A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis

Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine learning models provide a reliable, rapid, and effecti...

Full description

Saved in:
Bibliographic Details
Published inArchives of computational methods in engineering Vol. 29; no. 4; pp. 2043 - 2070
Main Authors Kumar, Yogesh, Gupta, Surbhi, Singla, Ruchi, Hu, Yu-Chen
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.06.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances. PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between 2009 and 2021. In this study, we performed an efficient search and included the research articles that employed AI-based learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using conventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the different researchers and highlighted the limitations of the existing literature, and performed the comparison using various parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision, recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple techniques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced. Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.
AbstractList Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances. PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between 2009 and 2021. In this study, we performed an efficient search and included the research articles that employed AI-based learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using conventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the different researchers and highlighted the limitations of the existing literature, and performed the comparison using various parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision, recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple techniques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced. Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances. PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between 2009 and 2021. In this study, we performed an efficient search and included the research articles that employed AI-based learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using conventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the different researchers and highlighted the limitations of the existing literature, and performed the comparison using various parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision, recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple techniques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced. Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.
Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to create applications that aid cancer detection and prognosis. Deep learning and machine learning models provide a reliable, rapid, and effective solution to deal with such challenging diseases in these circumstances. PRISMA guidelines had been used to select the articles published on the web of science, EBSCO, and EMBASE between 2009 and 2021. In this study, we performed an efficient search and included the research articles that employed AI-based learning approaches for cancer prediction. A total of 185 papers are considered impactful for cancer prediction using conventional machine and deep learning-based classifications. In addition, the survey also deliberated the work done by the different researchers and highlighted the limitations of the existing literature, and performed the comparison using various parameters such as prediction rate, accuracy, sensitivity, specificity, dice score, detection rate, area undercover, precision, recall, and F1-score. Five investigations have been designed, and solutions to those were explored. Although multiple techniques recommended in the literature have achieved great prediction results, still cancer mortality has not been reduced. Thus, more extensive research to deal with the challenges in the area of cancer prediction is required.
Author Gupta, Surbhi
Singla, Ruchi
Hu, Yu-Chen
Kumar, Yogesh
Author_xml – sequence: 1
  givenname: Yogesh
  orcidid: 0000-0002-2879-0441
  surname: Kumar
  fullname: Kumar, Yogesh
  email: yogesh.arora10744@gmail.com
  organization: Department of Computer Engineering, Indus Institute of Technology & Engineering, Indus University
– sequence: 2
  givenname: Surbhi
  surname: Gupta
  fullname: Gupta, Surbhi
  organization: School of Computer Science and Engineering, Model Institute of Engineering and Technology
– sequence: 3
  givenname: Ruchi
  surname: Singla
  fullname: Singla, Ruchi
  organization: Department of Research, Innovations, Sponsored Projects and Entrepreneurship, Chandigarh Group of Colleges
– sequence: 4
  givenname: Yu-Chen
  surname: Hu
  fullname: Hu, Yu-Chen
  organization: Department of Computer Science and Information Management, Providence University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34602811$$D View this record in MEDLINE/PubMed
BookMark eNp9UctuFDEQtFAQecAPcECWuHCZ0H6M7bkgrZZXpEhEIdyQLK-nZ-No1g72bFb5e7xsEiCHHCxb7apSVdch2YspIiGvGRwzAP2-MGYEa4DX0ylpms0zcsCMUQ3TRu7VNxOyEaBgnxyWcgXQyq7jL8i-kAq4YeyA_JzR77dlwpWbgqfneBNwQ9NAZ3kKQ_DBjfQkTjiOYYnRI71AfxnDrzUWGiKduzrL9CxjH_wUUqQu9vRjcMuYSigvyfPBjQVf3d1H5MfnTxfzr83pty8n89lp41sJU7MQyIXiYvCC9Q7QoAHZ8154JgG10t2gBGoUpoWBMdm3sHDMeF5nlevFEfmw071eL1bYe4xTdqO9zmHl8q1NLtj_f2K4tMt0Y43UrdCyCry7E8hpm22yq1B8Te0ipnWxvNUddCA4q9C3j6BXaZ1jjWe50qC4YrAVfPOvowcr94uvALMD-JxKyThYHya3XWE1GEbLwG47truObe3Y_unYbiqVP6Leqz9JEjtSqeC4xPzX9hOs31qsulY
CitedBy_id crossref_primary_10_1007_s13721_024_00470_5
crossref_primary_10_1016_j_ajpath_2024_01_012
crossref_primary_10_1039_D4TB00310A
crossref_primary_10_35713_aic_v4_i2_11
crossref_primary_10_1016_j_ailsci_2023_100061
crossref_primary_10_1038_s43856_024_00634_4
crossref_primary_10_1108_AGJSR_06_2023_0252
crossref_primary_10_1136_ejhpharm_2023_003857
crossref_primary_10_3390_diagnostics14020174
crossref_primary_10_1007_s11517_024_03261_2
crossref_primary_10_1088_2057_1976_ad4360
crossref_primary_10_1186_s12859_023_05262_8
crossref_primary_10_1007_s11831_023_09952_7
crossref_primary_10_3390_genes13112127
crossref_primary_10_1007_s11831_023_09892_2
crossref_primary_10_1093_jamiaopen_ooae082
crossref_primary_10_1148_radiol_230275
crossref_primary_10_1007_s10462_025_11117_w
crossref_primary_10_1038_s44276_024_00102_5
crossref_primary_10_3390_life12121991
crossref_primary_10_1080_14789450_2023_2288222
crossref_primary_10_1007_s10552_024_01942_9
crossref_primary_10_1186_s41687_024_00808_7
crossref_primary_10_1007_s12530_022_09447_z
crossref_primary_10_1016_j_critrevonc_2024_104528
crossref_primary_10_1007_s11761_023_00382_8
crossref_primary_10_1007_s11831_022_09724_9
crossref_primary_10_3389_fdgth_2023_1264780
crossref_primary_10_1016_j_health_2023_100199
crossref_primary_10_3390_cancers15235634
crossref_primary_10_3390_jpm13030388
crossref_primary_10_1007_s42044_025_00233_z
crossref_primary_10_1016_j_compbiomed_2023_107338
crossref_primary_10_1155_2023_4214817
crossref_primary_10_3917_jie_pr1_0157
crossref_primary_10_1007_s11831_022_09737_4
crossref_primary_10_1007_s11831_023_10005_2
crossref_primary_10_1109_MC_2024_3352639
crossref_primary_10_1007_s11831_024_10219_y
crossref_primary_10_1007_s11831_022_09807_7
crossref_primary_10_2174_0115680096323564240703102748
crossref_primary_10_1155_2022_1467070
crossref_primary_10_1007_s11684_024_1085_3
crossref_primary_10_1016_j_jclepro_2024_143457
crossref_primary_10_1109_TETC_2024_3487258
crossref_primary_10_1007_s40009_023_01309_9
crossref_primary_10_1007_s42979_023_01774_5
crossref_primary_10_1007_s11831_023_09951_8
crossref_primary_10_1007_s11831_023_09957_2
crossref_primary_10_3389_fonc_2022_1007990
crossref_primary_10_1007_s00432_023_05216_w
crossref_primary_10_1186_s12967_024_05203_w
crossref_primary_10_1186_s12885_024_13161_1
crossref_primary_10_1038_s41598_024_75876_2
crossref_primary_10_3389_fphys_2022_952709
crossref_primary_10_3389_frai_2024_1446693
crossref_primary_10_3390_diagnostics13142326
crossref_primary_10_3389_fonc_2022_1077341
crossref_primary_10_1016_j_procs_2024_10_228
crossref_primary_10_1016_j_eswa_2024_125126
crossref_primary_10_1038_s41587_023_02051_9
crossref_primary_10_7759_cureus_58744
crossref_primary_10_1016_j_measurement_2023_114059
crossref_primary_10_3390_diagnostics12123111
crossref_primary_10_1055_s_0043_1761266
crossref_primary_10_1080_14737167_2023_2279107
crossref_primary_10_1016_j_eswa_2024_124838
crossref_primary_10_1007_s11831_022_09870_0
crossref_primary_10_3390_cancers14164025
crossref_primary_10_1016_j_imu_2024_101579
crossref_primary_10_1016_j_glmedi_2024_100130
crossref_primary_10_3389_fdata_2022_941451
crossref_primary_10_1038_s43018_025_00917_2
crossref_primary_10_3389_fonc_2023_1078863
crossref_primary_10_1007_s11831_022_09738_3
crossref_primary_10_1016_j_oor_2024_100591
crossref_primary_10_1186_s40779_023_00444_0
crossref_primary_10_3390_math11244937
Cites_doi 10.21037/atm.2019.04.34
10.3390/cancers11091235
10.1186/s12880-021-00599-z
10.3390/ai1010003
10.1109/ACCESS.2019.2929365
10.1042/BSR20181769
10.1007/978-3-319-60964-5_44
10.1162/NECO_a_00312
10.1007/s00432-019-03117-5
10.1038/s41598-019-55972-4
10.1109/CoCoNet.2015.7411260
10.1155/2019/6212759
10.18280/ts.360406
10.1016/j.patcog.2009.05.012
10.3390/electronics9030445
10.1109/IC4ME247184.2019.9036653
10.1007/978-3-030-70604-3_6
10.1109/APCASE.2015.12
10.1111/coin.12452
10.1056/NEJMoa1008069
10.1039/c3an36890d
10.21786/bbrc/13.11/13
10.4251/wjgo.v11.i12.1218
10.3390/designs2020013
10.1002/ijc.25516
10.1007/s10120-018-0793-2
10.1093/comjnl/bxaa198
10.1109/ACCESS.2020.3004056
10.1007/s10916-019-1397-z
10.1371/journal.pone.0210551
10.1109/ICET.2016.7813261
10.3390/jimaging6060039
10.1016/j.protcy.2016.05.126
10.35940/ijeat.a1116.1291s419
10.1109/EMBC.2018.8513274
10.1155/2018/6456724
10.1111/j.1365-4632.2010.04474.x
10.1109/ATEE.2019.8724938
10.1016/j.fcij.2017.12.001
10.1007/s00432-020-03249-z
10.1155/2019/1074286
10.1186/1758-3284-3-33
10.1016/j.procs.2017.01.201
10.1016/j.canep.2011.05.002
10.1007/s00432-020-03305-8
10.1007/s10462-019-09716-5
10.1016/j.protcy.2016.05.153
10.1007/978-3-642-40763-5_78
10.1016/j.sder.2011.01.002
10.3390/app10113842
10.1016/j.cogsys.2018.12.009
10.1038/s41598-019-50567-5
10.1001/jama.2012.5521
10.1109/JBHI.2016.2635662
10.1007/s00432-020-03338-z
10.1007/978-3-030-31672-3_1
10.1109/ACCESS.2020.3008868
10.1515/med-2020-0006
10.1007/s12065-020-00403-x
10.1186/s13045-019-0833-3
10.1136/bmjgast-2019-000371
10.1109/ISSPIT47144.2019.9001790
10.1007/s11831-021-09554-1
10.1145/3330482.3330525
10.1007/s11831-020-09470-w
10.31557/APJCP.2019.20.7.2095
10.1016/j.procs.2016.06.105
10.1056/NEJMoa0810696
10.1016/j.clinthera.2016.03.026
10.4066/biomedicalresearch.29-18-1106
10.1007/s00432-020-03206-w
10.1007/s10278-019-00230-2
10.1016/j.imu.2019.01.001
10.1155/2019/8321942
10.13053/CyS-22-3-2526
10.1155/2020/1963814
10.1002/ima.22123
10.24926/548719.023
10.1155/2018/8087624
10.1007/s10462-019-09735-2
10.1016/j.eswa.2015.02.005
10.1007/s00439-009-0722-x
10.1016/j.eswa.2019.112951
10.1145/3338472.3338492
10.1145/2222444.2222467
10.1155/2019/4909846
10.1109/ACCESS.2019.2936017
10.3390/s19173722
10.3348/kjr.2019.0752
10.1038/s41598-018-33860-7
10.1109/ACCESS.2018.2856402
10.1109/ACCESS.2019.2906241
10.1049/trit.2019.0077
10.1038/s41598-016-0028-x
10.1016/j.oraloncology.2019.03.011
10.1007/s00432-015-2086-z
10.3390/app10051800
10.1109/EMBC.2013.6610529
10.1007/s10462-020-09865-y
10.19044/esj.2017.v13n3p342
10.3390/bdcc3020027
10.1117/12.2277121
10.1007/s00432-019-03098-5
10.1186/s12880-019-0307-7
10.1109/ICECDS.2017.8389744
10.1007/978-81-322-2217-0_23
10.1056/NEJMoa1014618
10.1038/s41598-019-46718-3
10.1109/CSCS.2017.56
10.3390/app8122422
10.1007/s00432-020-03232-8
10.1109/ACCESS.2019.2904245
10.1371/journal.pone.0195875
10.7717/peerj.6201
10.1109/STSIVA.2019.8730284
10.1097/MOP.0b013e328343f4dd
10.1109/ACCESS.2019.2926837
10.1101/324541
10.1136/bmj.f4706
10.1007/s00432-020-03291-x
10.1155/2014/842037
10.1007/s11938-020-00274-2
10.17148/IJREEICE.2015.3229
10.1186/s12880-021-00608-1
10.3390/a8041088
10.1109/BMEiCON.2018.8609997
10.1109/SampTA45681.2019.9030909
10.1155/2016/3219068
10.1007/s00432-020-03172-3
10.3390/app10207292
10.1038/s41598-020-57670-y
10.1186/s12880-021-00563-x
10.5935/1676-2444.20200013
10.1109/IST.2016.7738230
10.1111/j.1399-302X.2008.00479.x
10.1007/978-981-10-6890-4_11
10.1186/s12880-021-00594-4
10.1109/ICCUBEA.2018.8697804
10.1186/s12880-021-00566-8
10.1007/s00432-016-2131-6
10.3389/fdata.2020.00006
10.1007/s00432-020-03318-3
10.3390/app10093134
10.1093/annonc/mdp391
10.1155/2011/182435
10.1007/s00521-020-04842-6
10.1155/2020/9162464
10.1155/2013/942353
10.1371/journal.pone.0217293
10.1007/s00432-020-03304-9
10.1007/s00432-020-03264-0
10.5829/idosi.mejsr.2017.417.426
10.2147/BCTT.S176070
10.1007/s00432-018-2595-7
10.1186/1471-2288-9-74
10.1007/s11042-019-08394-3
10.1186/s12859-017-1922-3
ContentType Journal Article
Copyright CIMNE, Barcelona, Spain 2021
CIMNE, Barcelona, Spain 2021.
Copyright_xml – notice: CIMNE, Barcelona, Spain 2021
– notice: CIMNE, Barcelona, Spain 2021.
DBID AAYXX
CITATION
NPM
JQ2
7X8
5PM
DOI 10.1007/s11831-021-09648-w
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


ProQuest Computer Science Collection
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1886-1784
EndPage 2070
ExternalDocumentID PMC8475374
34602811
10_1007_s11831_021_09648_w
Genre Journal Article
Review
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
K60
K6V
K6~
K7-
KDC
KOV
L6V
LLZTM
M0C
M4Y
M7S
MA-
MK~
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9P
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
JZLTJ
PHGZM
ABRTQ
NPM
PQGLB
JQ2
7X8
5PM
ID FETCH-LOGICAL-c540t-b3e23623fc31da0e8e804d2d3c140e7679f63e7e3850f114d50ba18c2e7eb3ec3
IEDL.DBID U2A
ISSN 1134-3060
1886-1784
IngestDate Thu Aug 21 14:13:20 EDT 2025
Fri Jul 11 09:47:02 EDT 2025
Fri Jul 25 10:57:37 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 05:11:11 EDT 2025
Thu Apr 10 08:01:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License CIMNE, Barcelona, Spain 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b3e23623fc31da0e8e804d2d3c140e7679f63e7e3850f114d50ba18c2e7eb3ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2879-0441
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8475374
PMID 34602811
PQID 2670626104
PQPubID 1486352
PageCount 28
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8475374
proquest_miscellaneous_2579090321
proquest_journals_2670626104
pubmed_primary_34602811
crossref_citationtrail_10_1007_s11831_021_09648_w
crossref_primary_10_1007_s11831_021_09648_w
springer_journals_10_1007_s11831_021_09648_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationSubtitle State of the Art Reviews
PublicationTitle Archives of computational methods in engineering
PublicationTitleAbbrev Arch Computat Methods Eng
PublicationTitleAlternate Arch Comput Methods Eng
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References 9648_CR52
9648_CR50
M Donaldson (9648_CR48) 2011; 30
9648_CR51
M Wong (9648_CR174) 2017; 7
SA Azer (9648_CR24) 2019; 11
M Albahar (9648_CR8) 2019; 7
N Hoerter (9648_CR73) 2020; 18
9648_CR100
9648_CR101
A Lathwal (9648_CR95) 2020
A Saha (9648_CR144) 2018; 144
MA Devi (9648_CR44) 2016; 89
T Kalaiselvi (9648_CR80) 2015; 25
M Nishio (9648_CR127) 2018; 13
J Engel (9648_CR53) 2020; 146
H Mohsen (9648_CR112) 2018; 3
AKHS Kurnianingsih (9648_CR92) 2019; 7
9648_CR58
9648_CR108
9648_CR59
H Lee (9648_CR103) 2015; 42
L Lopez (9648_CR104) 2020
M Sokoutil (9648_CR161) 2018; 18
MY Abdallah (9648_CR2) 2018; 29
TA Sajenna (9648_CR143) 2015; 2015
AM Weng (9648_CR170) 2021; 21
C Kaushal (9648_CR83) 2020
Y Zhang (9648_CR184) 2019; 12
S Sasikala (9648_CR150) 2018; 8
9648_CR45
K Hosny (9648_CR76) 2019
9648_CR46
9648_CR43
S Han (9648_CR67) 2019; 32
A Milne (9648_CR116) 2009; 126
HJ Park (9648_CR130) 2020; 21
R Gupta (9648_CR62) 2017; 4
N Hu (9648_CR74) 2021; 21
J Ferlay (9648_CR55) 2010; 127
9648_CR49
A Sarwar (9648_CR149) 2020; 53
P Jin (9648_CR77) 2020; 146
9648_CR115
BJ Nartowt (9648_CR121) 2020; 3
9648_CR34
TM Mejia (9648_CR111) 2015; 2015
9648_CR35
S Feng (9648_CR54) 2013; 138
9648_CR32
R Mehrotra (9648_CR110) 2011; 3
Q Nguyen (9648_CR124) 2015; 1
YR Chillakuru (9648_CR39) 2021; 21
M Nivaashini (9648_CR128) 2018; 119
G Andriole (9648_CR10) 2009; 360
V Kadam (9648_CR79) 2019; 43
9648_CR167
L Wang (9648_CR168) 2012; 36
N Zhang (9648_CR182) 2016; 142
W Yue (9648_CR179) 2018; 2
M Yamada (9648_CR175) 2019; 9
K Nakano (9648_CR119) 2009; 24
D Selvathi (9648_CR152) 2017; 25
RS Patil (9648_CR131) 2020
T Hirasawa (9648_CR72) 2018; 21
J Bono (9648_CR30) 2011; 364
G Murtaza (9648_CR114) 2020; 53
W Chen (9648_CR37) 2020; 10
F Bidard (9648_CR29) 2010; 24
9648_CR23
9648_CR21
J Saraf (9648_CR148) 2017; 4
9648_CR180
A Assiri (9648_CR14) 2020; 6
Y Kumar (9648_CR91) 2019; 8
WGE Gonçalves (9648_CR57) 2020; 7
S Naeem (9648_CR117) 2020; 10
L Zhang (9648_CR181) 2020; 15
K Sudharani (9648_CR163) 2016; 24
9648_CR176
F Haggar (9648_CR66) 2009; 22
9648_CR4
9648_CR5
9648_CR27
9648_CR6
9648_CR28
A Suberi (9648_CR162) 2016; 105
M Malathi (9648_CR107) 2019; 20
TN Le (9648_CR96) 2016; 2016
9648_CR97
9648_CR94
9648_CR12
9648_CR98
9648_CR11
9648_CR99
X Wei (9648_CR169) 2020; 146
N Azamjah (9648_CR13) 2018; 20
G Cui (9648_CR41) 2019; 14
R Rosalidar (9648_CR140) 2020; 8
MQ Khan (9648_CR84) 2019; 7
9648_CR90
N Yu (9648_CR178) 2017; 18
9648_CR146
PN Figueiredo (9648_CR56) 2011
9648_CR147
9648_CR145
9648_CR142
A Asuntha (9648_CR22) 2020; 79
A Marka (9648_CR109) 2019
9648_CR141
L Ma (9648_CR106) 2019
S Ramadan (9648_CR136) 2020; 2020
9648_CR16
D Beilner (9648_CR26) 2020
A Raj (9648_CR137) 2016; 24
9648_CR18
9648_CR19
L Alzubaidi (9648_CR9) 2020; 9
9648_CR85
9648_CR87
9648_CR88
9648_CR160
AM Bur (9648_CR33) 2019; 92
9648_CR81
S Yoo (9648_CR177) 2019; 9
9648_CR155
Y Ning (9648_CR125) 2017; 18
9648_CR151
C Donald (9648_CR47) 2011; 364
CWH Chan (9648_CR36) 2020; 146
KP Win (9648_CR171) 2020; 10
H Cheng (9648_CR38) 2010; 43
9648_CR75
D Narayanan (9648_CR120) 2010; 49
9648_CR78
J Kloeckner (9648_CR86) 2020; 56
S Tabibu (9648_CR164) 2019; 9
T Song (9648_CR157) 2021; 21
DT Kruger (9648_CR89) 2020
AI Iuga (9648_CR105) 2021; 21
A Abraham (9648_CR3) 2009; 9
L Lavanya (9648_CR93) 2019; 12
P Bach (9648_CR25) 2012; 307
R Zhang (9648_CR183) 2016; 21
K Hertrampf (9648_CR71) 2020; 146
KK Senthil (9648_CR153) 2019; 2019
M Wu (9648_CR173) 2018; 38
F Altaf (9648_CR1) 2019; 7
F Taher (9648_CR165) 2015; 8
J Liu (9648_CR102) 2020; 146
SH Nallamala (9648_CR123) 2019; 8
P Poudel (9648_CR132) 2018
9648_CR129
9648_CR126
9648_CR63
K Munir (9648_CR113) 2019; 11
N Nasrullah (9648_CR122) 2019; 19
9648_CR64
9648_CR61
Y Shin (9648_CR159) 2018; 6
EA Boakye (9648_CR15) 2020; 146
9648_CR68
P Kaur (9648_CR82) 2019; 16
9648_CR65
A Das (9648_CR42) 2019; 54
Z Alyafeai (9648_CR20) 2020
J Büntzel (9648_CR31) 2020
Z Sobhaninia (9648_CR156) 2020; 2
9648_CR60
PM Shakeel (9648_CR154) 2020
VK Nahar (9648_CR118) 2016; 142
9648_CR133
DA Ragab (9648_CR135) 2019; 1
9648_CR134
S Alam (9648_CR17) 2019; 3
S Thapa (9648_CR166) 2019
T Shibata (9648_CR158) 2020; 10
G Chlebus (9648_CR40) 2018; 8
9648_CR69
J Zugazagoitia (9648_CR185) 2016; 38
9648_CR139
W Alakwaa (9648_CR7) 2017; 8
Z He (9648_CR70) 2020; 10
Y Win (9648_CR172) 2018; 2018
9648_CR138
References_xml – volume: 1
  start-page: 1
  year: 2015
  ident: 9648_CR124
  publication-title: Clinical
– ident: 9648_CR61
  doi: 10.21037/atm.2019.04.34
– volume: 11
  start-page: 1
  year: 2019
  ident: 9648_CR113
  publication-title: Cancers
  doi: 10.3390/cancers11091235
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 9648_CR105
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00599-z
– volume: 18
  start-page: 1
  issue: 4
  year: 2018
  ident: 9648_CR161
  publication-title: Int J Comput Sci Network Secur
– ident: 9648_CR139
  doi: 10.3390/ai1010003
– volume: 7
  start-page: 1
  year: 2019
  ident: 9648_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2929365
– volume: 38
  start-page: 1
  issue: 6
  year: 2018
  ident: 9648_CR173
  publication-title: Biosci Rep
  doi: 10.1042/BSR20181769
– ident: 9648_CR50
  doi: 10.1007/978-3-319-60964-5_44
– ident: 9648_CR43
  doi: 10.1162/NECO_a_00312
– volume: 4
  start-page: 1
  issue: 5
  year: 2017
  ident: 9648_CR62
  publication-title: Int J Contemp Med Res
– volume: 146
  start-page: 297
  issue: 2
  year: 2020
  ident: 9648_CR169
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-019-03117-5
– ident: 9648_CR32
– volume: 18
  start-page: 1
  year: 2017
  ident: 9648_CR125
  publication-title: BMC Bioinformatics
– volume: 9
  start-page: 19518
  year: 2019
  ident: 9648_CR177
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-55972-4
– ident: 9648_CR16
  doi: 10.1109/CoCoNet.2015.7411260
– year: 2019
  ident: 9648_CR106
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2019/6212759
– ident: 9648_CR145
  doi: 10.18280/ts.360406
– volume: 43
  start-page: 299
  issue: 1
  year: 2010
  ident: 9648_CR38
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.05.012
– volume: 9
  start-page: 1
  year: 2020
  ident: 9648_CR9
  publication-title: Electronics
  doi: 10.3390/electronics9030445
– ident: 9648_CR69
  doi: 10.1109/IC4ME247184.2019.9036653
– ident: 9648_CR27
  doi: 10.1007/978-3-030-70604-3_6
– volume: 2015
  start-page: 24
  year: 2015
  ident: 9648_CR111
  publication-title: Asia-Pacific Conf Comput-Aid Syst Eng
  doi: 10.1109/APCASE.2015.12
– ident: 9648_CR63
  doi: 10.1111/coin.12452
– volume: 8
  start-page: 259
  year: 2018
  ident: 9648_CR150
  publication-title: Int J Innov Technol Explor Eng
– volume: 364
  start-page: 2091
  year: 2011
  ident: 9648_CR47
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1008069
– volume: 138
  start-page: 3967
  year: 2013
  ident: 9648_CR54
  publication-title: Analyst
  doi: 10.1039/c3an36890d
– ident: 9648_CR151
  doi: 10.21786/bbrc/13.11/13
– volume: 11
  start-page: 1218
  issue: 12
  year: 2019
  ident: 9648_CR24
  publication-title: World J Gastrointest Oncol
  doi: 10.4251/wjgo.v11.i12.1218
– volume: 2
  start-page: 1
  issue: 13
  year: 2018
  ident: 9648_CR179
  publication-title: Designs
  doi: 10.3390/designs2020013
– volume: 127
  start-page: 2893
  year: 2010
  ident: 9648_CR55
  publication-title: Int J Cancer
  doi: 10.1002/ijc.25516
– volume: 21
  start-page: 653
  issue: 4
  year: 2018
  ident: 9648_CR72
  publication-title: Gastric Cancer
  doi: 10.1007/s10120-018-0793-2
– ident: 9648_CR64
  doi: 10.1093/comjnl/bxaa198
– volume: 8
  start-page: 116176
  year: 2020
  ident: 9648_CR140
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3004056
– volume: 43
  start-page: 1
  year: 2019
  ident: 9648_CR79
  publication-title: Image Signal Process
  doi: 10.1007/s10916-019-1397-z
– volume: 14
  start-page: 1
  issue: 1
  year: 2019
  ident: 9648_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0210551
– ident: 9648_CR133
  doi: 10.1109/ICET.2016.7813261
– volume: 6
  start-page: 1
  issue: 39
  year: 2020
  ident: 9648_CR14
  publication-title: J Imaging
  doi: 10.3390/jimaging6060039
– volume: 24
  start-page: 1305
  year: 2016
  ident: 9648_CR137
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.05.126
– ident: 9648_CR52
– ident: 9648_CR138
  doi: 10.35940/ijeat.a1116.1291s419
– ident: 9648_CR146
  doi: 10.1109/EMBC.2018.8513274
– volume: 2018
  start-page: 1
  year: 2018
  ident: 9648_CR172
  publication-title: Hindawi
  doi: 10.1155/2018/6456724
– volume: 49
  start-page: 978
  year: 2010
  ident: 9648_CR120
  publication-title: Int J Dermatol
  doi: 10.1111/j.1365-4632.2010.04474.x
– ident: 9648_CR134
  doi: 10.1109/ATEE.2019.8724938
– volume: 3
  start-page: 68
  issue: 1
  year: 2018
  ident: 9648_CR112
  publication-title: Future Comput Inform J
  doi: 10.1016/j.fcij.2017.12.001
– year: 2020
  ident: 9648_CR31
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03249-z
– ident: 9648_CR142
  doi: 10.1155/2019/1074286
– volume: 3
  start-page: 1
  year: 2011
  ident: 9648_CR110
  publication-title: Head Neck Oncol
  doi: 10.1186/1758-3284-3-33
– volume: 105
  start-page: 177
  year: 2016
  ident: 9648_CR162
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2017.01.201
– volume: 36
  start-page: 61
  year: 2012
  ident: 9648_CR168
  publication-title: Cancer Epidemiol
  doi: 10.1016/j.canep.2011.05.002
– volume: 8
  start-page: 409
  issue: 8
  year: 2017
  ident: 9648_CR7
  publication-title: Int J Adv Comput Sci Appl
– volume: 146
  start-page: 2489
  issue: 10
  year: 2020
  ident: 9648_CR71
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03305-8
– volume: 53
  start-page: 1655
  issue: 3
  year: 2020
  ident: 9648_CR114
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09716-5
– volume: 2015
  start-page: 663
  year: 2015
  ident: 9648_CR143
  publication-title: Int Conf Comput Network Commun Trivandrum
– volume: 24
  start-page: 1374
  year: 2016
  ident: 9648_CR163
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2016.05.153
– ident: 9648_CR35
  doi: 10.1007/978-3-642-40763-5_78
– volume: 30
  start-page: 3
  year: 2011
  ident: 9648_CR48
  publication-title: Semin Cutan Med Surg
  doi: 10.1016/j.sder.2011.01.002
– volume: 10
  start-page: 1
  issue: 11
  year: 2020
  ident: 9648_CR158
  publication-title: Appl Sci (Switzerland)
  doi: 10.3390/app10113842
– volume: 54
  start-page: 165
  year: 2019
  ident: 9648_CR42
  publication-title: Cogn Syst Res
  doi: 10.1016/j.cogsys.2018.12.009
– volume: 9
  start-page: 14465
  year: 2019
  ident: 9648_CR175
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-50567-5
– volume: 307
  start-page: 2418
  year: 2012
  ident: 9648_CR25
  publication-title: JAMA
  doi: 10.1001/jama.2012.5521
– volume: 21
  start-page: 41
  issue: 1
  year: 2016
  ident: 9648_CR183
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2016.2635662
– year: 2020
  ident: 9648_CR26
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03338-z
– ident: 9648_CR90
  doi: 10.1007/978-3-030-31672-3_1
– year: 2020
  ident: 9648_CR104
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008868
– volume: 15
  start-page: 27
  issue: 1
  year: 2020
  ident: 9648_CR181
  publication-title: Open Med (Poland)
  doi: 10.1515/med-2020-0006
– year: 2020
  ident: 9648_CR131
  publication-title: Evol Intel
  doi: 10.1007/s12065-020-00403-x
– volume: 12
  start-page: 1
  year: 2019
  ident: 9648_CR184
  publication-title: J Hematol Oncol
  doi: 10.1186/s13045-019-0833-3
– volume: 7
  start-page: 1
  issue: 1
  year: 2020
  ident: 9648_CR57
  publication-title: BMJ Open Gastroenterol
  doi: 10.1136/bmjgast-2019-000371
– ident: 9648_CR78
  doi: 10.1109/ISSPIT47144.2019.9001790
– ident: 9648_CR11
  doi: 10.1007/s11831-021-09554-1
– ident: 9648_CR68
  doi: 10.1145/3330482.3330525
– ident: 9648_CR88
  doi: 10.1007/s11831-020-09470-w
– volume: 20
  start-page: 2095
  issue: 7
  year: 2019
  ident: 9648_CR107
  publication-title: Asian Pac J Cancer Prev
  doi: 10.31557/APJCP.2019.20.7.2095
– volume: 89
  start-page: 465
  year: 2016
  ident: 9648_CR44
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.06.105
– volume: 360
  start-page: 1310
  year: 2009
  ident: 9648_CR10
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0810696
– volume: 38
  start-page: 1551
  year: 2016
  ident: 9648_CR185
  publication-title: Clin Ther
  doi: 10.1016/j.clinthera.2016.03.026
– volume: 29
  start-page: 3732
  issue: 20
  year: 2018
  ident: 9648_CR2
  publication-title: Biomed Res
  doi: 10.4066/biomedicalresearch.29-18-1106
– volume: 146
  start-page: 1395
  issue: 6
  year: 2020
  ident: 9648_CR36
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03206-w
– ident: 9648_CR65
– volume: 32
  start-page: 638
  issue: 4
  year: 2019
  ident: 9648_CR67
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00230-2
– volume: 16
  year: 2019
  ident: 9648_CR82
  publication-title: Inform Med Unlock
  doi: 10.1016/j.imu.2019.01.001
– year: 2019
  ident: 9648_CR166
  publication-title: Gastroenterol Res Pract
  doi: 10.1155/2019/8321942
– ident: 9648_CR75
  doi: 10.13053/CyS-22-3-2526
– ident: 9648_CR49
  doi: 10.1155/2020/1963814
– volume: 25
  start-page: 77
  issue: 1
  year: 2015
  ident: 9648_CR80
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22123
– ident: 9648_CR147
  doi: 10.24926/548719.023
– volume: 12
  start-page: 596
  issue: 5
  year: 2019
  ident: 9648_CR93
  publication-title: Int J Eng Res Technol
– year: 2018
  ident: 9648_CR132
  publication-title: J Healthcare Eng
  doi: 10.1155/2018/8087624
– volume: 53
  start-page: 2341
  issue: 4
  year: 2020
  ident: 9648_CR149
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-019-09735-2
– ident: 9648_CR6
– volume: 42
  start-page: 5356
  year: 2015
  ident: 9648_CR103
  publication-title: Elsevier
  doi: 10.1016/j.eswa.2015.02.005
– volume: 126
  start-page: 615
  year: 2009
  ident: 9648_CR116
  publication-title: Hum Genet
  doi: 10.1007/s00439-009-0722-x
– year: 2020
  ident: 9648_CR20
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112951
– ident: 9648_CR85
  doi: 10.1145/3338472.3338492
– ident: 9648_CR18
  doi: 10.1145/2222444.2222467
– volume: 2019
  start-page: 4909846
  year: 2019
  ident: 9648_CR153
  publication-title: Comput Math Methods Med
  doi: 10.1155/2019/4909846
– volume: 7
  start-page: 116925
  year: 2019
  ident: 9648_CR92
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2936017
– volume: 19
  start-page: 3722
  issue: 7
  year: 2019
  ident: 9648_CR122
  publication-title: Sensors
  doi: 10.3390/s19173722
– volume: 21
  start-page: 387
  issue: 4
  year: 2020
  ident: 9648_CR130
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2019.0752
– volume: 8
  start-page: 15497
  year: 2018
  ident: 9648_CR40
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33860-7
– volume: 6
  start-page: 40950
  year: 2018
  ident: 9648_CR159
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2856402
– volume: 7
  start-page: 38306
  year: 2019
  ident: 9648_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2906241
– year: 2020
  ident: 9648_CR83
  publication-title: CAAI Trans Intell Technol
  doi: 10.1049/trit.2019.0077
– volume: 7
  start-page: 1
  year: 2017
  ident: 9648_CR174
  publication-title: Sci Rep
  doi: 10.1038/s41598-016-0028-x
– volume: 92
  start-page: 20
  year: 2019
  ident: 9648_CR33
  publication-title: Oral Oncol
  doi: 10.1016/j.oraloncology.2019.03.011
– ident: 9648_CR129
– ident: 9648_CR59
– volume: 142
  start-page: 1273
  issue: 6
  year: 2016
  ident: 9648_CR118
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-015-2086-z
– volume: 10
  start-page: 1
  issue: 5
  year: 2020
  ident: 9648_CR171
  publication-title: Appl Sci
  doi: 10.3390/app10051800
– ident: 9648_CR99
  doi: 10.1109/EMBC.2013.6610529
– ident: 9648_CR51
– ident: 9648_CR4
  doi: 10.1007/s10462-020-09865-y
– ident: 9648_CR5
  doi: 10.19044/esj.2017.v13n3p342
– volume: 3
  start-page: 1
  issue: 2
  year: 2019
  ident: 9648_CR17
  publication-title: Big Data Cogn Comput
  doi: 10.3390/bdcc3020027
– ident: 9648_CR98
  doi: 10.1117/12.2277121
– ident: 9648_CR101
  doi: 10.1007/s00432-019-03098-5
– year: 2019
  ident: 9648_CR109
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-019-0307-7
– ident: 9648_CR58
  doi: 10.1109/ICECDS.2017.8389744
– ident: 9648_CR141
  doi: 10.1007/978-81-322-2217-0_23
– volume: 364
  start-page: 1995
  year: 2011
  ident: 9648_CR30
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1014618
– ident: 9648_CR94
– volume: 9
  start-page: 10509
  year: 2019
  ident: 9648_CR164
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-46718-3
– ident: 9648_CR167
  doi: 10.1109/CSCS.2017.56
– ident: 9648_CR19
  doi: 10.3390/app8122422
– volume: 146
  start-page: 1765
  issue: 7
  year: 2020
  ident: 9648_CR15
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03232-8
– volume: 8
  start-page: 674
  issue: 7
  year: 2019
  ident: 9648_CR91
  publication-title: Int J Sci Technol Res
– ident: 9648_CR100
  doi: 10.1109/ACCESS.2019.2904245
– volume: 13
  start-page: 1
  issue: 4
  year: 2018
  ident: 9648_CR127
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0195875
– volume: 1
  start-page: 1
  year: 2019
  ident: 9648_CR135
  publication-title: PeerJ
  doi: 10.7717/peerj.6201
– ident: 9648_CR97
  doi: 10.1109/STSIVA.2019.8730284
– ident: 9648_CR46
  doi: 10.1097/MOP.0b013e328343f4dd
– volume: 7
  start-page: 90132
  year: 2019
  ident: 9648_CR84
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926837
– ident: 9648_CR12
  doi: 10.1101/324541
– ident: 9648_CR34
  doi: 10.1136/bmj.f4706
– year: 2020
  ident: 9648_CR89
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03291-x
– volume: 8
  start-page: 1402
  issue: 2–3
  year: 2019
  ident: 9648_CR123
  publication-title: Int J Recent Technol Eng
– volume: 22
  start-page: 191
  year: 2009
  ident: 9648_CR66
  publication-title: Clinics in Colon
– ident: 9648_CR28
  doi: 10.1155/2014/842037
– volume: 18
  start-page: 120
  issue: 1
  year: 2020
  ident: 9648_CR73
  publication-title: Current Treatment Options Gastroenterol
  doi: 10.1007/s11938-020-00274-2
– ident: 9648_CR87
  doi: 10.17148/IJREEICE.2015.3229
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 9648_CR170
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00608-1
– ident: 9648_CR176
– volume: 8
  start-page: 1088
  year: 2015
  ident: 9648_CR165
  publication-title: Algorithms
  doi: 10.3390/a8041088
– ident: 9648_CR155
– ident: 9648_CR23
  doi: 10.1109/BMEiCON.2018.8609997
– ident: 9648_CR60
  doi: 10.1109/SampTA45681.2019.9030909
– volume: 2016
  start-page: 3219068
  year: 2016
  ident: 9648_CR96
  publication-title: Biomed Res Int
  doi: 10.1155/2016/3219068
– volume: 146
  start-page: 809
  issue: 4
  year: 2020
  ident: 9648_CR102
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03172-3
– volume: 10
  start-page: 1
  year: 2020
  ident: 9648_CR37
  publication-title: Appl Sci
  doi: 10.3390/app10207292
– volume: 10
  start-page: 720
  year: 2020
  ident: 9648_CR70
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-57670-y
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 9648_CR157
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00563-x
– volume: 56
  start-page: 1
  year: 2020
  ident: 9648_CR86
  publication-title: Jornal Brasileiro de Patologia e Medicina Laboratorial
  doi: 10.5935/1676-2444.20200013
– ident: 9648_CR160
  doi: 10.1109/IST.2016.7738230
– ident: 9648_CR180
– volume: 24
  start-page: 64
  year: 2009
  ident: 9648_CR119
  publication-title: Oral Microbiol Immunol
  doi: 10.1111/j.1399-302X.2008.00479.x
– volume: 119
  start-page: 581
  year: 2018
  ident: 9648_CR128
  publication-title: Int J Pure Appl Math
– ident: 9648_CR45
  doi: 10.1007/978-981-10-6890-4_11
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 9648_CR39
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00594-4
– volume: 2
  start-page: 1
  year: 2020
  ident: 9648_CR156
  publication-title: IEEE Xplorer
– ident: 9648_CR108
  doi: 10.1109/ICCUBEA.2018.8697804
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: 9648_CR74
  publication-title: BMC Med Imaging
  doi: 10.1186/s12880-021-00566-8
– volume: 142
  start-page: 1807
  issue: 8
  year: 2016
  ident: 9648_CR182
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-016-2131-6
– volume: 3
  start-page: 1
  year: 2020
  ident: 9648_CR121
  publication-title: Front Big Data
  doi: 10.3389/fdata.2020.00006
– volume: 20
  start-page: 1
  year: 2018
  ident: 9648_CR13
  publication-title: Global Trend Breast Cancer Mortal
– year: 2020
  ident: 9648_CR95
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03318-3
– volume: 10
  start-page: 1
  year: 2020
  ident: 9648_CR117
  publication-title: Appl Sci
  doi: 10.3390/app10093134
– volume: 24
  start-page: 729
  year: 2010
  ident: 9648_CR29
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdp391
– year: 2011
  ident: 9648_CR56
  publication-title: Diagn Therap Endos
  doi: 10.1155/2011/182435
– year: 2020
  ident: 9648_CR154
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04842-6
– volume: 2020
  start-page: 1
  year: 2020
  ident: 9648_CR136
  publication-title: J Healthc Eng
  doi: 10.1155/2020/9162464
– ident: 9648_CR21
  doi: 10.1155/2013/942353
– ident: 9648_CR81
– year: 2019
  ident: 9648_CR76
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0217293
– volume: 4
  start-page: 75
  issue: 8
  year: 2017
  ident: 9648_CR148
  publication-title: Int J Res Sci Innov
– volume: 146
  start-page: 2339
  issue: 9
  year: 2020
  ident: 9648_CR77
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03304-9
– ident: 9648_CR126
– volume: 146
  start-page: 2041
  issue: 8
  year: 2020
  ident: 9648_CR53
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-020-03264-0
– volume: 25
  start-page: 417
  issue: 2
  year: 2017
  ident: 9648_CR152
  publication-title: J Sci Res
  doi: 10.5829/idosi.mejsr.2017.417.426
– ident: 9648_CR115
  doi: 10.2147/BCTT.S176070
– volume: 144
  start-page: 799
  issue: 5
  year: 2018
  ident: 9648_CR144
  publication-title: J Cancer Res Clin Oncol
  doi: 10.1007/s00432-018-2595-7
– volume: 9
  start-page: 1
  year: 2009
  ident: 9648_CR3
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-9-74
– volume: 79
  start-page: 7731
  issue: 11–12
  year: 2020
  ident: 9648_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-019-08394-3
– volume: 18
  start-page: 1
  year: 2017
  ident: 9648_CR178
  publication-title: BMC Bioinform
  doi: 10.1186/s12859-017-1922-3
SSID ssj0054992
Score 2.5751286
SecondaryResourceType review_article
Snippet Artificial intelligence has aided in the advancement of healthcare research. The availability of open-source healthcare statistics has prompted researchers to...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2043
SubjectTerms Artificial intelligence
Cancer
Deep learning
Engineering
Health care
Machine learning
Mathematical and Computational Engineering
Parameter sensitivity
Review
Review Article
Title A Systematic Review of Artificial Intelligence Techniques in Cancer Prediction and Diagnosis
URI https://link.springer.com/article/10.1007/s11831-021-09648-w
https://www.ncbi.nlm.nih.gov/pubmed/34602811
https://www.proquest.com/docview/2670626104
https://www.proquest.com/docview/2579090321
https://pubmed.ncbi.nlm.nih.gov/PMC8475374
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Za9wwEB7a5CV9yH1sLlToW2KwJEvWPi6526YUkoUUCsbWQRaCN6w35O9nJB-bTdpCH4zBOq3RaGY0mk8AX3KRqxRXuYgx6qKEFiLqK2R3Z7TjNldKBnT96x_ycph8vRN3TVBY1Z52b12SYaWeBbvh7EPTl-HTl4mKnj_CovC2O87iIRu06683eIKPk3K_5y_jJlTmz3XMi6N3Oub7o5Jv_KVBDJ2vwnKjP5JBTfA1-GDLdVhpdEnScGq1Dp9eAQ1uwO8Buekgm0ntDyBjF6qpISTI1StsTnLbIrtWZFSSEz8zJuTnxDt1PCFJXhpyWh_SG1WbMDw_uz25jJp7FSKN-tk0KrhlKLe405yaPLbKqjgxzHCN1pZNZdp3ktvUciVih_aSEXGRU6UZfsOymm_BQjku7Q4QI_N-oqkV2kisoihE4VRscOx9jKt0PaDt8Ga6AR33d188ZDO4ZE-SDEmSBZJkzz046so81pAb_8y931Ita9ivyphMY7TU0NTswecuGRnHe0Py0o6fMA_20G9SMdqD7ZrIXXM8kah3UUxJ58jfZfCg3PMp5eg-gHOjtBc8xXaP24ky69bf_2L3_7LvwRLzYRhhN2gfFqaTJ3uAytG0OITFwen19xv_vvj17eww8MYLtRIJzA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9B9zB4gA0GlK950t62SLGdOO5j1YHKpyatlXiYFCX-EJVQipoi_n3OzkfpGEg85CU-O47PZ9_57n4G-J7FmUxwlQsYozaIaB4HPYnibrWy3GRSCo-uf3UthuPo_Ca-qZPCyibavXFJ-pV6keyGsw9NX4ZPT0QyeFyFD6gMSBfINWb9Zv11Bo_3cVLuzvxFWKfK_L-N5e3ohY75MlTyH3-p34ZOP8FGrT-SfsXwz7Biii3YrHVJUktquQXrz4AGt-Fvn_xpIZtJ5Q8gU-ubqSAkyNkzbE4yapBdSzIpyMDNjBn5PXNOHcdIkhWa_KqC9CblFxifnowGw6C-VyFQqJ_Ng5wbhvsWt4pTnYVGGhlGmmmu0NoyiUh6VnCTGC7j0KK9pOMwz6hUDN9hXcV3oFNMC7MHRIusFylqYqUFNpHncW5lqHHsXY6rsF2gzfCmqgYdd3df3KULuGTHkhRZknqWpI9d-NHWua8gN96kPmy4ltbiV6ZMJCFaamhqduFbW4yC47whWWGmD0iDPXSHVIx2Ybdicvs5HgnUuyiWJEvsbwkcKPdySTG59eDcuNvHPMHv_mwmyqJbr__F_vvIv8LH4ejqMr08u744gDXmUjL8ydAhdOazB3OEitI8P_Zy8QS8_QmX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB6xIKHlwGsXKE8j7W03IrYTxz1WQMVbSEslDkhR4oeohFLUFvH3GTuPtsCuxCGXeOw4nhl7xuP5DPArizOZ4CwXMEZtENE8DtoS1d1qZbnJpBQeXf_6Rpz1oov7-H4qi9-fdq9DkmVOg0NpKsZHz9oeTRLfUBLRDWb4tEUkg9dvsIDTMXVy3WOdei52zo-Pd1Lu9v9FWKXNfN7G7NL0wd78eGzyXezUL0ndVViubEnSKZm_BnOmWIeVyq4kldaO1mFpCnTwBzx0yN8GvpmUsQEysL6ZEk6CnE_hdJK7GuV1RPoFOXZSMiS3QxfgcUwlWaHJSXlgrz_6Cb3u6d3xWVDdsRAotNXGQc4NwzWMW8WpzkIjjQwjzTRX6HmZRCRtK7hJDJdxaNF30nGYZ1Qqhu-wruIbMF8MCrMFRIusHSlqYqUFNpHncW5lqHHsXb6rsC2g9fCmqgIgd_dgPKUT6GTHkhRZknqWpK8t-N3UeS7hN_5LvVtzLa1UcZQykYTotaHb2YLDphiVyEVGssIMXpAGe-g2rBhtwWbJ5OZzPBJog1EsSWbY3xA4gO7ZkqL_6IG6ceWPeYLf_VMLyqRb__6L7a-RH8Di7Uk3vTq_udyB78xlZ_hNol2YHw9fzB7aTON836vFG8LGDdM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Systematic+Review+of+Artificial+Intelligence+Techniques+in+Cancer+Prediction+and+Diagnosis&rft.jtitle=Archives+of+computational+methods+in+engineering&rft.au=Kumar%2C+Yogesh&rft.au=Gupta%2C+Surbhi&rft.au=Singla%2C+Ruchi&rft.au=Hu%2C+Yu-Chen&rft.date=2022-06-01&rft.pub=Springer+Netherlands&rft.issn=1134-3060&rft.eissn=1886-1784&rft.volume=29&rft.issue=4&rft.spage=2043&rft.epage=2070&rft_id=info:doi/10.1007%2Fs11831-021-09648-w&rft.externalDocID=10_1007_s11831_021_09648_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1134-3060&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1134-3060&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1134-3060&client=summon