Core community structure recovery and phase transition detection in temporally evolving networks
Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition o...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 12938 - 16 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.08.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-29964-9 |
Cover
Abstract | Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate’s voting record from 1979–2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject. |
---|---|
AbstractList | Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate’s voting record from 1979–2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject. Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate's voting record from 1979-2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject.Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields, including biology, social sciences and engineering. In this work, we introduce methodology to address this problem, based on a decomposition of the network adjacency matrices into low-rank components that capture the community structure and sparse & dense noise perturbation components. It is further assumed that the low-rank structure exhibits sharp changes (phase transitions) at certain epochs that our methodology successfully detects and identifies. The latter is achieved by averaging the low-rank component over time windows, which in turn enables us to precisely select the correct rank and monitor its evolution over time and thus identify the phase transition epochs. The methodology is illustrated on both synthetic networks generated by various network formation models, as well as the Kuramoto model of coupled oscillators and on real data reflecting the US Senate's voting record from 1979-2014. In the latter application, we identify that party polarization exhibited a sharp change and increased after 1993, a finding broadly concordant with the political science literature on the subject. |
ArticleNumber | 12938 |
Author | Bao, Wei Michailidis, George |
Author_xml | – sequence: 1 givenname: Wei surname: Bao fullname: Bao, Wei organization: Department of Physics, University of Michigan – sequence: 2 givenname: George surname: Michailidis fullname: Michailidis, George email: gmichail@ufl.edu organization: Department of Statistics and the Informatics Institute, University of Florida |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30154531$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTtvFDEUhS2UiDzIH6BAI9HQDPF77QYJrUhAikQDtfF47mwcZuzF9my0_z7ebAghRdz4yv7O9Tm-J-ggxAAIvSX4I8FMnWdOhFYtJqqlWkve6lfomGIuWsooPXhSH6GznG9wXYJqTvRrdMQwEVwwcox-LWOCxsVpmoMv2yaXNLsy17MELm4gbRsb-mZ9bTM0JdmQffExND0UcPeVD02BaR2THcdtA5s4bnxYNQHKbUy_8xt0ONgxw9nDfop-Xnz5sfzaXn2__Lb8fNU6wXFpO0o7RcFKTgYnlcaKkUUPUlOu3GIguFOsr2GZUMCwZNJx7DAjehCWdJU-RZ_2fddzN0HvIFS3o1knP9m0NdF68_9N8NdmFTdGEsIYW9QGHx4apPhnhlzM5LODcbQB4pwNxVoKUc2yir5_ht7EOYUab0dxIfFC7Kh3Tx09Wvn7-RWge8ClmHOC4REh2OyGbPZDNjW3uR-y0VWknomcL3Y3iZrKjy9L2V6a6zthBemf7RdUd47_vH0 |
CitedBy_id | crossref_primary_10_1103_PhysRevE_100_032308 crossref_primary_10_1007_s13171_021_00248_1 crossref_primary_10_1007_s41109_019_0119_2 crossref_primary_10_1016_j_physa_2020_125598 crossref_primary_10_1088_1742_6596_1453_1_012109 crossref_primary_10_1038_s41598_023_44791_3 crossref_primary_10_1109_ACCESS_2021_3105692 crossref_primary_10_1109_TSIPN_2019_2942176 |
Cites_doi | 10.1109/ICCV.2003.1238361 10.1103/PhysRevLett.96.114102 10.1103/PhysRevE.74.036104 10.1109/ACC.2003.1243393 10.1017/9781108290159 10.1145/1970392.1970395 10.1063/1.4790830 10.1016/j.physrep.2009.11.002 10.1214/14-AOS1245 10.1103/PhysRevE.85.056110 10.1137/060657704 10.1007/s11749-014-0368-4 10.1093/comnet/cnu050 10.1109/ACSSC.2008.5074571 10.1145/1935826.1935877 10.1111/rssb.12243 10.1137/100781894 10.1103/PhysRevE.84.066106 10.1016/j.jeconom.2009.10.020 10.1007/s10208-009-9045-5 10.1093/bioinformatics/btl370 10.1111/rssb.12205 10.1137/080738970 10.1103/PhysRevE.69.026113 10.1103/PhysRevE.83.016107 10.1126/science.1184819 10.1214/14-AOS1290 10.1093/acprof:oso/9780199206650.001.0001 10.1017/nws.2012.3 10.1109/2.989932 10.2139/ssrn.3615069 10.1137/090761793 10.1103/PhysRevE.69.066133 10.1137/070697835 10.1103/PhysRevE.86.036104 10.1038/nature03288 10.1103/PhysRevE.70.025101 10.1073/pnas.0601602103 10.1561/9781680834772 10.3182/20120711-3-BE-2027.00310 10.1038/nature02115 10.1007/s11222-007-9033-z 10.1017/nws.2012.4 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-29964-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central (NC Live) Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Political Science |
EISSN | 2045-2322 |
EndPage | 16 |
ExternalDocumentID | PMC6113337 30154531 10_1038_s41598_018_29964_9 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AARCD AASML AAYXX AFPKN CITATION PHGZM PHGZT PJZUB PPXIY PQGLB NPM 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c540t-b22b82ea641fc68908317de69248c7f10b83d018358e30636c40c0319f5a1b083 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:21:30 EDT 2025 Fri Sep 05 14:38:27 EDT 2025 Wed Aug 13 07:36:09 EDT 2025 Mon Jul 21 06:00:13 EDT 2025 Tue Aug 05 12:02:53 EDT 2025 Thu Apr 24 23:08:32 EDT 2025 Fri Feb 21 02:38:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b22b82ea641fc68908317de69248c7f10b83d018358e30636c40c0319f5a1b083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2094560753?pq-origsite=%requestingapplication% |
PMID | 30154531 |
PQID | 2094560753 |
PQPubID | 2041939 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113337 proquest_miscellaneous_2096555403 proquest_journals_2094560753 pubmed_primary_30154531 crossref_primary_10_1038_s41598_018_29964_9 crossref_citationtrail_10_1038_s41598_018_29964_9 springer_journals_10_1038_s41598_018_29964_9 |
PublicationCentury | 2000 |
PublicationDate | 2018-08-28 |
PublicationDateYYYYMMDD | 2018-08-28 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | BallBNewmanMFriendship networks and social statusNetwork Science20131163010.1017/nws.2012.4 CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM20115811:111:37281100010.1145/1970392.19703951327.62369 Ma, H., Zhou, D., Liu, C., Lyu, M. R. & King, I. Recommender systems with social regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. WSDM ’11, 287–296 (ACM, New York, NY, USA, 2011). NewmanMEJModularity and community structure in networksProceedings of the National Academy of Sciences2006103857785822006PNAS..103.8577N10.1073/pnas.06016021031:CAS:528:DC%2BD28XlvVCitLw%3D OnnelaJ-PTaxonomies of networks from community structurePhys. Rev. E2012860361042012PhRvE..86c6104O10.1103/PhysRevE.86.0361041:CAS:528:DC%2BC38XhsF2ns7bO CucuringuMSynchronization over z2 and community detection in signed multiplex networks with constraintsJournal of Complex Networks20153469506344986910.1093/comnet/cnu05006954915 Lu, Z., Banerjee, M. & Michailidis, G. Intelligent sampling for multiple change-points in exceedingly long time series with rate guarantees. ArXiv,1710.07420 (2017). MuchaPJRichardsonTMaconKPorterMAOnnelaJ-PCommunity structure in time-dependent, multiscale, and multiplex networksScience20103288768782010Sci...328..876M266259010.1126/science.1184819204669261226.910561:CAS:528:DC%2BC3cXlvVeltr8%3D FryzlewiczPWild binary segmentation for multiple change-point detectionAnn. Statist.20144222432281326997910.1214/14-AOS12451302.62075 HorvathLRiceGExtensions of some classical methods in change point analysisTEST201423219255321026810.1007/s11749-014-0368-41305.62310 NewmanMEJFast algorithm for detecting community structure in networksPhys. Rev. E2004690661332004PhRvE..69f6133N10.1103/PhysRevE.69.0661331:CAS:528:DC%2BD2cXls1Sntro%3D PooleKTRosenthalHCongress: a political-economic history of roll call voting1997New YorkOxford University Press CaiTTLiXRobust and computationally feasible community detection in the presence of arbitrary outlier nodesAnn. Statist.20154310271059334669610.1214/14-AOS12901328.62381 Safikhani, A. & Shojaie, A. Joint Structural Break Detection and Parameter Estimation in High-Dimensional Non-Stationary VAR Models. ArXiv,1711.07357 (2017). TaoMYuanXRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM Journal on Optimization2011215781276548910.1137/1007818941218.90115 Lin, J. & Michailidis, G. Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models. ArXiv,1708.05879 (2017). Fazel, M. Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002). WahlbergBBoydSAnnergrenMWangYAn admm algorithm for a class of total variation regularized estimation problems*IFAC Proceedings Volumes201245838810.3182/20120711-3-BE-2027.0031016th IFAC Symposium on System Identification ArenasADaz-GuileraAPérez-VicenteCJSynchronization reveals topological scales in complex networksPhys. Rev. Lett.2006961141022006PhRvL..96k4102A10.1103/PhysRevLett.96.114102166058251:CAS:528:DC%2BD28XivV2gtrk%3D Abbe, E. Community detection and stochastic block models: recent developments. ArXiv,1703.10146 (2017). Fazel, M., Candes, E., Recht, B. & Parrilo, P. Compressed sensing and robust recovery of low rank matrices. In 2008 42nd Asilomar Conference on Signals, Systems and Computers, 1043–1047 (2008). BrucksteinAMDonohoDLEladMFrom sparse solutions of systems of equations to sparse modeling of signals and imagesSIAM Review20095134812009SIAMR..51...34B248111110.1137/0606577041178.68619 Kolaczyk, E. D. Topics at the Frontier of Statistics and Network Analysis: (Re)Visiting the Foundations. SemStat Elements (Cambridge University Press, 2017). GuimeràRSales-PardoMAmaralLANModularity from fluctuations in random graphs and complex networksPhys. Rev. E2004700251012004PhRvE..70b5101G10.1103/PhysRevE.70.0251011:CAS:528:DC%2BD2cXnsVCmsLc%3D BassettDSRobust detection of dynamic community structure in networksChaos: An Interdisciplinary Journal of Nonlinear Science201323013142338963310.1063/1.4790830 HorvathLCsorgoMLimit Theorems in Change-Point Analysis1997New York, NY, USAWiley0884.62023 Aicher, C., Jacobs, A. & Clauset, A. Adapting the stochastic block model to edge-weighted networks. ArXiv,0902.0885 (2013). ChandrasekaranVSanghaviSParriloPAWillskyASRank-sparsity incoherence for matrix decompositionSIAM Journal on Optimization201121572596281747910.1137/0907617931226.90067 RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Review201052471501268054310.1137/0706978351198.90321 NewmanMEJGirvanMFinding and evaluating community structure in networksPhys. Rev. E2004690261132004PhRvE..69b6113N10.1103/PhysRevE.69.0261131:CAS:528:DC%2BD2cXitlOisL0%3D RoySAtchadeYMichailidisGChange point estimation in high dimensional markov random-field modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)20177911871206368931410.1111/rssb.122051373.62260 MoodyJMuchaPJPortrait of political party polarizationNetwork Science2013111912110.1017/nws.2012.3 Fazel, M., Hindi, H. & Boyd, S. P. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proceedings of the 2003 American Control Conference, 2003, vol. 3, 2156–2162, vol. 3 (2003). FlakeGWLawrenceSGilesCLCoetzeeFMSelf-organization and identification of web communitiesComputer200235667010.1109/2.989932 Lin, Z., Chen, M. & Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. ArXiv,1009.5055 (2010). DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhys. Rev. E2011840661062011PhRvE..84f6106D10.1103/PhysRevE.84.0661061:CAS:528:DC%2BC38XhvFCisA%3D%3D Paffenroth, R., Kay, K. & Servi, L. Robust PCA for Anomaly Detection in Cyber Networks. ArXiv,1801.01571 (2018). CaiJ-FCandèsEJShenZA singular value thresholding algorithm for matrix completionSIAM Journal on Optimization20102019561982260024810.1137/0807389701201.90155 ZhangSZhaoJZhangX-SCommon community structure in time-varying networksPhys. Rev. E2012850561102012PhRvE..85e6110Z10.1103/PhysRevE.85.0561101:CAS:528:DC%2BC38XptVOnsrg%3D BaiJCommon breaks in means and variances for panel dataJournal of Econometrics20101577892265228010.1016/j.jeconom.2009.10.02006608388 LeeSHMagallanesJMPorterMATime-dependent community structure in legislation cosponsorship networks in the congress of the republic of peruJournal of Complex Networks201751271443614920 KrauseAEFrankKAMasonDMUlanowiczRETaylorWWCompartments revealed in food-web structureNature20034262822003Natur.426..282K10.1038/nature02115146280501:CAS:528:DC%2BD3sXptVOit74%3D Yu, S. X. & Shi, J. Multiclass spectral clustering. In Proceedings Ninth IEEE International Conference on Computer Vision, 313–319, vol. 1 (2003). NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E2006740361042006PhRvE..74c6104N228213910.1103/PhysRevE.74.0361041:CAS:528:DC%2BD28XhtFygt7zN von LuxburgUA tutorial on spectral clusteringStatistics and Computing200717395416240980310.1007/s11222-007-9033-z KarrerBNewmanMEJStochastic blockmodels and community structure in networksPhys. Rev. E2011830161072011PhRvE..83a6107K278820610.1103/PhysRevE.83.0161071:CAS:528:DC%2BC3MXhsFSgs7g%3D NewmanMNetworks: An Introduction2010New York, NY, USAOxford University Press, Inc.10.1093/acprof:oso/9780199206650.001.00011195.94003 WangTSamworthRJHigh dimensional change point estimation via sparse projectionJournal of the Royal Statistical Society: Series B Statistical Methodology2018805783374471210.1111/rssb.1224306840457 FortunatoSCommunity detection in graphsPhysics Reports2010486751742010PhR...486...75F258041410.1016/j.physrep.2009.11.002 CandèsEJRechtBExact matrix completion via convex optimizationFoundations of Computational Mathematics20099717256524010.1007/s10208-009-9045-51219.90124 GuimeràRNunes AmaralLAFunctional cartography of complex metabolic networksNature20054338952005Natur.433..895G10.1038/nature032881572934821751241:CAS:528:DC%2BD2MXhsFOrtb4%3D ChenJYuanBDetecting functional modules in the yeast protein protein interaction networkBioinformatics2006222283229010.1093/bioinformatics/btl370168375291:CAS:528:DC%2BD28Xps1ygu70%3D 29964_CR33 29964_CR1 29964_CR31 J-P Onnela (29964_CR20) 2012; 86 29964_CR32 R Guimerà (29964_CR13) 2004; 70 29964_CR30 DS Bassett (29964_CR19) 2013; 23 A Arenas (29964_CR48) 2006; 96 M Tao (29964_CR27) 2011; 21 R Guimerà (29964_CR4) 2005; 433 A Decelle (29964_CR15) 2011; 84 29964_CR24 J Moody (29964_CR50) 2013; 1 29964_CR42 EJ Candès (29964_CR45) 2011; 58 29964_CR40 S Zhang (29964_CR18) 2012; 85 P Fryzlewicz (29964_CR36) 2014; 42 GW Flake (29964_CR6) 2002; 35 M Cucuringu (29964_CR51) 2015; 3 L Horvath (29964_CR34) 2014; 23 J Bai (29964_CR37) 2010; 157 L Horvath (29964_CR35) 1997 U von Luxburg (29964_CR39) 2007; 17 MEJ Newman (29964_CR10) 2006; 103 PJ Mucha (29964_CR17) 2010; 328 J-F Cai (29964_CR43) 2010; 20 B Karrer (29964_CR14) 2011; 83 KT Poole (29964_CR49) 1997 MEJ Newman (29964_CR12) 2004; 69 J Chen (29964_CR2) 2006; 22 B Recht (29964_CR28) 2010; 52 EJ Candès (29964_CR25) 2009; 9 B Ball (29964_CR3) 2013; 1 AE Krause (29964_CR5) 2003; 426 S Roy (29964_CR21) 2017; 79 B Wahlberg (29964_CR41) 2012; 45 AM Bruckstein (29964_CR44) 2009; 51 29964_CR46 V Chandrasekaran (29964_CR26) 2011; 21 29964_CR47 29964_CR22 MEJ Newman (29964_CR9) 2004; 69 29964_CR23 S Fortunato (29964_CR8) 2010; 486 TT Cai (29964_CR29) 2015; 43 T Wang (29964_CR38) 2018; 80 SH Lee (29964_CR52) 2017; 5 MEJ Newman (29964_CR11) 2006; 74 29964_CR16 M Newman (29964_CR7) 2010 |
References_xml | – reference: GuimeràRSales-PardoMAmaralLANModularity from fluctuations in random graphs and complex networksPhys. Rev. E2004700251012004PhRvE..70b5101G10.1103/PhysRevE.70.0251011:CAS:528:DC%2BD2cXnsVCmsLc%3D – reference: KarrerBNewmanMEJStochastic blockmodels and community structure in networksPhys. Rev. E2011830161072011PhRvE..83a6107K278820610.1103/PhysRevE.83.0161071:CAS:528:DC%2BC3MXhsFSgs7g%3D – reference: HorvathLCsorgoMLimit Theorems in Change-Point Analysis1997New York, NY, USAWiley0884.62023 – reference: RechtBFazelMParriloPAGuaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimizationSIAM Review201052471501268054310.1137/0706978351198.90321 – reference: TaoMYuanXRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM Journal on Optimization2011215781276548910.1137/1007818941218.90115 – reference: BrucksteinAMDonohoDLEladMFrom sparse solutions of systems of equations to sparse modeling of signals and imagesSIAM Review20095134812009SIAMR..51...34B248111110.1137/0606577041178.68619 – reference: FortunatoSCommunity detection in graphsPhysics Reports2010486751742010PhR...486...75F258041410.1016/j.physrep.2009.11.002 – reference: NewmanMEJFast algorithm for detecting community structure in networksPhys. Rev. E2004690661332004PhRvE..69f6133N10.1103/PhysRevE.69.0661331:CAS:528:DC%2BD2cXls1Sntro%3D – reference: Lu, Z., Banerjee, M. & Michailidis, G. Intelligent sampling for multiple change-points in exceedingly long time series with rate guarantees. ArXiv,1710.07420 (2017). – reference: OnnelaJ-PTaxonomies of networks from community structurePhys. Rev. E2012860361042012PhRvE..86c6104O10.1103/PhysRevE.86.0361041:CAS:528:DC%2BC38XhsF2ns7bO – reference: CaiTTLiXRobust and computationally feasible community detection in the presence of arbitrary outlier nodesAnn. Statist.20154310271059334669610.1214/14-AOS12901328.62381 – reference: ArenasADaz-GuileraAPérez-VicenteCJSynchronization reveals topological scales in complex networksPhys. Rev. Lett.2006961141022006PhRvL..96k4102A10.1103/PhysRevLett.96.114102166058251:CAS:528:DC%2BD28XivV2gtrk%3D – reference: ChenJYuanBDetecting functional modules in the yeast protein protein interaction networkBioinformatics2006222283229010.1093/bioinformatics/btl370168375291:CAS:528:DC%2BD28Xps1ygu70%3D – reference: CaiJ-FCandèsEJShenZA singular value thresholding algorithm for matrix completionSIAM Journal on Optimization20102019561982260024810.1137/0807389701201.90155 – reference: Kolaczyk, E. D. Topics at the Frontier of Statistics and Network Analysis: (Re)Visiting the Foundations. SemStat Elements (Cambridge University Press, 2017). – reference: Yu, S. X. & Shi, J. Multiclass spectral clustering. In Proceedings Ninth IEEE International Conference on Computer Vision, 313–319, vol. 1 (2003). – reference: NewmanMNetworks: An Introduction2010New York, NY, USAOxford University Press, Inc.10.1093/acprof:oso/9780199206650.001.00011195.94003 – reference: WangTSamworthRJHigh dimensional change point estimation via sparse projectionJournal of the Royal Statistical Society: Series B Statistical Methodology2018805783374471210.1111/rssb.1224306840457 – reference: NewmanMEJFinding community structure in networks using the eigenvectors of matricesPhys. Rev. E2006740361042006PhRvE..74c6104N228213910.1103/PhysRevE.74.0361041:CAS:528:DC%2BD28XhtFygt7zN – reference: NewmanMEJGirvanMFinding and evaluating community structure in networksPhys. Rev. E2004690261132004PhRvE..69b6113N10.1103/PhysRevE.69.0261131:CAS:528:DC%2BD2cXitlOisL0%3D – reference: WahlbergBBoydSAnnergrenMWangYAn admm algorithm for a class of total variation regularized estimation problems*IFAC Proceedings Volumes201245838810.3182/20120711-3-BE-2027.0031016th IFAC Symposium on System Identification – reference: GuimeràRNunes AmaralLAFunctional cartography of complex metabolic networksNature20054338952005Natur.433..895G10.1038/nature032881572934821751241:CAS:528:DC%2BD2MXhsFOrtb4%3D – reference: RoySAtchadeYMichailidisGChange point estimation in high dimensional markov random-field modelsJournal of the Royal Statistical Society: Series B (Statistical Methodology)20177911871206368931410.1111/rssb.122051373.62260 – reference: MoodyJMuchaPJPortrait of political party polarizationNetwork Science2013111912110.1017/nws.2012.3 – reference: Safikhani, A. & Shojaie, A. Joint Structural Break Detection and Parameter Estimation in High-Dimensional Non-Stationary VAR Models. ArXiv,1711.07357 (2017). – reference: Fazel, M., Candes, E., Recht, B. & Parrilo, P. Compressed sensing and robust recovery of low rank matrices. In 2008 42nd Asilomar Conference on Signals, Systems and Computers, 1043–1047 (2008). – reference: Paffenroth, R., Kay, K. & Servi, L. Robust PCA for Anomaly Detection in Cyber Networks. ArXiv,1801.01571 (2018). – reference: NewmanMEJModularity and community structure in networksProceedings of the National Academy of Sciences2006103857785822006PNAS..103.8577N10.1073/pnas.06016021031:CAS:528:DC%2BD28XlvVCitLw%3D – reference: Abbe, E. Community detection and stochastic block models: recent developments. ArXiv,1703.10146 (2017). – reference: LeeSHMagallanesJMPorterMATime-dependent community structure in legislation cosponsorship networks in the congress of the republic of peruJournal of Complex Networks201751271443614920 – reference: PooleKTRosenthalHCongress: a political-economic history of roll call voting1997New YorkOxford University Press – reference: BallBNewmanMFriendship networks and social statusNetwork Science20131163010.1017/nws.2012.4 – reference: CandèsEJLiXMaYWrightJRobust principal component analysis?J. ACM20115811:111:37281100010.1145/1970392.19703951327.62369 – reference: CucuringuMSynchronization over z2 and community detection in signed multiplex networks with constraintsJournal of Complex Networks20153469506344986910.1093/comnet/cnu05006954915 – reference: Fazel, M., Hindi, H. & Boyd, S. P. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proceedings of the 2003 American Control Conference, 2003, vol. 3, 2156–2162, vol. 3 (2003). – reference: ChandrasekaranVSanghaviSParriloPAWillskyASRank-sparsity incoherence for matrix decompositionSIAM Journal on Optimization201121572596281747910.1137/0907617931226.90067 – reference: von LuxburgUA tutorial on spectral clusteringStatistics and Computing200717395416240980310.1007/s11222-007-9033-z – reference: DecelleAKrzakalaFMooreCZdeborováLAsymptotic analysis of the stochastic block model for modular networks and its algorithmic applicationsPhys. Rev. E2011840661062011PhRvE..84f6106D10.1103/PhysRevE.84.0661061:CAS:528:DC%2BC38XhvFCisA%3D%3D – reference: BaiJCommon breaks in means and variances for panel dataJournal of Econometrics20101577892265228010.1016/j.jeconom.2009.10.02006608388 – reference: Ma, H., Zhou, D., Liu, C., Lyu, M. R. & King, I. Recommender systems with social regularization. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining. WSDM ’11, 287–296 (ACM, New York, NY, USA, 2011). – reference: BassettDSRobust detection of dynamic community structure in networksChaos: An Interdisciplinary Journal of Nonlinear Science201323013142338963310.1063/1.4790830 – reference: KrauseAEFrankKAMasonDMUlanowiczRETaylorWWCompartments revealed in food-web structureNature20034262822003Natur.426..282K10.1038/nature02115146280501:CAS:528:DC%2BD3sXptVOit74%3D – reference: ZhangSZhaoJZhangX-SCommon community structure in time-varying networksPhys. Rev. E2012850561102012PhRvE..85e6110Z10.1103/PhysRevE.85.0561101:CAS:528:DC%2BC38XptVOnsrg%3D – reference: Aicher, C., Jacobs, A. & Clauset, A. Adapting the stochastic block model to edge-weighted networks. ArXiv,0902.0885 (2013). – reference: Lin, J. & Michailidis, G. Regularized Estimation and Testing for High-Dimensional Multi-Block Vector-Autoregressive Models. ArXiv,1708.05879 (2017). – reference: MuchaPJRichardsonTMaconKPorterMAOnnelaJ-PCommunity structure in time-dependent, multiscale, and multiplex networksScience20103288768782010Sci...328..876M266259010.1126/science.1184819204669261226.910561:CAS:528:DC%2BC3cXlvVeltr8%3D – reference: HorvathLRiceGExtensions of some classical methods in change point analysisTEST201423219255321026810.1007/s11749-014-0368-41305.62310 – reference: Fazel, M. Matrix Rank Minimization with Applications. Ph.D. thesis, Stanford University (2002). – reference: CandèsEJRechtBExact matrix completion via convex optimizationFoundations of Computational Mathematics20099717256524010.1007/s10208-009-9045-51219.90124 – reference: Lin, Z., Chen, M. & Ma, Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices. ArXiv,1009.5055 (2010). – reference: FlakeGWLawrenceSGilesCLCoetzeeFMSelf-organization and identification of web communitiesComputer200235667010.1109/2.989932 – reference: FryzlewiczPWild binary segmentation for multiple change-point detectionAnn. Statist.20144222432281326997910.1214/14-AOS12451302.62075 – ident: 29964_CR40 doi: 10.1109/ICCV.2003.1238361 – volume: 96 start-page: 114102 year: 2006 ident: 29964_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.114102 – volume: 74 start-page: 036104 year: 2006 ident: 29964_CR11 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.036104 – ident: 29964_CR32 doi: 10.1109/ACC.2003.1243393 – ident: 29964_CR1 doi: 10.1017/9781108290159 – volume: 58 start-page: 11:1 year: 2011 ident: 29964_CR45 publication-title: J. ACM doi: 10.1145/1970392.1970395 – volume: 23 start-page: 013142 year: 2013 ident: 29964_CR19 publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.4790830 – volume: 486 start-page: 75 year: 2010 ident: 29964_CR8 publication-title: Physics Reports doi: 10.1016/j.physrep.2009.11.002 – volume: 42 start-page: 2243 year: 2014 ident: 29964_CR36 publication-title: Ann. Statist. doi: 10.1214/14-AOS1245 – volume: 85 start-page: 056110 year: 2012 ident: 29964_CR18 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.85.056110 – volume: 51 start-page: 34 year: 2009 ident: 29964_CR44 publication-title: SIAM Review doi: 10.1137/060657704 – volume: 23 start-page: 219 year: 2014 ident: 29964_CR34 publication-title: TEST doi: 10.1007/s11749-014-0368-4 – volume: 3 start-page: 469 year: 2015 ident: 29964_CR51 publication-title: Journal of Complex Networks doi: 10.1093/comnet/cnu050 – ident: 29964_CR31 doi: 10.1109/ACSSC.2008.5074571 – ident: 29964_CR23 – ident: 29964_CR30 doi: 10.1145/1935826.1935877 – volume: 80 start-page: 57 year: 2018 ident: 29964_CR38 publication-title: Journal of the Royal Statistical Society: Series B Statistical Methodology doi: 10.1111/rssb.12243 – volume-title: Congress: a political-economic history of roll call voting year: 1997 ident: 29964_CR49 – volume: 21 start-page: 57 year: 2011 ident: 29964_CR27 publication-title: SIAM Journal on Optimization doi: 10.1137/100781894 – volume: 84 start-page: 066106 year: 2011 ident: 29964_CR15 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.066106 – volume: 157 start-page: 78 year: 2010 ident: 29964_CR37 publication-title: Journal of Econometrics doi: 10.1016/j.jeconom.2009.10.020 – ident: 29964_CR33 – volume: 9 start-page: 717 year: 2009 ident: 29964_CR25 publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-009-9045-5 – volume: 22 start-page: 2283 year: 2006 ident: 29964_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl370 – volume: 79 start-page: 1187 year: 2017 ident: 29964_CR21 publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/rssb.12205 – volume: 20 start-page: 1956 year: 2010 ident: 29964_CR43 publication-title: SIAM Journal on Optimization doi: 10.1137/080738970 – volume: 69 start-page: 026113 year: 2004 ident: 29964_CR9 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.026113 – ident: 29964_CR24 – volume: 83 start-page: 016107 year: 2011 ident: 29964_CR14 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.016107 – volume: 328 start-page: 876 year: 2010 ident: 29964_CR17 publication-title: Science doi: 10.1126/science.1184819 – ident: 29964_CR47 – volume: 43 start-page: 1027 year: 2015 ident: 29964_CR29 publication-title: Ann. Statist. doi: 10.1214/14-AOS1290 – volume-title: Networks: An Introduction year: 2010 ident: 29964_CR7 doi: 10.1093/acprof:oso/9780199206650.001.0001 – volume: 1 start-page: 119 year: 2013 ident: 29964_CR50 publication-title: Network Science doi: 10.1017/nws.2012.3 – volume: 35 start-page: 66 year: 2002 ident: 29964_CR6 publication-title: Computer doi: 10.1109/2.989932 – ident: 29964_CR22 doi: 10.2139/ssrn.3615069 – volume: 21 start-page: 572 year: 2011 ident: 29964_CR26 publication-title: SIAM Journal on Optimization doi: 10.1137/090761793 – volume-title: Limit Theorems in Change-Point Analysis year: 1997 ident: 29964_CR35 – volume: 69 start-page: 066133 year: 2004 ident: 29964_CR12 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.066133 – volume: 52 start-page: 471 year: 2010 ident: 29964_CR28 publication-title: SIAM Review doi: 10.1137/070697835 – ident: 29964_CR46 – volume: 86 start-page: 036104 year: 2012 ident: 29964_CR20 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.86.036104 – volume: 433 start-page: 895 year: 2005 ident: 29964_CR4 publication-title: Nature doi: 10.1038/nature03288 – volume: 70 start-page: 025101 year: 2004 ident: 29964_CR13 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.025101 – volume: 5 start-page: 127 year: 2017 ident: 29964_CR52 publication-title: Journal of Complex Networks – volume: 103 start-page: 8577 year: 2006 ident: 29964_CR10 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.0601602103 – ident: 29964_CR16 doi: 10.1561/9781680834772 – ident: 29964_CR42 – volume: 45 start-page: 83 year: 2012 ident: 29964_CR41 publication-title: IFAC Proceedings Volumes doi: 10.3182/20120711-3-BE-2027.00310 – volume: 426 start-page: 282 year: 2003 ident: 29964_CR5 publication-title: Nature doi: 10.1038/nature02115 – volume: 17 start-page: 395 year: 2007 ident: 29964_CR39 publication-title: Statistics and Computing doi: 10.1007/s11222-007-9033-z – volume: 1 start-page: 16 year: 2013 ident: 29964_CR3 publication-title: Network Science doi: 10.1017/nws.2012.4 |
SSID | ssj0000529419 |
Score | 2.3083515 |
Snippet | Community detection in time series networks represents a timely and significant research topic due to its applications in a broad range of scientific fields,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12938 |
SubjectTerms | 639/705/531 639/766/530/2801 Community structure Data processing Humanities and Social Sciences multidisciplinary Oscillators Phase transitions Political science Science Science (multidisciplinary) Social sciences |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS-wwEB_8QPAifrt-kQfetNg0bZqeREQRQU9P2Ftt0hSFJbvvbT3sf-9Mmq2sotd2SpPML5mZzBfAmaq4UA1vvOYWpVLaqJKJiah8lU2NiK2PzXl8kvfP6cMwG4YLt2kIq5yfif6grseG7sjRSC9Q1qOAE1eTfxF1jSLvamihsQyrvnQZ4jkf5v0dC3mxUl6EXJlYqMspyivKKeOUelDINCoW5dE3JfN7rOQXh6mXQ3ebsBEUSHbdcXwLlqzbhrWupeRsGzZDQBuShG27Ay834_-WmS4VpJ2xrmbsOz4jcxixPGOVq9nkFSUaa0l4-TguVtvWB2o59uZYqGE1Gs2YxSON7iGY62LIp7vwfHf79-Y-Cp0VIoMaWhvpJNEqsZVMeWOkKqjdWF5bicaYMnnDY61EjYskMmXRphDSpLGhfKcmq7hG6j1YcWNnD4CR31bGRZMrIVKbcV2bRutKSQRArQs-AD5f39KEsuPU_WJUeve3UGXHkxJ_V3qelMUAzvtvJl3RjV-pj-dsK8MGnJafcBnAn_41bh3yh1TOjt89jcxQnYqRZr_jcv874XVLgcPPF_jfE1BZ7sU37u3Vl-eWHO1-kQ_gYo6Uz2H9PIvD32dxBOsJoTZG4KpjWEGg2BNUh1p96jH_AUn3CFE priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsQwcFgVwYv4tr6I4E2LTdOm6VGKsgh6cmFvtUlTFJbs4tbD_r2T9CHrCzxnQpKZSWYm8wK4EAVloqKV09z8iHPtFzxUvi1fpSPFAu1icx4e-XAU3Y_j8QDCLhfGBe27kpbume6iw67nKGhsMhi1OQMpj_x0BdYE2nWWqzOe9f8q1nMV0bTNjwmY-GHqsgz6plh-j4_84iR1suduCzZbpZHcNNvchoE2O7DetJFc7MJzNn3TRDWpHvWCNDVh8XDEmrvIqwtSmJLMXlBikdoKJxenRUpdu0AsQ14NaWtUTSYLovHJsv8MxDQx4vM9GN3dPmVDv-2c4CvUwGpfhqEUoS54RCvFRWrbiSWl5mhsCZVUNJCClYgQFguNNgPjKgqUzWeq4oJKhN6HVTM1-hCI9cvyIK0SwVikYypLVUlZCI4ELmVKPaAdLnPVlhW33S0muXNvM5E3-M9xudzhP089uOznzJqiGn9Cn3QkytsLNs9DNEtRWUNjy4PzfhivhvV3FEZP3x0Mj1FdChDmoKFovxxzuiPD7SdLtO4BbNnt5RHz-uLKb3OKdj1LPLjquOJzW7-f4uh_4MewEVqODZBpxQmsIuPoU1R_annm-P0DAVL_nQ priority: 102 providerName: Springer Nature |
Title | Core community structure recovery and phase transition detection in temporally evolving networks |
URI | https://link.springer.com/article/10.1038/s41598-018-29964-9 https://www.ncbi.nlm.nih.gov/pubmed/30154531 https://www.proquest.com/docview/2094560753 https://www.proquest.com/docview/2096555403 https://pubmed.ncbi.nlm.nih.gov/PMC6113337 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEB_8oOBLaW1rr9Vjhb7Z2Gw22WweSjkPRQ4U0R7cW8xuNigce9aLYP57Z3eTk6sf4FMgmXzNzmZ-k535DcAPUVAmKlo55BbEnOug4JEKLH2VjhULtcvNOTnlx-N4NEkmK9C1O2oVOH82tLP9pMa30_37f80fnPC_fcm4-DVHJ2QLxaitJ8h4HGSrsI6eidtg7KSF-57rO8pi1-vDkrAHCCaito7m-css-6onAPRpHuV_i6nORx19gPctuCQDbw0fYUWbTXjn2002n-ByOLvVRPmSkLohnjv2DvfZsBhtuiGFKcnNFXo2Ulsn5vK5SKlrl7BlyLUhLZfVdNoQjZ82-z-CGJ9LPv8M46PDv8PjoO2wEChEanUgo0iKSBc8ppXiIrNtx9JScwzKhEorGkrBSlQIS4TG2IJxFYfK1j1VSUElSn-BNTMz-isQu37Lw6xKBWOxTqgsVSVlITgaQikz2gPa6TJXLf247YIxzd0yOBO513-Ot8ud_vOsB3uLc248-car0tvdEOWdHeURhq8I6jAo68Hu4jBOIbsuUhg9u3MyPEFYFaLMlh_Rxe2Yw5gMHz9dGuuFgKXnXj5irq8cTTenGP-ztAc_O6t4fKyX3-Lbm975O2xE1mBDtFmxDWtoN3oHUVIt-7CaTtI-rA8Go4sRbg8OT8_Oce-QD_vuz0PfTY4H5q0Qkg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcUCmvhQJGghNEjWPHcQ4IQWm1pe0KoVbqLU0cR620yi5sKpQ_xW9kxk5SLRW99RpP4iTzjWfseQG81TkXuuKVs9wCqZQNchWZgMpXWWlEaF1sztFUTU7kt9P4dA3-9LkwFFbZr4luoS7nhs7IcZOeoq5HBSc-LX4G1DWKvKt9Cw0PiwPb_sYt2_Lj_lfk77so2ts93pkEXVeBwKB10gRFFBU6srmSvDJKp9RqKymtwo2INknFw0KLMkSkx9qiPS2UkaGhXJ8qznmB1PjcO7AuKaN1BOtfdqfffwynOuQ3kzztsnNCobeXqCEpi41TskOqZJCuasBrZu316Mx_XLRO8-1twIPOZGWfPcYewpqtN-Gub2LZbsJGF0KHJN1C8QjOdua_LDM--aRpma9Se4nXaAOO0tOyvC7Z4hx1KGtIXbrIMVbaxoWG1eyiZl3VrNmsZRYXUTr5YLWPWl8-hpNb-etPYFTPa_sMGHmKVZhWiRZC2pgXpamKItcKIVcWKR8D7_9vZrpC59RvY5Y5h7vQmedJhtNljidZOob3wz0LX-bjRuqtnm1ZJ_LL7AqgY3gzDKOwkgcmr-380tGoGA24EGmeei4P0wlnzQp8_WSF_wMBFQJfHakvzl1BcMW5ECIZw4ceKVev9f-veH7zV7yGe5Pjo8PscH968ALuR4TgEEGst2CEoLEv0RhriledBDA4u22h-wv02kQO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXVMproYCR4ARR4zhxnANCqGXVUqg4UGlvbuw4aqWVd2FTofw1fh3jR1ItFb31Gk_iJPONZ-x5AbwRNWWipa233JKcc5PUPNOJK19lcs1S42Nzvh3zg5P8y6yYbcCfIRfGhVUOa6JfqJuFdmfkuEmvUNejgmO7bQyL-L4__bj8mbgOUs7TOrTTCBA5Mv1v3L6tPhzuI6_fZtn084-9gyR2GEg0WipdorJMiczUPKet5qJybbfKxnDclAhdtjRVgjUpor4QBm1rxnWeapf30xY1VUiNz70Ft0uGVhXKUjkrx_Md50HLaRXzdFImdleoK10-G3VpDxXPk2pdF14xcK_Gaf7jrPU6cLoF96PxSj4FtD2ADWO34U5oZ9lvw1YMpkOSuGQ8hNO9xS9DdEhD6XoS6tVe4DW3FUc56kltG7I8Q21KOqc4fQwZaUzng8QsObck1s-az3ticDl1ZyDEhvj11SM4uZF__hg27cKap0Ccz5inVVsKxnJTUNXoVqlacARfoyo6ATr8X6ljyXPXeWMuveudCRl4InE66Xkiqwm8G-9ZhoIf11LvDGyTUfhX8hKqE3g9DqPYOl9Mbc3iwtPwAk25FGmeBC6P0zFv1zJ8_XKN_yOBKwm-PmLPz3xpcE4pY6ycwPsBKZev9f-veHb9V7yCuyhq8uvh8dFzuJc5AKeIYbEDm4gZ8wKtsk699PAncHrT8vYXdCNG1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Core+community+structure+recovery+and+phase+transition+detection+in+temporally+evolving+networks&rft.jtitle=Scientific+reports&rft.au=Bao%2C+Wei&rft.au=Michailidis%2C+George&rft.date=2018-08-28&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-018-29964-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_018_29964_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |