Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths
Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defec...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 7501 - 10 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.12.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.
Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths. |
---|---|
AbstractList | Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths. Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths. Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band. Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional semiconductor electronic devices within the 3D monolithically integrated hybrid classical-quantum devices. Diamond nitrogen-vacancy (NV) center defects are the representative examples, but the controlled positioning of an NV center within bulk diamond is an outstanding challenge. Furthermore, quantum defect properties may not be easily tuned for bulk crystalline quantum defects. In comparison, 2D semiconductors, such as transition metal dichalcogenides (TMDs), are promising solid platform to host a quantum defect with tunable properties and a possibility of position control. Here, we computationally discover a promising defect family for spin qubit realization in 2D TMDs. The defects consist of transition metal atoms substituted at chalcogen sites with desirable spin-triplet ground state, zero-field splitting in the tens of GHz, and strong zero-phonon coupling to optical transitions in the highly desirable telecom band.Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class of substitutional defect centers in monolayer transition metal dichalcogenides with promising qubit characteristics operating at telecom wavelengths. |
ArticleNumber | 7501 |
Author | Hu, Yaoqiao Kim, Dongwook Li, Kejun Lang, Xiuyao Ping, Yuan Fu, Kai-Mei C. Cho, Kyeongjae Lee, Yeonghun |
Author_xml | – sequence: 1 givenname: Yeonghun orcidid: 0000-0002-6058-1316 surname: Lee fullname: Lee, Yeonghun email: y.lee@inu.ac.kr organization: Department of Materials Science and Engineering, The University of Texas at Dallas, Department of Electronics Engineering, Incheon National University – sequence: 2 givenname: Yaoqiao surname: Hu fullname: Hu, Yaoqiao organization: Department of Materials Science and Engineering, The University of Texas at Dallas – sequence: 3 givenname: Xiuyao surname: Lang fullname: Lang, Xiuyao organization: Department of Materials Science and Engineering, The University of Texas at Dallas – sequence: 4 givenname: Dongwook surname: Kim fullname: Kim, Dongwook organization: Department of Materials Science and Engineering, The University of Texas at Dallas – sequence: 5 givenname: Kejun surname: Li fullname: Li, Kejun organization: Department of Physics, University of California – sequence: 6 givenname: Yuan orcidid: 0000-0002-0123-3389 surname: Ping fullname: Ping, Yuan organization: Department of Chemistry and Biochemistry, University of California – sequence: 7 givenname: Kai-Mei C. orcidid: 0000-0003-4775-8524 surname: Fu fullname: Fu, Kai-Mei C. organization: Department of Physics, University of Washington, Department of Electrical and Computer Engineering, University of Washington – sequence: 8 givenname: Kyeongjae orcidid: 0000-0003-2698-7774 surname: Cho fullname: Cho, Kyeongjae email: kjcho@utdallas.edu organization: Department of Materials Science and Engineering, The University of Texas at Dallas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36473851$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAQjVARfdAfYIEisWET8DN2NkioglKpEgtgbTn2JNdXiX1rO6369_g2LbRd1BuPx-ccj2fOcXXgg4eqeofRJ4yo_JwYZq1oECEN5YjJBr2qjghiuMGC0INH8WF1mtIWlUU7LBl7Ux3SlgkqOT6qxl875xsLA5hcXy29y6l2vs43obFuBp9c8Hqqc9QlzOVQz5BLwjqz0ZMJI3hnIdVhB1Fn58da5zrDBCbM9Y2-LpEf8ya9rV4Pekpwer-fVH--f_t99qO5_Hl-cfb1sjGcodz0DDpiCaaM0lYK2fO-47bvrKRcDMZqjgj0uoVOaGI0wkjg8kdkBOm0HDg9qS5WXRv0Vu2im3W8VUE7dZcIcVQ6ZmcmUITCQIs85V15Flupac-l1gThnqDBFK0vq9Zu6WewBnxpw_RE9OmNdxs1hmvVla63ghaBj_cCMVwtkLKaXTIwTdpDWJIiglPSIcLbAv3wDLoNSyyt36OYwBQzKQvq_eOK_pXyMM8CkCvAxJBShEEZl_V-bqVANymM1N49anWPKu5Rd-5RqFDJM-qD-oskupJSAfsR4v-yX2D9Be042AA |
CitedBy_id | crossref_primary_10_1016_j_mssp_2024_108639 crossref_primary_10_1103_PhysRevA_110_032606 crossref_primary_10_1021_jacs_4c02738 crossref_primary_10_1038_s41467_024_47039_4 crossref_primary_10_1063_5_0230736 crossref_primary_10_1103_PhysRevB_111_045416 crossref_primary_10_1021_acs_jpcc_4c04339 crossref_primary_10_1021_acs_jpcc_4c03404 crossref_primary_10_1038_s41524_025_01558_w crossref_primary_10_1103_PhysRevMaterials_9_026201 crossref_primary_10_1002_smll_202400737 crossref_primary_10_1021_acs_jpclett_2c03674 crossref_primary_10_1002_adfm_202400313 crossref_primary_10_1039_D4CP04017A crossref_primary_10_1021_acs_nanolett_4c06343 crossref_primary_10_1021_acsnano_4c07212 crossref_primary_10_1103_PhysRevB_111_024108 crossref_primary_10_1088_2633_4356_ad1d38 crossref_primary_10_1021_acs_jpcc_4c05614 crossref_primary_10_3390_ma17164122 crossref_primary_10_1126_sciadv_adk8495 crossref_primary_10_1039_D3RA07759D crossref_primary_10_1080_23746149_2023_2206049 crossref_primary_10_1088_1361_648X_ad2588 crossref_primary_10_1038_s41467_023_44494_3 crossref_primary_10_1038_s41467_024_47876_3 |
Cites_doi | 10.1038/s41467-022-28133-x 10.1038/nature10401 10.1063/1.5124153 10.1126/science.1255541 10.1063/1.4906792 10.1021/cr200148b 10.1038/s41699-020-0136-0 10.1515/nanoph-2019-0154 10.1088/1367-2630/14/10/103033 10.1103/PhysRev.140.A1133 10.1038/s41524-021-00525-5 10.1038/nnano.2015.67 10.1103/PhysRevMaterials.1.075002 10.1155/2019/5434935 10.1038/s41524-020-0305-x 10.1557/mrs.2013.229 10.1038/nature12385 10.1038/s41467-022-28169-z 10.1088/1361-6633/ab6310 10.1103/PhysRevLett.109.267401 10.1002/wcms.81 10.1146/annurev-physchem-040513-103659 10.1016/j.jlumin.2010.12.015 10.1063/PT.3.3297 10.1103/PhysRevResearch.2.023071 10.1088/1367-2630/16/7/073026 10.1103/RevModPhys.86.253 10.1016/j.commatsci.2016.12.032 10.1038/s41586-021-04273-w 10.1126/science.aad2114 10.1103/PhysRevB.86.045112 10.1103/PhysRevB.77.155206 10.1016/j.adt.2005.04.001 10.1103/RevModPhys.89.035002 10.1103/PhysRevLett.77.3865 10.1021/acs.nanolett.8b04159 10.1016/0927-0256(96)00008-0 10.1063/5.0006075 10.1021/acs.jctc.8b00841 10.1515/nanoph-2019-0211 10.1126/sciadv.abf3630 10.1021/acs.jctc.7b01072 10.1103/PhysRevLett.123.183602 10.1063/5.0004454 10.1038/ncomms2141 10.1103/PhysRev.136.B864 10.1038/s41586-018-0200-5 10.1364/JOSA.11.000459 10.1016/j.cpc.2018.01.011 10.1063/1.2943282 10.1103/PhysRevB.90.235205 10.1038/s41524-019-0182-3 10.1021/acs.jpclett.1c02457 10.1126/science.abg1919 10.1103/PhysRevB.54.11169 10.1038/s41598-020-61675-y 10.1038/ncomms7293 10.1063/1.4812323 10.1116/5.0025186 10.1103/PhysRevB.59.1758 10.1038/s41467-019-10632-z 10.1039/D0CP04585C 10.1063/1.1564060 10.1016/j.cpc.2021.108056 10.1063/1.2404663 10.1103/PhysRevLett.71.1387 10.1103/PhysRevB.97.094304 10.1103/PhysRevB.50.17953 10.1038/srep10013 10.1039/C5RA19747C 10.1515/nanoph-2018-0041 10.1038/s41467-020-15138-7 10.1038/s41566-018-0232-2 10.1063/1.4817409 10.1103/PhysRevA.71.060310 10.1103/PhysRevB.96.081115 10.1038/nature07127 10.1038/nnano.2015.104 10.1073/pnas.1003052107 10.1002/pssb.201046289 10.1021/acs.jpcc.7b09882 10.1116/1.5047939 10.1103/PhysRevMaterials.1.071001 10.1146/annurev-matsci-070317-124453 10.1103/PhysRev.69.37 10.1038/s41578-021-00306-y 10.1021/acsphotonics.7b01442 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-35048-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_23ef3b95359b4e1d8a3b58aa201b20fc PMC9723673 36473851 10_1038_s41467_022_35048_0 |
Genre | Journal Article |
GrantInformation_xml | – fundername: SRC | Microelectronics Advanced Research Corporation (MARCO) grantid: 2018-JU-2776 funderid: https://doi.org/10.13039/100007245 – fundername: National Research Foundation of Korea (NRF) grantid: 2015M3D1A1068062; 2016M3A7B4909942 funderid: https://doi.org/10.13039/501100003725 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: W911NF-18-1-0431 funderid: https://doi.org/10.13039/100000183 – fundername: National Research Foundation of Korea (NRF) grantid: 2015M3D1A1068062 – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) grantid: W911NF-18-1-0431 – fundername: SRC | Microelectronics Advanced Research Corporation (MARCO) grantid: 2018-JU-2776 – fundername: National Research Foundation of Korea (NRF) grantid: 2016M3A7B4909942 – fundername: ; grantid: 2015M3D1A1068062; 2016M3A7B4909942 – fundername: ; grantid: W911NF-18-1-0431 – fundername: ; grantid: 2018-JU-2776 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-b4e92d2134336878b5b95db9d8357fcda502eba6e97a2ca010711720c729a8f53 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:24 EDT 2025 Thu Aug 21 18:38:35 EDT 2025 Fri Jul 11 16:27:57 EDT 2025 Wed Aug 13 01:50:54 EDT 2025 Thu Apr 03 07:08:44 EDT 2025 Tue Jul 01 00:58:34 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Fri Feb 21 02:38:43 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b4e92d2134336878b5b95db9d8357fcda502eba6e97a2ca010711720c729a8f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2698-7774 0000-0003-4775-8524 0000-0002-6058-1316 0000-0002-0123-3389 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35048-0 |
PMID | 36473851 |
PQID | 2747131488 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_23ef3b95359b4e1d8a3b58aa201b20fc pubmedcentral_primary_oai_pubmedcentral_nih_gov_9723673 proquest_miscellaneous_2753290256 proquest_journals_2747131488 pubmed_primary_36473851 crossref_citationtrail_10_1038_s41467_022_35048_0 crossref_primary_10_1038_s41467_022_35048_0 springer_journals_10_1038_s41467_022_35048_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-06 |
PublicationDateYYYYMMDD | 2022-12-06 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Heyd, Scuseria, Ernzerhof (CR34) 2003; 118 Robledo (CR74) 2011; 477 Oliver, Welander (CR62) 2013; 38 Bradley (CR68) 2019; 9 Tsai, Pan, Lin, Bansil, Yan (CR71) 2022; 13 Freysoldt (CR36) 2014; 86 Cho, Joannopoulos (CR14) 1993; 71 Seo, Ma, Govoni, Galli (CR30) 2017; 1 Alkauskas, Lyons, Steiauf, Van de Walle (CR51) 2012; 109 Stern (CR22) 2022; 13 Xue (CR63) 2022; 601 Komsa, Rantala, Pasquarello (CR42) 2012; 86 Smart, Li, Xu, Ping (CR72) 2021; 7 Kimble (CR4) 2008; 453 Perdew, Burke, Ernzerhof (CR38) 1996; 77 Kresse, Furthmüller (CR78) 1996; 6 Peng (CR76) 2016; 6 Derbenyova, Burdov (CR69) 2018; 122 Weber (CR29) 2010; 107 Klein (CR24) 2019; 10 Hwang, Zhang, Kim, Wallace, Cho (CR45) 2020; 10 Zhang, Cheng, Chou, Gali (CR56) 2020; 7 Raha (CR6) 2020; 11 Dang (CR25) 2020; 4 Robertson (CR17) 2012; 3 Freysoldt, Neugebauer, Van de Walle (CR41) 2011; 248 CR3 Gottscholl (CR21) 2021; 7 Kresse, Furthmüller (CR79) 1996; 54 Liu (CR16) 2019; 2019 Neese (CR84) 2012; 2 Kaduk, Kowalczyk, Van Voorhis (CR53) 2012; 112 CR89 Krukau, Vydrov, Izmaylov, Scuseria (CR35) 2006; 125 Gali (CR32) 2019; 8 Dreyer, Alkauskas, Lyons, Janotti, Van de Walle (CR31) 2018; 48 Naik, Jain (CR43) 2018; 226 Gali, Fyta, Kaxiras (CR66) 2008; 77 Stone (CR67) 2005; 90 Hohenberg, Kohn (CR27) 1964; 136 Amani (CR48) 2015; 350 Dai, Zhao, Wang, Xu, Yang (CR75) 2015; 5 Degen, Reinhard, Cappellaro (CR58) 2017; 89 Reimers, Sajid, Kobayashi, Ford (CR40) 2018; 14 Purcell (CR64) 1946; 69 Biktagirov, Gerstmann (CR65) 2020; 2 Blöchl (CR80) 1994; 50 Nguyen (CR9) 2019; 123 Pompili (CR8) 2021; 372 Kresse, Joubert (CR81) 1999; 59 Son (CR10) 2020; 116 Humphreys (CR50) 2018; 558 Han (CR86) 2021; 12 Perebeinos (CR54) 2015; 10 Ma, Sheng, Govoni, Galli (CR33) 2020; 22 Turiansky (CR83) 2021; 267 Wrachtrup, Jelezko (CR7) 2006; 18 Randall (CR15) 2018; 36 Gong (CR37) 2013; 103 Ajayan, Kim, Banerjee (CR12) 2016; 69 Laporte, Meggers (CR70) 1925; 11 Schirhagl, Chang, Loretz, Degen (CR57) 2014; 65 Ye, Seo, Galli (CR13) 2019; 5 Koperski (CR55) 2015; 10 Lee (CR39) 2015; 5 Ivády (CR20) 2020; 6 de Souza, Farias, Neese, Izsák (CR85) 2019; 15 Khan, Leuenberger (CR47) 2018; 7 Mackoit-Sinkevičienė, Maciaszek, Van de Walle, Alkauskas (CR82) 2019; 115 Ivády, Simon, Maze, Abrikosov, Gali (CR61) 2014; 90 Gupta, Yang, Yakobson (CR23) 2019; 19 Hong (CR46) 2015; 6 Geim, Grigorieva (CR11) 2013; 499 Norambuena (CR77) 2018; 97 Fu, Iwata, Wickenbrock, Budker (CR60) 2020; 2 Bassett (CR87) 2014; 345 Wu, Galatas, Sundararaman, Rocca, Ping (CR19) 2017; 1 Jain (CR44) 2013; 1 Barrett, Kok (CR49) 2005; 71 Thiel, Böttger, Cone (CR5) 2011; 131 Cheng (CR18) 2017; 129 Thiering, Gali (CR73) 2017; 96 Tetienne (CR88) 2012; 14 Alkauskas, Buckley, Awschalom, Van de Walle (CR52) 2014; 16 Sajid, Ford, Reimers (CR26) 2020; 83 Awschalom, Hanson, Wrachtrup, Zhou (CR1) 2018; 12 Degen (CR59) 2008; 92 Kohn, Sham (CR28) 1965; 140 Bassett, Alkauskas, Exarhos, Fu (CR2) 2019; 8 G Zhang (35048_CR56) 2020; 7 EM Purcell (35048_CR64) 1946; 69 L Robledo (35048_CR74) 2011; 477 F Neese (35048_CR84) 2012; 2 C Gong (35048_CR37) 2013; 103 LC Bassett (35048_CR2) 2019; 8 K Cho (35048_CR14) 1993; 71 J Wrachtrup (35048_CR7) 2006; 18 A Sajid (35048_CR26) 2020; 83 35048_CR89 G Kresse (35048_CR81) 1999; 59 J Dang (35048_CR25) 2020; 4 JR Reimers (35048_CR40) 2018; 14 S Gupta (35048_CR23) 2019; 19 CE Bradley (35048_CR68) 2019; 9 WD Oliver (35048_CR62) 2013; 38 HJ Kimble (35048_CR4) 2008; 453 35048_CR3 CW Thiel (35048_CR5) 2011; 131 NT Son (35048_CR10) 2020; 116 V Perebeinos (35048_CR54) 2015; 10 M Pompili (35048_CR8) 2021; 372 H-P Komsa (35048_CR42) 2012; 86 NV Derbenyova (35048_CR69) 2018; 122 B de Souza (35048_CR85) 2019; 15 P Hohenberg (35048_CR27) 1964; 136 W Kohn (35048_CR28) 1965; 140 SD Barrett (35048_CR49) 2005; 71 CT Nguyen (35048_CR9) 2019; 123 H Seo (35048_CR30) 2017; 1 DD Awschalom (35048_CR1) 2018; 12 G Kresse (35048_CR78) 1996; 6 M Raha (35048_CR6) 2020; 11 J Hwang (35048_CR45) 2020; 10 P Ajayan (35048_CR12) 2016; 69 H Ma (35048_CR33) 2020; 22 B Kaduk (35048_CR53) 2012; 112 T Biktagirov (35048_CR65) 2020; 2 K-MC Fu (35048_CR60) 2020; 2 B Peng (35048_CR76) 2016; 6 M Amani (35048_CR48) 2015; 350 CL Degen (35048_CR59) 2008; 92 M Ye (35048_CR13) 2019; 5 Á Gali (35048_CR32) 2019; 8 N Han (35048_CR86) 2021; 12 AK Geim (35048_CR11) 2013; 499 NJ Stone (35048_CR67) 2005; 90 M Koperski (35048_CR55) 2015; 10 J Klein (35048_CR24) 2019; 10 J Hong (35048_CR46) 2015; 6 LC Bassett (35048_CR87) 2014; 345 TJ Smart (35048_CR72) 2021; 7 CL Degen (35048_CR58) 2017; 89 A Alkauskas (35048_CR52) 2014; 16 R Schirhagl (35048_CR57) 2014; 65 ME Turiansky (35048_CR83) 2021; 267 MA Khan (35048_CR47) 2018; 7 JR Weber (35048_CR29) 2010; 107 AW Robertson (35048_CR17) 2012; 3 MH Naik (35048_CR43) 2018; 226 A Jain (35048_CR44) 2013; 1 X Xue (35048_CR63) 2022; 601 GD Cheng (35048_CR18) 2017; 129 P Liu (35048_CR16) 2019; 2019 A Alkauskas (35048_CR51) 2012; 109 A Gali (35048_CR66) 2008; 77 G Thiering (35048_CR73) 2017; 96 Y Dai (35048_CR75) 2015; 5 JP Perdew (35048_CR38) 1996; 77 F Wu (35048_CR19) 2017; 1 C-H Lee (35048_CR39) 2015; 5 C Freysoldt (35048_CR41) 2011; 248 PC Humphreys (35048_CR50) 2018; 558 AV Krukau (35048_CR35) 2006; 125 V Ivády (35048_CR20) 2020; 6 A Gottscholl (35048_CR21) 2021; 7 CE Dreyer (35048_CR31) 2018; 48 J Heyd (35048_CR34) 2003; 118 J-P Tetienne (35048_CR88) 2012; 14 PE Blöchl (35048_CR80) 1994; 50 J-Y Tsai (35048_CR71) 2022; 13 V Ivády (35048_CR61) 2014; 90 A Norambuena (35048_CR77) 2018; 97 HL Stern (35048_CR22) 2022; 13 G Kresse (35048_CR79) 1996; 54 O Laporte (35048_CR70) 1925; 11 JN Randall (35048_CR15) 2018; 36 M Mackoit-Sinkevičienė (35048_CR82) 2019; 115 C Freysoldt (35048_CR36) 2014; 86 |
References_xml | – volume: 13 year: 2022 ident: CR71 article-title: Antisite defect qubits in monolayer transition metal dichalcogenides publication-title: Nat. Commun. doi: 10.1038/s41467-022-28133-x – volume: 477 start-page: 574 year: 2011 end-page: 578 ident: CR74 article-title: High-fidelity projective read-out of a solid-state spin quantum register publication-title: Nature doi: 10.1038/nature10401 – volume: 115 start-page: 212101 year: 2019 ident: CR82 article-title: Carbon dimer defect as a source of the 4.1 eV luminescence in hexagonal boron nitride publication-title: Appl. Phys. Lett. doi: 10.1063/1.5124153 – volume: 345 start-page: 1333 year: 2014 end-page: 1337 ident: CR87 article-title: Ultrafast optical control of orbital and spin dynamics in a solid-state defect publication-title: Science doi: 10.1126/science.1255541 – volume: 5 start-page: 017133 year: 2015 ident: CR75 article-title: First principle simulations on the effects of oxygen vacancy in HfO -based RRAM publication-title: AIP Adv. doi: 10.1063/1.4906792 – volume: 112 start-page: 321 year: 2012 end-page: 370 ident: CR53 article-title: Constrained density functional theory publication-title: Chem. Rev. doi: 10.1021/cr200148b – volume: 4 year: 2020 ident: CR25 article-title: Identifying defect-related quantum emitters in monolayer WSe2 publication-title: npj 2D Mater. Appl doi: 10.1038/s41699-020-0136-0 – volume: 8 start-page: 1907 year: 2019 end-page: 1943 ident: CR32 article-title: Ab initio theory of the nitrogen-vacancy center in diamond publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0154 – volume: 14 start-page: 103033 year: 2012 ident: CR88 article-title: Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging publication-title: N. J. Phys. doi: 10.1088/1367-2630/14/10/103033 – volume: 140 start-page: A1133 year: 1965 end-page: A1138 ident: CR28 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 7 start-page: 59 year: 2021 ident: CR72 article-title: Intersystem crossing and exciton–defect coupling of spin defects in hexagonal boron nitride publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00525-5 – volume: 10 start-page: 503 year: 2015 end-page: 506 ident: CR55 article-title: Single photon emitters in exfoliated WSe2 structures publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.67 – volume: 1 start-page: 075002 year: 2017 ident: CR30 article-title: Designing defect-based qubit candidates in wide-gap binary semiconductors for solid-state quantum technologies publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.075002 – volume: 2019 start-page: 1 year: 2019 end-page: 7 ident: CR16 article-title: First-principle prediction on STM tip manipulation of Ti adatom on two-dimensional monolayer YBr publication-title: Scanning doi: 10.1155/2019/5434935 – volume: 6 start-page: 41 year: 2020 ident: CR20 article-title: Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0305-x – volume: 38 start-page: 816 year: 2013 end-page: 825 ident: CR62 article-title: Materials in superconducting quantum bits publication-title: MRS Bull. doi: 10.1557/mrs.2013.229 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR11 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 13 year: 2022 ident: CR22 article-title: Room-temperature optically detected magnetic resonance of single defects in hexagonal boron nitride publication-title: Nat. Commun. doi: 10.1038/s41467-022-28169-z – volume: 83 start-page: 044501 year: 2020 ident: CR26 article-title: Single-photon emitters in hexagonal boron nitride: a review of progress publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab6310 – volume: 109 start-page: 267401 year: 2012 ident: CR51 article-title: First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.267401 – volume: 2 start-page: 73 year: 2012 end-page: 78 ident: CR84 article-title: The ORCA program system publication-title: WIREs Comput Mol. Sci. doi: 10.1002/wcms.81 – volume: 65 start-page: 83 year: 2014 end-page: 105 ident: CR57 article-title: Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040513-103659 – volume: 131 start-page: 353 year: 2011 end-page: 361 ident: CR5 article-title: Rare-earth-doped materials for applications in quantum information storage and signal processing publication-title: J. Lumin. doi: 10.1016/j.jlumin.2010.12.015 – volume: 69 start-page: 38 year: 2016 end-page: 44 ident: CR12 article-title: Two-dimensional van der Waals materials publication-title: Phys. Today doi: 10.1063/PT.3.3297 – volume: 2 start-page: 023071 year: 2020 ident: CR65 article-title: Spin-orbit driven electrical manipulation of the zero-field splitting in high-spin centers in solids publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023071 – volume: 16 start-page: 073026 year: 2014 ident: CR52 article-title: First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/7/073026 – volume: 86 start-page: 253 year: 2014 end-page: 305 ident: CR36 article-title: First-principles calculations for point defects in solids publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.253 – volume: 129 start-page: 247 year: 2017 end-page: 251 ident: CR18 article-title: A paramagnetic neutral CBVN center in hexagonal boron nitride monolayer for spin qubit application publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.12.032 – volume: 601 start-page: 343 year: 2022 end-page: 347 ident: CR63 article-title: Quantum logic with spin qubits crossing the surface code threshold publication-title: Nature doi: 10.1038/s41586-021-04273-w – volume: 350 start-page: 1065 year: 2015 end-page: 1068 ident: CR48 article-title: Near-unity photoluminescence quantum yield in MoS2 publication-title: Science doi: 10.1126/science.aad2114 – volume: 86 start-page: 045112 year: 2012 ident: CR42 article-title: Finite-size supercell correction schemes for charged defect calculations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.045112 – volume: 77 start-page: 155206 year: 2008 ident: CR66 article-title: Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.155206 – volume: 90 start-page: 75 year: 2005 end-page: 176 ident: CR67 article-title: Table of nuclear magnetic dipole and electric quadrupole moments publication-title: At. Data Nucl. Data doi: 10.1016/j.adt.2005.04.001 – volume: 89 start-page: 035002 year: 2017 ident: CR58 article-title: Quantum sensing publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.035002 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR38 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 19 start-page: 408 year: 2019 end-page: 414 ident: CR23 article-title: Two-level quantum systems in two-dimensional materials for single photon emission publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04159 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR78 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 7 start-page: 031308 year: 2020 ident: CR56 article-title: Material platforms for defect qubits and single-photon emitters publication-title: Appl. Phys. Rev. doi: 10.1063/5.0006075 – volume: 15 start-page: 1896 year: 2019 end-page: 1904 ident: CR85 article-title: Predicting phosphorescence rates of light organic molecules using time-dependent density functional theory and the path integral approach to dynamics publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00841 – volume: 8 start-page: 1867 year: 2019 end-page: 1888 ident: CR2 article-title: Quantum defects by design publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0211 – volume: 7 start-page: eabf3630 year: 2021 ident: CR21 article-title: Room temperature coherent control of spin defects in hexagonal boron nitride publication-title: Sci. Adv. doi: 10.1126/sciadv.abf3630 – volume: 14 start-page: 1602 year: 2018 end-page: 1613 ident: CR40 article-title: Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b01072 – volume: 69 start-page: 681 year: 1946 ident: CR64 article-title: Spontaneous emission probabilities at radio frequencies publication-title: Phys. Rev. – volume: 123 start-page: 183602 year: 2019 ident: CR9 article-title: Quantum network nodes based on diamond qubits with an efficient nanophotonic interface publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.183602 – volume: 116 start-page: 190501 year: 2020 ident: CR10 article-title: Developing silicon carbide for quantum spintronics publication-title: Appl. Phys. Lett. doi: 10.1063/5.0004454 – volume: 3 year: 2012 ident: CR17 article-title: Spatial control of defect creation in graphene at the nanoscale publication-title: Nat. Commun. doi: 10.1038/ncomms2141 – volume: 136 start-page: B864 year: 1964 end-page: B871 ident: CR27 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 558 start-page: 268 year: 2018 end-page: 273 ident: CR50 article-title: Deterministic delivery of remote entanglement on a quantum network publication-title: Nature doi: 10.1038/s41586-018-0200-5 – volume: 11 start-page: 459 year: 1925 ident: CR70 article-title: Some rules of spectral structure* publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.11.000459 – volume: 226 start-page: 114 year: 2018 end-page: 126 ident: CR43 article-title: CoFFEE: corrections for formation energy and eigenvalues for charged defect simulations publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.01.011 – volume: 92 start-page: 243111 year: 2008 ident: CR59 article-title: Scanning magnetic field microscope with a diamond single-spin sensor publication-title: Appl. Phys. Lett. doi: 10.1063/1.2943282 – volume: 90 start-page: 235205 year: 2014 ident: CR61 article-title: Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: a first-principles study publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235205 – volume: 5 start-page: 44 year: 2019 ident: CR13 article-title: Spin coherence in two-dimensional materials publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0182-3 – volume: 12 start-page: 8046 year: 2021 end-page: 8052 ident: CR86 article-title: Remote passivation in two-dimensional materials: the case of the monolayer–bilayer lateral junction of MoSe publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02457 – volume: 372 start-page: 259 year: 2021 end-page: 264 ident: CR8 article-title: Realization of a multinode quantum network of remote solid-state qubits publication-title: Science doi: 10.1126/science.abg1919 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR79 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 10 year: 2020 ident: CR45 article-title: Giant renormalization of dopant impurity levels in 2D semiconductor MoS2 publication-title: Sci. Rep. doi: 10.1038/s41598-020-61675-y – ident: CR89 – volume: 6 year: 2015 ident: CR46 article-title: Exploring atomic defects in molybdenum disulphide monolayers publication-title: Nat. Commun. doi: 10.1038/ncomms7293 – volume: 1 start-page: 011002 year: 2013 ident: CR44 article-title: Commentary: the materials project: a materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 2 start-page: 044702 year: 2020 ident: CR60 article-title: Sensitive magnetometry in challenging environments publication-title: AVS Quantum Sci. doi: 10.1116/5.0025186 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR81 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 10 year: 2019 ident: CR24 article-title: Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation publication-title: Nat. Commun. doi: 10.1038/s41467-019-10632-z – volume: 22 start-page: 25522 year: 2020 end-page: 25527 ident: CR33 article-title: First-principles studies of strongly correlated states in defect spin qubits in diamond publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04585C – volume: 118 start-page: 8207 year: 2003 end-page: 8215 ident: CR34 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 267 start-page: 108056 year: 2021 ident: CR83 article-title: Nonrad: Computing nonradiative capture coefficients from first principles publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108056 – volume: 125 start-page: 224106 year: 2006 ident: CR35 article-title: Influence of the exchange screening parameter on the performance of screened hybrid functionals publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 – volume: 71 start-page: 1387 year: 1993 end-page: 1390 ident: CR14 article-title: Tip-surface interactions in scanning tunneling microscopy publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1387 – volume: 97 start-page: 094304 year: 2018 ident: CR77 article-title: Spin-lattice relaxation of individual solid-state spins publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.094304 – volume: 18 start-page: S807 year: 2006 end-page: S824 ident: CR7 article-title: Processing quantum information in diamond publication-title: J. Phys. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR80 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 5 year: 2015 ident: CR39 article-title: Tungsten Ditelluride: a layered semimetal publication-title: Sci. Rep. doi: 10.1038/srep10013 – volume: 6 start-page: 5767 year: 2016 end-page: 5773 ident: CR76 article-title: Thermal conductivity of monolayer MoS , MoSe , and WS : interplay of mass effect, interatomic bonding and anharmonicity publication-title: RSC Adv. doi: 10.1039/C5RA19747C – volume: 7 start-page: 1589 year: 2018 end-page: 1600 ident: CR47 article-title: Optoelectronics with single layer group-VIB transition metal dichalcogenides publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0041 – volume: 11 year: 2020 ident: CR6 article-title: Optical quantum nondemolition measurement of a single rare earth ion qubit publication-title: Nat. Commun. doi: 10.1038/s41467-020-15138-7 – volume: 12 start-page: 516 year: 2018 end-page: 527 ident: CR1 article-title: Quantum technologies with optically interfaced solid-state spins publication-title: Nat. Photonics doi: 10.1038/s41566-018-0232-2 – volume: 9 start-page: 031045 year: 2019 ident: CR68 article-title: A ten-qubit solid-state spin register with quantum memory up to one minute publication-title: Phys. Rev. X – ident: CR3 – volume: 103 start-page: 053513 year: 2013 ident: CR37 article-title: Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors publication-title: Appl. Phys. Lett. doi: 10.1063/1.4817409 – volume: 71 start-page: 060310 year: 2005 ident: CR49 article-title: Efficient high-fidelity quantum computation using matter qubits and linear optics publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.060310 – volume: 96 start-page: 081115 year: 2017 ident: CR73 article-title: Ab initio calculation of spin-orbit coupling for an NV center in diamond exhibiting dynamic Jahn-Teller effect publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.081115 – volume: 453 start-page: 1023 year: 2008 end-page: 1030 ident: CR4 article-title: The quantum internet publication-title: Nature doi: 10.1038/nature07127 – volume: 10 start-page: 485 year: 2015 end-page: 486 ident: CR54 article-title: Two dimensions and one photon publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.104 – volume: 107 start-page: 8513 year: 2010 end-page: 8518 ident: CR29 article-title: Quantum computing with defects publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1003052107 – volume: 248 start-page: 1067 year: 2011 end-page: 1076 ident: CR41 article-title: Electrostatic interactions between charged defects in supercells publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201046289 – volume: 122 start-page: 850 year: 2018 end-page: 858 ident: CR69 article-title: Effect of doping with shallow donors on radiative and nonradiative relaxation in silicon nanocrystals: ab initio study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b09882 – volume: 36 start-page: 06JL05 year: 2018 ident: CR15 article-title: Highly parallel scanning tunneling microscope based hydrogen depassivation lithography publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5047939 – volume: 1 start-page: 071001 year: 2017 ident: CR19 article-title: First-principles engineering of charged defects for two-dimensional quantum technologies publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.071001 – volume: 48 start-page: 1 year: 2018 end-page: 26 ident: CR31 article-title: First-principles calculations of point defects for quantum technologies publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124453 – volume: 345 start-page: 1333 year: 2014 ident: 35048_CR87 publication-title: Science doi: 10.1126/science.1255541 – volume: 109 start-page: 267401 year: 2012 ident: 35048_CR51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.267401 – volume: 12 start-page: 8046 year: 2021 ident: 35048_CR86 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.1c02457 – volume: 4 year: 2020 ident: 35048_CR25 publication-title: npj 2D Mater. Appl doi: 10.1038/s41699-020-0136-0 – volume: 136 start-page: B864 year: 1964 ident: 35048_CR27 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 89 start-page: 035002 year: 2017 ident: 35048_CR58 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.035002 – volume: 226 start-page: 114 year: 2018 ident: 35048_CR43 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.01.011 – volume: 1 start-page: 071001 year: 2017 ident: 35048_CR19 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.071001 – volume: 125 start-page: 224106 year: 2006 ident: 35048_CR35 publication-title: J. Chem. Phys. doi: 10.1063/1.2404663 – volume: 77 start-page: 155206 year: 2008 ident: 35048_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.155206 – volume: 71 start-page: 060310 year: 2005 ident: 35048_CR49 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.71.060310 – volume: 69 start-page: 681 year: 1946 ident: 35048_CR64 publication-title: Phys. Rev. doi: 10.1103/PhysRev.69.37 – volume: 50 start-page: 17953 year: 1994 ident: 35048_CR80 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 6 start-page: 41 year: 2020 ident: 35048_CR20 publication-title: npj Comput. Mater. doi: 10.1038/s41524-020-0305-x – ident: 35048_CR3 doi: 10.1038/s41578-021-00306-y – volume: 248 start-page: 1067 year: 2011 ident: 35048_CR41 publication-title: Phys. Status Solidi B doi: 10.1002/pssb.201046289 – volume: 558 start-page: 268 year: 2018 ident: 35048_CR50 publication-title: Nature doi: 10.1038/s41586-018-0200-5 – volume: 5 year: 2015 ident: 35048_CR39 publication-title: Sci. Rep. doi: 10.1038/srep10013 – volume: 11 year: 2020 ident: 35048_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15138-7 – volume: 77 start-page: 3865 year: 1996 ident: 35048_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 90 start-page: 235205 year: 2014 ident: 35048_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.235205 – volume: 10 start-page: 485 year: 2015 ident: 35048_CR54 publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.104 – volume: 499 start-page: 419 year: 2013 ident: 35048_CR11 publication-title: Nature doi: 10.1038/nature12385 – volume: 129 start-page: 247 year: 2017 ident: 35048_CR18 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.12.032 – volume: 601 start-page: 343 year: 2022 ident: 35048_CR63 publication-title: Nature doi: 10.1038/s41586-021-04273-w – volume: 13 year: 2022 ident: 35048_CR71 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28133-x – volume: 14 start-page: 1602 year: 2018 ident: 35048_CR40 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.7b01072 – volume: 86 start-page: 253 year: 2014 ident: 35048_CR36 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.86.253 – volume: 10 year: 2020 ident: 35048_CR45 publication-title: Sci. Rep. doi: 10.1038/s41598-020-61675-y – volume: 10 start-page: 503 year: 2015 ident: 35048_CR55 publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.67 – volume: 115 start-page: 212101 year: 2019 ident: 35048_CR82 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5124153 – volume: 103 start-page: 053513 year: 2013 ident: 35048_CR37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4817409 – volume: 59 start-page: 1758 year: 1999 ident: 35048_CR81 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 71 start-page: 1387 year: 1993 ident: 35048_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.71.1387 – volume: 90 start-page: 75 year: 2005 ident: 35048_CR67 publication-title: At. Data Nucl. Data doi: 10.1016/j.adt.2005.04.001 – volume: 9 start-page: 031045 year: 2019 ident: 35048_CR68 publication-title: Phys. Rev. X – volume: 5 start-page: 44 year: 2019 ident: 35048_CR13 publication-title: npj Comput. Mater. doi: 10.1038/s41524-019-0182-3 – volume: 11 start-page: 459 year: 1925 ident: 35048_CR70 publication-title: J. Opt. Soc. Am. doi: 10.1364/JOSA.11.000459 – ident: 35048_CR89 doi: 10.1021/acsphotonics.7b01442 – volume: 86 start-page: 045112 year: 2012 ident: 35048_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.045112 – volume: 16 start-page: 073026 year: 2014 ident: 35048_CR52 publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/7/073026 – volume: 22 start-page: 25522 year: 2020 ident: 35048_CR33 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP04585C – volume: 97 start-page: 094304 year: 2018 ident: 35048_CR77 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.094304 – volume: 123 start-page: 183602 year: 2019 ident: 35048_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.183602 – volume: 54 start-page: 11169 year: 1996 ident: 35048_CR79 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 118 start-page: 8207 year: 2003 ident: 35048_CR34 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 12 start-page: 516 year: 2018 ident: 35048_CR1 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0232-2 – volume: 477 start-page: 574 year: 2011 ident: 35048_CR74 publication-title: Nature doi: 10.1038/nature10401 – volume: 2019 start-page: 1 year: 2019 ident: 35048_CR16 publication-title: Scanning doi: 10.1155/2019/5434935 – volume: 1 start-page: 011002 year: 2013 ident: 35048_CR44 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 2 start-page: 044702 year: 2020 ident: 35048_CR60 publication-title: AVS Quantum Sci. doi: 10.1116/5.0025186 – volume: 350 start-page: 1065 year: 2015 ident: 35048_CR48 publication-title: Science doi: 10.1126/science.aad2114 – volume: 1 start-page: 075002 year: 2017 ident: 35048_CR30 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.075002 – volume: 372 start-page: 259 year: 2021 ident: 35048_CR8 publication-title: Science doi: 10.1126/science.abg1919 – volume: 6 start-page: 15 year: 1996 ident: 35048_CR78 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 83 start-page: 044501 year: 2020 ident: 35048_CR26 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/ab6310 – volume: 8 start-page: 1907 year: 2019 ident: 35048_CR32 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0154 – volume: 2 start-page: 73 year: 2012 ident: 35048_CR84 publication-title: WIREs Comput Mol. Sci. doi: 10.1002/wcms.81 – volume: 96 start-page: 081115 year: 2017 ident: 35048_CR73 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.081115 – volume: 6 start-page: 5767 year: 2016 ident: 35048_CR76 publication-title: RSC Adv. doi: 10.1039/C5RA19747C – volume: 267 start-page: 108056 year: 2021 ident: 35048_CR83 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108056 – volume: 116 start-page: 190501 year: 2020 ident: 35048_CR10 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0004454 – volume: 69 start-page: 38 year: 2016 ident: 35048_CR12 publication-title: Phys. Today doi: 10.1063/PT.3.3297 – volume: 7 start-page: 1589 year: 2018 ident: 35048_CR47 publication-title: Nanophotonics doi: 10.1515/nanoph-2018-0041 – volume: 92 start-page: 243111 year: 2008 ident: 35048_CR59 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2943282 – volume: 7 start-page: 59 year: 2021 ident: 35048_CR72 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00525-5 – volume: 48 start-page: 1 year: 2018 ident: 35048_CR31 publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070317-124453 – volume: 2 start-page: 023071 year: 2020 ident: 35048_CR65 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.023071 – volume: 5 start-page: 017133 year: 2015 ident: 35048_CR75 publication-title: AIP Adv. doi: 10.1063/1.4906792 – volume: 131 start-page: 353 year: 2011 ident: 35048_CR5 publication-title: J. Lumin. doi: 10.1016/j.jlumin.2010.12.015 – volume: 10 year: 2019 ident: 35048_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10632-z – volume: 122 start-page: 850 year: 2018 ident: 35048_CR69 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b09882 – volume: 140 start-page: A1133 year: 1965 ident: 35048_CR28 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 6 year: 2015 ident: 35048_CR46 publication-title: Nat. Commun. doi: 10.1038/ncomms7293 – volume: 8 start-page: 1867 year: 2019 ident: 35048_CR2 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0211 – volume: 453 start-page: 1023 year: 2008 ident: 35048_CR4 publication-title: Nature doi: 10.1038/nature07127 – volume: 13 year: 2022 ident: 35048_CR22 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28169-z – volume: 7 start-page: eabf3630 year: 2021 ident: 35048_CR21 publication-title: Sci. Adv. doi: 10.1126/sciadv.abf3630 – volume: 14 start-page: 103033 year: 2012 ident: 35048_CR88 publication-title: N. J. Phys. doi: 10.1088/1367-2630/14/10/103033 – volume: 18 start-page: S807 year: 2006 ident: 35048_CR7 publication-title: J. Phys. – volume: 107 start-page: 8513 year: 2010 ident: 35048_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1003052107 – volume: 112 start-page: 321 year: 2012 ident: 35048_CR53 publication-title: Chem. Rev. doi: 10.1021/cr200148b – volume: 36 start-page: 06JL05 year: 2018 ident: 35048_CR15 publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.5047939 – volume: 7 start-page: 031308 year: 2020 ident: 35048_CR56 publication-title: Appl. Phys. Rev. doi: 10.1063/5.0006075 – volume: 19 start-page: 408 year: 2019 ident: 35048_CR23 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04159 – volume: 65 start-page: 83 year: 2014 ident: 35048_CR57 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040513-103659 – volume: 3 year: 2012 ident: 35048_CR17 publication-title: Nat. Commun. doi: 10.1038/ncomms2141 – volume: 15 start-page: 1896 year: 2019 ident: 35048_CR85 publication-title: J. Chem. Theory Comput. doi: 10.1021/acs.jctc.8b00841 – volume: 38 start-page: 816 year: 2013 ident: 35048_CR62 publication-title: MRS Bull. doi: 10.1557/mrs.2013.229 |
SSID | ssj0000391844 |
Score | 2.54356 |
Snippet | Solid state quantum defects are promising candidates for scalable quantum information systems which can be seamlessly integrated with the conventional... Defect centers in two-dimensional materials has shown promise for applications in quantum information and sensing. Lee et al. computationally discover a class... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7501 |
SubjectTerms | 119/118 639/301/1005/1007 639/301/357/1018 639/925/927/481 Chalcogenides Crystal defects Defects Diamonds Electronic devices Electronic equipment Humanities and Social Sciences Information systems Metals multidisciplinary Quantum computing Quantum phenomena Qubits (quantum computing) Science Science (multidisciplinary) Telecommunications Transition metal compounds Two dimensional materials Wavelengths |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiPlIKMxA2iZmM7sY8FUVU9cIFKvVl-pY3UJgvxquq_74ydXbo8LxwTO9JoHp5v5Mk3hLy1QTJXc18qb3nJrWOlYlVVWm4C7-CR5wbZz83xKT85E2d3Rn1hT1imB86KO6hZ6JhVgglleVh4aZgV0hhIXLauOoenL-S8O8VUOoOZgtKFz3_JVEweTDydCbl5Hdy2rLYyUSLs_x3K_LVZ8qcb05SIjh6RhzOCpIdZ8sfkXhiekPt5puTNLjn_suyH0gds06DfVraPE-0HGq_H0iOTf2bhoBFzVGrXolcBADj12D9_6UZwqN6HiY5LpFsGCaiJNOK0nPGKXhucUzGcx4vpKTk9-vT143E5T1MoHaCyCNoPqvZI4MZYI1tpBWjVW-UBg7Wd80ZUdbCmCao1tTNQp7ULQDeVA_htZCfYM7IzjEN4QWjnGqEA2hmhGHcdLANu4AaMbKS3jS_IYq1Z7WaqcZx4canTlTeTOltDgzV0soauCvJu880yE238dfcHNNhmJ5JkpxfgOnp2Hf0v1ynI_trceo7cSacqnUGRKAvyZrMMMYcXKWYI4wr3CFbj_WxTkOfZOzaSIB8_AxhbkHbLb7ZE3V4Z-ovE640D4JqWFeT92sN-iPVnVez9D1W8JA9qDA3s02n2yU78vgqvAG1F-zoF1i0lFCZc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1oQUbiBlazsZ3YJwSIpeLABSr1ZvmVbaQ22TZZVfz7zjjZVMujx8SOZHvG9mfPl28Ieeei4r4QgengBBPOc6Z5njMnbBQ1PIqRIPujPDoW30_kyXTh1k-0yu2amBbq0Hm8Iz9MpycO4F19XF8wzBqF0dUphcZdcm8BOw1SutTy23zHgurnSojpX5mcq8NepJVhpLCD87J8Zz9Ksv3_wpp_Uyb_iJum7Wj5iDyccCT9NBr-MbkT2yfk_phZ8vdTsvq5bloWIpI16MXGNUNPm5YOVx0LqOc_anHQAXeqRNqi5xFgOA3Ioj_zHbhVE2JPuzWKLkMLqB3ogDlzunN6ZTFbRbsaTvtn5Hj59deXIzblVGAesNkANoi6CCjjxnmpKuWk0zI4HQCJVbUPVuZFdLaMurKFt3BaqxaAcXIPINyqWvLnZK_t2viS0NqXUgPAs1Jz4WsoBvQgLJjaquDKkJHFdmSNnwTHMe_FmUmBb67MaA0D1jDJGibPyPv5m_Uot3Fr7c9osLkmSmWnF93lykwzzxQ81hw6yaWGzi-CstxJZS0gH1fktc_IwdbcZpq_vbnxtoy8nYth5mE4xbax22AdyQuM0pYZeTF6x9wSVOXnAGYzUu34zU5Td0va5jSpe2MauLLiGfmw9bCbZv1_KF7d3ot98qBAp0ceTnlA9obLTXwNaGpwb9KUuQbLox2M priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5VrZC4IN4ECjISN4jIxnbiHBdEVe2BS6nUm-VXtiu1ydJkVfHvmXEeaKEgcUzsSBPPTPw5_vwNwDsbFHe58GnlrUiFdTyteJalVpggarwUA0H2a3F6LlYX8uIA8uksTCTtR0nL-Jme2GEfOxFTeuCeY9SluEw_Iql2jO2j5XJ1tpr_rJDmuRJiPCGTcXXHw3uzUBTrvwth_kmU_G23NE5CJw_hwYge2XKw9xEchOYx3BvqSf54Auuz7aZJfSCKBvu-s5u-Y5uG9bdt6knFf1DgYD3NT5Gqxa4Dgm_miTt_5VoMpo0PHWu3JLWMFjDTs54q5bTX7NZQjYpm3V92T-H85Mu3z6fpWEkhdYjIehz5UOWexNs4L1SprLSV9LbyiL_K2nkjszxYU4SqNLkzuEYrF4hsMofQ26ha8mdw2LRNeAGsdoWsENYZWXHhamxGzCAMOtgobwufwGIaWe1GmXGqdnGl43Y3V3rwhkZv6OgNnSXwfn5mO4hs_LP3J3LY3JMEsuON9matx4DROQ81x5fkssKXX3hluJXKGMQ7Ns9ql8Dx5G49Zm2n4wqd4wJRJfB2bsZ8o00U04R2R30kz2lvtkjg-RAdsyWkxc8RwiZQ7sXNnqn7Lc3mMmp6U_G3ouQJfJgi7JdZfx-Kl__X_RXczykJiI1THMNhf7MLrxFT9fbNmEQ_AaUzHKE priority: 102 providerName: Springer Nature |
Title | Spin-defect qubits in two-dimensional transition metal dichalcogenides operating at telecom wavelengths |
URI | https://link.springer.com/article/10.1038/s41467-022-35048-0 https://www.ncbi.nlm.nih.gov/pubmed/36473851 https://www.proquest.com/docview/2747131488 https://www.proquest.com/docview/2753290256 https://pubmed.ncbi.nlm.nih.gov/PMC9723673 https://doaj.org/article/23ef3b95359b4e1d8a3b58aa201b20fc |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD4am5B4QeMeGJWReINAGjuJ84BQV61MlZgQo1LfIt_SReqSrUm17d9z7CRFhcITL4kSO5J9LvF34pPzAbyVhlMVMu2nWjKfSUX9lAaBL5kwLMdL1ibInsWnMzadR_M96OmOOgHWO0M7yyc1Wy0_3F7ffUaH_9T-Ms4_1sy5e5uXjhbpYwh_gCtTYhkNvnZw372ZaYoBDev-ndn96Nb65Mr478Kef6ZQ_raP6panySE87HAlGbWG8Aj2TPkY7rdMk3dPYHF-VZS-NjZ5g1yvZdHUpChJc1P52tb3b2tzkMauXC6Ji1walAjRNqt-qSo0s0KbmqBwrMmUCyIa0lgOneqS3AjLXlEumov6KcwmJz_Gp37HseArxGoN6sSkobZl3SiNecJlJNNIy1QjMktypUUUhEaK2KSJCJXA6C0ZomADhaBc8Dyiz2C_rErzAkiu4ihFwCeilDKVYzOiCSZQ9YJrGWsPhr1kM9UVILc8GMvMbYRTnrXayFAbmdNGFnjwbvPMVVt-45-9j63CNj1t6Wx3o1otss4Ts5CanOIkaZTi5IeaCyojLgQiIRkGufLgqFd31ptj5mJ3iqEj9-DNphk90W6viNJUa9snoqHdtY09eN5ax2Yktko_RXDrQbJlN1tD3W4piwtX7dvSwsUJ9eB9b2G_hvV3Ubz8H6J4BQ9C6xo2eyc-gv1mtTavEYM1cgD3knmCRz75MoCD0Wh6PsXz8cnZt-94dxyPB-7rxsA54E8tkTSg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXVJ4NLWAkOEHUbOwkzgEhXsuWll5opd6MX9lGapNtk9Wqf4rfyIyTbLU8eutx14409jz8OTOZj5BX2glmYm7D3Goecm1YmLMoCjVXjhfwk3cFsgfp5Ih_O06O18iv4VsYLKscYqIP1LY2-I58x9-eGIB38X52HiJrFGZXBwqNziz23OUCrmzNu93PoN_XcTz-cvhpEvasAqEBdNKCFC6PLTYyYywVmdCJzhOrcwtYJCuMVUkUO61Sl2cqNgruK9kITvnIAAxVokCWCAj5t-DpHC97Yvx1-U4Hu60LzvtvcyImdhruI1FXMg_OEkYr55-nCfgXtv27RPOPPK0__sYb5F6PW-mHztDukzVXPSC3OybLy4dk-mNWVqF1WBxCz-e6bBtaVrRd1KFF_oCu9wdt8WT0RWL0zAHspxar9k9NDWZcWtfQeoZNnkECqlraIkdPfUYXCtkxqml70jwiRzey24_JelVXbpPQwqRJDoBSJTnjpoBhQCtcgWkpYXVqAzIadlaavsE58mycSp9oZ0J22pCgDem1IaOAvFk-M-vae1w7-yMqbDkTW3P7P-qLqew9XcbMFQwWyZIcFj-yQjGdCKUAaek4KkxAtgd1yz5eNPLKugPycjkMno7pG1W5eo5zEhZjVjgNyJPOOpaSIAsAA_AckGzFblZEXR2pyhPfTRxp59KMBeTtYGFXYv1_K55ev4oX5M7k8Pu-3N892Nsid2N0AKwBSrfJensxd88AybX6uXcfSn7etL_-BiLiWW4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VqUBcEG8MBRYJTmDF8a7t9QEhShu1FEUVUKk3sy-nkVo7rR1F_Wv8Omb8SBUevfWY7Fqa3Xnst57xfABvtJPchML6qdXCF9pwP-VB4GuhnMjxp2gLZCfx3pH4chwdb8Cv_lsYKqvsY2ITqG1p6B35sLk9cQTvcph3ZRGHO-OP83OfGKQo09rTabQmcuAul3h9qz7s76Cu34bhePfH5z2_YxjwDSKVGiVyaWipqRnnsUykjnQaWZ1axCVJbqyKgtBpFbs0UaFReHdJRnjiBwYhqZI5MUZg-N9M6FY0gM3t3cnht9UbHuq9LoXovtQJuBxWoolLbQE9uo4frJ2GDWnAv5Du3wWbf2Rtm8NwfA_udiiWfWrN7j5suOIB3Gp5LS8fwvT7fFb41lGpCDtf6FldsVnB6mXpW2ITaDuBsJrOyaZkjJ05vAQwSzX8p6ZEo55ZV7FyTi2fUQKmalYTY095xpaKuDKKaX1SPYKjG9nvxzAoysI9BZabOEoRXqoo5cLkOIzYRSg0NCWtjq0Ho35nM9O1OyfWjdOsSbtzmbXayFAbWaONLPDg3eqZedvs49rZ26Sw1Uxq1N38UV5Ms87vs5C7nOMieZTi4kdWKq4jqRTiLh0GufFgq1d31kWPKruydQ9er4bR7ymZowpXLmhOxEPKEccePGmtYyUJcQJwhNIeJGt2sybq-kgxO2l6ixMJXZxwD973FnYl1v-34tn1q3gFt9FXs6_7k4PncCck-6eCoHgLBvXFwr1AWFfrl53_MPh50y77Gx0WXwA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin-defect+qubits+in+two-dimensional+transition+metal+dichalcogenides+operating+at+telecom+wavelengths&rft.jtitle=Nature+communications&rft.au=Yeonghun+Lee&rft.au=Yaoqiao+Hu&rft.au=Xiuyao+Lang&rft.au=Dongwook+Kim&rft.date=2022-12-06&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-022-35048-0&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_23ef3b95359b4e1d8a3b58aa201b20fc |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |