Core community structure recovery and phase transition detection in temporally evolving networks

Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition o...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 12938 - 16
Main Authors Bao, Wei, Michailidis, George
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.08.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-018-29964-9

Cover

Abstract Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate’s voting record from 1979–2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject.
AbstractList Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate’s voting record from 1979–2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject.
Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate's voting record from 1979-2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject.Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate's voting record from 1979-2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject.
ArticleNumber 12938
Author Bao, Wei
Michailidis, George
Author_xml – sequence: 1
  givenname: Wei
  surname: Bao
  fullname: Bao, Wei
  organization: Department of Physics, University of Michigan
– sequence: 2
  givenname: George
  surname: Michailidis
  fullname: Michailidis, George
  email: gmichail@ufl.edu
  organization: Department of Statistics and the Informatics Institute, University of Florida
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30154531$$D View this record in MEDLINE/PubMed
BookMark eNp9kTtvFDEUhS2UiDzIH6BAI9HQDPF77QYJrUhAikQDtfF47mwcZuzF9my0_z7ebAghRdz4yv7O9Tm-J-ggxAAIvSX4I8FMnWdOhFYtJqqlWkve6lfomGIuWsooPXhSH6GznG9wXYJqTvRrdMQwEVwwcox-LWOCxsVpmoMv2yaXNLsy17MELm4gbRsb-mZ9bTM0JdmQffExND0UcPeVD02BaR2THcdtA5s4bnxYNQHKbUy_8xt0ONgxw9nDfop-Xnz5sfzaXn2__Lb8fNU6wXFpO0o7RcFKTgYnlcaKkUUPUlOu3GIguFOsr2GZUMCwZNJx7DAjehCWdJU-RZ_2fddzN0HvIFS3o1knP9m0NdF68_9N8NdmFTdGEsIYW9QGHx4apPhnhlzM5LODcbQB4pwNxVoKUc2yir5_ht7EOYUab0dxIfFC7Kh3Tx09Wvn7-RWge8ClmHOC4REh2OyGbPZDNjW3uR-y0VWknomcL3Y3iZrKjy9L2V6a6zthBemf7RdUd47_vH0
CitedBy_id crossref_primary_10_1103_PhysRevE_100_032308
crossref_primary_10_1007_s13171_021_00248_1
crossref_primary_10_1007_s41109_019_0119_2
crossref_primary_10_1016_j_physa_2020_125598
crossref_primary_10_1088_1742_6596_1453_1_012109
crossref_primary_10_1038_s41598_023_44791_3
crossref_primary_10_1109_ACCESS_2021_3105692
crossref_primary_10_1109_TSIPN_2019_2942176
Cites_doi 10.1109/ICCV.2003.1238361
10.1103/PhysRevLett.96.114102
10.1103/PhysRevE.74.036104
10.1109/ACC.2003.1243393
10.1017/9781108290159
10.1145/1970392.1970395
10.1063/1.4790830
10.1016/j.physrep.2009.11.002
10.1214/14-AOS1245
10.1103/PhysRevE.85.056110
10.1137/060657704
10.1007/s11749-014-0368-4
10.1093/comnet/cnu050
10.1109/ACSSC.2008.5074571
10.1145/1935826.1935877
10.1111/rssb.12243
10.1137/100781894
10.1103/PhysRevE.84.066106
10.1016/j.jeconom.2009.10.020
10.1007/s10208-009-9045-5
10.1093/bioinformatics/btl370
10.1111/rssb.12205
10.1137/080738970
10.1103/PhysRevE.69.026113
10.1103/PhysRevE.83.016107
10.1126/science.1184819
10.1214/14-AOS1290
10.1093/acprof:oso/9780199206650.001.0001
10.1017/nws.2012.3
10.1109/2.989932
10.2139/ssrn.3615069
10.1137/090761793
10.1103/PhysRevE.69.066133
10.1137/070697835
10.1103/PhysRevE.86.036104
10.1038/nature03288
10.1103/PhysRevE.70.025101
10.1073/pnas.0601602103
10.1561/9781680834772
10.3182/20120711-3-BE-2027.00310
10.1038/nature02115
10.1007/s11222-007-9033-z
10.1017/nws.2012.4
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-018-29964-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central (NC Live)
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Political Science
EISSN 2045-2322
EndPage 16
ExternalDocumentID PMC6113337
30154531
10_1038_s41598_018_29964_9
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AARCD
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
NPM
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c540t-b22b82ea641fc68908317de69248c7f10b83d018358e30636c40c0319f5a1b083
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:21:30 EDT 2025
Fri Sep 05 14:38:27 EDT 2025
Wed Aug 13 07:36:09 EDT 2025
Mon Jul 21 06:00:13 EDT 2025
Tue Aug 05 12:02:53 EDT 2025
Thu Apr 24 23:08:32 EDT 2025
Fri Feb 21 02:38:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b22b82ea641fc68908317de69248c7f10b83d018358e30636c40c0319f5a1b083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2094560753?pq-origsite=%requestingapplication%
PMID 30154531
PQID 2094560753
PQPubID 2041939
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113337
proquest_miscellaneous_2096555403
proquest_journals_2094560753
pubmed_primary_30154531
crossref_primary_10_1038_s41598_018_29964_9
crossref_citationtrail_10_1038_s41598_018_29964_9
springer_journals_10_1038_s41598_018_29964_9
PublicationCentury 2000
PublicationDate 2018-08-28
PublicationDateYYYYMMDD 2018-08-28
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References BallBNewmanMFriendship networks and social statusNetwork Science20131163010.1017/nws.2012.4
CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM20115811:111:37281100010.1145/1970392.19703951327.62369
Ma, H., Zhou, D., Liu, C., Lyu, M. R. & King, I. Recommender systems with social regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. WSDM ’11, 287–296 (ACM, New York, NY, USA, 2011).
NewmanMEJModularity and community structure in networksProceedings of the National Academy of Sciences2006103857785822006PNAS..103.8577N10.1073/pnas.06016021031:CAS:528:DC%2BD28XlvVCitLw%3D
OnnelaJ-PTaxonomies of networks from community structurePhys. Rev. E2012860361042012PhRvE..86c6104O10.1103/PhysRevE.86.0361041:CAS:528:DC%2BC38XhsF2ns7bO
CucuringuMSynchronization over z2 and community detection in signed multiplex networks with constraintsJournal of Complex Networks20153469506344986910.1093/comnet/cnu05006954915
Lu, Z., Banerjee, M. & Michailidis, G. Intelligent sampling for multiple change-points in exceedingly long time series with rate guarantees. ArXiv,1710.07420 (2017).
MuchaPJRichardsonTMaconKPorterMAOnnelaJ-PCommunity structure in time-dependent, multiscale, and multiplex networksScience20103288768782010Sci...328..876M266259010.1126/science.1184819204669261226.910561:CAS:528:DC%2BC3cXlvVeltr8%3D
FryzlewiczPWild binary segmentation for multiple change-point detectionAnn. Statist.20144222432281326997910.1214/14-AOS12451302.62075
HorvathLRiceGExtensions of some classical methods in change point analysisTEST201423219255321026810.1007/s11749-014-0368-41305.62310
NewmanMEJFast algorithm for detecting community structure in networksPhys. Rev. E2004690661332004PhRvE..69f6133N10.1103/PhysRevE.69.0661331:CAS:528:DC%2BD2cXls1Sntro%3D
PooleKTRosenthalHCongress: a political-economic history of roll call voting1997New YorkOxford University Press
CaiTTLiXRobust and computationally feasible community detection in the presence of arbitrary outlier nodesAnn. Statist.20154310271059334669610.1214/14-AOS12901328.62381
Safikhani, A. & Shojaie, A. Joint Structural Break Detection and Parameter Estimation in High-Dimensional Non-Stationary VAR Models. ArXiv,1711.07357 (2017).
TaoMYuanXRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM Journal on Optimization2011215781276548910.1137/1007818941218.90115
Lin, J. & Michailidis, G. Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models. ArXiv,1708.05879 (2017).
Fazel, M. Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002).
WahlbergBBoydSAnnergrenMWangYAn admm algorithm for a class of total variation regularized estimation problems*IFAC Proceedings Volumes201245838810.3182/20120711-3-BE-2027.0031016th IFAC Symposium on System Identification
ArenasADaz-GuileraAPérez-VicenteCJSynchronization reveals topological scales in complex networksPhys. Rev. Lett.2006961141022006PhRvL..96k4102A10.1103/PhysRevLett.96.114102166058251:CAS:528:DC%2BD28XivV2gtrk%3D
Abbe, E. Community detection and stochastic block models: recent developments. ArXiv,1703.10146 (2017).
Fazel, M., Candes, E., Recht, B. & Parrilo, P. Compressed sensing and robust recovery of low rank matrices. In 2008 42nd Asilomar Conference on Signals, Systems and Computers, 1043–1047 (2008).
BrucksteinAMDonohoDLEladMFrom sparse solutions of systems of equations to sparse modeling of signals and imagesSIAM Review20095134812009SIAMR..51...34B248111110.1137/0606577041178.68619
Kolaczyk, E. D. Topics at the Frontier of Statistics and Network Analysis: (Re)Visiting the Foundations. SemStat Elements (Cambridge University Press, 2017).
GuimeràRSales-PardoMAmaralLANModularity from fluctuations in random graphs and complex networksPhys. Rev. E2004700251012004PhRvE..70b5101G10.1103/PhysRevE.70.0251011:CAS:528:DC%2BD2cXnsVCmsLc%3D
BassettDSRobust detection of dynamic community structure in networksChaos: An Interdisciplinary Journal of Nonlinear Science201323013142338963310.1063/1.4790830
HorvathLCsorgoMLimit Theorems in Change-Point Analysis1997New York, NY, USAWiley0884.62023
Aicher, C., Jacobs, A. & Clauset, A. Adapting the stochastic block model to edge-weighted networks. ArXiv,0902.0885 (2013).
ChandrasekaranVSanghaviSParriloPAWillskyASRank-sparsity incoherence for matrix decompositionSIAM Journal on Optimization201121572596281747910.1137/0907617931226.90067
RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Review201052471501268054310.1137/0706978351198.90321
NewmanMEJGirvanMFinding and evaluating community structure in networksPhys. Rev. E2004690261132004PhRvE..69b6113N10.1103/PhysRevE.69.0261131:CAS:528:DC%2BD2cXitlOisL0%3D
RoySAtchadeYMichailidisGChange point estimation in high dimensional markov random-field modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)20177911871206368931410.1111/rssb.122051373.62260
MoodyJMuchaPJPortrait of political party polarizationNetwork Science2013111912110.1017/nws.2012.3
Fazel, M., Hindi, H. & Boyd, S. P. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proceedings of the 2003 American Control Conference, 2003, vol. 3, 2156–2162, vol. 3 (2003).
FlakeGWLawrenceSGilesCLCoetzeeFMSelf-organization and identification of web communitiesComputer200235667010.1109/2.989932
Lin, Z., Chen, M. & Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. ArXiv,1009.5055 (2010).
DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhys. Rev. E2011840661062011PhRvE..84f6106D10.1103/PhysRevE.84.0661061:CAS:528:DC%2BC38XhvFCisA%3D%3D
Paffenroth, R., Kay, K. & Servi, L. Robust PCA for Anomaly Detection in Cyber Networks. ArXiv,1801.01571 (2018).
CaiJ-FCandèsEJShenZA singular value thresholding algorithm for matrix completionSIAM Journal on Optimization20102019561982260024810.1137/0807389701201.90155
ZhangSZhaoJZhangX-SCommon community structure in time-varying networksPhys. Rev. E2012850561102012PhRvE..85e6110Z10.1103/PhysRevE.85.0561101:CAS:528:DC%2BC38XptVOnsrg%3D
BaiJCommon breaks in means and variances for panel dataJournal of Econometrics20101577892265228010.1016/j.jeconom.2009.10.02006608388
LeeSHMagallanesJMPorterMATime-dependent community structure in legislation cosponsorship networks in the congress of the republic of peruJournal of Complex Networks201751271443614920
KrauseAEFrankKAMasonDMUlanowiczRETaylorWWCompartments revealed in food-web structureNature20034262822003Natur.426..282K10.1038/nature02115146280501:CAS:528:DC%2BD3sXptVOit74%3D
Yu, S. X. & Shi, J. Multiclass spectral clustering. In Proceedings Ninth IEEE International Conference on Computer Vision, 313–319, vol. 1 (2003).
NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E2006740361042006PhRvE..74c6104N228213910.1103/PhysRevE.74.0361041:CAS:528:DC%2BD28XhtFygt7zN
von LuxburgUA tutorial on spectral clusteringStatistics and Computing200717395416240980310.1007/s11222-007-9033-z
KarrerBNewmanMEJStochastic blockmodels and community structure in networksPhys. Rev. E2011830161072011PhRvE..83a6107K278820610.1103/PhysRevE.83.0161071:CAS:528:DC%2BC3MXhsFSgs7g%3D
NewmanMNetworks: An Introduction2010New York, NY, USAOxford University Press, Inc.10.1093/acprof:oso/9780199206650.001.00011195.94003
WangTSamworthRJHigh dimensional change point estimation via sparse projectionJournal of the Royal Statistical Society: Series B Statistical Methodology2018805783374471210.1111/rssb.1224306840457
FortunatoSCommunity detection in graphsPhysics Reports2010486751742010PhR...486...75F258041410.1016/j.physrep.2009.11.002
CandèsEJRechtBExact matrix completion via convex optimizationFoundations of Computational Mathematics20099717256524010.1007/s10208-009-9045-51219.90124
GuimeràRNunes AmaralLAFunctional cartography of complex metabolic networksNature20054338952005Natur.433..895G10.1038/nature032881572934821751241:CAS:528:DC%2BD2MXhsFOrtb4%3D
ChenJYuanBDetecting functional modules in the yeast protein protein interaction networkBioinformatics2006222283229010.1093/bioinformatics/btl370168375291:CAS:528:DC%2BD28Xps1ygu70%3D
29964_CR33
29964_CR1
29964_CR31
J-P Onnela (29964_CR20) 2012; 86
29964_CR32
R Guimerà (29964_CR13) 2004; 70
29964_CR30
DS Bassett (29964_CR19) 2013; 23
A Arenas (29964_CR48) 2006; 96
M Tao (29964_CR27) 2011; 21
R Guimerà (29964_CR4) 2005; 433
A Decelle (29964_CR15) 2011; 84
29964_CR24
J Moody (29964_CR50) 2013; 1
29964_CR42
EJ Candès (29964_CR45) 2011; 58
29964_CR40
S Zhang (29964_CR18) 2012; 85
P Fryzlewicz (29964_CR36) 2014; 42
GW Flake (29964_CR6) 2002; 35
M Cucuringu (29964_CR51) 2015; 3
L Horvath (29964_CR34) 2014; 23
J Bai (29964_CR37) 2010; 157
L Horvath (29964_CR35) 1997
U von Luxburg (29964_CR39) 2007; 17
MEJ Newman (29964_CR10) 2006; 103
PJ Mucha (29964_CR17) 2010; 328
J-F Cai (29964_CR43) 2010; 20
B Karrer (29964_CR14) 2011; 83
KT Poole (29964_CR49) 1997
MEJ Newman (29964_CR12) 2004; 69
J Chen (29964_CR2) 2006; 22
B Recht (29964_CR28) 2010; 52
EJ Candès (29964_CR25) 2009; 9
B Ball (29964_CR3) 2013; 1
AE Krause (29964_CR5) 2003; 426
S Roy (29964_CR21) 2017; 79
B Wahlberg (29964_CR41) 2012; 45
AM Bruckstein (29964_CR44) 2009; 51
29964_CR46
V Chandrasekaran (29964_CR26) 2011; 21
29964_CR47
29964_CR22
MEJ Newman (29964_CR9) 2004; 69
29964_CR23
S Fortunato (29964_CR8) 2010; 486
TT Cai (29964_CR29) 2015; 43
T Wang (29964_CR38) 2018; 80
SH Lee (29964_CR52) 2017; 5
MEJ Newman (29964_CR11) 2006; 74
29964_CR16
M Newman (29964_CR7) 2010
References_xml – reference: GuimeràRSales-PardoMAmaralLANModularity from fluctuations in random graphs and complex networksPhys. Rev. E2004700251012004PhRvE..70b5101G10.1103/PhysRevE.70.0251011:CAS:528:DC%2BD2cXnsVCmsLc%3D
– reference: KarrerBNewmanMEJStochastic blockmodels and community structure in networksPhys. Rev. E2011830161072011PhRvE..83a6107K278820610.1103/PhysRevE.83.0161071:CAS:528:DC%2BC3MXhsFSgs7g%3D
– reference: HorvathLCsorgoMLimit Theorems in Change-Point Analysis1997New York, NY, USAWiley0884.62023
– reference: RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Review201052471501268054310.1137/0706978351198.90321
– reference: TaoMYuanXRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM Journal on Optimization2011215781276548910.1137/1007818941218.90115
– reference: BrucksteinAMDonohoDLEladMFrom sparse solutions of systems of equations to sparse modeling of signals and imagesSIAM Review20095134812009SIAMR..51...34B248111110.1137/0606577041178.68619
– reference: FortunatoSCommunity detection in graphsPhysics Reports2010486751742010PhR...486...75F258041410.1016/j.physrep.2009.11.002
– reference: NewmanMEJFast algorithm for detecting community structure in networksPhys. Rev. E2004690661332004PhRvE..69f6133N10.1103/PhysRevE.69.0661331:CAS:528:DC%2BD2cXls1Sntro%3D
– reference: Lu, Z., Banerjee, M. & Michailidis, G. Intelligent sampling for multiple change-points in exceedingly long time series with rate guarantees. ArXiv,1710.07420 (2017).
– reference: OnnelaJ-PTaxonomies of networks from community structurePhys. Rev. E2012860361042012PhRvE..86c6104O10.1103/PhysRevE.86.0361041:CAS:528:DC%2BC38XhsF2ns7bO
– reference: CaiTTLiXRobust and computationally feasible community detection in the presence of arbitrary outlier nodesAnn. Statist.20154310271059334669610.1214/14-AOS12901328.62381
– reference: ArenasADaz-GuileraAPérez-VicenteCJSynchronization reveals topological scales in complex networksPhys. Rev. Lett.2006961141022006PhRvL..96k4102A10.1103/PhysRevLett.96.114102166058251:CAS:528:DC%2BD28XivV2gtrk%3D
– reference: ChenJYuanBDetecting functional modules in the yeast protein protein interaction networkBioinformatics2006222283229010.1093/bioinformatics/btl370168375291:CAS:528:DC%2BD28Xps1ygu70%3D
– reference: CaiJ-FCandèsEJShenZA singular value thresholding algorithm for matrix completionSIAM Journal on Optimization20102019561982260024810.1137/0807389701201.90155
– reference: Kolaczyk, E. D. Topics at the Frontier of Statistics and Network Analysis: (Re)Visiting the Foundations. SemStat Elements (Cambridge University Press, 2017).
– reference: Yu, S. X. & Shi, J. Multiclass spectral clustering. In Proceedings Ninth IEEE International Conference on Computer Vision, 313–319, vol. 1 (2003).
– reference: NewmanMNetworks: An Introduction2010New York, NY, USAOxford University Press, Inc.10.1093/acprof:oso/9780199206650.001.00011195.94003
– reference: WangTSamworthRJHigh dimensional change point estimation via sparse projectionJournal of the Royal Statistical Society: Series B Statistical Methodology2018805783374471210.1111/rssb.1224306840457
– reference: NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E2006740361042006PhRvE..74c6104N228213910.1103/PhysRevE.74.0361041:CAS:528:DC%2BD28XhtFygt7zN
– reference: NewmanMEJGirvanMFinding and evaluating community structure in networksPhys. Rev. E2004690261132004PhRvE..69b6113N10.1103/PhysRevE.69.0261131:CAS:528:DC%2BD2cXitlOisL0%3D
– reference: WahlbergBBoydSAnnergrenMWangYAn admm algorithm for a class of total variation regularized estimation problems*IFAC Proceedings Volumes201245838810.3182/20120711-3-BE-2027.0031016th IFAC Symposium on System Identification
– reference: GuimeràRNunes AmaralLAFunctional cartography of complex metabolic networksNature20054338952005Natur.433..895G10.1038/nature032881572934821751241:CAS:528:DC%2BD2MXhsFOrtb4%3D
– reference: RoySAtchadeYMichailidisGChange point estimation in high dimensional markov random-field modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)20177911871206368931410.1111/rssb.122051373.62260
– reference: MoodyJMuchaPJPortrait of political party polarizationNetwork Science2013111912110.1017/nws.2012.3
– reference: Safikhani, A. & Shojaie, A. Joint Structural Break Detection and Parameter Estimation in High-Dimensional Non-Stationary VAR Models. ArXiv,1711.07357 (2017).
– reference: Fazel, M., Candes, E., Recht, B. & Parrilo, P. Compressed sensing and robust recovery of low rank matrices. In 2008 42nd Asilomar Conference on Signals, Systems and Computers, 1043–1047 (2008).
– reference: Paffenroth, R., Kay, K. & Servi, L. Robust PCA for Anomaly Detection in Cyber Networks. ArXiv,1801.01571 (2018).
– reference: NewmanMEJModularity and community structure in networksProceedings of the National Academy of Sciences2006103857785822006PNAS..103.8577N10.1073/pnas.06016021031:CAS:528:DC%2BD28XlvVCitLw%3D
– reference: Abbe, E. Community detection and stochastic block models: recent developments. ArXiv,1703.10146 (2017).
– reference: LeeSHMagallanesJMPorterMATime-dependent community structure in legislation cosponsorship networks in the congress of the republic of peruJournal of Complex Networks201751271443614920
– reference: PooleKTRosenthalHCongress: a political-economic history of roll call voting1997New YorkOxford University Press
– reference: BallBNewmanMFriendship networks and social statusNetwork Science20131163010.1017/nws.2012.4
– reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM20115811:111:37281100010.1145/1970392.19703951327.62369
– reference: CucuringuMSynchronization over z2 and community detection in signed multiplex networks with constraintsJournal of Complex Networks20153469506344986910.1093/comnet/cnu05006954915
– reference: Fazel, M., Hindi, H. & Boyd, S. P. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proceedings of the 2003 American Control Conference, 2003, vol. 3, 2156–2162, vol. 3 (2003).
– reference: ChandrasekaranVSanghaviSParriloPAWillskyASRank-sparsity incoherence for matrix decompositionSIAM Journal on Optimization201121572596281747910.1137/0907617931226.90067
– reference: von LuxburgUA tutorial on spectral clusteringStatistics and Computing200717395416240980310.1007/s11222-007-9033-z
– reference: DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhys. Rev. E2011840661062011PhRvE..84f6106D10.1103/PhysRevE.84.0661061:CAS:528:DC%2BC38XhvFCisA%3D%3D
– reference: BaiJCommon breaks in means and variances for panel dataJournal of Econometrics20101577892265228010.1016/j.jeconom.2009.10.02006608388
– reference: Ma, H., Zhou, D., Liu, C., Lyu, M. R. & King, I. Recommender systems with social regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. WSDM ’11, 287–296 (ACM, New York, NY, USA, 2011).
– reference: BassettDSRobust detection of dynamic community structure in networksChaos: An Interdisciplinary Journal of Nonlinear Science201323013142338963310.1063/1.4790830
– reference: KrauseAEFrankKAMasonDMUlanowiczRETaylorWWCompartments revealed in food-web structureNature20034262822003Natur.426..282K10.1038/nature02115146280501:CAS:528:DC%2BD3sXptVOit74%3D
– reference: ZhangSZhaoJZhangX-SCommon community structure in time-varying networksPhys. Rev. E2012850561102012PhRvE..85e6110Z10.1103/PhysRevE.85.0561101:CAS:528:DC%2BC38XptVOnsrg%3D
– reference: Aicher, C., Jacobs, A. & Clauset, A. Adapting the stochastic block model to edge-weighted networks. ArXiv,0902.0885 (2013).
– reference: Lin, J. & Michailidis, G. Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models. ArXiv,1708.05879 (2017).
– reference: MuchaPJRichardsonTMaconKPorterMAOnnelaJ-PCommunity structure in time-dependent, multiscale, and multiplex networksScience20103288768782010Sci...328..876M266259010.1126/science.1184819204669261226.910561:CAS:528:DC%2BC3cXlvVeltr8%3D
– reference: HorvathLRiceGExtensions of some classical methods in change point analysisTEST201423219255321026810.1007/s11749-014-0368-41305.62310
– reference: Fazel, M. Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002).
– reference: CandèsEJRechtBExact matrix completion via convex optimizationFoundations of Computational Mathematics20099717256524010.1007/s10208-009-9045-51219.90124
– reference: Lin, Z., Chen, M. & Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. ArXiv,1009.5055 (2010).
– reference: FlakeGWLawrenceSGilesCLCoetzeeFMSelf-organization and identification of web communitiesComputer200235667010.1109/2.989932
– reference: FryzlewiczPWild binary segmentation for multiple change-point detectionAnn. Statist.20144222432281326997910.1214/14-AOS12451302.62075
– ident: 29964_CR40
  doi: 10.1109/ICCV.2003.1238361
– volume: 96
  start-page: 114102
  year: 2006
  ident: 29964_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.114102
– volume: 74
  start-page: 036104
  year: 2006
  ident: 29964_CR11
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.036104
– ident: 29964_CR32
  doi: 10.1109/ACC.2003.1243393
– ident: 29964_CR1
  doi: 10.1017/9781108290159
– volume: 58
  start-page: 11:1
  year: 2011
  ident: 29964_CR45
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– volume: 23
  start-page: 013142
  year: 2013
  ident: 29964_CR19
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.4790830
– volume: 486
  start-page: 75
  year: 2010
  ident: 29964_CR8
  publication-title: Physics Reports
  doi: 10.1016/j.physrep.2009.11.002
– volume: 42
  start-page: 2243
  year: 2014
  ident: 29964_CR36
  publication-title: Ann. Statist.
  doi: 10.1214/14-AOS1245
– volume: 85
  start-page: 056110
  year: 2012
  ident: 29964_CR18
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.85.056110
– volume: 51
  start-page: 34
  year: 2009
  ident: 29964_CR44
  publication-title: SIAM Review
  doi: 10.1137/060657704
– volume: 23
  start-page: 219
  year: 2014
  ident: 29964_CR34
  publication-title: TEST
  doi: 10.1007/s11749-014-0368-4
– volume: 3
  start-page: 469
  year: 2015
  ident: 29964_CR51
  publication-title: Journal of Complex Networks
  doi: 10.1093/comnet/cnu050
– ident: 29964_CR31
  doi: 10.1109/ACSSC.2008.5074571
– ident: 29964_CR23
– ident: 29964_CR30
  doi: 10.1145/1935826.1935877
– volume: 80
  start-page: 57
  year: 2018
  ident: 29964_CR38
  publication-title: Journal of the Royal Statistical Society: Series B Statistical Methodology
  doi: 10.1111/rssb.12243
– volume-title: Congress: a political-economic history of roll call voting
  year: 1997
  ident: 29964_CR49
– volume: 21
  start-page: 57
  year: 2011
  ident: 29964_CR27
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/100781894
– volume: 84
  start-page: 066106
  year: 2011
  ident: 29964_CR15
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.066106
– volume: 157
  start-page: 78
  year: 2010
  ident: 29964_CR37
  publication-title: Journal of Econometrics
  doi: 10.1016/j.jeconom.2009.10.020
– ident: 29964_CR33
– volume: 9
  start-page: 717
  year: 2009
  ident: 29964_CR25
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-009-9045-5
– volume: 22
  start-page: 2283
  year: 2006
  ident: 29964_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl370
– volume: 79
  start-page: 1187
  year: 2017
  ident: 29964_CR21
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/rssb.12205
– volume: 20
  start-page: 1956
  year: 2010
  ident: 29964_CR43
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/080738970
– volume: 69
  start-page: 026113
  year: 2004
  ident: 29964_CR9
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– ident: 29964_CR24
– volume: 83
  start-page: 016107
  year: 2011
  ident: 29964_CR14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.016107
– volume: 328
  start-page: 876
  year: 2010
  ident: 29964_CR17
  publication-title: Science
  doi: 10.1126/science.1184819
– ident: 29964_CR47
– volume: 43
  start-page: 1027
  year: 2015
  ident: 29964_CR29
  publication-title: Ann. Statist.
  doi: 10.1214/14-AOS1290
– volume-title: Networks: An Introduction
  year: 2010
  ident: 29964_CR7
  doi: 10.1093/acprof:oso/9780199206650.001.0001
– volume: 1
  start-page: 119
  year: 2013
  ident: 29964_CR50
  publication-title: Network Science
  doi: 10.1017/nws.2012.3
– volume: 35
  start-page: 66
  year: 2002
  ident: 29964_CR6
  publication-title: Computer
  doi: 10.1109/2.989932
– ident: 29964_CR22
  doi: 10.2139/ssrn.3615069
– volume: 21
  start-page: 572
  year: 2011
  ident: 29964_CR26
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/090761793
– volume-title: Limit Theorems in Change-Point Analysis
  year: 1997
  ident: 29964_CR35
– volume: 69
  start-page: 066133
  year: 2004
  ident: 29964_CR12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.066133
– volume: 52
  start-page: 471
  year: 2010
  ident: 29964_CR28
  publication-title: SIAM Review
  doi: 10.1137/070697835
– ident: 29964_CR46
– volume: 86
  start-page: 036104
  year: 2012
  ident: 29964_CR20
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.86.036104
– volume: 433
  start-page: 895
  year: 2005
  ident: 29964_CR4
  publication-title: Nature
  doi: 10.1038/nature03288
– volume: 70
  start-page: 025101
  year: 2004
  ident: 29964_CR13
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.025101
– volume: 5
  start-page: 127
  year: 2017
  ident: 29964_CR52
  publication-title: Journal of Complex Networks
– volume: 103
  start-page: 8577
  year: 2006
  ident: 29964_CR10
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.0601602103
– ident: 29964_CR16
  doi: 10.1561/9781680834772
– ident: 29964_CR42
– volume: 45
  start-page: 83
  year: 2012
  ident: 29964_CR41
  publication-title: IFAC Proceedings Volumes
  doi: 10.3182/20120711-3-BE-2027.00310
– volume: 426
  start-page: 282
  year: 2003
  ident: 29964_CR5
  publication-title: Nature
  doi: 10.1038/nature02115
– volume: 17
  start-page: 395
  year: 2007
  ident: 29964_CR39
  publication-title: Statistics and Computing
  doi: 10.1007/s11222-007-9033-z
– volume: 1
  start-page: 16
  year: 2013
  ident: 29964_CR3
  publication-title: Network Science
  doi: 10.1017/nws.2012.4
SSID ssj0000529419
Score 2.3083515
Snippet Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 12938
SubjectTerms 639/705/531
639/766/530/2801
Community structure
Data processing
Humanities and Social Sciences
multidisciplinary
Oscillators
Phase transitions
Political science
Science
Science (multidisciplinary)
Social sciences
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEB_8QPAifrt-kQfetNg0bZqeREQRQU9P2Ftt0hSFJbvvbT3sf-9Mmq2sotd2SpPML5mZzBfAmaq4UA1vvOYWpVLaqJKJiah8lU2NiK2PzXl8kvfP6cMwG4YLt2kIq5yfif6grseG7sjRSC9Q1qOAE1eTfxF1jSLvamihsQyrvnQZ4jkf5v0dC3mxUl6EXJlYqMspyivKKeOUelDINCoW5dE3JfN7rOQXh6mXQ3ebsBEUSHbdcXwLlqzbhrWupeRsGzZDQBuShG27Ay834_-WmS4VpJ2xrmbsOz4jcxixPGOVq9nkFSUaa0l4-TguVtvWB2o59uZYqGE1Gs2YxSON7iGY62LIp7vwfHf79-Y-Cp0VIoMaWhvpJNEqsZVMeWOkKqjdWF5bicaYMnnDY61EjYskMmXRphDSpLGhfKcmq7hG6j1YcWNnD4CR31bGRZMrIVKbcV2bRutKSQRArQs-AD5f39KEsuPU_WJUeve3UGXHkxJ_V3qelMUAzvtvJl3RjV-pj-dsK8MGnJafcBnAn_41bh3yh1TOjt89jcxQnYqRZr_jcv874XVLgcPPF_jfE1BZ7sU37u3Vl-eWHO1-kQ_gYo6Uz2H9PIvD32dxBOsJoTZG4KpjWEGg2BNUh1p96jH_AUn3CFE
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsQwcFgVwYv4tr6I4E2LTdOm6VGKsgh6cmFvtUlTFJbs4tbD_r2T9CHrCzxnQpKZSWYm8wK4EAVloqKV09z8iHPtFzxUvi1fpSPFAu1icx4e-XAU3Y_j8QDCLhfGBe27kpbume6iw67nKGhsMhi1OQMpj_x0BdYE2nWWqzOe9f8q1nMV0bTNjwmY-GHqsgz6plh-j4_84iR1suduCzZbpZHcNNvchoE2O7DetJFc7MJzNn3TRDWpHvWCNDVh8XDEmrvIqwtSmJLMXlBikdoKJxenRUpdu0AsQ14NaWtUTSYLovHJsv8MxDQx4vM9GN3dPmVDv-2c4CvUwGpfhqEUoS54RCvFRWrbiSWl5mhsCZVUNJCClYgQFguNNgPjKgqUzWeq4oJKhN6HVTM1-hCI9cvyIK0SwVikYypLVUlZCI4ELmVKPaAdLnPVlhW33S0muXNvM5E3-M9xudzhP089uOznzJqiGn9Cn3QkytsLNs9DNEtRWUNjy4PzfhivhvV3FEZP3x0Mj1FdChDmoKFovxxzuiPD7SdLtO4BbNnt5RHz-uLKb3OKdj1LPLjquOJzW7-f4uh_4MewEVqODZBpxQmsIuPoU1R_annm-P0DAVL_nQ
  priority: 102
  providerName: Springer Nature
Title Core community structure recovery and phase transition detection in temporally evolving networks
URI https://link.springer.com/article/10.1038/s41598-018-29964-9
https://www.ncbi.nlm.nih.gov/pubmed/30154531
https://www.proquest.com/docview/2094560753
https://www.proquest.com/docview/2096555403
https://pubmed.ncbi.nlm.nih.gov/PMC6113337
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8oOBLaW1rr9Vjhb7Z2Gw22WweSjkPRQ4U0R7cW8xuNigce9aLYP57Z3eTk6sf4FMgmXzNzmZ-k535DcAPUVAmKlo55BbEnOug4JEKLH2VjhULtcvNOTnlx-N4NEkmK9C1O2oVOH82tLP9pMa30_37f80fnPC_fcm4-DVHJ2QLxaitJ8h4HGSrsI6eidtg7KSF-57rO8pi1-vDkrAHCCaito7m-css-6onAPRpHuV_i6nORx19gPctuCQDbw0fYUWbTXjn2002n-ByOLvVRPmSkLohnjv2DvfZsBhtuiGFKcnNFXo2Ulsn5vK5SKlrl7BlyLUhLZfVdNoQjZ82-z-CGJ9LPv8M46PDv8PjoO2wEChEanUgo0iKSBc8ppXiIrNtx9JScwzKhEorGkrBSlQIS4TG2IJxFYfK1j1VSUElSn-BNTMz-isQu37Lw6xKBWOxTqgsVSVlITgaQikz2gPa6TJXLf247YIxzd0yOBO513-Ot8ud_vOsB3uLc248-car0tvdEOWdHeURhq8I6jAo68Hu4jBOIbsuUhg9u3MyPEFYFaLMlh_Rxe2Yw5gMHz9dGuuFgKXnXj5irq8cTTenGP-ztAc_O6t4fKyX3-Lbm975O2xE1mBDtFmxDWtoN3oHUVIt-7CaTtI-rA8Go4sRbg8OT8_Oce-QD_vuz0PfTY4H5q0Qkg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcUCmvhQJGghNEjWPHcQ4IQWm1pe0KoVbqLU0cR620yi5sKpQ_xW9kxk5SLRW99RpP4iTzjWfseQG81TkXuuKVs9wCqZQNchWZgMpXWWlEaF1sztFUTU7kt9P4dA3-9LkwFFbZr4luoS7nhs7IcZOeoq5HBSc-LX4G1DWKvKt9Cw0PiwPb_sYt2_Lj_lfk77so2ts93pkEXVeBwKB10gRFFBU6srmSvDJKp9RqKymtwo2INknFw0KLMkSkx9qiPS2UkaGhXJ8qznmB1PjcO7AuKaN1BOtfdqfffwynOuQ3kzztsnNCobeXqCEpi41TskOqZJCuasBrZu316Mx_XLRO8-1twIPOZGWfPcYewpqtN-Gub2LZbsJGF0KHJN1C8QjOdua_LDM--aRpma9Se4nXaAOO0tOyvC7Z4hx1KGtIXbrIMVbaxoWG1eyiZl3VrNmsZRYXUTr5YLWPWl8-hpNb-etPYFTPa_sMGHmKVZhWiRZC2pgXpamKItcKIVcWKR8D7_9vZrpC59RvY5Y5h7vQmedJhtNljidZOob3wz0LX-bjRuqtnm1ZJ_LL7AqgY3gzDKOwkgcmr-380tGoGA24EGmeei4P0wlnzQp8_WSF_wMBFQJfHakvzl1BcMW5ECIZw4ceKVev9f-veH7zV7yGe5Pjo8PscH968ALuR4TgEEGst2CEoLEv0RhriledBDA4u22h-wv02kQO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXVMproYCR4ARR4zhxnANCqGXVUqg4UGlvbuw4aqWVd2FTofw1fh3jR1ItFb31Gk_iJPONZ-x5AbwRNWWipa233JKcc5PUPNOJK19lcs1S42Nzvh3zg5P8y6yYbcCfIRfGhVUOa6JfqJuFdmfkuEmvUNejgmO7bQyL-L4__bj8mbgOUs7TOrTTCBA5Mv1v3L6tPhzuI6_fZtn084-9gyR2GEg0WipdorJMiczUPKet5qJybbfKxnDclAhdtjRVgjUpor4QBm1rxnWeapf30xY1VUiNz70Ft0uGVhXKUjkrx_Md50HLaRXzdFImdleoK10-G3VpDxXPk2pdF14xcK_Gaf7jrPU6cLoF96PxSj4FtD2ADWO34U5oZ9lvw1YMpkOSuGQ8hNO9xS9DdEhD6XoS6tVe4DW3FUc56kltG7I8Q21KOqc4fQwZaUzng8QsObck1s-az3ticDl1ZyDEhvj11SM4uZF__hg27cKap0Ccz5inVVsKxnJTUNXoVqlacARfoyo6ATr8X6ljyXPXeWMuveudCRl4InE66Xkiqwm8G-9ZhoIf11LvDGyTUfhX8hKqE3g9DqPYOl9Mbc3iwtPwAk25FGmeBC6P0zFv1zJ8_XKN_yOBKwm-PmLPz3xpcE4pY6ycwPsBKZev9f-veHb9V7yCuyhq8uvh8dFzuJc5AKeIYbEDm4gZ8wKtsk699PAncHrT8vYXdCNG1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core+community+structure+recovery+and+phase+transition+detection+in+temporally+evolving+networks&rft.jtitle=Scientific+reports&rft.au=Bao%2C+Wei&rft.au=Michailidis%2C+George&rft.date=2018-08-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-29964-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_29964_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon