident: 35048_CR12
  publication-title: Phys. Today
  doi: 10.1063/PT.3.3297
– volume: 7
  start-page: 1589
  year: 2018
  ident: 35048_CR47
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2018-0041
– volume: 92
  start-page: 243111
  year: 2008
  ident: 35048_CR59
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2943282
– volume: 7
  start-page: 59
  year: 2021
  ident: 35048_CR72
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00525-5
– volume: 48
  start-page: 1
  year: 2018
  ident: 35048_CR31
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070317-124453
– volume: 2
  start-page: 023071
  year: 2020
  ident: 35048_CR65
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023071
– volume: 5
  start-page: 017133
  year: 2015
  ident: 35048_CR75
  publication-title: AIP Adv.
  doi: 10.1063/1.4906792
– volume: 131
  start-page: 353
  year: 2011
  ident: 35048_CR5
  publication-title: J. Lumin.
  doi: 10.1016/j.jlumin.2010.12.015
– volume: 10
  year: 2019
  ident: 35048_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10632-z
– volume: 122
  start-page: 850
  year: 2018
  ident: 35048_CR69
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b09882
– volume: 140
  start-page: A1133
  year: 1965
  ident: 35048_CR28
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 6
  year: 2015
  ident: 35048_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7293
– volume: 8
  start-page: 1867
  year: 2019
  ident: 35048_CR2
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0211
– volume: 453
  start-page: 1023
  year: 2008
  ident: 35048_CR4
  publication-title: Nature
  doi: 10.1038/nature07127
– volume: 13
  year: 2022
  ident: 35048_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28169-z
– volume: 7
  start-page: eabf3630
  year: 2021
  ident: 35048_CR21
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abf3630
– volume: 14
  start-page: 103033
  year: 2012
  ident: 35048_CR88
  publication-title: N. J. Phys.
  doi: 10.1088/1367-2630/14/10/103033
– volume: 18
  start-page: S807
  year: 2006
  ident: 35048_CR7
  publication-title: J. Phys.
– volume: 107
  start-page: 8513
  year: 2010
  ident: 35048_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1003052107
– volume: 112
  start-page: 321
  year: 2012
  ident: 35048_CR53
  publication-title: Chem. Rev.
  doi: 10.1021/cr200148b
– volume: 36
  start-page: 06JL05
  year: 2018
  ident: 35048_CR15
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.5047939
– volume: 7
  start-page: 031308
  year: 2020
  ident: 35048_CR56
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0006075
– volume: 19
  start-page: 408
  year: 2019
  ident: 35048_CR23
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b04159
– volume: 65
  start-page: 83
  year: 2014
  ident: 35048_CR57
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-040513-103659
– volume: 3
  year: 2012
  ident: 35048_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2141
– volume: 15
  start-page: 1896
  year: 2019
  ident: 35048_CR85
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/acs.jctc.8b00841
– volume: 38
  start-page: 816
  year: 2013
  ident: 35048_CR62
  publication-title: MRS Bull.
  doi: 10.1557/mrs.2013.229
SSID ssj0000391844
Score 2.54356
Snippet Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional...
Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7501
SubjectTerms 119/118
639/301/1005/1007
639/301/357/1018
639/925/927/481
Chalcogenides
Crystal defects
Defects
Diamonds
Electronic devices
Electronic equipment
Humanities and Social Sciences
Information systems
Metals
multidisciplinary
Quantum computing
Quantum phenomena
Qubits (quantum computing)
Science
Science (multidisciplinary)
Telecommunications
Transition metal compounds
Two dimensional materials
Wavelengths
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPlIKMxA2iZmM7sY8FUVU9cIFKvVl-pY3UJgvxquq_74ydXbo8LxwTO9JoHp5v5Mk3hLy1QTJXc18qb3nJrWOlYlVVWm4C7-CR5wbZz83xKT85E2d3Rn1hT1imB86KO6hZ6JhVgglleVh4aZgV0hhIXLauOoenL-S8O8VUOoOZgtKFz3_JVEweTDydCbl5Hdy2rLYyUSLs_x3K_LVZ8qcb05SIjh6RhzOCpIdZ8sfkXhiekPt5puTNLjn_suyH0gds06DfVraPE-0HGq_H0iOTf2bhoBFzVGrXolcBADj12D9_6UZwqN6HiY5LpFsGCaiJNOK0nPGKXhucUzGcx4vpKTk9-vT143E5T1MoHaCyCNoPqvZI4MZYI1tpBWjVW-UBg7Wd80ZUdbCmCao1tTNQp7ULQDeVA_htZCfYM7IzjEN4QWjnGqEA2hmhGHcdLANu4AaMbKS3jS_IYq1Z7WaqcZx4canTlTeTOltDgzV0soauCvJu880yE238dfcHNNhmJ5JkpxfgOnp2Hf0v1ynI_trceo7cSacqnUGRKAvyZrMMMYcXKWYI4wr3CFbj_WxTkOfZOzaSIB8_AxhbkHbLb7ZE3V4Z-ovE640D4JqWFeT92sN-iPVnVez9D1W8JA9qDA3s02n2yU78vgqvAG1F-zoF1i0lFCZc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUbiBlazsZ3YJwSIpeLABSr1ZvmVbaQ22TZZVfz7zjjZVMujx8SOZHvG9mfPl28Ieeei4r4QgengBBPOc6Z5njMnbBQ1PIqRIPujPDoW30_kyXTh1k-0yu2amBbq0Hm8Iz9MpycO4F19XF8wzBqF0dUphcZdcm8BOw1SutTy23zHgurnSojpX5mcq8NepJVhpLCD87J8Zz9Ksv3_wpp_Uyb_iJum7Wj5iDyccCT9NBr-MbkT2yfk_phZ8vdTsvq5bloWIpI16MXGNUNPm5YOVx0LqOc_anHQAXeqRNqi5xFgOA3Ioj_zHbhVE2JPuzWKLkMLqB3ogDlzunN6ZTFbRbsaTvtn5Hj59deXIzblVGAesNkANoi6CCjjxnmpKuWk0zI4HQCJVbUPVuZFdLaMurKFt3BaqxaAcXIPINyqWvLnZK_t2viS0NqXUgPAs1Jz4WsoBvQgLJjaquDKkJHFdmSNnwTHMe_FmUmBb67MaA0D1jDJGibPyPv5m_Uot3Fr7c9osLkmSmWnF93lykwzzxQ81hw6yaWGzi-CstxJZS0gH1fktc_IwdbcZpq_vbnxtoy8nYth5mE4xbax22AdyQuM0pYZeTF6x9wSVOXnAGYzUu34zU5Td0va5jSpe2MauLLiGfmw9bCbZv1_KF7d3ot98qBAp0ceTnlA9obLTXwNaGpwb9KUuQbLox2M
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN4jIxnbiHBdEVe2BS6nUm-VXtiu1ydJkVfHvmXEeaKEgcUzsSBPPTPw5_vwNwDsbFHe58GnlrUiFdTyteJalVpggarwUA0H2a3F6LlYX8uIA8uksTCTtR0nL-Jme2GEfOxFTeuCeY9SluEw_Iql2jO2j5XJ1tpr_rJDmuRJiPCGTcXXHw3uzUBTrvwth_kmU_G23NE5CJw_hwYge2XKw9xEchOYx3BvqSf54Auuz7aZJfSCKBvu-s5u-Y5uG9bdt6knFf1DgYD3NT5Gqxa4Dgm_miTt_5VoMpo0PHWu3JLWMFjDTs54q5bTX7NZQjYpm3V92T-H85Mu3z6fpWEkhdYjIehz5UOWexNs4L1SprLSV9LbyiL_K2nkjszxYU4SqNLkzuEYrF4hsMofQ26ha8mdw2LRNeAGsdoWsENYZWXHhamxGzCAMOtgobwufwGIaWe1GmXGqdnGl43Y3V3rwhkZv6OgNnSXwfn5mO4hs_LP3J3LY3JMEsuON9matx4DROQ81x5fkssKXX3hluJXKGMQ7Ns9ql8Dx5G49Zm2n4wqd4wJRJfB2bsZ8o00U04R2R30kz2lvtkjg-RAdsyWkxc8RwiZQ7sXNnqn7Lc3mMmp6U_G3ouQJfJgi7JdZfx-Kl__X_RXczykJiI1THMNhf7MLrxFT9fbNmEQ_AaUzHKE
  priority: 102
  providerName: Springer Nature
Title Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths
URI https://link.springer.com/article/10.1038/s41467-022-35048-0
https://www.ncbi.nlm.nih.gov/pubmed/36473851
https://www.proquest.com/docview/2747131488
https://www.proquest.com/docview/2753290256
https://pubmed.ncbi.nlm.nih.gov/PMC9723673
https://doaj.org/article/23ef3b95359b4e1d8a3b58aa201b20fc
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4am5B4QeMeGJWReINAGjuJ84BQV61MlZgQo1LfIt_SReqSrUm17d9z7CRFhcITL4kSO5J9LvF34pPzAbyVhlMVMu2nWjKfSUX9lAaBL5kwLMdL1ibInsWnMzadR_M96OmOOgHWO0M7yyc1Wy0_3F7ffUaH_9T-Ms4_1sy5e5uXjhbpYwh_gCtTYhkNvnZw372ZaYoBDev-ndn96Nb65Mr478Kef6ZQ_raP6panySE87HAlGbWG8Aj2TPkY7rdMk3dPYHF-VZS-NjZ5g1yvZdHUpChJc1P52tb3b2tzkMauXC6Ji1walAjRNqt-qSo0s0KbmqBwrMmUCyIa0lgOneqS3AjLXlEumov6KcwmJz_Gp37HseArxGoN6sSkobZl3SiNecJlJNNIy1QjMktypUUUhEaK2KSJCJXA6C0ZomADhaBc8Dyiz2C_rErzAkiu4ihFwCeilDKVYzOiCSZQ9YJrGWsPhr1kM9UVILc8GMvMbYRTnrXayFAbmdNGFnjwbvPMVVt-45-9j63CNj1t6Wx3o1otss4Ts5CanOIkaZTi5IeaCyojLgQiIRkGufLgqFd31ptj5mJ3iqEj9-DNphk90W6viNJUa9snoqHdtY09eN5ax2Yktko_RXDrQbJlN1tD3W4piwtX7dvSwsUJ9eB9b2G_hvV3Ubz8H6J4BQ9C6xo2eyc-gv1mtTavEYM1cgD3knmCRz75MoCD0Wh6PsXz8cnZt-94dxyPB-7rxsA54E8tkTSg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXVJ4NLWAkOEHUbOwkzgEhXsuWll5opd6MX9lGapNtk9Wqf4rfyIyTbLU8eutx14409jz8OTOZj5BX2glmYm7D3Goecm1YmLMoCjVXjhfwk3cFsgfp5Ih_O06O18iv4VsYLKscYqIP1LY2-I58x9-eGIB38X52HiJrFGZXBwqNziz23OUCrmzNu93PoN_XcTz-cvhpEvasAqEBdNKCFC6PLTYyYywVmdCJzhOrcwtYJCuMVUkUO61Sl2cqNgruK9kITvnIAAxVokCWCAj5t-DpHC97Yvx1-U4Hu60LzvtvcyImdhruI1FXMg_OEkYr55-nCfgXtv27RPOPPK0__sYb5F6PW-mHztDukzVXPSC3OybLy4dk-mNWVqF1WBxCz-e6bBtaVrRd1KFF_oCu9wdt8WT0RWL0zAHspxar9k9NDWZcWtfQeoZNnkECqlraIkdPfUYXCtkxqml70jwiRzey24_JelVXbpPQwqRJDoBSJTnjpoBhQCtcgWkpYXVqAzIadlaavsE58mycSp9oZ0J22pCgDem1IaOAvFk-M-vae1w7-yMqbDkTW3P7P-qLqew9XcbMFQwWyZIcFj-yQjGdCKUAaek4KkxAtgd1yz5eNPLKugPycjkMno7pG1W5eo5zEhZjVjgNyJPOOpaSIAsAA_AckGzFblZEXR2pyhPfTRxp59KMBeTtYGFXYv1_K55ev4oX5M7k8Pu-3N892Nsid2N0AKwBSrfJensxd88AybX6uXcfSn7etL_-BiLiWW4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEG8MBRYJTmDF8a7t9QEhShu1FEUVUKk3sy-nkVo7rR1F_Wv8Omb8SBUevfWY7Fqa3Xnst57xfABvtJPchML6qdXCF9pwP-VB4GuhnMjxp2gLZCfx3pH4chwdb8Cv_lsYKqvsY2ITqG1p6B35sLk9cQTvcph3ZRGHO-OP83OfGKQo09rTabQmcuAul3h9qz7s76Cu34bhePfH5z2_YxjwDSKVGiVyaWipqRnnsUykjnQaWZ1axCVJbqyKgtBpFbs0UaFReHdJRnjiBwYhqZI5MUZg-N9M6FY0gM3t3cnht9UbHuq9LoXovtQJuBxWoolLbQE9uo4frJ2GDWnAv5Du3wWbf2Rtm8NwfA_udiiWfWrN7j5suOIB3Gp5LS8fwvT7fFb41lGpCDtf6FldsVnB6mXpW2ITaDuBsJrOyaZkjJ05vAQwSzX8p6ZEo55ZV7FyTi2fUQKmalYTY095xpaKuDKKaX1SPYKjG9nvxzAoysI9BZabOEoRXqoo5cLkOIzYRSg0NCWtjq0Ho35nM9O1OyfWjdOsSbtzmbXayFAbWaONLPDg3eqZedvs49rZ26Sw1Uxq1N38UV5Ms87vs5C7nOMieZTi4kdWKq4jqRTiLh0GufFgq1d31kWPKruydQ9er4bR7ymZowpXLmhOxEPKEccePGmtYyUJcQJwhNIeJGt2sybq-kgxO2l6ixMJXZxwD973FnYl1v-34tn1q3gFt9FXs6_7k4PncCck-6eCoHgLBvXFwr1AWFfrl53_MPh50y77Gx0WXwA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-defect+qubits+in+two-dimensional+transition+metal+dichalcogenides+operating+at+telecom+wavelengths&rft.jtitle=Nature+communications&rft.au=Yeonghun+Lee&rft.au=Yaoqiao+Hu&rft.au=Xiuyao+Lang&rft.au=Dongwook+Kim&rft.date=2022-12-06&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-022-35048-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_23ef3b95359b4e1d8a3b58aa201b20fc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon