Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells

Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 573 - 11
Main Authors Li, Mubai, Sun, Riming, Chang, Jingxi, Dong, Jingjin, Tian, Qiushuang, Wang, Hongze, Li, Zihao, Yang, Pinghui, Shi, Haokun, Yang, Chao, Wu, Zichao, Li, Renzhi, Yang, Yingguo, Wang, Aifei, Zhang, Shitong, Wang, Fangfang, Huang, Wei, Qin, Tianshi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively. Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h.
AbstractList Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h.
Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.
Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively. Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h.
Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.
Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h.
ArticleNumber 573
Author Yang, Pinghui
Chang, Jingxi
Wang, Hongze
Shi, Haokun
Li, Zihao
Sun, Riming
Yang, Yingguo
Zhang, Shitong
Wang, Aifei
Qin, Tianshi
Wu, Zichao
Wang, Fangfang
Tian, Qiushuang
Huang, Wei
Dong, Jingjin
Yang, Chao
Li, Renzhi
Li, Mubai
Author_xml – sequence: 1
  givenname: Mubai
  orcidid: 0000-0003-0027-6368
  surname: Li
  fullname: Li, Mubai
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 2
  givenname: Riming
  surname: Sun
  fullname: Sun, Riming
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 3
  givenname: Jingxi
  surname: Chang
  fullname: Chang, Jingxi
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 4
  givenname: Jingjin
  surname: Dong
  fullname: Dong, Jingjin
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 5
  givenname: Qiushuang
  surname: Tian
  fullname: Tian, Qiushuang
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 6
  givenname: Hongze
  surname: Wang
  fullname: Wang, Hongze
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 7
  givenname: Zihao
  surname: Li
  fullname: Li, Zihao
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 8
  givenname: Pinghui
  surname: Yang
  fullname: Yang, Pinghui
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 9
  givenname: Haokun
  surname: Shi
  fullname: Shi, Haokun
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 10
  givenname: Chao
  surname: Yang
  fullname: Yang, Chao
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 11
  givenname: Zichao
  surname: Wu
  fullname: Wu, Zichao
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 12
  givenname: Renzhi
  surname: Li
  fullname: Li, Renzhi
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 13
  givenname: Yingguo
  orcidid: 0000-0002-1749-2799
  surname: Yang
  fullname: Yang, Yingguo
  organization: Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences
– sequence: 14
  givenname: Aifei
  surname: Wang
  fullname: Wang, Aifei
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 15
  givenname: Shitong
  surname: Zhang
  fullname: Zhang, Shitong
  organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University
– sequence: 16
  givenname: Fangfang
  orcidid: 0000-0002-5441-4490
  surname: Wang
  fullname: Wang, Fangfang
  email: iamffwang2@njtech.edu.cn
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
– sequence: 17
  givenname: Wei
  orcidid: 0000-0001-7004-6408
  surname: Huang
  fullname: Huang, Wei
  email: iamwhuang@nwpu.edu.cn
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU)
– sequence: 18
  givenname: Tianshi
  orcidid: 0000-0002-2084-3537
  surname: Qin
  fullname: Qin, Tianshi
  email: iamtsqin@njtech.edu.cn
  organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36732540$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFCEYxiemxtbaL-DBkHjxMsp_Zi4mTWO1SZNe9EwY5mXLloUKs2u2n15mt9a2h3KB8D7Pjxd43jYHMUVomvcEfyaYdV8KJ1yqFlPWMkkpb-Wr5ohiTlqiKDt4tD5sTkpZ4jpYTzrO3zSHTCpGBcdHzd1V9hAnM8GIbN6WyYTg78zkU0TJofPTdjCl1m4hp0258ROgjTfoejvmtIDYDimOczmF7QoyijD9SfkGuZQROOftDEcmjqiShwCopGAyshBCede8diYUOLmfj5tf599-nv1oL6--X5ydXra2dji1A6UDAcGkJKrH1CkG0o3cDb11yiiMKZfEctwpIRTlho0Cj5Y66KjolMLsuLnYc8dklvo2-5XJW52M17uNlBfa5MnbALqjw0gs7gepBBdE9JWKZS-sVZJQTirr6551ux5WMNp6u2zCE-jTSvTXepE2uu96wdkM-HQPyOn3GsqkV77Mz2EipHXRVClGCGdCVOnHZ9JlWudYn2pWkY5SxWfVh8cdPbTy74urgO4FNqdSMrgHCcF6jpLeR0nXKOldlLSspu6Zyfppl4p6Kx9etrK9tdRz4gLy_7ZfcP0FJBnc4A
CitedBy_id crossref_primary_10_1002_adfm_202425620
crossref_primary_10_1016_j_cej_2023_145024
crossref_primary_10_1002_solr_202300567
crossref_primary_10_1002_aenm_202404850
crossref_primary_10_1002_adfm_202419067
crossref_primary_10_1002_advs_202402065
crossref_primary_10_1002_smll_202405598
crossref_primary_10_1002_anie_202419061
crossref_primary_10_1016_j_cej_2025_161518
crossref_primary_10_1016_j_mtener_2024_101540
crossref_primary_10_1016_j_nanoen_2024_110190
crossref_primary_10_1039_D4SC08145E
crossref_primary_10_1039_D3TA06067E
crossref_primary_10_1039_D4TC05079G
crossref_primary_10_1002_adma_202420093
crossref_primary_10_1016_j_xcrp_2024_102321
crossref_primary_10_1021_acs_jpclett_4c00881
crossref_primary_10_1002_adom_202301623
crossref_primary_10_1039_D4EE02917H
crossref_primary_10_1002_smll_202405123
crossref_primary_10_1002_smll_202301824
crossref_primary_10_1002_adma_202310444
crossref_primary_10_1016_j_jallcom_2024_178207
crossref_primary_10_1039_D4EE01008F
crossref_primary_10_1002_adfm_202400467
crossref_primary_10_1002_smll_202401456
crossref_primary_10_1016_j_nanoen_2024_110296
crossref_primary_10_1002_adfm_202307568
crossref_primary_10_1039_D3MA00506B
crossref_primary_10_1002_adma_202410395
crossref_primary_10_1002_anie_202306229
crossref_primary_10_1021_acsenergylett_4c01095
crossref_primary_10_1016_j_cej_2025_161053
crossref_primary_10_3788_CJL241261
crossref_primary_10_1021_acsami_4c16316
crossref_primary_10_1126_science_adn9646
crossref_primary_10_1002_ange_202415669
crossref_primary_10_1021_acsaelm_4c01978
crossref_primary_10_1002_aenm_202304486
crossref_primary_10_1002_ange_202306229
crossref_primary_10_1016_j_device_2024_100441
crossref_primary_10_1002_anie_202418763
crossref_primary_10_1002_aenm_202302743
crossref_primary_10_1002_anie_202418606
crossref_primary_10_1002_solr_202300766
crossref_primary_10_1002_anie_202316898
crossref_primary_10_1016_j_cej_2024_155672
crossref_primary_10_1039_D3NR06615K
crossref_primary_10_1002_adma_202407406
crossref_primary_10_1016_j_cej_2024_148572
crossref_primary_10_1002_aenm_202301302
crossref_primary_10_1002_adma_202302752
crossref_primary_10_1007_s40820_024_01630_y
crossref_primary_10_1039_D4TC02432J
crossref_primary_10_1002_aenm_202402066
crossref_primary_10_1021_acsanm_3c02399
crossref_primary_10_1016_j_cej_2024_153121
crossref_primary_10_1016_j_jechem_2024_03_014
crossref_primary_10_1039_D4EE01044B
crossref_primary_10_1039_D4EE02964J
crossref_primary_10_1063_5_0239423
crossref_primary_10_1002_adfm_202408480
crossref_primary_10_1002_adfm_202316202
crossref_primary_10_1002_smtd_202400643
crossref_primary_10_1002_anie_202502244
crossref_primary_10_1016_j_matt_2023_10_013
crossref_primary_10_1039_D4EE01371A
crossref_primary_10_1002_adma_202310711
crossref_primary_10_1002_adom_202402521
crossref_primary_10_1002_adma_202405572
crossref_primary_10_1002_smtd_202402039
crossref_primary_10_3390_en16186498
crossref_primary_10_1016_j_joule_2024_05_019
crossref_primary_10_1002_ange_202502244
crossref_primary_10_1038_s41467_024_46145_7
crossref_primary_10_1002_ange_202318754
crossref_primary_10_1002_ange_202418606
crossref_primary_10_1039_D4EE02279C
crossref_primary_10_1007_s11426_024_2567_7
crossref_primary_10_1016_j_scib_2024_06_029
crossref_primary_10_1021_acs_jpclett_4c02603
crossref_primary_10_1016_j_surfin_2023_103738
crossref_primary_10_1021_acs_jpclett_4c01997
crossref_primary_10_1002_adma_202400565
crossref_primary_10_1038_s41467_025_57303_w
crossref_primary_10_1039_D3EE02569A
crossref_primary_10_1002_ange_202319170
crossref_primary_10_1109_JEDS_2024_3358087
crossref_primary_10_1002_adfm_202407116
crossref_primary_10_1021_acs_jpcc_4c00757
crossref_primary_10_1016_j_cej_2025_159390
crossref_primary_10_1002_aenm_202404335
crossref_primary_10_1002_smtd_202400948
crossref_primary_10_1002_anie_202318754
crossref_primary_10_1021_acsenergylett_3c02270
crossref_primary_10_1002_adma_202311145
crossref_primary_10_1021_acs_jpcc_3c07066
crossref_primary_10_1002_adfm_202404099
crossref_primary_10_1002_anie_202319170
crossref_primary_10_1126_science_ade9637
crossref_primary_10_1021_acsenergylett_4c01150
crossref_primary_10_1039_D4TA02491E
crossref_primary_10_1002_adma_202305946
crossref_primary_10_1002_anie_202501764
crossref_primary_10_1002_anie_202415669
crossref_primary_10_1002_aenm_202405093
crossref_primary_10_1002_eem2_12696
crossref_primary_10_1126_sciadv_adq5778
crossref_primary_10_1021_acs_jpcc_3c05787
crossref_primary_10_1038_s43246_024_00566_5
crossref_primary_10_1021_acsami_4c21058
crossref_primary_10_1002_anie_202410069
crossref_primary_10_1021_acs_nanolett_5c00004
crossref_primary_10_1002_adfm_202421402
crossref_primary_10_1016_j_synthmet_2024_117647
crossref_primary_10_1021_acscatal_3c03051
crossref_primary_10_1021_jacsau_4c00615
crossref_primary_10_1002_adom_202403012
crossref_primary_10_3390_coatings14010083
crossref_primary_10_1016_j_solmat_2024_113038
crossref_primary_10_1016_j_cej_2024_156703
crossref_primary_10_1002_adma_202414354
crossref_primary_10_1038_s41467_023_38926_3
crossref_primary_10_1039_D5EE00073D
crossref_primary_10_1002_anie_202304568
crossref_primary_10_1007_s40820_024_01514_1
crossref_primary_10_1021_acsenergylett_4c02580
crossref_primary_10_1002_ange_202418763
crossref_primary_10_1039_D4TC05093B
crossref_primary_10_1039_D3TA07759D
crossref_primary_10_1002_ange_202316898
crossref_primary_10_1002_inf2_12522
crossref_primary_10_1038_s41467_024_51550_z
crossref_primary_10_1002_ange_202419061
crossref_primary_10_1021_acsnano_4c12811
crossref_primary_10_1002_adma_202307583
crossref_primary_10_1002_ange_202304568
crossref_primary_10_1002_adfm_202410419
crossref_primary_10_1002_smll_202309009
crossref_primary_10_1002_ange_202501764
crossref_primary_10_1002_smll_202401877
crossref_primary_10_1002_adma_202414576
crossref_primary_10_1007_s11426_024_1986_6
crossref_primary_10_1002_anie_202421174
crossref_primary_10_1039_D4EE04136D
crossref_primary_10_1002_smll_202310742
crossref_primary_10_1002_anie_202421063
crossref_primary_10_1021_acssuschemeng_4c06579
crossref_primary_10_1002_adma_202417289
crossref_primary_10_1021_acssuschemeng_3c06121
crossref_primary_10_1002_smll_202304189
crossref_primary_10_1002_ange_202410069
crossref_primary_10_1002_solr_202400365
crossref_primary_10_1016_j_cej_2023_147235
crossref_primary_10_1002_adfm_202400474
crossref_primary_10_1021_acsnano_4c16440
crossref_primary_10_1002_adom_202301949
crossref_primary_10_1016_j_xcrp_2024_102245
crossref_primary_10_1002_ange_202316954
crossref_primary_10_1016_j_cej_2024_150382
crossref_primary_10_1016_j_nanoen_2024_109715
crossref_primary_10_1002_adfm_202405250
crossref_primary_10_1002_adfm_202407790
crossref_primary_10_1002_aenm_202401809
crossref_primary_10_1016_j_cej_2023_148320
crossref_primary_10_1039_D3TC02644B
crossref_primary_10_1016_j_jcis_2025_137321
crossref_primary_10_1002_adfm_202422014
crossref_primary_10_1002_ange_202421063
crossref_primary_10_1002_anie_202316954
crossref_primary_10_1088_2752_5724_ad42ba
crossref_primary_10_1002_solr_202300902
crossref_primary_10_1002_adfm_202414423
crossref_primary_10_1002_ange_202404289
crossref_primary_10_1016_j_jechem_2024_11_024
crossref_primary_10_1021_acsami_4c14684
crossref_primary_10_1021_acsenergylett_3c02455
crossref_primary_10_1016_j_jechem_2023_07_002
crossref_primary_10_1016_j_solmat_2024_113071
crossref_primary_10_1002_aenm_202406046
crossref_primary_10_1002_adma_202305648
crossref_primary_10_1002_adom_202400722
crossref_primary_10_1016_j_apmate_2024_100264
crossref_primary_10_1016_j_cej_2024_151459
crossref_primary_10_1021_acs_nanolett_4c05694
crossref_primary_10_1002_adma_202309208
crossref_primary_10_1002_ange_202421174
crossref_primary_10_1063_5_0218208
crossref_primary_10_1021_acsenergylett_4c02674
crossref_primary_10_20517_energymater_2024_54
crossref_primary_10_1002_aenm_202400616
crossref_primary_10_20517_energymater_2023_111
crossref_primary_10_1002_anie_202404289
crossref_primary_10_1016_j_orgel_2024_107063
crossref_primary_10_1002_solr_202300486
crossref_primary_10_1002_smll_202308877
crossref_primary_10_1021_acssuschemeng_3c04059
crossref_primary_10_1016_j_cej_2025_160571
crossref_primary_10_1039_D4EE03045A
Cites_doi 10.1038/nature14133
10.1038/s41586-019-1036-3
10.1002/adma.201907123
10.1038/s41586-021-03406-5
10.1021/acs.chemrev.8b00336
10.1002/anie.202112074
10.1038/s41586-021-03285-w
10.1038/ncomms15688
10.1039/D1EE02095A
10.1039/c3ee43822h
10.1002/adma.201901284
10.1002/adfm.202002622
10.1038/s41467-020-14715-0
10.1038/s41560-021-00802-z
10.1016/j.joule.2019.06.014
10.1038/nenergy.2016.81
10.1038/s41467-020-20272-3
10.1038/s41566-019-0398-2
10.1126/science.abf7652
10.1038/s41467-018-06204-2
10.1002/adma.201907769
10.1002/advs.202000480
10.1038/s41560-018-0324-8
10.1038/s41467-021-25092-7
10.1002/anie.201405334
10.1126/science.abb8985
10.1039/D2EE00663D
10.1039/C5EE03255E
10.1039/C7EE01675A
10.1016/j.chempr.2018.03.005
10.1126/science.aap9282
10.1002/adfm.201908343
10.1126/science.aan2301
10.1126/science.abh1035
10.1038/s41467-021-25407-8
10.1126/science.aay7044
10.1021/acsami.1c19122
10.1038/s41560-019-0529-5
10.1002/adma.201804771
10.1002/adma.202007126
10.1038/nmat4014
10.1038/s41563-022-01390-3
10.1038/s41586-021-03964-8
10.1039/C6EE03014A
10.1126/science.aah5557
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-36224-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic


PubMed

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_82bd1c09b675451590870695cc761241
PMC9895431
36732540
10_1038_s41467_023_36224_6
Genre Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20180339
  funderid: https://doi.org/10.13039/501100004608
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: BK20180339
– fundername: ;
  grantid: BK20180339
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-b22b1e536617902f73e6fd4fb9cf7a7002461c408755724a3d50dc2fe82587703
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:58:11 EDT 2025
Thu Aug 21 18:38:05 EDT 2025
Thu Jul 10 19:31:19 EDT 2025
Wed Aug 13 08:41:44 EDT 2025
Wed Feb 19 02:25:06 EST 2025
Thu Apr 24 23:02:29 EDT 2025
Tue Jul 01 00:58:39 EDT 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b22b1e536617902f73e6fd4fb9cf7a7002461c408755724a3d50dc2fe82587703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7004-6408
0000-0002-5441-4490
0000-0002-2084-3537
0000-0002-1749-2799
0000-0003-0027-6368
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36224-6
PMID 36732540
PQID 2771822745
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_82bd1c09b675451590870695cc761241
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9895431
proquest_miscellaneous_2773114355
proquest_journals_2771822745
pubmed_primary_36732540
crossref_primary_10_1038_s41467_023_36224_6
crossref_citationtrail_10_1038_s41467_023_36224_6
springer_journals_10_1038_s41467_023_36224_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-02
PublicationDateYYYYMMDD 2023-02-02
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References JiangQSurface passivation of perovskite film for efficient solar cellsNat. Photon.2019134604662019NaPho..13..460J1:CAS:528:DC%2BC1MXot12lsrc%3D10.1038/s41566-019-0398-2
WangXEngineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidityNat. Commun.2021122021NatCo..12...52W1:CAS:528:DC%2BB3MXnsFCrtg%3D%3D10.1038/s41467-020-20272-3
GuoZJenaAKKimGMiyasakaTHigh open-circuit voltage of perovskite solar cells: a reviewEnergy Environ. Sci.202215317132221:CAS:528:DC%2BB38XhslOjtbfL10.1039/D2EE00663D
ZongYContinuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stabilityChem20184140414151:CAS:528:DC%2BC1cXhtFGgtrrJ10.1016/j.chempr.2018.03.005
MinHEfficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodideScience20193667497532019Sci...366..749M1:CAS:528:DC%2BC1MXitFaksLbF10.1126/science.aay7044
YeFRoles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cellsAdv. Mater.20213320071261:CAS:528:DC%2BB3cXisFGlsrfI10.1002/adma.202007126
XiaoMA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew. Chem. Int. Ed.201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334
ChangQFerrocene-induced perpetual recovery on all elemental defects in perovskite solar cellsAngew. Chem. Int. Ed.20216025567255741:CAS:528:DC%2BB3MXit12ls7rI10.1002/anie.202112074
JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D10.1038/nature14133
YangWSIodide management informamidinium-lead-halide–based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP10.1126/science.aan2301
YiCEntropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cellsEnergy Environ. Sci.201696566621:CAS:528:DC%2BC2MXhvFClu7zP10.1039/C5EE03255E
JeongJPseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cellsNature20215923813852021Natur.592..381J1:CAS:528:DC%2BB3MXotVamsbc%3D10.1038/s41586-021-03406-5
YunYA nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cellsAdv. Mater.20203219071231:CAS:528:DC%2BB3cXjs1Ohtb4%3D10.1002/adma.201907123
ZhaoYA Polymerization-assisted grain growth strategy for efficient and stable perovskite solar cellsAdv. Mater.20203219077691:CAS:528:DC%2BB3cXksVKksr4%3D10.1002/adma.201907769
ZhuLUnveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodesNat. Commun.2021122021NatCo..12.5081Z1:CAS:528:DC%2BB3MXhvVymt7%2FP10.1038/s41467-021-25407-8
LuoDEnhanced photovoltage for inverted planar heterojunction perovskite solar cellsScience2018360144214462018Sci...360.1442L1:CAS:528:DC%2BC1cXht1SrtrbE10.1126/science.aap9282
KhenkinMVConsensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS proceduresNat. Energy2020535492020NatEn...5...35K10.1038/s41560-019-0529-5
RombachFMHaqueSAMacdonaldTJLessons learned from Spiro-OMeTAD and PTAA in perovskite solar cellsEnergy Environ. Sci.202114516151901:CAS:528:DC%2BB3MXhvVOjsr7L10.1039/D1EE02095A
JeonNJSolvent engineering for high-performance inorganic-organic hybrid perovskite solar cellsNat. Mater.2014138979032014NatMa..13..897J1:CAS:528:DC%2BC2cXhtFSlsLvE10.1038/nmat4014
RehmanWPhotovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic propertiesEnergy Environ. Sci.2017103613691:CAS:528:DC%2BC28XitV2mu7jP10.1039/C6EE03014A
BuTLead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modulesScience2021372132713322021Sci...372.1327B1:CAS:528:DC%2BB3MXhtlKrs77P10.1126/science.abh1035
JungEHEfficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)Nature20195675115152019Natur.567..511J1:CAS:528:DC%2BC1MXosVSjuro%3D10.1038/s41586-019-1036-3
SubediBUrbach energy and open-circuit voltage deficit for mixed anion− cation perovskite solar cellsACS Appl. Mater. Interfaces202214779678041:CAS:528:DC%2BB38XislOhs7s%3D10.1021/acsami.1c19122
LiXIn-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cellsNat. Commun.201892018NatCo...9.3806L10.1038/s41467-018-06204-2
ParkB-WStabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cellsNat. Energy202164194282021NatEn...6..419P1:CAS:528:DC%2BB3MXosFequ7c%3D10.1038/s41560-021-00802-z
SonD-YSelf-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cellsNat. Energy20161160812016NatEn...116081S1:CAS:528:DC%2BC2sXhtVersb0%3D10.1038/nenergy.2016.81
WangSδ‐CsPbI3 intermediate phase growth assisted sequential deposition boosts stable and high‐efficiency triple cation perovskite solar cellsAdv. Funct. Mater.201930190834310.1002/adfm.201908343
ZouYManipulating crystallization dynamics through chelating molecules for bright perovskite emittersNat. Commun.2021122021NatCo..12.4831Z1:CAS:528:DC%2BB3MXhvVSlsLbP10.1038/s41467-021-25092-7
ZhangKA prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformityNat. Commun.2020112020NatCo..11.1006Z1:CAS:528:DC%2BB3cXkvFahur4%3D10.1038/s41467-020-14715-0
HuQIn situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6](4-) cage nanoparticlesNat. Commun.201782017NatCo...815688H1:CAS:528:DC%2BC2sXhtVeqsbnL10.1038/ncomms15688
LuHVapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cellsScience2020370742020Sci...370...82L10.1126/science.abb8985
XieFVertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cellsEnergy Environ. Sci.201710194219491:CAS:528:DC%2BC2sXht1ektrzP10.1039/C7EE01675A
MinHPerovskite solar cells with atomically coherent interlayers on SnO2 electrodesNature20215984444502021Natur.598..444M1:CAS:528:DC%2BB3MXit1yktbfO10.1038/s41586-021-03964-8
CuiPPlanar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%Nat. Energy201941501592019NatEn...4..150C1:CAS:528:DC%2BC1MXmslGrtb0%3D10.1038/s41560-018-0324-8
KimMMethylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cellsJoule20193217921921:CAS:528:DC%2BC1MXhvVWit7nJ10.1016/j.joule.2019.06.014
HuiWStabilizing black-phase formamidinium perovskite formation at room temperature and high humidityScience2021371135913642021Sci...371.1359H1:CAS:528:DC%2BB3MXnsVyrurs%3D10.1126/science.abf7652
GautamSKReversible photoinduced phase segregation and origin of long carrier lifetime in mixed‐halide perovskite filmsAdv. Funct. Mater.202030200262241547561:CAS:528:DC%2BB3cXps1yht70%3D10.1002/adfm.202002622
SalibaMIncorporation of rubidium cations into perovskite solar cells improves photovoltaic performanceScience2016354630910.1126/science.aah5557
Best Research-Cell Efficiency Chart (NREL, 2022); http://www.nrel.gov/pv/cell-efficiency.html
ZhaoYSuppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cationsNat. Mater.202221139614022022NatMa..21.1396Z45031541:CAS:528:DC%2BB38XivFSht7vP10.1038/s41563-022-01390-3
QinMManipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXSAdv. Mater.201931190128410.1002/adma.201901284
EperonGEFormamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy Environ. Sci.201479829881:CAS:528:DC%2BC2cXjtlKisLo%3D10.1039/c3ee43822h
ChenQRapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaicsAdv. Sci.2020720004801:CAS:528:DC%2BB3cXitVKhtbjO10.1002/advs.202000480
YooJJEfficient perovskite solar cells via improved carrier managementNature20215905875932021Natur.590..587Y1:CAS:528:DC%2BB3MXltFaltLk%3D10.1038/s41586-021-03285-w
BoydCCCheacharoenRLeijtensTMcGeheeMDUnderstanding degradation mechanisms and improving stability of perovskite photovoltaicsChem. Rev.2019119341834511:CAS:528:DC%2BC1cXit1Smt7fL10.1021/acs.chemrev.8b00336
YangROriented quasi-2D perovskites for high performance optoelectronic devicesAdv. Mater.201830180477110.1002/adma.201804771
FM Rombach (36224_CR46) 2021; 14
M Kim (36224_CR5) 2019; 3
Q Jiang (36224_CR7) 2019; 13
Y Zou (36224_CR24) 2021; 12
M Saliba (36224_CR14) 2016; 354
P Cui (36224_CR35) 2019; 4
X Wang (36224_CR42) 2021; 12
S Wang (36224_CR45) 2019; 30
B Subedi (36224_CR38) 2022; 14
F Ye (36224_CR6) 2021; 33
H Lu (36224_CR9) 2020; 370
W Hui (36224_CR29) 2021; 371
EH Jung (36224_CR16) 2019; 567
M Qin (36224_CR21) 2019; 31
CC Boyd (36224_CR41) 2019; 119
J Jeong (36224_CR8) 2021; 592
D Luo (36224_CR30) 2018; 360
36224_CR1
MV Khenkin (36224_CR40) 2020; 5
Q Chen (36224_CR39) 2020; 7
JJ Yoo (36224_CR17) 2021; 590
Y Zong (36224_CR43) 2018; 4
H Min (36224_CR33) 2021; 598
Y Zhao (36224_CR44) 2022; 21
B-W Park (36224_CR11) 2021; 6
GE Eperon (36224_CR2) 2014; 7
NJ Jeon (36224_CR27) 2014; 13
WS Yang (36224_CR15) 2017; 356
T Bu (36224_CR13) 2021; 372
Q Hu (36224_CR23) 2017; 8
SK Gautam (36224_CR18) 2020; 30
X Li (36224_CR31) 2018; 9
W Rehman (36224_CR19) 2017; 10
Y Zhao (36224_CR32) 2020; 32
F Xie (36224_CR4) 2017; 10
M Xiao (36224_CR28) 2014; 53
R Yang (36224_CR36) 2018; 30
H Min (36224_CR10) 2019; 366
Q Chang (36224_CR20) 2021; 60
NJ Jeon (36224_CR12) 2015; 517
K Zhang (36224_CR26) 2020; 11
D-Y Son (36224_CR34) 2016; 1
Z Guo (36224_CR37) 2022; 15
C Yi (36224_CR3) 2016; 9
L Zhu (36224_CR25) 2021; 12
Y Yun (36224_CR22) 2020; 32
References_xml – reference: LuoDEnhanced photovoltage for inverted planar heterojunction perovskite solar cellsScience2018360144214462018Sci...360.1442L1:CAS:528:DC%2BC1cXht1SrtrbE10.1126/science.aap9282
– reference: RehmanWPhotovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic propertiesEnergy Environ. Sci.2017103613691:CAS:528:DC%2BC28XitV2mu7jP10.1039/C6EE03014A
– reference: MinHPerovskite solar cells with atomically coherent interlayers on SnO2 electrodesNature20215984444502021Natur.598..444M1:CAS:528:DC%2BB3MXit1yktbfO10.1038/s41586-021-03964-8
– reference: LuHVapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cellsScience2020370742020Sci...370...82L10.1126/science.abb8985
– reference: ZouYManipulating crystallization dynamics through chelating molecules for bright perovskite emittersNat. Commun.2021122021NatCo..12.4831Z1:CAS:528:DC%2BB3MXhvVSlsLbP10.1038/s41467-021-25092-7
– reference: ChenQRapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaicsAdv. Sci.2020720004801:CAS:528:DC%2BB3cXitVKhtbjO10.1002/advs.202000480
– reference: QinMManipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXSAdv. Mater.201931190128410.1002/adma.201901284
– reference: LiXIn-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cellsNat. Commun.201892018NatCo...9.3806L10.1038/s41467-018-06204-2
– reference: JungEHEfficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)Nature20195675115152019Natur.567..511J1:CAS:528:DC%2BC1MXosVSjuro%3D10.1038/s41586-019-1036-3
– reference: HuiWStabilizing black-phase formamidinium perovskite formation at room temperature and high humidityScience2021371135913642021Sci...371.1359H1:CAS:528:DC%2BB3MXnsVyrurs%3D10.1126/science.abf7652
– reference: YiCEntropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cellsEnergy Environ. Sci.201696566621:CAS:528:DC%2BC2MXhvFClu7zP10.1039/C5EE03255E
– reference: SalibaMIncorporation of rubidium cations into perovskite solar cells improves photovoltaic performanceScience2016354630910.1126/science.aah5557
– reference: BoydCCCheacharoenRLeijtensTMcGeheeMDUnderstanding degradation mechanisms and improving stability of perovskite photovoltaicsChem. Rev.2019119341834511:CAS:528:DC%2BC1cXit1Smt7fL10.1021/acs.chemrev.8b00336
– reference: RombachFMHaqueSAMacdonaldTJLessons learned from Spiro-OMeTAD and PTAA in perovskite solar cellsEnergy Environ. Sci.202114516151901:CAS:528:DC%2BB3MXhvVOjsr7L10.1039/D1EE02095A
– reference: ZhangKA prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformityNat. Commun.2020112020NatCo..11.1006Z1:CAS:528:DC%2BB3cXkvFahur4%3D10.1038/s41467-020-14715-0
– reference: WangSδ‐CsPbI3 intermediate phase growth assisted sequential deposition boosts stable and high‐efficiency triple cation perovskite solar cellsAdv. Funct. Mater.201930190834310.1002/adfm.201908343
– reference: JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D10.1038/nature14133
– reference: HuQIn situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6](4-) cage nanoparticlesNat. Commun.201782017NatCo...815688H1:CAS:528:DC%2BC2sXhtVeqsbnL10.1038/ncomms15688
– reference: YunYA nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cellsAdv. Mater.20203219071231:CAS:528:DC%2BB3cXjs1Ohtb4%3D10.1002/adma.201907123
– reference: EperonGEFormamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy Environ. Sci.201479829881:CAS:528:DC%2BC2cXjtlKisLo%3D10.1039/c3ee43822h
– reference: YangWSIodide management informamidinium-lead-halide–based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP10.1126/science.aan2301
– reference: MinHEfficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodideScience20193667497532019Sci...366..749M1:CAS:528:DC%2BC1MXitFaksLbF10.1126/science.aay7044
– reference: CuiPPlanar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%Nat. Energy201941501592019NatEn...4..150C1:CAS:528:DC%2BC1MXmslGrtb0%3D10.1038/s41560-018-0324-8
– reference: JiangQSurface passivation of perovskite film for efficient solar cellsNat. Photon.2019134604662019NaPho..13..460J1:CAS:528:DC%2BC1MXot12lsrc%3D10.1038/s41566-019-0398-2
– reference: ZongYContinuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stabilityChem20184140414151:CAS:528:DC%2BC1cXhtFGgtrrJ10.1016/j.chempr.2018.03.005
– reference: ChangQFerrocene-induced perpetual recovery on all elemental defects in perovskite solar cellsAngew. Chem. Int. Ed.20216025567255741:CAS:528:DC%2BB3MXit12ls7rI10.1002/anie.202112074
– reference: SubediBUrbach energy and open-circuit voltage deficit for mixed anion− cation perovskite solar cellsACS Appl. Mater. Interfaces202214779678041:CAS:528:DC%2BB38XislOhs7s%3D10.1021/acsami.1c19122
– reference: JeongJPseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cellsNature20215923813852021Natur.592..381J1:CAS:528:DC%2BB3MXotVamsbc%3D10.1038/s41586-021-03406-5
– reference: XieFVertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cellsEnergy Environ. Sci.201710194219491:CAS:528:DC%2BC2sXht1ektrzP10.1039/C7EE01675A
– reference: GuoZJenaAKKimGMiyasakaTHigh open-circuit voltage of perovskite solar cells: a reviewEnergy Environ. Sci.202215317132221:CAS:528:DC%2BB38XhslOjtbfL10.1039/D2EE00663D
– reference: SonD-YSelf-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cellsNat. Energy20161160812016NatEn...116081S1:CAS:528:DC%2BC2sXhtVersb0%3D10.1038/nenergy.2016.81
– reference: BuTLead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modulesScience2021372132713322021Sci...372.1327B1:CAS:528:DC%2BB3MXhtlKrs77P10.1126/science.abh1035
– reference: ZhuLUnveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodesNat. Commun.2021122021NatCo..12.5081Z1:CAS:528:DC%2BB3MXhvVymt7%2FP10.1038/s41467-021-25407-8
– reference: ZhaoYA Polymerization-assisted grain growth strategy for efficient and stable perovskite solar cellsAdv. Mater.20203219077691:CAS:528:DC%2BB3cXksVKksr4%3D10.1002/adma.201907769
– reference: YangROriented quasi-2D perovskites for high performance optoelectronic devicesAdv. Mater.201830180477110.1002/adma.201804771
– reference: KhenkinMVConsensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS proceduresNat. Energy2020535492020NatEn...5...35K10.1038/s41560-019-0529-5
– reference: JeonNJSolvent engineering for high-performance inorganic-organic hybrid perovskite solar cellsNat. Mater.2014138979032014NatMa..13..897J1:CAS:528:DC%2BC2cXhtFSlsLvE10.1038/nmat4014
– reference: WangXEngineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidityNat. Commun.2021122021NatCo..12...52W1:CAS:528:DC%2BB3MXnsFCrtg%3D%3D10.1038/s41467-020-20272-3
– reference: YooJJEfficient perovskite solar cells via improved carrier managementNature20215905875932021Natur.590..587Y1:CAS:528:DC%2BB3MXltFaltLk%3D10.1038/s41586-021-03285-w
– reference: GautamSKReversible photoinduced phase segregation and origin of long carrier lifetime in mixed‐halide perovskite filmsAdv. Funct. Mater.202030200262241547561:CAS:528:DC%2BB3cXps1yht70%3D10.1002/adfm.202002622
– reference: KimMMethylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cellsJoule20193217921921:CAS:528:DC%2BC1MXhvVWit7nJ10.1016/j.joule.2019.06.014
– reference: ParkB-WStabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cellsNat. Energy202164194282021NatEn...6..419P1:CAS:528:DC%2BB3MXosFequ7c%3D10.1038/s41560-021-00802-z
– reference: XiaoMA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew. Chem. Int. Ed.201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334
– reference: Best Research-Cell Efficiency Chart (NREL, 2022); http://www.nrel.gov/pv/cell-efficiency.html
– reference: ZhaoYSuppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cationsNat. Mater.202221139614022022NatMa..21.1396Z45031541:CAS:528:DC%2BB38XivFSht7vP10.1038/s41563-022-01390-3
– reference: YeFRoles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cellsAdv. Mater.20213320071261:CAS:528:DC%2BB3cXisFGlsrfI10.1002/adma.202007126
– volume: 517
  start-page: 476
  year: 2015
  ident: 36224_CR12
  publication-title: Nature
  doi: 10.1038/nature14133
– volume: 567
  start-page: 511
  year: 2019
  ident: 36224_CR16
  publication-title: Nature
  doi: 10.1038/s41586-019-1036-3
– volume: 32
  start-page: 1907123
  year: 2020
  ident: 36224_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907123
– volume: 592
  start-page: 381
  year: 2021
  ident: 36224_CR8
  publication-title: Nature
  doi: 10.1038/s41586-021-03406-5
– volume: 119
  start-page: 3418
  year: 2019
  ident: 36224_CR41
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00336
– volume: 60
  start-page: 25567
  year: 2021
  ident: 36224_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202112074
– volume: 590
  start-page: 587
  year: 2021
  ident: 36224_CR17
  publication-title: Nature
  doi: 10.1038/s41586-021-03285-w
– volume: 8
  year: 2017
  ident: 36224_CR23
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15688
– volume: 14
  start-page: 5161
  year: 2021
  ident: 36224_CR46
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE02095A
– volume: 7
  start-page: 982
  year: 2014
  ident: 36224_CR2
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee43822h
– volume: 31
  start-page: 1901284
  year: 2019
  ident: 36224_CR21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901284
– volume: 30
  start-page: 2002622
  year: 2020
  ident: 36224_CR18
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202002622
– volume: 11
  year: 2020
  ident: 36224_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14715-0
– volume: 6
  start-page: 419
  year: 2021
  ident: 36224_CR11
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00802-z
– volume: 3
  start-page: 2179
  year: 2019
  ident: 36224_CR5
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.014
– volume: 1
  start-page: 16081
  year: 2016
  ident: 36224_CR34
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.81
– ident: 36224_CR1
– volume: 12
  year: 2021
  ident: 36224_CR42
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20272-3
– volume: 13
  start-page: 460
  year: 2019
  ident: 36224_CR7
  publication-title: Nat. Photon.
  doi: 10.1038/s41566-019-0398-2
– volume: 371
  start-page: 1359
  year: 2021
  ident: 36224_CR29
  publication-title: Science
  doi: 10.1126/science.abf7652
– volume: 9
  year: 2018
  ident: 36224_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06204-2
– volume: 32
  start-page: 1907769
  year: 2020
  ident: 36224_CR32
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201907769
– volume: 7
  start-page: 2000480
  year: 2020
  ident: 36224_CR39
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000480
– volume: 4
  start-page: 150
  year: 2019
  ident: 36224_CR35
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0324-8
– volume: 12
  year: 2021
  ident: 36224_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25092-7
– volume: 53
  start-page: 9898
  year: 2014
  ident: 36224_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201405334
– volume: 370
  start-page: 74
  year: 2020
  ident: 36224_CR9
  publication-title: Science
  doi: 10.1126/science.abb8985
– volume: 15
  start-page: 3171
  year: 2022
  ident: 36224_CR37
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00663D
– volume: 9
  start-page: 656
  year: 2016
  ident: 36224_CR3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE03255E
– volume: 10
  start-page: 1942
  year: 2017
  ident: 36224_CR4
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01675A
– volume: 4
  start-page: 1404
  year: 2018
  ident: 36224_CR43
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.03.005
– volume: 360
  start-page: 1442
  year: 2018
  ident: 36224_CR30
  publication-title: Science
  doi: 10.1126/science.aap9282
– volume: 30
  start-page: 1908343
  year: 2019
  ident: 36224_CR45
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201908343
– volume: 356
  start-page: 1376
  year: 2017
  ident: 36224_CR15
  publication-title: Science
  doi: 10.1126/science.aan2301
– volume: 372
  start-page: 1327
  year: 2021
  ident: 36224_CR13
  publication-title: Science
  doi: 10.1126/science.abh1035
– volume: 12
  year: 2021
  ident: 36224_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25407-8
– volume: 366
  start-page: 749
  year: 2019
  ident: 36224_CR10
  publication-title: Science
  doi: 10.1126/science.aay7044
– volume: 14
  start-page: 7796
  year: 2022
  ident: 36224_CR38
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c19122
– volume: 5
  start-page: 35
  year: 2020
  ident: 36224_CR40
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0529-5
– volume: 30
  start-page: 1804771
  year: 2018
  ident: 36224_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804771
– volume: 33
  start-page: 2007126
  year: 2021
  ident: 36224_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007126
– volume: 13
  start-page: 897
  year: 2014
  ident: 36224_CR27
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4014
– volume: 21
  start-page: 1396
  year: 2022
  ident: 36224_CR44
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-022-01390-3
– volume: 598
  start-page: 444
  year: 2021
  ident: 36224_CR33
  publication-title: Nature
  doi: 10.1038/s41586-021-03964-8
– volume: 10
  start-page: 361
  year: 2017
  ident: 36224_CR19
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03014A
– volume: 354
  start-page: 6309
  year: 2016
  ident: 36224_CR14
  publication-title: Science
  doi: 10.1126/science.aah5557
SSID ssj0000391844
Score 2.7048001
Snippet Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However,...
Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 573
SubjectTerms 147/135
147/143
147/28
147/3
639/301/299/946
639/4077/909/4101/4096/946
Additives
Bonding strength
Crystallization
Efficiency
Fluorination
Humanities and Social Sciences
Humidity
Hydrogen bonding
Hydrophobicity
Iodides
multidisciplinary
Nucleation
Perovskites
Photovoltaic cells
Polymerization
Polymers
Science
Science (multidisciplinary)
Solar cells
Water
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEHwR5_zonBLBNw1rk7RpHqd4GQP1xcHeQvPFBrUd7d3g-tfvnLT3uqtuvvjaJiGcc5Lf7-TjF0LeNcB6wdGSRREaJl0tmFY-Mie1Kpwoova4oP_la3V8Kk_OyrNbT33hmbBJHngy3GHNrS9cri0wW4ngm-POnC6dgwScpyvrHDDvVjKV5mChIXWR8y2ZXNSHo0xzAkAUgzmbS1ZtIVES7P8by_zzsORvO6YJiBZPyOOZQdKjqee75EHonpKH05uSqz3y89uQrjgCk6RuWAH5a9v5riXtI10cMQQuT1Eg_HrEtVt6fdHQ85UfeggmZntcE6eXfbv6EQbaTcfEKXBbGpLcBDROm85TaNm2gY6YG1Nc_x-fkdPF5--fjtn8wAJzQNSWzHJui1AKwGilcx6VCFX0MlrtomoU4ndVOImi96XishG-zL3jMUBaWSuYK56Tna7vwktCYwl1gApEUSoZSt7YogqVawrroYYPGSnWxjZuVh_HRzBak3bBRW0mBxlwkEkOMlVG3m_qXE7aG_eW_og-3JRE3ez0AaLJzNFk_hVNGTlYR4CZB_NouAIA55C-lxl5u_kNwxBt23Shv0plRIHcE8q8mAJm0xNRKQF5eJ4RtRVKW13d_tNdnCepb11rFCvIyId10P3q1t2m2P8fpnhFHnEcLXhCnR-QneVwFV4DAVvaN2ms3QDI8ykm
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6vxI3FyQgWxVEjAhUq9WfGLVkqTJdlWWn49M052q-XRa2JHjuf1eWY8Q8jrBlAvEFqxKEPDlKskq7WPzKlacyd5rD069L98LY-O1eeT4mR2uI1zWuVGJyZF7XuHPvIDoUGLCjhDFe-WPxl2jcLo6txC4ya5xcHSYEpXtfi09bFg9fNKqfmuTC6rg1ElzQCGioHmFoqVO_Yole3_F9b8O2Xyj7hpMkeLe-TujCPp4UT4--RG6B6Q21NnyfVD8uvbkC46Ap6kblgDBGzb-cYl7SNdHDI0X55imfDLET249PKsoadrP_TAUsz26Bmny75dn4eBdlOyOAWES0MqOgEfp03nKXzZtoGOeEKmGAUYH5HjxcfvH47Y3GaBOYBrK2aFsDwUEiy1rnMRtQxl9Cra2kXdaLTiJXcKS98XWqhG-iL3TsQAh8tKg8Z4TPa6vgtPCY0FzAFAEGWhVShEY3kZStdw62GGDxnhm802bq5Bjq0wWpNi4bIyE4EMEMgkApkyI2-2c5ZTBY5rR79HGm5HYvXs9KAffphZGE0lrOcury2clhQCuhyjvXXhnAbAp3hG9jccYGaRHs0VA2bk1fY1CCPubdOF_iKNkRwRKIx5MjHMdiWy1BJO43lG9A4r7Sx19013dpoKftdVjSULMvJ2w3RXy_r_Vjy7_i-ekzsC5QAz0MU-2VsNF-EFAKyVfZmk6Dd8xiLK
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDehBRmJG1jEj8TJcUGsqpWAA1TqLYpftFKaVMm20vLrO-NkgxYKEtfEtizPjOeb8fgzIW9qQL0gaMWC9DVTtpCs1C4wq0rNreShdJjQ__wlPz5Rq9PsdI-I7V2YWLQfKS3jNr2tDns_qGjS4GEYbLlCsfwOOUCqdtDtg8Vi9W01Z1aQ87xQarohk8rils47XiiS9d-GMP8slPzttDQ6oeUDcn9Cj3Qxzvch2fPtI3J3fE9y85j8_NrH642AIqntNwD8mma6Z0m7QJcLhk7LUSQHvx4wb0uvz2t6tnF9B4rETIf5cHrZNZsL39N2LBGngGupj1QTMDitW0dhZNN4OmBcTDH3PzwhJ8tP3z8es-lxBWYBpK2ZEcJwn0nwz7pMRdDS58GpYEobdK3Rd-fcKiS8z7RQtXRZ6qwIHkLKQsM-8ZTst13rnxMaMugDMCDITCufidrw3Oe25sZBD-cTwreLXdmJeRwfwGiqeAIui2oUUAUCqqKAqjwhb-c-lyPvxj9bf0AZzi2RMzt-6Pof1aRDVSGM4zYtDcRICmFcime8ZWatBpineEKOthpQTYY8VEKD8xYQumcJeT3_BhPEta1b313FNpIj7oQ2z0aFmWcicy0hBk8TondUaWequ3_a87NI810WJRIVJOTdVul-TevvS_Hi_5ofknsC7QLr0MUR2V_3V_4lwKy1eTXZ1Q1awCHn
  priority: 102
  providerName: Springer Nature
Title Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells
URI https://link.springer.com/article/10.1038/s41467-023-36224-6
https://www.ncbi.nlm.nih.gov/pubmed/36732540
https://www.proquest.com/docview/2771822745
https://www.proquest.com/docview/2773114355
https://pubmed.ncbi.nlm.nih.gov/PMC9895431
https://doaj.org/article/82bd1c09b675451590870695cc761241
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB71EBIviBuXEi0Sb7AQ76699gNCadRQRWpBQKS8WfYetJKxWyetML-e2bUTFAh9sSXvofUcO9_sMQPwKkfUi4wW1HKTU6ESTlOpLVUilaHioU21W9A_PYtPZmI6j-Y7sEp31BNwsdW1c_mkZk359udV-wEV_n13ZTx5txBe3dH6UJyOmaDxLuyjZZIuo8FpD_f9zMxTdGhEf3dme9MN--TD-G_Dnv8eofxrH9Wbp8l9uNfjSjLqBOEB7JjqIdzpMk22j-DXp8ZffER8SVTTIiQsy_4GJqktmYyoM2eauLDhNwu3oktuLnJy3uqmRhGjRe1WysllXbY_TEOq7vA4QcRLjA9CgZ2TvNIEey5KQxaOrMTtCiwew2xy_G18Qvu0C1QhfFvSgrEiNBFHyy3TIbOSm9hqYYtUWZlLZ9XjUAkXCj-STORcR0OtmDXobCYSZ5AnsFfVlXkGxEbYBgGC5ZEUJmJ5EcYmVnlYaGyhTQDhitiZ6mOSu9QYZeb3xnmSdQzKkEGZZ1AWB_B63eayi8hxa-0jx8N1TRdN23-om-9Zr5xZwgodqmFaoPckHMAbut3fNFJKIgAUYQCHKwnIVhKaMYlmnaFTHwXwcl2Myulom1emvvZ1eOgQKdZ52gnMeiQ8lhy982EAckOUNoa6WVJdnPsA4GmSuhAGAbxZCd2fYf2fFAe3_8VzuMucHrgT6ewQ9pbNtXmBgGtZDGBXziU-k8nHAeyPRtOvU3wfHZ99_oJfx_F44JcyBl7bfgMZmiy4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFYT24mTA0LlsWzpg0sr9eYmtkMrbZNtsi1afhS_kRkn2Wp59Nbrxra8nhnPNzOeGUJe5YB6gdCSlcLlTJpUsEzZkhmZqciIqMwsOvR3dpPxvvx6EB-skF9DLgw-qxzuRH9R29qgj3ydK7hFOdhQ8fvpKcOuURhdHVpodGyx5eY_wGRr321-Avq-5nz0ee_jmPVdBZgBdDJjBedF5GIBikllIS-VcElpZVlkplS5QqWVREZipfdYcZkLG4fW8NKBLZUqEBBY9xq5LgVocsxMH31Z-HSw2noqZZ-bE4p0vZX-JgLFyEBTcMmSJf3n2wT8C9v-_UTzjzitV3-jO-R2j1vpRsdod8mKq-6RG10ny_l98vNb4xMrAb9S08wBck4mfYYnrUs62mCoLi3FsuTnLXqM6flxTo_mtqmBhVlRoyeeTuvJ_MQ1tOoep1NA1NT5IhewOM0rS2HlYuJoixY5xahD-4DsXwkBHpLVqq7cY0LLGOYAAClFrKSLeV5EiUtMHhUWZlgXkGg4bG36mufYemOifexdpLojkAYCaU8gnQTkzWLOtKv4cenoD0jDxUis1u1_qJvvuhd-nfLCRibMCrDOJALIEKPLWWyMAoApo4CsDRyg-yuk1RcMH5CXi88g_Hi2eeXqMz9GRIh4YcyjjmEWOxGJEmD9hwFRS6y0tNXlL9XxkS8wnqUZlkgIyNuB6S629f-jeHL5v3hBbo73drb19ubu1lNyi6NM4Ot3vkZWZ82ZewbgblY89xJFyeFVi_BvCnFdlA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCE1i7sZ04OSDU0q5aCkuFqNSbSfyglZZkSbZFy0_j1zGTx1bLo7deN7bl9by-8YxnCHmeAeoFQkvmhcuYNIlgqbKeGZmq0IjQpxYv9D9M4t1D-e4oOlojv_q3MJhW2evERlHb0uAd-ZAr0KIcfKho6Lu0iIPt8ZvZd4YdpDDS2rfTaFlk3y1-gPtWv97bBlq_4Hy88_ntLus6DDADSGXOcs7z0EUCjJRKR9wr4WJvpc9T41Wm0IDFoZFY9T1SXGbCRiNruHfgVyUKhAXWvULWFXpFA7K-tTM5-LS84cHa64mU3UudkUiGtWz0EphJBnaDSxavWMOmacC_kO7fCZt_RG0bYzi-SW50KJZutmx3i6y54ja52va1XNwhPz9WzTNLQLPUVAsAoNNp996Tlp6ONxkaT0uxSPlZjffH9Owko8cLW5XA0Cwv8V6ezsrp4puraNGmqlPA19Q1JS9gcZoVlsLK-dTRGv1zijGI-i45vBQS3CODoizcA0J9BHMAjngRKekinuVh7GKThbmFGdYFJOwPW5uuAjo24pjqJhIvEt0SSAOBdEMgHQfk5XLOrK3_ceHoLaThciTW7m5-KKuvulMFOuG5Dc0ozcFXkwgnRxhrTiNjFMBNGQZko-cA3SmUWp-zf0CeLT-DKsCzzQpXnjZjRIj4F8bcbxlmuRMRK8HhwAOiVlhpZaurX4qT46bceJqkWDAhIK96pjvf1v-P4uHF_-IpuQbiq9_vTfYfkescRQJT4fkGGcyrU_cYkN48f9KJFCVfLluKfwNkJ2Mm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orientated+crystallization+of+FA-based+perovskite+via+hydrogen-bonded+polymer+network+for+efficient+and+stable+solar+cells&rft.jtitle=Nature+communications&rft.au=Li%2C+Mubai&rft.au=Sun%2C+Riming&rft.au=Chang%2C+Jingxi&rft.au=Dong%2C+Jingjin&rft.date=2023-02-02&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=573&rft_id=info:doi/10.1038%2Fs41467-023-36224-6&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon