Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells
Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 573 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.
Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h. |
---|---|
AbstractList | Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h. Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively.Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively. Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively. Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h. Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However, these devices commonly suffer from photoinduced phase segregation and humidity instability. Herein, we find that the underlying reason is that the mixed halide perovskites generally fail to grow into homogenous and high-crystalline film, due to the multiple pathways of crystal nucleation originating from various intermediate phases in the film-forming process. Therefore, we design a multifunctional fluorinated additive, which restrains the complicated intermediate phases and promotes orientated crystallization of α-phase of perovskite. Furthermore, the additives in-situ polymerize during the perovskite film formation and form a hydrogen-bonded network to stabilize α-phase. Remarkably, the polymerized additives endow a strongly hydrophobic effect to the bare perovskite film against liquid water for 5 min. The unencapsulated devices achieve 24.10% efficiency and maintain >95% of the initial efficiency for 1000 h under continuous sunlight soaking and for 2000 h at air ambient of ~50% humid, respectively. Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a multifunctional fluorinated additive to promote orientated crystallization of α-phase, and achieve maximum efficiency of 24.1% and T95 over 1000 h. |
ArticleNumber | 573 |
Author | Yang, Pinghui Chang, Jingxi Wang, Hongze Shi, Haokun Li, Zihao Sun, Riming Yang, Yingguo Zhang, Shitong Wang, Aifei Qin, Tianshi Wu, Zichao Wang, Fangfang Tian, Qiushuang Huang, Wei Dong, Jingjin Yang, Chao Li, Renzhi Li, Mubai |
Author_xml | – sequence: 1 givenname: Mubai orcidid: 0000-0003-0027-6368 surname: Li fullname: Li, Mubai organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 2 givenname: Riming surname: Sun fullname: Sun, Riming organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 3 givenname: Jingxi surname: Chang fullname: Chang, Jingxi organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 4 givenname: Jingjin surname: Dong fullname: Dong, Jingjin organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 5 givenname: Qiushuang surname: Tian fullname: Tian, Qiushuang organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 6 givenname: Hongze surname: Wang fullname: Wang, Hongze organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 7 givenname: Zihao surname: Li fullname: Li, Zihao organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 8 givenname: Pinghui surname: Yang fullname: Yang, Pinghui organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 9 givenname: Haokun surname: Shi fullname: Shi, Haokun organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 10 givenname: Chao surname: Yang fullname: Yang, Chao organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 11 givenname: Zichao surname: Wu fullname: Wu, Zichao organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 12 givenname: Renzhi surname: Li fullname: Li, Renzhi organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 13 givenname: Yingguo orcidid: 0000-0002-1749-2799 surname: Yang fullname: Yang, Yingguo organization: Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Shanghai Institute of Applied Physics, Chinese Academy of Sciences – sequence: 14 givenname: Aifei surname: Wang fullname: Wang, Aifei organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 15 givenname: Shitong surname: Zhang fullname: Zhang, Shitong organization: State Key Laboratory of Supramolecular Structure and Materials, Jilin University – sequence: 16 givenname: Fangfang orcidid: 0000-0002-5441-4490 surname: Wang fullname: Wang, Fangfang email: iamffwang2@njtech.edu.cn organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) – sequence: 17 givenname: Wei orcidid: 0000-0001-7004-6408 surname: Huang fullname: Huang, Wei email: iamwhuang@nwpu.edu.cn organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU) – sequence: 18 givenname: Tianshi orcidid: 0000-0002-2084-3537 surname: Qin fullname: Qin, Tianshi email: iamtsqin@njtech.edu.cn organization: Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36732540$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vFCEYxiemxtbaL-DBkHjxMsp_Zi4mTWO1SZNe9EwY5mXLloUKs2u2n15mt9a2h3KB8D7Pjxd43jYHMUVomvcEfyaYdV8KJ1yqFlPWMkkpb-Wr5ohiTlqiKDt4tD5sTkpZ4jpYTzrO3zSHTCpGBcdHzd1V9hAnM8GIbN6WyYTg78zkU0TJofPTdjCl1m4hp0258ROgjTfoejvmtIDYDimOczmF7QoyijD9SfkGuZQROOftDEcmjqiShwCopGAyshBCede8diYUOLmfj5tf599-nv1oL6--X5ydXra2dji1A6UDAcGkJKrH1CkG0o3cDb11yiiMKZfEctwpIRTlho0Cj5Y66KjolMLsuLnYc8dklvo2-5XJW52M17uNlBfa5MnbALqjw0gs7gepBBdE9JWKZS-sVZJQTirr6551ux5WMNp6u2zCE-jTSvTXepE2uu96wdkM-HQPyOn3GsqkV77Mz2EipHXRVClGCGdCVOnHZ9JlWudYn2pWkY5SxWfVh8cdPbTy74urgO4FNqdSMrgHCcF6jpLeR0nXKOldlLSspu6Zyfppl4p6Kx9etrK9tdRz4gLy_7ZfcP0FJBnc4A |
CitedBy_id | crossref_primary_10_1002_adfm_202425620 crossref_primary_10_1016_j_cej_2023_145024 crossref_primary_10_1002_solr_202300567 crossref_primary_10_1002_aenm_202404850 crossref_primary_10_1002_adfm_202419067 crossref_primary_10_1002_advs_202402065 crossref_primary_10_1002_smll_202405598 crossref_primary_10_1002_anie_202419061 crossref_primary_10_1016_j_cej_2025_161518 crossref_primary_10_1016_j_mtener_2024_101540 crossref_primary_10_1016_j_nanoen_2024_110190 crossref_primary_10_1039_D4SC08145E crossref_primary_10_1039_D3TA06067E crossref_primary_10_1039_D4TC05079G crossref_primary_10_1002_adma_202420093 crossref_primary_10_1016_j_xcrp_2024_102321 crossref_primary_10_1021_acs_jpclett_4c00881 crossref_primary_10_1002_adom_202301623 crossref_primary_10_1039_D4EE02917H crossref_primary_10_1002_smll_202405123 crossref_primary_10_1002_smll_202301824 crossref_primary_10_1002_adma_202310444 crossref_primary_10_1016_j_jallcom_2024_178207 crossref_primary_10_1039_D4EE01008F crossref_primary_10_1002_adfm_202400467 crossref_primary_10_1002_smll_202401456 crossref_primary_10_1016_j_nanoen_2024_110296 crossref_primary_10_1002_adfm_202307568 crossref_primary_10_1039_D3MA00506B crossref_primary_10_1002_adma_202410395 crossref_primary_10_1002_anie_202306229 crossref_primary_10_1021_acsenergylett_4c01095 crossref_primary_10_1016_j_cej_2025_161053 crossref_primary_10_3788_CJL241261 crossref_primary_10_1021_acsami_4c16316 crossref_primary_10_1126_science_adn9646 crossref_primary_10_1002_ange_202415669 crossref_primary_10_1021_acsaelm_4c01978 crossref_primary_10_1002_aenm_202304486 crossref_primary_10_1002_ange_202306229 crossref_primary_10_1016_j_device_2024_100441 crossref_primary_10_1002_anie_202418763 crossref_primary_10_1002_aenm_202302743 crossref_primary_10_1002_anie_202418606 crossref_primary_10_1002_solr_202300766 crossref_primary_10_1002_anie_202316898 crossref_primary_10_1016_j_cej_2024_155672 crossref_primary_10_1039_D3NR06615K crossref_primary_10_1002_adma_202407406 crossref_primary_10_1016_j_cej_2024_148572 crossref_primary_10_1002_aenm_202301302 crossref_primary_10_1002_adma_202302752 crossref_primary_10_1007_s40820_024_01630_y crossref_primary_10_1039_D4TC02432J crossref_primary_10_1002_aenm_202402066 crossref_primary_10_1021_acsanm_3c02399 crossref_primary_10_1016_j_cej_2024_153121 crossref_primary_10_1016_j_jechem_2024_03_014 crossref_primary_10_1039_D4EE01044B crossref_primary_10_1039_D4EE02964J crossref_primary_10_1063_5_0239423 crossref_primary_10_1002_adfm_202408480 crossref_primary_10_1002_adfm_202316202 crossref_primary_10_1002_smtd_202400643 crossref_primary_10_1002_anie_202502244 crossref_primary_10_1016_j_matt_2023_10_013 crossref_primary_10_1039_D4EE01371A crossref_primary_10_1002_adma_202310711 crossref_primary_10_1002_adom_202402521 crossref_primary_10_1002_adma_202405572 crossref_primary_10_1002_smtd_202402039 crossref_primary_10_3390_en16186498 crossref_primary_10_1016_j_joule_2024_05_019 crossref_primary_10_1002_ange_202502244 crossref_primary_10_1038_s41467_024_46145_7 crossref_primary_10_1002_ange_202318754 crossref_primary_10_1002_ange_202418606 crossref_primary_10_1039_D4EE02279C crossref_primary_10_1007_s11426_024_2567_7 crossref_primary_10_1016_j_scib_2024_06_029 crossref_primary_10_1021_acs_jpclett_4c02603 crossref_primary_10_1016_j_surfin_2023_103738 crossref_primary_10_1021_acs_jpclett_4c01997 crossref_primary_10_1002_adma_202400565 crossref_primary_10_1038_s41467_025_57303_w crossref_primary_10_1039_D3EE02569A crossref_primary_10_1002_ange_202319170 crossref_primary_10_1109_JEDS_2024_3358087 crossref_primary_10_1002_adfm_202407116 crossref_primary_10_1021_acs_jpcc_4c00757 crossref_primary_10_1016_j_cej_2025_159390 crossref_primary_10_1002_aenm_202404335 crossref_primary_10_1002_smtd_202400948 crossref_primary_10_1002_anie_202318754 crossref_primary_10_1021_acsenergylett_3c02270 crossref_primary_10_1002_adma_202311145 crossref_primary_10_1021_acs_jpcc_3c07066 crossref_primary_10_1002_adfm_202404099 crossref_primary_10_1002_anie_202319170 crossref_primary_10_1126_science_ade9637 crossref_primary_10_1021_acsenergylett_4c01150 crossref_primary_10_1039_D4TA02491E crossref_primary_10_1002_adma_202305946 crossref_primary_10_1002_anie_202501764 crossref_primary_10_1002_anie_202415669 crossref_primary_10_1002_aenm_202405093 crossref_primary_10_1002_eem2_12696 crossref_primary_10_1126_sciadv_adq5778 crossref_primary_10_1021_acs_jpcc_3c05787 crossref_primary_10_1038_s43246_024_00566_5 crossref_primary_10_1021_acsami_4c21058 crossref_primary_10_1002_anie_202410069 crossref_primary_10_1021_acs_nanolett_5c00004 crossref_primary_10_1002_adfm_202421402 crossref_primary_10_1016_j_synthmet_2024_117647 crossref_primary_10_1021_acscatal_3c03051 crossref_primary_10_1021_jacsau_4c00615 crossref_primary_10_1002_adom_202403012 crossref_primary_10_3390_coatings14010083 crossref_primary_10_1016_j_solmat_2024_113038 crossref_primary_10_1016_j_cej_2024_156703 crossref_primary_10_1002_adma_202414354 crossref_primary_10_1038_s41467_023_38926_3 crossref_primary_10_1039_D5EE00073D crossref_primary_10_1002_anie_202304568 crossref_primary_10_1007_s40820_024_01514_1 crossref_primary_10_1021_acsenergylett_4c02580 crossref_primary_10_1002_ange_202418763 crossref_primary_10_1039_D4TC05093B crossref_primary_10_1039_D3TA07759D crossref_primary_10_1002_ange_202316898 crossref_primary_10_1002_inf2_12522 crossref_primary_10_1038_s41467_024_51550_z crossref_primary_10_1002_ange_202419061 crossref_primary_10_1021_acsnano_4c12811 crossref_primary_10_1002_adma_202307583 crossref_primary_10_1002_ange_202304568 crossref_primary_10_1002_adfm_202410419 crossref_primary_10_1002_smll_202309009 crossref_primary_10_1002_ange_202501764 crossref_primary_10_1002_smll_202401877 crossref_primary_10_1002_adma_202414576 crossref_primary_10_1007_s11426_024_1986_6 crossref_primary_10_1002_anie_202421174 crossref_primary_10_1039_D4EE04136D crossref_primary_10_1002_smll_202310742 crossref_primary_10_1002_anie_202421063 crossref_primary_10_1021_acssuschemeng_4c06579 crossref_primary_10_1002_adma_202417289 crossref_primary_10_1021_acssuschemeng_3c06121 crossref_primary_10_1002_smll_202304189 crossref_primary_10_1002_ange_202410069 crossref_primary_10_1002_solr_202400365 crossref_primary_10_1016_j_cej_2023_147235 crossref_primary_10_1002_adfm_202400474 crossref_primary_10_1021_acsnano_4c16440 crossref_primary_10_1002_adom_202301949 crossref_primary_10_1016_j_xcrp_2024_102245 crossref_primary_10_1002_ange_202316954 crossref_primary_10_1016_j_cej_2024_150382 crossref_primary_10_1016_j_nanoen_2024_109715 crossref_primary_10_1002_adfm_202405250 crossref_primary_10_1002_adfm_202407790 crossref_primary_10_1002_aenm_202401809 crossref_primary_10_1016_j_cej_2023_148320 crossref_primary_10_1039_D3TC02644B crossref_primary_10_1016_j_jcis_2025_137321 crossref_primary_10_1002_adfm_202422014 crossref_primary_10_1002_ange_202421063 crossref_primary_10_1002_anie_202316954 crossref_primary_10_1088_2752_5724_ad42ba crossref_primary_10_1002_solr_202300902 crossref_primary_10_1002_adfm_202414423 crossref_primary_10_1002_ange_202404289 crossref_primary_10_1016_j_jechem_2024_11_024 crossref_primary_10_1021_acsami_4c14684 crossref_primary_10_1021_acsenergylett_3c02455 crossref_primary_10_1016_j_jechem_2023_07_002 crossref_primary_10_1016_j_solmat_2024_113071 crossref_primary_10_1002_aenm_202406046 crossref_primary_10_1002_adma_202305648 crossref_primary_10_1002_adom_202400722 crossref_primary_10_1016_j_apmate_2024_100264 crossref_primary_10_1016_j_cej_2024_151459 crossref_primary_10_1021_acs_nanolett_4c05694 crossref_primary_10_1002_adma_202309208 crossref_primary_10_1002_ange_202421174 crossref_primary_10_1063_5_0218208 crossref_primary_10_1021_acsenergylett_4c02674 crossref_primary_10_20517_energymater_2024_54 crossref_primary_10_1002_aenm_202400616 crossref_primary_10_20517_energymater_2023_111 crossref_primary_10_1002_anie_202404289 crossref_primary_10_1016_j_orgel_2024_107063 crossref_primary_10_1002_solr_202300486 crossref_primary_10_1002_smll_202308877 crossref_primary_10_1021_acssuschemeng_3c04059 crossref_primary_10_1016_j_cej_2025_160571 crossref_primary_10_1039_D4EE03045A |
Cites_doi | 10.1038/nature14133 10.1038/s41586-019-1036-3 10.1002/adma.201907123 10.1038/s41586-021-03406-5 10.1021/acs.chemrev.8b00336 10.1002/anie.202112074 10.1038/s41586-021-03285-w 10.1038/ncomms15688 10.1039/D1EE02095A 10.1039/c3ee43822h 10.1002/adma.201901284 10.1002/adfm.202002622 10.1038/s41467-020-14715-0 10.1038/s41560-021-00802-z 10.1016/j.joule.2019.06.014 10.1038/nenergy.2016.81 10.1038/s41467-020-20272-3 10.1038/s41566-019-0398-2 10.1126/science.abf7652 10.1038/s41467-018-06204-2 10.1002/adma.201907769 10.1002/advs.202000480 10.1038/s41560-018-0324-8 10.1038/s41467-021-25092-7 10.1002/anie.201405334 10.1126/science.abb8985 10.1039/D2EE00663D 10.1039/C5EE03255E 10.1039/C7EE01675A 10.1016/j.chempr.2018.03.005 10.1126/science.aap9282 10.1002/adfm.201908343 10.1126/science.aan2301 10.1126/science.abh1035 10.1038/s41467-021-25407-8 10.1126/science.aay7044 10.1021/acsami.1c19122 10.1038/s41560-019-0529-5 10.1002/adma.201804771 10.1002/adma.202007126 10.1038/nmat4014 10.1038/s41563-022-01390-3 10.1038/s41586-021-03964-8 10.1039/C6EE03014A 10.1126/science.aah5557 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36224-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_82bd1c09b675451590870695cc761241 PMC9895431 36732540 10_1038_s41467_023_36224_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20180339 funderid: https://doi.org/10.13039/501100004608 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: BK20180339 – fundername: ; grantid: BK20180339 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-b22b1e536617902f73e6fd4fb9cf7a7002461c408755724a3d50dc2fe82587703 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:58:11 EDT 2025 Thu Aug 21 18:38:05 EDT 2025 Thu Jul 10 19:31:19 EDT 2025 Wed Aug 13 08:41:44 EDT 2025 Wed Feb 19 02:25:06 EST 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 00:58:39 EDT 2025 Fri Feb 21 02:40:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b22b1e536617902f73e6fd4fb9cf7a7002461c408755724a3d50dc2fe82587703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7004-6408 0000-0002-5441-4490 0000-0002-2084-3537 0000-0002-1749-2799 0000-0003-0027-6368 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36224-6 |
PMID | 36732540 |
PQID | 2771822745 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_82bd1c09b675451590870695cc761241 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9895431 proquest_miscellaneous_2773114355 proquest_journals_2771822745 pubmed_primary_36732540 crossref_primary_10_1038_s41467_023_36224_6 crossref_citationtrail_10_1038_s41467_023_36224_6 springer_journals_10_1038_s41467_023_36224_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-02 |
PublicationDateYYYYMMDD | 2023-02-02 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | JiangQSurface passivation of perovskite film for efficient solar cellsNat. Photon.2019134604662019NaPho..13..460J1:CAS:528:DC%2BC1MXot12lsrc%3D10.1038/s41566-019-0398-2 WangXEngineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidityNat. Commun.2021122021NatCo..12...52W1:CAS:528:DC%2BB3MXnsFCrtg%3D%3D10.1038/s41467-020-20272-3 GuoZJenaAKKimGMiyasakaTHigh open-circuit voltage of perovskite solar cells: a reviewEnergy Environ. Sci.202215317132221:CAS:528:DC%2BB38XhslOjtbfL10.1039/D2EE00663D ZongYContinuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stabilityChem20184140414151:CAS:528:DC%2BC1cXhtFGgtrrJ10.1016/j.chempr.2018.03.005 MinHEfficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodideScience20193667497532019Sci...366..749M1:CAS:528:DC%2BC1MXitFaksLbF10.1126/science.aay7044 YeFRoles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cellsAdv. Mater.20213320071261:CAS:528:DC%2BB3cXisFGlsrfI10.1002/adma.202007126 XiaoMA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew. Chem. Int. Ed.201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334 ChangQFerrocene-induced perpetual recovery on all elemental defects in perovskite solar cellsAngew. Chem. Int. Ed.20216025567255741:CAS:528:DC%2BB3MXit12ls7rI10.1002/anie.202112074 JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D10.1038/nature14133 YangWSIodide management informamidinium-lead-halide–based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP10.1126/science.aan2301 YiCEntropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cellsEnergy Environ. Sci.201696566621:CAS:528:DC%2BC2MXhvFClu7zP10.1039/C5EE03255E JeongJPseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cellsNature20215923813852021Natur.592..381J1:CAS:528:DC%2BB3MXotVamsbc%3D10.1038/s41586-021-03406-5 YunYA nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cellsAdv. Mater.20203219071231:CAS:528:DC%2BB3cXjs1Ohtb4%3D10.1002/adma.201907123 ZhaoYA Polymerization-assisted grain growth strategy for efficient and stable perovskite solar cellsAdv. Mater.20203219077691:CAS:528:DC%2BB3cXksVKksr4%3D10.1002/adma.201907769 ZhuLUnveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodesNat. Commun.2021122021NatCo..12.5081Z1:CAS:528:DC%2BB3MXhvVymt7%2FP10.1038/s41467-021-25407-8 LuoDEnhanced photovoltage for inverted planar heterojunction perovskite solar cellsScience2018360144214462018Sci...360.1442L1:CAS:528:DC%2BC1cXht1SrtrbE10.1126/science.aap9282 KhenkinMVConsensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS proceduresNat. Energy2020535492020NatEn...5...35K10.1038/s41560-019-0529-5 RombachFMHaqueSAMacdonaldTJLessons learned from Spiro-OMeTAD and PTAA in perovskite solar cellsEnergy Environ. Sci.202114516151901:CAS:528:DC%2BB3MXhvVOjsr7L10.1039/D1EE02095A JeonNJSolvent engineering for high-performance inorganic-organic hybrid perovskite solar cellsNat. Mater.2014138979032014NatMa..13..897J1:CAS:528:DC%2BC2cXhtFSlsLvE10.1038/nmat4014 RehmanWPhotovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic propertiesEnergy Environ. Sci.2017103613691:CAS:528:DC%2BC28XitV2mu7jP10.1039/C6EE03014A BuTLead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modulesScience2021372132713322021Sci...372.1327B1:CAS:528:DC%2BB3MXhtlKrs77P10.1126/science.abh1035 JungEHEfficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)Nature20195675115152019Natur.567..511J1:CAS:528:DC%2BC1MXosVSjuro%3D10.1038/s41586-019-1036-3 SubediBUrbach energy and open-circuit voltage deficit for mixed anion− cation perovskite solar cellsACS Appl. Mater. Interfaces202214779678041:CAS:528:DC%2BB38XislOhs7s%3D10.1021/acsami.1c19122 LiXIn-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cellsNat. Commun.201892018NatCo...9.3806L10.1038/s41467-018-06204-2 ParkB-WStabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cellsNat. Energy202164194282021NatEn...6..419P1:CAS:528:DC%2BB3MXosFequ7c%3D10.1038/s41560-021-00802-z SonD-YSelf-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cellsNat. Energy20161160812016NatEn...116081S1:CAS:528:DC%2BC2sXhtVersb0%3D10.1038/nenergy.2016.81 WangSδ‐CsPbI3 intermediate phase growth assisted sequential deposition boosts stable and high‐efficiency triple cation perovskite solar cellsAdv. Funct. Mater.201930190834310.1002/adfm.201908343 ZouYManipulating crystallization dynamics through chelating molecules for bright perovskite emittersNat. Commun.2021122021NatCo..12.4831Z1:CAS:528:DC%2BB3MXhvVSlsLbP10.1038/s41467-021-25092-7 ZhangKA prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformityNat. Commun.2020112020NatCo..11.1006Z1:CAS:528:DC%2BB3cXkvFahur4%3D10.1038/s41467-020-14715-0 HuQIn situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6](4-) cage nanoparticlesNat. Commun.201782017NatCo...815688H1:CAS:528:DC%2BC2sXhtVeqsbnL10.1038/ncomms15688 LuHVapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cellsScience2020370742020Sci...370...82L10.1126/science.abb8985 XieFVertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cellsEnergy Environ. Sci.201710194219491:CAS:528:DC%2BC2sXht1ektrzP10.1039/C7EE01675A MinHPerovskite solar cells with atomically coherent interlayers on SnO2 electrodesNature20215984444502021Natur.598..444M1:CAS:528:DC%2BB3MXit1yktbfO10.1038/s41586-021-03964-8 CuiPPlanar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%Nat. Energy201941501592019NatEn...4..150C1:CAS:528:DC%2BC1MXmslGrtb0%3D10.1038/s41560-018-0324-8 KimMMethylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cellsJoule20193217921921:CAS:528:DC%2BC1MXhvVWit7nJ10.1016/j.joule.2019.06.014 HuiWStabilizing black-phase formamidinium perovskite formation at room temperature and high humidityScience2021371135913642021Sci...371.1359H1:CAS:528:DC%2BB3MXnsVyrurs%3D10.1126/science.abf7652 GautamSKReversible photoinduced phase segregation and origin of long carrier lifetime in mixed‐halide perovskite filmsAdv. Funct. Mater.202030200262241547561:CAS:528:DC%2BB3cXps1yht70%3D10.1002/adfm.202002622 SalibaMIncorporation of rubidium cations into perovskite solar cells improves photovoltaic performanceScience2016354630910.1126/science.aah5557 Best Research-Cell Efficiency Chart (NREL, 2022); http://www.nrel.gov/pv/cell-efficiency.html ZhaoYSuppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cationsNat. Mater.202221139614022022NatMa..21.1396Z45031541:CAS:528:DC%2BB38XivFSht7vP10.1038/s41563-022-01390-3 QinMManipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXSAdv. Mater.201931190128410.1002/adma.201901284 EperonGEFormamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy Environ. Sci.201479829881:CAS:528:DC%2BC2cXjtlKisLo%3D10.1039/c3ee43822h ChenQRapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaicsAdv. Sci.2020720004801:CAS:528:DC%2BB3cXitVKhtbjO10.1002/advs.202000480 YooJJEfficient perovskite solar cells via improved carrier managementNature20215905875932021Natur.590..587Y1:CAS:528:DC%2BB3MXltFaltLk%3D10.1038/s41586-021-03285-w BoydCCCheacharoenRLeijtensTMcGeheeMDUnderstanding degradation mechanisms and improving stability of perovskite photovoltaicsChem. Rev.2019119341834511:CAS:528:DC%2BC1cXit1Smt7fL10.1021/acs.chemrev.8b00336 YangROriented quasi-2D perovskites for high performance optoelectronic devicesAdv. Mater.201830180477110.1002/adma.201804771 FM Rombach (36224_CR46) 2021; 14 M Kim (36224_CR5) 2019; 3 Q Jiang (36224_CR7) 2019; 13 Y Zou (36224_CR24) 2021; 12 M Saliba (36224_CR14) 2016; 354 P Cui (36224_CR35) 2019; 4 X Wang (36224_CR42) 2021; 12 S Wang (36224_CR45) 2019; 30 B Subedi (36224_CR38) 2022; 14 F Ye (36224_CR6) 2021; 33 H Lu (36224_CR9) 2020; 370 W Hui (36224_CR29) 2021; 371 EH Jung (36224_CR16) 2019; 567 M Qin (36224_CR21) 2019; 31 CC Boyd (36224_CR41) 2019; 119 J Jeong (36224_CR8) 2021; 592 D Luo (36224_CR30) 2018; 360 36224_CR1 MV Khenkin (36224_CR40) 2020; 5 Q Chen (36224_CR39) 2020; 7 JJ Yoo (36224_CR17) 2021; 590 Y Zong (36224_CR43) 2018; 4 H Min (36224_CR33) 2021; 598 Y Zhao (36224_CR44) 2022; 21 B-W Park (36224_CR11) 2021; 6 GE Eperon (36224_CR2) 2014; 7 NJ Jeon (36224_CR27) 2014; 13 WS Yang (36224_CR15) 2017; 356 T Bu (36224_CR13) 2021; 372 Q Hu (36224_CR23) 2017; 8 SK Gautam (36224_CR18) 2020; 30 X Li (36224_CR31) 2018; 9 W Rehman (36224_CR19) 2017; 10 Y Zhao (36224_CR32) 2020; 32 F Xie (36224_CR4) 2017; 10 M Xiao (36224_CR28) 2014; 53 R Yang (36224_CR36) 2018; 30 H Min (36224_CR10) 2019; 366 Q Chang (36224_CR20) 2021; 60 NJ Jeon (36224_CR12) 2015; 517 K Zhang (36224_CR26) 2020; 11 D-Y Son (36224_CR34) 2016; 1 Z Guo (36224_CR37) 2022; 15 C Yi (36224_CR3) 2016; 9 L Zhu (36224_CR25) 2021; 12 Y Yun (36224_CR22) 2020; 32 |
References_xml | – reference: LuoDEnhanced photovoltage for inverted planar heterojunction perovskite solar cellsScience2018360144214462018Sci...360.1442L1:CAS:528:DC%2BC1cXht1SrtrbE10.1126/science.aap9282 – reference: RehmanWPhotovoltaic mixed-cation lead mixed-halide perovskites: links between crystallinity, photo-stability and electronic propertiesEnergy Environ. Sci.2017103613691:CAS:528:DC%2BC28XitV2mu7jP10.1039/C6EE03014A – reference: MinHPerovskite solar cells with atomically coherent interlayers on SnO2 electrodesNature20215984444502021Natur.598..444M1:CAS:528:DC%2BB3MXit1yktbfO10.1038/s41586-021-03964-8 – reference: LuHVapor-assisted deposition of highly efficient, stable black-phase FAPbI3 perovskite solar cellsScience2020370742020Sci...370...82L10.1126/science.abb8985 – reference: ZouYManipulating crystallization dynamics through chelating molecules for bright perovskite emittersNat. Commun.2021122021NatCo..12.4831Z1:CAS:528:DC%2BB3MXhvVSlsLbP10.1038/s41467-021-25092-7 – reference: ChenQRapid microwave-annealing process of hybrid perovskites to eliminate miscellaneous phase for high performance photovoltaicsAdv. Sci.2020720004801:CAS:528:DC%2BB3cXitVKhtbjO10.1002/advs.202000480 – reference: QinMManipulating the mixed-perovskite crystallization pathway unveiled by in situ GIWAXSAdv. Mater.201931190128410.1002/adma.201901284 – reference: LiXIn-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cellsNat. Commun.201892018NatCo...9.3806L10.1038/s41467-018-06204-2 – reference: JungEHEfficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene)Nature20195675115152019Natur.567..511J1:CAS:528:DC%2BC1MXosVSjuro%3D10.1038/s41586-019-1036-3 – reference: HuiWStabilizing black-phase formamidinium perovskite formation at room temperature and high humidityScience2021371135913642021Sci...371.1359H1:CAS:528:DC%2BB3MXnsVyrurs%3D10.1126/science.abf7652 – reference: YiCEntropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cellsEnergy Environ. Sci.201696566621:CAS:528:DC%2BC2MXhvFClu7zP10.1039/C5EE03255E – reference: SalibaMIncorporation of rubidium cations into perovskite solar cells improves photovoltaic performanceScience2016354630910.1126/science.aah5557 – reference: BoydCCCheacharoenRLeijtensTMcGeheeMDUnderstanding degradation mechanisms and improving stability of perovskite photovoltaicsChem. Rev.2019119341834511:CAS:528:DC%2BC1cXit1Smt7fL10.1021/acs.chemrev.8b00336 – reference: RombachFMHaqueSAMacdonaldTJLessons learned from Spiro-OMeTAD and PTAA in perovskite solar cellsEnergy Environ. Sci.202114516151901:CAS:528:DC%2BB3MXhvVOjsr7L10.1039/D1EE02095A – reference: ZhangKA prenucleation strategy for ambient fabrication of perovskite solar cells with high device performance uniformityNat. Commun.2020112020NatCo..11.1006Z1:CAS:528:DC%2BB3cXkvFahur4%3D10.1038/s41467-020-14715-0 – reference: WangSδ‐CsPbI3 intermediate phase growth assisted sequential deposition boosts stable and high‐efficiency triple cation perovskite solar cellsAdv. Funct. Mater.201930190834310.1002/adfm.201908343 – reference: JeonNJCompositional engineering of perovskite materials for high-performance solar cellsNature20155174764802015Natur.517..476J1:CAS:528:DC%2BC2MXivF2msg%3D%3D10.1038/nature14133 – reference: HuQIn situ dynamic observations of perovskite crystallisation and microstructure evolution intermediated from [PbI6](4-) cage nanoparticlesNat. Commun.201782017NatCo...815688H1:CAS:528:DC%2BC2sXhtVeqsbnL10.1038/ncomms15688 – reference: YunYA nontoxic bifunctional (anti)solvent as digestive-ripening agent for high-performance perovskite solar cellsAdv. Mater.20203219071231:CAS:528:DC%2BB3cXjs1Ohtb4%3D10.1002/adma.201907123 – reference: EperonGEFormamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cellsEnergy Environ. Sci.201479829881:CAS:528:DC%2BC2cXjtlKisLo%3D10.1039/c3ee43822h – reference: YangWSIodide management informamidinium-lead-halide–based perovskite layers for efficient solar cellsScience2017356137613792017Sci...356.1376Y1:CAS:528:DC%2BC2sXhtVKgsLfP10.1126/science.aan2301 – reference: MinHEfficient, stable solar cells by using inherent bandgap of a-phase formamidinium lead iodideScience20193667497532019Sci...366..749M1:CAS:528:DC%2BC1MXitFaksLbF10.1126/science.aay7044 – reference: CuiPPlanar p–n homojunction perovskite solar cells with efficiency exceeding 21.3%Nat. Energy201941501592019NatEn...4..150C1:CAS:528:DC%2BC1MXmslGrtb0%3D10.1038/s41560-018-0324-8 – reference: JiangQSurface passivation of perovskite film for efficient solar cellsNat. Photon.2019134604662019NaPho..13..460J1:CAS:528:DC%2BC1MXot12lsrc%3D10.1038/s41566-019-0398-2 – reference: ZongYContinuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stabilityChem20184140414151:CAS:528:DC%2BC1cXhtFGgtrrJ10.1016/j.chempr.2018.03.005 – reference: ChangQFerrocene-induced perpetual recovery on all elemental defects in perovskite solar cellsAngew. Chem. Int. Ed.20216025567255741:CAS:528:DC%2BB3MXit12ls7rI10.1002/anie.202112074 – reference: SubediBUrbach energy and open-circuit voltage deficit for mixed anion− cation perovskite solar cellsACS Appl. Mater. Interfaces202214779678041:CAS:528:DC%2BB38XislOhs7s%3D10.1021/acsami.1c19122 – reference: JeongJPseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cellsNature20215923813852021Natur.592..381J1:CAS:528:DC%2BB3MXotVamsbc%3D10.1038/s41586-021-03406-5 – reference: XieFVertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cellsEnergy Environ. Sci.201710194219491:CAS:528:DC%2BC2sXht1ektrzP10.1039/C7EE01675A – reference: GuoZJenaAKKimGMiyasakaTHigh open-circuit voltage of perovskite solar cells: a reviewEnergy Environ. Sci.202215317132221:CAS:528:DC%2BB38XhslOjtbfL10.1039/D2EE00663D – reference: SonD-YSelf-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cellsNat. Energy20161160812016NatEn...116081S1:CAS:528:DC%2BC2sXhtVersb0%3D10.1038/nenergy.2016.81 – reference: BuTLead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modulesScience2021372132713322021Sci...372.1327B1:CAS:528:DC%2BB3MXhtlKrs77P10.1126/science.abh1035 – reference: ZhuLUnveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodesNat. Commun.2021122021NatCo..12.5081Z1:CAS:528:DC%2BB3MXhvVymt7%2FP10.1038/s41467-021-25407-8 – reference: ZhaoYA Polymerization-assisted grain growth strategy for efficient and stable perovskite solar cellsAdv. Mater.20203219077691:CAS:528:DC%2BB3cXksVKksr4%3D10.1002/adma.201907769 – reference: YangROriented quasi-2D perovskites for high performance optoelectronic devicesAdv. Mater.201830180477110.1002/adma.201804771 – reference: KhenkinMVConsensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS proceduresNat. Energy2020535492020NatEn...5...35K10.1038/s41560-019-0529-5 – reference: JeonNJSolvent engineering for high-performance inorganic-organic hybrid perovskite solar cellsNat. Mater.2014138979032014NatMa..13..897J1:CAS:528:DC%2BC2cXhtFSlsLvE10.1038/nmat4014 – reference: WangXEngineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidityNat. Commun.2021122021NatCo..12...52W1:CAS:528:DC%2BB3MXnsFCrtg%3D%3D10.1038/s41467-020-20272-3 – reference: YooJJEfficient perovskite solar cells via improved carrier managementNature20215905875932021Natur.590..587Y1:CAS:528:DC%2BB3MXltFaltLk%3D10.1038/s41586-021-03285-w – reference: GautamSKReversible photoinduced phase segregation and origin of long carrier lifetime in mixed‐halide perovskite filmsAdv. Funct. Mater.202030200262241547561:CAS:528:DC%2BB3cXps1yht70%3D10.1002/adfm.202002622 – reference: KimMMethylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cellsJoule20193217921921:CAS:528:DC%2BC1MXhvVWit7nJ10.1016/j.joule.2019.06.014 – reference: ParkB-WStabilization of formamidinium lead triiodide α-phase with isopropylammonium chloride for perovskite solar cellsNat. Energy202164194282021NatEn...6..419P1:CAS:528:DC%2BB3MXosFequ7c%3D10.1038/s41560-021-00802-z – reference: XiaoMA fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cellsAngew. Chem. Int. Ed.201453989899031:CAS:528:DC%2BC2cXhtFyqurzE10.1002/anie.201405334 – reference: Best Research-Cell Efficiency Chart (NREL, 2022); http://www.nrel.gov/pv/cell-efficiency.html – reference: ZhaoYSuppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cationsNat. Mater.202221139614022022NatMa..21.1396Z45031541:CAS:528:DC%2BB38XivFSht7vP10.1038/s41563-022-01390-3 – reference: YeFRoles of MACl in sequentially deposited bromine-free perovskite absorbers for efficient solar cellsAdv. Mater.20213320071261:CAS:528:DC%2BB3cXisFGlsrfI10.1002/adma.202007126 – volume: 517 start-page: 476 year: 2015 ident: 36224_CR12 publication-title: Nature doi: 10.1038/nature14133 – volume: 567 start-page: 511 year: 2019 ident: 36224_CR16 publication-title: Nature doi: 10.1038/s41586-019-1036-3 – volume: 32 start-page: 1907123 year: 2020 ident: 36224_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.201907123 – volume: 592 start-page: 381 year: 2021 ident: 36224_CR8 publication-title: Nature doi: 10.1038/s41586-021-03406-5 – volume: 119 start-page: 3418 year: 2019 ident: 36224_CR41 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00336 – volume: 60 start-page: 25567 year: 2021 ident: 36224_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202112074 – volume: 590 start-page: 587 year: 2021 ident: 36224_CR17 publication-title: Nature doi: 10.1038/s41586-021-03285-w – volume: 8 year: 2017 ident: 36224_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms15688 – volume: 14 start-page: 5161 year: 2021 ident: 36224_CR46 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE02095A – volume: 7 start-page: 982 year: 2014 ident: 36224_CR2 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 31 start-page: 1901284 year: 2019 ident: 36224_CR21 publication-title: Adv. Mater. doi: 10.1002/adma.201901284 – volume: 30 start-page: 2002622 year: 2020 ident: 36224_CR18 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202002622 – volume: 11 year: 2020 ident: 36224_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14715-0 – volume: 6 start-page: 419 year: 2021 ident: 36224_CR11 publication-title: Nat. Energy doi: 10.1038/s41560-021-00802-z – volume: 3 start-page: 2179 year: 2019 ident: 36224_CR5 publication-title: Joule doi: 10.1016/j.joule.2019.06.014 – volume: 1 start-page: 16081 year: 2016 ident: 36224_CR34 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.81 – ident: 36224_CR1 – volume: 12 year: 2021 ident: 36224_CR42 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20272-3 – volume: 13 start-page: 460 year: 2019 ident: 36224_CR7 publication-title: Nat. Photon. doi: 10.1038/s41566-019-0398-2 – volume: 371 start-page: 1359 year: 2021 ident: 36224_CR29 publication-title: Science doi: 10.1126/science.abf7652 – volume: 9 year: 2018 ident: 36224_CR31 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06204-2 – volume: 32 start-page: 1907769 year: 2020 ident: 36224_CR32 publication-title: Adv. Mater. doi: 10.1002/adma.201907769 – volume: 7 start-page: 2000480 year: 2020 ident: 36224_CR39 publication-title: Adv. Sci. doi: 10.1002/advs.202000480 – volume: 4 start-page: 150 year: 2019 ident: 36224_CR35 publication-title: Nat. Energy doi: 10.1038/s41560-018-0324-8 – volume: 12 year: 2021 ident: 36224_CR24 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25092-7 – volume: 53 start-page: 9898 year: 2014 ident: 36224_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201405334 – volume: 370 start-page: 74 year: 2020 ident: 36224_CR9 publication-title: Science doi: 10.1126/science.abb8985 – volume: 15 start-page: 3171 year: 2022 ident: 36224_CR37 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00663D – volume: 9 start-page: 656 year: 2016 ident: 36224_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03255E – volume: 10 start-page: 1942 year: 2017 ident: 36224_CR4 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01675A – volume: 4 start-page: 1404 year: 2018 ident: 36224_CR43 publication-title: Chem doi: 10.1016/j.chempr.2018.03.005 – volume: 360 start-page: 1442 year: 2018 ident: 36224_CR30 publication-title: Science doi: 10.1126/science.aap9282 – volume: 30 start-page: 1908343 year: 2019 ident: 36224_CR45 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201908343 – volume: 356 start-page: 1376 year: 2017 ident: 36224_CR15 publication-title: Science doi: 10.1126/science.aan2301 – volume: 372 start-page: 1327 year: 2021 ident: 36224_CR13 publication-title: Science doi: 10.1126/science.abh1035 – volume: 12 year: 2021 ident: 36224_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25407-8 – volume: 366 start-page: 749 year: 2019 ident: 36224_CR10 publication-title: Science doi: 10.1126/science.aay7044 – volume: 14 start-page: 7796 year: 2022 ident: 36224_CR38 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c19122 – volume: 5 start-page: 35 year: 2020 ident: 36224_CR40 publication-title: Nat. Energy doi: 10.1038/s41560-019-0529-5 – volume: 30 start-page: 1804771 year: 2018 ident: 36224_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201804771 – volume: 33 start-page: 2007126 year: 2021 ident: 36224_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.202007126 – volume: 13 start-page: 897 year: 2014 ident: 36224_CR27 publication-title: Nat. Mater. doi: 10.1038/nmat4014 – volume: 21 start-page: 1396 year: 2022 ident: 36224_CR44 publication-title: Nat. Mater. doi: 10.1038/s41563-022-01390-3 – volume: 598 start-page: 444 year: 2021 ident: 36224_CR33 publication-title: Nature doi: 10.1038/s41586-021-03964-8 – volume: 10 start-page: 361 year: 2017 ident: 36224_CR19 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03014A – volume: 354 start-page: 6309 year: 2016 ident: 36224_CR14 publication-title: Science doi: 10.1126/science.aah5557 |
SSID | ssj0000391844 |
Score | 2.7048001 |
Snippet | Incorporating mixed ion is a frequently used strategy to stabilize black-phase formamidinum lead iodide perovskite for high-efficiency solar cells. However,... Formamidinum lead iodide perovskite solar cells commonly suffer from photoinduced phase segregation and humidity instability. Here, the authors design a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 573 |
SubjectTerms | 147/135 147/143 147/28 147/3 639/301/299/946 639/4077/909/4101/4096/946 Additives Bonding strength Crystallization Efficiency Fluorination Humanities and Social Sciences Humidity Hydrogen bonding Hydrophobicity Iodides multidisciplinary Nucleation Perovskites Photovoltaic cells Polymerization Polymers Science Science (multidisciplinary) Solar cells Water |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9UwFA8yEHwR5_zonBLBNw1rk7RpHqd4GQP1xcHeQvPFBrUd7d3g-tfvnLT3uqtuvvjaJiGcc5Lf7-TjF0LeNcB6wdGSRREaJl0tmFY-Mie1Kpwoova4oP_la3V8Kk_OyrNbT33hmbBJHngy3GHNrS9cri0wW4ngm-POnC6dgwScpyvrHDDvVjKV5mChIXWR8y2ZXNSHo0xzAkAUgzmbS1ZtIVES7P8by_zzsORvO6YJiBZPyOOZQdKjqee75EHonpKH05uSqz3y89uQrjgCk6RuWAH5a9v5riXtI10cMQQuT1Eg_HrEtVt6fdHQ85UfeggmZntcE6eXfbv6EQbaTcfEKXBbGpLcBDROm85TaNm2gY6YG1Nc_x-fkdPF5--fjtn8wAJzQNSWzHJui1AKwGilcx6VCFX0MlrtomoU4ndVOImi96XishG-zL3jMUBaWSuYK56Tna7vwktCYwl1gApEUSoZSt7YogqVawrroYYPGSnWxjZuVh_HRzBak3bBRW0mBxlwkEkOMlVG3m_qXE7aG_eW_og-3JRE3ez0AaLJzNFk_hVNGTlYR4CZB_NouAIA55C-lxl5u_kNwxBt23Shv0plRIHcE8q8mAJm0xNRKQF5eJ4RtRVKW13d_tNdnCepb11rFCvIyId10P3q1t2m2P8fpnhFHnEcLXhCnR-QneVwFV4DAVvaN2ms3QDI8ykm priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6vxI3FyQgWxVEjAhUq9WfGLVkqTJdlWWn49M052q-XRa2JHjuf1eWY8Q8jrBlAvEFqxKEPDlKskq7WPzKlacyd5rD069L98LY-O1eeT4mR2uI1zWuVGJyZF7XuHPvIDoUGLCjhDFe-WPxl2jcLo6txC4ya5xcHSYEpXtfi09bFg9fNKqfmuTC6rg1ElzQCGioHmFoqVO_Yole3_F9b8O2Xyj7hpMkeLe-TujCPp4UT4--RG6B6Q21NnyfVD8uvbkC46Ap6kblgDBGzb-cYl7SNdHDI0X55imfDLET249PKsoadrP_TAUsz26Bmny75dn4eBdlOyOAWES0MqOgEfp03nKXzZtoGOeEKmGAUYH5HjxcfvH47Y3GaBOYBrK2aFsDwUEiy1rnMRtQxl9Cra2kXdaLTiJXcKS98XWqhG-iL3TsQAh8tKg8Z4TPa6vgtPCY0FzAFAEGWhVShEY3kZStdw62GGDxnhm802bq5Bjq0wWpNi4bIyE4EMEMgkApkyI2-2c5ZTBY5rR79HGm5HYvXs9KAffphZGE0lrOcury2clhQCuhyjvXXhnAbAp3hG9jccYGaRHs0VA2bk1fY1CCPubdOF_iKNkRwRKIx5MjHMdiWy1BJO43lG9A4r7Sx19013dpoKftdVjSULMvJ2w3RXy_r_Vjy7_i-ekzsC5QAz0MU-2VsNF-EFAKyVfZmk6Dd8xiLK priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDehBRmJG1jEj8TJcUGsqpWAA1TqLYpftFKaVMm20vLrO-NkgxYKEtfEtizPjOeb8fgzIW9qQL0gaMWC9DVTtpCs1C4wq0rNreShdJjQ__wlPz5Rq9PsdI-I7V2YWLQfKS3jNr2tDns_qGjS4GEYbLlCsfwOOUCqdtDtg8Vi9W01Z1aQ87xQarohk8rils47XiiS9d-GMP8slPzttDQ6oeUDcn9Cj3Qxzvch2fPtI3J3fE9y85j8_NrH642AIqntNwD8mma6Z0m7QJcLhk7LUSQHvx4wb0uvz2t6tnF9B4rETIf5cHrZNZsL39N2LBGngGupj1QTMDitW0dhZNN4OmBcTDH3PzwhJ8tP3z8es-lxBWYBpK2ZEcJwn0nwz7pMRdDS58GpYEobdK3Rd-fcKiS8z7RQtXRZ6qwIHkLKQsM-8ZTst13rnxMaMugDMCDITCufidrw3Oe25sZBD-cTwreLXdmJeRwfwGiqeAIui2oUUAUCqqKAqjwhb-c-lyPvxj9bf0AZzi2RMzt-6Pof1aRDVSGM4zYtDcRICmFcime8ZWatBpineEKOthpQTYY8VEKD8xYQumcJeT3_BhPEta1b313FNpIj7oQ2z0aFmWcicy0hBk8TondUaWequ3_a87NI810WJRIVJOTdVul-TevvS_Hi_5ofknsC7QLr0MUR2V_3V_4lwKy1eTXZ1Q1awCHn priority: 102 providerName: Springer Nature |
Title | Orientated crystallization of FA-based perovskite via hydrogen-bonded polymer network for efficient and stable solar cells |
URI | https://link.springer.com/article/10.1038/s41467-023-36224-6 https://www.ncbi.nlm.nih.gov/pubmed/36732540 https://www.proquest.com/docview/2771822745 https://www.proquest.com/docview/2773114355 https://pubmed.ncbi.nlm.nih.gov/PMC9895431 https://doaj.org/article/82bd1c09b675451590870695cc761241 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9NAEB71EBIviBuXEi0Sb7AQ76699gNCadRQRWpBQKS8WfYetJKxWyetML-e2bUTFAh9sSXvofUcO9_sMQPwKkfUi4wW1HKTU6ESTlOpLVUilaHioU21W9A_PYtPZmI6j-Y7sEp31BNwsdW1c_mkZk359udV-wEV_n13ZTx5txBe3dH6UJyOmaDxLuyjZZIuo8FpD_f9zMxTdGhEf3dme9MN--TD-G_Dnv8eofxrH9Wbp8l9uNfjSjLqBOEB7JjqIdzpMk22j-DXp8ZffER8SVTTIiQsy_4GJqktmYyoM2eauLDhNwu3oktuLnJy3uqmRhGjRe1WysllXbY_TEOq7vA4QcRLjA9CgZ2TvNIEey5KQxaOrMTtCiwew2xy_G18Qvu0C1QhfFvSgrEiNBFHyy3TIbOSm9hqYYtUWZlLZ9XjUAkXCj-STORcR0OtmDXobCYSZ5AnsFfVlXkGxEbYBgGC5ZEUJmJ5EcYmVnlYaGyhTQDhitiZ6mOSu9QYZeb3xnmSdQzKkEGZZ1AWB_B63eayi8hxa-0jx8N1TRdN23-om-9Zr5xZwgodqmFaoPckHMAbut3fNFJKIgAUYQCHKwnIVhKaMYlmnaFTHwXwcl2Myulom1emvvZ1eOgQKdZ52gnMeiQ8lhy982EAckOUNoa6WVJdnPsA4GmSuhAGAbxZCd2fYf2fFAe3_8VzuMucHrgT6ewQ9pbNtXmBgGtZDGBXziU-k8nHAeyPRtOvU3wfHZ99_oJfx_F44JcyBl7bfgMZmiy4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFYT24mTA0LlsWzpg0sr9eYmtkMrbZNtsi1afhS_kRkn2Wp59Nbrxra8nhnPNzOeGUJe5YB6gdCSlcLlTJpUsEzZkhmZqciIqMwsOvR3dpPxvvx6EB-skF9DLgw-qxzuRH9R29qgj3ydK7hFOdhQ8fvpKcOuURhdHVpodGyx5eY_wGRr321-Avq-5nz0ee_jmPVdBZgBdDJjBedF5GIBikllIS-VcElpZVlkplS5QqWVREZipfdYcZkLG4fW8NKBLZUqEBBY9xq5LgVocsxMH31Z-HSw2noqZZ-bE4p0vZX-JgLFyEBTcMmSJf3n2wT8C9v-_UTzjzitV3-jO-R2j1vpRsdod8mKq-6RG10ny_l98vNb4xMrAb9S08wBck4mfYYnrUs62mCoLi3FsuTnLXqM6flxTo_mtqmBhVlRoyeeTuvJ_MQ1tOoep1NA1NT5IhewOM0rS2HlYuJoixY5xahD-4DsXwkBHpLVqq7cY0LLGOYAAClFrKSLeV5EiUtMHhUWZlgXkGg4bG36mufYemOifexdpLojkAYCaU8gnQTkzWLOtKv4cenoD0jDxUis1u1_qJvvuhd-nfLCRibMCrDOJALIEKPLWWyMAoApo4CsDRyg-yuk1RcMH5CXi88g_Hi2eeXqMz9GRIh4YcyjjmEWOxGJEmD9hwFRS6y0tNXlL9XxkS8wnqUZlkgIyNuB6S629f-jeHL5v3hBbo73drb19ubu1lNyi6NM4Ot3vkZWZ82ZewbgblY89xJFyeFVi_BvCnFdlA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCE1i7sZ04OSDU0q5aCkuFqNSbSfyglZZkSbZFy0_j1zGTx1bLo7deN7bl9by-8YxnCHmeAeoFQkvmhcuYNIlgqbKeGZmq0IjQpxYv9D9M4t1D-e4oOlojv_q3MJhW2evERlHb0uAd-ZAr0KIcfKho6Lu0iIPt8ZvZd4YdpDDS2rfTaFlk3y1-gPtWv97bBlq_4Hy88_ntLus6DDADSGXOcs7z0EUCjJRKR9wr4WJvpc9T41Wm0IDFoZFY9T1SXGbCRiNruHfgVyUKhAXWvULWFXpFA7K-tTM5-LS84cHa64mU3UudkUiGtWz0EphJBnaDSxavWMOmacC_kO7fCZt_RG0bYzi-SW50KJZutmx3i6y54ja52va1XNwhPz9WzTNLQLPUVAsAoNNp996Tlp6ONxkaT0uxSPlZjffH9Owko8cLW5XA0Cwv8V6ezsrp4puraNGmqlPA19Q1JS9gcZoVlsLK-dTRGv1zijGI-i45vBQS3CODoizcA0J9BHMAjngRKekinuVh7GKThbmFGdYFJOwPW5uuAjo24pjqJhIvEt0SSAOBdEMgHQfk5XLOrK3_ceHoLaThciTW7m5-KKuvulMFOuG5Dc0ozcFXkwgnRxhrTiNjFMBNGQZko-cA3SmUWp-zf0CeLT-DKsCzzQpXnjZjRIj4F8bcbxlmuRMRK8HhwAOiVlhpZaurX4qT46bceJqkWDAhIK96pjvf1v-P4uHF_-IpuQbiq9_vTfYfkescRQJT4fkGGcyrU_cYkN48f9KJFCVfLluKfwNkJ2Mm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orientated+crystallization+of+FA-based+perovskite+via+hydrogen-bonded+polymer+network+for+efficient+and+stable+solar+cells&rft.jtitle=Nature+communications&rft.au=Li%2C+Mubai&rft.au=Sun%2C+Riming&rft.au=Chang%2C+Jingxi&rft.au=Dong%2C+Jingjin&rft.date=2023-02-02&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft.spage=573&rft_id=info:doi/10.1038%2Fs41467-023-36224-6&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |