Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing

The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 1416 - 10
Main Authors Chen, Mengxiao, Wang, Zhe, Zhang, Qichong, Wang, Zhixun, Liu, Wei, Chen, Ming, Wei, Lei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 03.03.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection. Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials.
AbstractList The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection. Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials.
The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.
The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.
The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials.
Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials.
ArticleNumber 1416
Author Wang, Zhe
Chen, Ming
Chen, Mengxiao
Wang, Zhixun
Liu, Wei
Wei, Lei
Zhang, Qichong
Author_xml – sequence: 1
  givenname: Mengxiao
  surname: Chen
  fullname: Chen, Mengxiao
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 2
  givenname: Zhe
  orcidid: 0000-0001-6869-7033
  surname: Wang
  fullname: Wang, Zhe
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 3
  givenname: Qichong
  surname: Zhang
  fullname: Zhang, Qichong
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, CINTRA CNRS/NTU/THALES, UMI3288, Research Techno Plaza
– sequence: 4
  givenname: Zhixun
  orcidid: 0000-0001-9918-9939
  surname: Wang
  fullname: Wang, Zhixun
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 5
  givenname: Wei
  orcidid: 0000-0002-3022-6874
  surname: Liu
  fullname: Liu, Wei
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University
– sequence: 6
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences
– sequence: 7
  givenname: Lei
  orcidid: 0000-0003-0819-8325
  surname: Wei
  fullname: Wei, Lei
  email: wei.lei@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, CINTRA CNRS/NTU/THALES, UMI3288, Research Techno Plaza
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33658511$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUJabG1to_4MJM4sYNCgM8ho2Jafxo0sSFuibAXF554cETZmz67-W9abXtomz4uOccDtzzEh2lnACh15S8p4QNHyqnfCUx6SnuqewVVs_QSU84xW3Hju6tj9FZrRvSBlN04PwFOmZsJQZB6QmyPyB6vMvXUGDstnOcgp-Tm0JOJnYVUg1p3VlTWzWnrs47KBiiqVNwnQ8WSu3sTVdznG0E7HKBbrqCsm3ssZjrxn6FnnsTK5zdzqfo15fPP8-_4cvvXy_OP11iJziZsKVKKEeYUIZ5sxocZcKovpdEOqGk8x68XAlnPVDKB9FexgUIyv0IXoFlp-hi0R2z2ehdCVtTbnQ2QR8OcllrU5rtCNp4y_noJPGScUWJddZIZe0wOse8Z03r46K1m-0WRgdpKiY-EH1YSeFKr_MfLRUjRNAm8O5WoOTfM9RJb0N1EKNJkOeqe64kpUyx_V1vH0E3eS7t-w8oIQnlXDTUm_uO_lm5a2UDDAvAlVxrAa9dmMy-kc1giJoSvQ-OXoKjW3D0IThaNWr_iHqn_iSJLaTawGkN5b_tJ1h_ARsj1wo
CitedBy_id crossref_primary_10_1016_j_matt_2024_08_021
crossref_primary_10_1002_adma_202305812
crossref_primary_10_1002_adma_202404330
crossref_primary_10_1016_j_carbon_2024_119009
crossref_primary_10_1016_j_xcrp_2023_101300
crossref_primary_10_1002_admt_202202030
crossref_primary_10_3389_fbioe_2024_1387969
crossref_primary_10_1038_s41467_022_29859_4
crossref_primary_10_1021_acsanm_4c03060
crossref_primary_10_1039_D2RA00858K
crossref_primary_10_1002_smm2_1151
crossref_primary_10_1002_admt_202201294
crossref_primary_10_3390_nanoenergyadv4030016
crossref_primary_10_1016_j_mattod_2025_01_013
crossref_primary_10_1016_j_nanoen_2022_107540
crossref_primary_10_1016_j_nanoen_2024_109445
crossref_primary_10_1016_j_nanoen_2023_108235
crossref_primary_10_1016_j_nanoen_2023_108950
crossref_primary_10_1002_mabi_202300274
crossref_primary_10_1002_smll_202206107
crossref_primary_10_1021_acsaelm_2c00616
crossref_primary_10_1007_s11814_024_00339_3
crossref_primary_10_1002_adma_202300576
crossref_primary_10_1016_j_cej_2023_141777
crossref_primary_10_1007_s12274_022_5273_7
crossref_primary_10_1039_D3NR06195G
crossref_primary_10_1126_sciadv_abo0869
crossref_primary_10_1016_j_materresbull_2024_112800
crossref_primary_10_1021_acsnano_1c09792
crossref_primary_10_1093_nsr_nwae158
crossref_primary_10_1002_lpor_202301125
crossref_primary_10_1021_acsnano_2c08166
crossref_primary_10_1039_D3TC01212C
crossref_primary_10_1002_admt_202202079
crossref_primary_10_1016_j_cej_2024_157489
crossref_primary_10_1002_adma_202210915
crossref_primary_10_1021_acsanm_3c00765
crossref_primary_10_1002_advs_202203808
crossref_primary_10_1038_s41467_023_38269_z
crossref_primary_10_1088_1741_2552_ac5267
crossref_primary_10_1016_j_nanoen_2023_109018
crossref_primary_10_1002_sus2_207
crossref_primary_10_1038_s41467_022_32361_6
crossref_primary_10_1016_j_nanoen_2023_109058
crossref_primary_10_1038_s41467_024_46516_0
crossref_primary_10_1039_D2TA03813G
crossref_primary_10_1088_2631_7990_ace66a
crossref_primary_10_1360_TB_2024_0455
crossref_primary_10_1021_acsnano_4c10111
crossref_primary_10_1002_advs_202400785
crossref_primary_10_1016_j_matt_2023_08_006
crossref_primary_10_1002_smll_202201402
crossref_primary_10_1002_adfm_202303292
crossref_primary_10_1002_adsr_202200044
crossref_primary_10_1002_inf2_12318
crossref_primary_10_1038_s41551_023_01116_z
crossref_primary_10_1002_adfm_202304453
crossref_primary_10_1002_inf2_12555
crossref_primary_10_1021_acsnano_3c06245
crossref_primary_10_3390_nano13050863
crossref_primary_10_1002_cta_4514
crossref_primary_10_1007_s42765_022_00195_y
crossref_primary_10_1039_D1TA10547G
crossref_primary_10_1002_adfm_202406651
crossref_primary_10_1016_j_device_2024_100331
crossref_primary_10_1002_inf2_12391
crossref_primary_10_1039_D4CS00286E
crossref_primary_10_1007_s40843_024_2961_5
crossref_primary_10_1016_j_nanoen_2024_110124
crossref_primary_10_1039_D4AY01127A
crossref_primary_10_1007_s12200_022_00002_x
crossref_primary_10_1155_2023_8811918
crossref_primary_10_3390_analytica4030025
crossref_primary_10_1109_TBCAS_2023_3309779
crossref_primary_10_1021_acsami_3c04791
crossref_primary_10_1016_j_compositesa_2024_108031
crossref_primary_10_1002_adfm_202308173
crossref_primary_10_1002_smtd_202300562
crossref_primary_10_1021_acsami_1c07928
crossref_primary_10_1002_adma_202305807
crossref_primary_10_1016_j_jmst_2024_02_028
crossref_primary_10_1063_5_0152744
crossref_primary_10_1002_admt_202201442
crossref_primary_10_1088_1361_6439_ac6b7e
crossref_primary_10_1016_j_nanoen_2021_106329
crossref_primary_10_1038_s41467_024_51648_4
crossref_primary_10_1007_s12200_023_00058_3
crossref_primary_10_1002_aelm_202200680
crossref_primary_10_1016_j_nanoen_2023_108745
crossref_primary_10_1126_sciadv_ado5362
crossref_primary_10_1021_acsami_2c10679
Cites_doi 10.1038/s41467-019-13166-6
10.1038/s41467-019-10433-4
10.1002/aelm.201600449
10.1002/adfm.201202405
10.1002/admt.201600190
10.1002/advs.201901579
10.1364/OME.7.002055
10.1016/j.sna.2004.08.013
10.1002/adma.201904911
10.1126/science.1234855
10.1002/adfm.201605630
10.1109/JSTQE.2006.882666
10.1021/acsnano.8b00147
10.1038/s41928-019-0286-2
10.1021/acsami.8b20307
10.1038/s41467-018-06759-0
10.1002/lpor.201300016
10.1038/nenergy.2016.138
10.1038/s41928-019-0206-5
10.1038/s41467-019-13993-7
10.1021/acsnano.7b05203
10.1038/nbt.3093
10.1016/j.mattod.2017.10.006
10.1016/j.nanoen.2012.01.004
10.1002/adma.201700681
10.1126/science.1250169
10.1039/C7TA00248C
10.1002/adma.201707251
10.1038/s41467-018-07882-8
10.1126/science.aan3997
10.1038/nature25494
10.1038/ncomms13265
10.1088/0268-1242/31/10/103004
10.1016/0924-4247(91)85017-I
10.1021/acsnano.6b01666
10.1038/nmat2792
10.1038/s41467-019-10061-y
10.1038/ncomms15894
10.1088/1361-6641/aaa143
10.1002/adma.201201355
10.1364/OME.9.001271
10.1021/acsnano.7b03818
10.1038/nature02937
10.1038/nmat1674
10.1038/nnano.2011.184
10.1021/acs.nanolett.6b03373
10.1039/C7LC01247K
10.1038/nature16521
10.1021/acsnano.6b07550
10.1364/OE.24.007507
10.1038/s41586-018-0390-x
10.1002/adma.200502106
10.1002/adma.201706738
10.1002/adfm.201904274
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-21729-9
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_afb44dc70f734910bcba79bb8dcc3ff3
PMC7930051
33658511
10_1038_s41467_021_21729_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore)
  grantid: NRF-CRP18-2017-02
  funderid: https://doi.org/10.13039/501100001381
– fundername: Ministry of Education - Singapore (MOE)
  grantid: MOE2019-T2-2-127 and T2EP50120-0005; RG90/19 and RG73/19
  funderid: https://doi.org/10.13039/501100001459
– fundername: Agency for Science, Technology and Research (A*STAR)
  grantid: AME IRG A2083c0062
  funderid: https://doi.org/10.13039/501100001348
– fundername: ;
  grantid: MOE2019-T2-2-127 and T2EP50120-0005; RG90/19 and RG73/19
– fundername: ;
  grantid: AME IRG A2083c0062
– fundername: ;
  grantid: NRF-CRP18-2017-02
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-b1959c0359a3fa68c135a922707c597cffef765cbfe1148572345e514fdef9eb3
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:19 EDT 2025
Thu Aug 21 14:13:02 EDT 2025
Tue Aug 05 10:13:33 EDT 2025
Wed Aug 13 04:19:05 EDT 2025
Mon Jul 21 05:44:26 EDT 2025
Tue Jul 01 04:17:19 EDT 2025
Thu Apr 24 23:03:38 EDT 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b1959c0359a3fa68c135a922707c597cffef765cbfe1148572345e514fdef9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9918-9939
0000-0001-6869-7033
0000-0002-3022-6874
0000-0003-0819-8325
OpenAccessLink https://www.proquest.com/docview/2495701445?pq-origsite=%requestingapplication%
PMID 33658511
PQID 2495701445
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_afb44dc70f734910bcba79bb8dcc3ff3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7930051
proquest_miscellaneous_2497113933
proquest_journals_2495701445
pubmed_primary_33658511
crossref_citationtrail_10_1038_s41467_021_21729_9
crossref_primary_10_1038_s41467_021_21729_9
springer_journals_10_1038_s41467_021_21729_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-03
PublicationDateYYYYMMDD 2021-03-03
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-03
  day: 03
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References BayindirMKilometer-long ordered nanophotonic devices by preform-to-fiber fabricationIEEE J. Sel. Top. Quantum Electron.200612120212132006IJSTQ..12.1202B1:CAS:528:DC%2BD2sXjslar10.1109/JSTQE.2006.882666
YangYLiquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronicsACS Nano201812202720341:CAS:528:DC%2BC1cXisFaku7o%3D2942001110.1021/acsnano.8b00147
YuXA coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformationJ. Mater. Chem. A20175603260371:CAS:528:DC%2BC2sXjslSnu7k%3D10.1039/C7TA00248C
XuSSoft Microfluidic assemblies of sensors, circuits, and radios for the skinScience201434470742014Sci...344...70X1:CAS:528:DC%2BC2cXlt1ehsLo%3D2470085210.1126/science.1250169
WangSFlexible piezoelectric fibers for acoustic sensing and positioningAdv. Electron. Mater.20173160044910.1002/aelm.2016004491:CAS:528:DC%2BC2sXjtVegsrk%3D
ZhuSUltrastretchable fibers with metallic conductivity using a liquid metal alloy coreAdv. Funct. Mater.201323230823141:CAS:528:DC%2BC38XhvVCht7bL10.1002/adfm.201202405
Agrawal, G. P. Fiber-optic Communication Systems (John Wiley & Sons, 2012).
PeacockACHealyNSemiconductor optical fibres for infrared applications: a reviewSemicond. Sci. Technol.2016311030042016SeScT..31j3004P10.1088/0268-1242/31/10/1030041:CAS:528:DC%2BC28XhvFSktbvP
WangSSkin electronics from scalable fabrication of an intrinsically stretchable transistor arrayNature2018555832018Natur.555...83W1:CAS:528:DC%2BC1cXivFGnu7Y%3D2946633410.1038/nature25494
NiuSA wireless body area sensor network based on stretchable passive tagsNat. Electron.2019236136810.1038/s41928-019-0286-2
AbouraddyAFLarge-scale optical-field measurements with geometric fibre constructsNat. Mater.200655322006NatMa...5..532A1:CAS:528:DC%2BD28XmsVGjsbY%3D1679954910.1038/nmat1674
BayindirMMetal-insulator-semiconductor optoelectronic fibresNature20044318262004Natur.431..826B1:CAS:528:DC%2BD2cXotl2ktr4%3D1548360710.1038/nature02937
LiuYQuantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge densityNat. Commun.202011182020NatCo..11....3L1:CAS:528:DC%2BB3cXit1Sisb7I
KanikMMarcaliMYunusaMElbukenCBayindirMContinuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generationAdv. Mater. Technol.20161160019010.1002/admt.2016001901:CAS:528:DC%2BC2sXltlCmsbc%3D
Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2019).
ChenBDWater wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogeneratorMater. Today20182188971:CAS:528:DC%2BC2sXhslehs7jO10.1016/j.mattod.2017.10.006
WangXA highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronicsAdv. Mater.201830170673810.1002/adma.2017067381:CAS:528:DC%2BC1cXisFehtrw%3D
FanFRTianZQWangZLFlexible triboelectric generatorNano Energy201213283341:CAS:528:DC%2BC3sXis1Sitrs%3D10.1016/j.nanoen.2012.01.004
GuoYPolymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfacesACS Nano201711657465851:CAS:528:DC%2BC2sXptFemu78%3D2857081310.1021/acsnano.6b07550
QuYSuperelastic multimaterial electronic and photonic fibers and devices via thermal drawingAdv. Mater.201830170725110.1002/adma.2017072511:CAS:528:DC%2BC1cXhtVSgtbfE
PeacockACSparksJRHealyNSemiconductor optical fibres: progress and opportunitiesLaser Photon. Rev.2014853722014LPRv....8...53P1:CAS:528:DC%2BC2cXltFeguw%3D%3D10.1002/lpor.201300016
ParkSUltrastretchable elastic shape memory fibers with electrical conductivityAdv. Sci2019619015791:CAS:528:DC%2BC1MXisVWqtrjI10.1002/advs.201901579
FranzYMaterial properties of tapered crystalline silicon core fibersOpt. Mater. Express20177205520612017OMExp...7.2055F10.1364/OME.7.002055
LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotech.201167882011NatNa...6..788L1:CAS:528:DC%2BC3MXhtlKhtrvF10.1038/nnano.2011.184
WuWWenXWangZLTaxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imagingScience20133409529572013Sci...340..952W1:CAS:528:DC%2BC3sXnvFSrtr0%3D2361876110.1126/science.1234855
ZhangBSelf-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoringACS Nano201711744074461:CAS:528:DC%2BC2sXhtFSjtrrE2867181310.1021/acsnano.7b03818
EgusaSMultimaterial piezoelectric fibresNat. Mater.201096432010NatMa...9..643E1:CAS:528:DC%2BC3cXpt1Srsbw%3D2062286410.1038/nmat2792
TunizAChemnitzMDellithJWeidlichSSchmidtMAHybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiberNano Lett.2017176316372017NanoL..17..631T1:CAS:528:DC%2BC28XitV2ksrbL2798386210.1021/acs.nanolett.6b03373
CaoYSelf-healing electronic skins for aquatic environmentsNat. Electron.20192758210.1038/s41928-019-0206-5
ChenMTuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effectsACS Nano201610607460791:CAS:528:DC%2BC28XpsFGls7c%3D2727616710.1021/acsnano.6b01666
YanWSemiconducting nanowire-based optoelectronic fibersAdv. Mater.201729170068110.1002/adma.2017006811:CAS:528:DC%2BC2sXnslKgurg%3D
KandaYPiezoresistance effect of siliconSens. Actuator A Phys.19912883911:CAS:528:DyaK3MXms1yitbo%3D10.1016/0924-4247(91)85017-I
LeberACompressible and electrically conducting fibers for large-area sensing of pressuresAdv. Funct. Mater.201930190427410.1002/adfm.2019042741:CAS:528:DC%2BC1MXitVKrt77E
BayindirMAbouraddyAFArnoldJJoannopoulosJDFinkYThermal-sensing fiber devices by multimaterial codrawingAdv. Mater.2006188458491:CAS:528:DC%2BD28XjvVClsL0%3D10.1002/adma.200502106
CooperCBStretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibersAdv. Funct. Mater.201727160563010.1002/adfm.2016056301:CAS:528:DC%2BC2sXkvFWmurs%3D
LuoJFlexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analyticsNat. Commun.2019102019NatCo..10.5147L31772189687960810.1038/s41467-019-13166-61:CAS:528:DC%2BC1MXitlSqs7zM
PengCTLinJCLinCTChiangKNPerformance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technologySens. Actuator A Phys.200511928371:CAS:528:DC%2BD2MXislSlsrc%3D10.1016/j.sna.2004.08.013
CanalesAMultifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivoNat. Biotechnol.2015332771:CAS:528:DC%2BC2MXhtFKjsLo%3D2559917710.1038/nbt.3093
ChocatNPiezoelectric fibers for conformal acousticsAdv. Mater.201224532753321:CAS:528:DC%2BC38XhtFShtLfM2283695510.1002/adma.201201355
XiongJSkin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvestingNat. Commun.201892018NatCo...9.4280X30323200618913410.1038/s41467-018-06759-01:CAS:528:DC%2BC1cXhvFCktb7N
GaoWFully integrated wearable sensor arrays for multiplexed in situ perspiration analysisNature20165295095142016Natur.529..509G1:CAS:528:DC%2BC28Xhs12is78%3D26819044499607910.1038/nature16521
Ramaswami, R., Sivarajan, K. & Sasaki, G. Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).
ZhangNUltra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channelsLab Chip2018186556611:CAS:528:DC%2BC1cXht1Gks7Y%3D2936275610.1039/C7LC01247K
ChenJMicro-cable structured textile for simultaneously harvesting solar and mechanical energyNat. Energy20161161382016NatEn...116138C1:CAS:528:DC%2BC2sXhtVers7o%3D10.1038/nenergy.2016.138
RenHNonlinear optical properties of polycrystalline silicon core fibers from telecom wavelengths into the mid-infrared spectral regionOpt. Mater. Express20199127112792019OMExp...9.1271R1:CAS:528:DC%2BC1MXhslaltL7O10.1364/OME.9.001271
ZouYA bionic stretchable nanogenerator for underwater sensing and energy harvestingNat. Commun.2019102019NatCo..10.2695Z31217422658449810.1038/s41467-019-10433-41:CAS:528:DC%2BC1MXht1aqu7rP
ZhangTUltraflexible glassy semiconductor fibers for thermal sensing and positioningACS Appl. Mater. Interfaces2018112441244710.1021/acsami.8b203071:CAS:528:DC%2BC1cXisFyhtbrO
HealyNGibsonUPeacockACA review of materials engineering in silicon-based optical fibresSemicond. Sci. Technol.2018330230012018SeScT..33b3001H10.1088/1361-6641/aaa1431:CAS:528:DC%2BC1cXhsFyhs77K
ReinMDiode fibres for fabric-based optical communicationsNature20185602142182018Natur.560..214R1:CAS:528:DC%2BC1cXhsVynsrfO3008992110.1038/s41586-018-0390-x
TunizASchmidtMABroadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotipsOpt. Express201624750775242016OExpr..24.7507T1:CAS:528:DC%2BC2sXmtl2gur0%3D2713704010.1364/OE.24.007507
ParidaKExtremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogeneratorNat. Commun.2019102019NatCo..10.2158P31089129651740610.1038/s41467-019-10061-y1:CAS:528:DC%2BC1MXps1Cnsbc%3D
XiaXFuJZiYA universal standardized method for output capability assessment of nanogeneratorsNat. Commun.201910192019OptCo.445....1X10.1038/s41467-019-12465-21:CAS:528:DC%2BC1MXmvVCms78%3D
JangK-ISelf-assembled three dimensional network designs for soft electronicsNat. Commun.201782017NatCo...815894J1:CAS:528:DC%2BC2sXhtVeqsbvE28635956548205710.1038/ncomms15894
CoucheronDALaser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibresNat. Commun.201672016NatCo...713265C1:CAS:528:DC%2BC28XhslGrt7rP27775066507906210.1038/ncomms13265
HinchetRTranscutaneous ultrasound energy harvesting using capacitive triboelectric technologyScience20193654914942019Sci...365..491H1:CAS:528:DC%2BC1MXhsV2jsLjF313716
W Gao (21729_CR24) 2016; 529
S Xu (21729_CR23) 2014; 344
S Wang (21729_CR21) 2017; 3
21729_CR2
S Zhu (21729_CR28) 2013; 23
21729_CR1
Y Cao (21729_CR53) 2019; 2
DA Coucheron (21729_CR6) 2016; 7
A Tuniz (21729_CR5) 2017; 17
AC Peacock (21729_CR12) 2014; 8
H Ren (21729_CR4) 2019; 9
Y Zou (21729_CR56) 2019; 10
S Wang (21729_CR52) 2018; 555
AF Abouraddy (21729_CR51) 2006; 5
M Bayindir (21729_CR16) 2006; 18
SS Kwak (21729_CR46) 2017; 11
A Tuniz (21729_CR3) 2016; 24
S Egusa (21729_CR10) 2010; 9
W Wu (21729_CR35) 2013; 340
M Bayindir (21729_CR9) 2004; 431
Y Qu (21729_CR30) 2018; 30
M Chen (21729_CR54) 2016; 10
M Rein (21729_CR41) 2018; 560
M Bayindir (21729_CR42) 2006; 12
B Zhang (21729_CR39) 2017; 11
Y Yang (21729_CR43) 2018; 12
CB Cooper (21729_CR25) 2017; 27
Y Kanda (21729_CR32) 1991; 28
J Chen (21729_CR45) 2016; 1
N Zhang (21729_CR19) 2018; 18
CT Peng (21729_CR33) 2005; 119
X Wang (21729_CR48) 2018; 30
K Parida (21729_CR38) 2019; 10
J Luo (21729_CR50) 2019; 10
W Yan (21729_CR8) 2017; 29
Y Liu (21729_CR49) 2020; 11
N Healy (21729_CR11) 2018; 33
N Chocat (21729_CR20) 2012; 24
A Canales (21729_CR14) 2015; 33
FR Fan (21729_CR36) 2012; 1
BD Chen (21729_CR55) 2018; 21
S Niu (21729_CR27) 2019; 2
R Hinchet (21729_CR37) 2019; 365
M Kanik (21729_CR18) 2016; 1
AC Peacock (21729_CR13) 2016; 31
T Zhang (21729_CR17) 2018; 11
S Park (21729_CR29) 2019; 6
21729_CR22
A Leber (21729_CR31) 2019; 30
K-I Jang (21729_CR26) 2017; 8
J Xiong (21729_CR47) 2018; 9
DJ Lipomi (21729_CR34) 2011; 6
Y Franz (21729_CR7) 2017; 7
Y Guo (21729_CR15) 2017; 11
X Yu (21729_CR44) 2017; 5
X Xia (21729_CR40) 2019; 10
References_xml – reference: ChocatNPiezoelectric fibers for conformal acousticsAdv. Mater.201224532753321:CAS:528:DC%2BC38XhtFShtLfM2283695510.1002/adma.201201355
– reference: LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotech.201167882011NatNa...6..788L1:CAS:528:DC%2BC3MXhtlKhtrvF10.1038/nnano.2011.184
– reference: TunizASchmidtMABroadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotipsOpt. Express201624750775242016OExpr..24.7507T1:CAS:528:DC%2BC2sXmtl2gur0%3D2713704010.1364/OE.24.007507
– reference: PeacockACHealyNSemiconductor optical fibres for infrared applications: a reviewSemicond. Sci. Technol.2016311030042016SeScT..31j3004P10.1088/0268-1242/31/10/1030041:CAS:528:DC%2BC28XhvFSktbvP
– reference: GuoYPolymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfacesACS Nano201711657465851:CAS:528:DC%2BC2sXptFemu78%3D2857081310.1021/acsnano.6b07550
– reference: PengCTLinJCLinCTChiangKNPerformance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technologySens. Actuator A Phys.200511928371:CAS:528:DC%2BD2MXislSlsrc%3D10.1016/j.sna.2004.08.013
– reference: CaoYSelf-healing electronic skins for aquatic environmentsNat. Electron.20192758210.1038/s41928-019-0206-5
– reference: GaoWFully integrated wearable sensor arrays for multiplexed in situ perspiration analysisNature20165295095142016Natur.529..509G1:CAS:528:DC%2BC28Xhs12is78%3D26819044499607910.1038/nature16521
– reference: BayindirMMetal-insulator-semiconductor optoelectronic fibresNature20044318262004Natur.431..826B1:CAS:528:DC%2BD2cXotl2ktr4%3D1548360710.1038/nature02937
– reference: ZhuSUltrastretchable fibers with metallic conductivity using a liquid metal alloy coreAdv. Funct. Mater.201323230823141:CAS:528:DC%2BC38XhvVCht7bL10.1002/adfm.201202405
– reference: WuWWenXWangZLTaxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imagingScience20133409529572013Sci...340..952W1:CAS:528:DC%2BC3sXnvFSrtr0%3D2361876110.1126/science.1234855
– reference: KanikMMarcaliMYunusaMElbukenCBayindirMContinuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generationAdv. Mater. Technol.20161160019010.1002/admt.2016001901:CAS:528:DC%2BC2sXltlCmsbc%3D
– reference: JangK-ISelf-assembled three dimensional network designs for soft electronicsNat. Commun.201782017NatCo...815894J1:CAS:528:DC%2BC2sXhtVeqsbvE28635956548205710.1038/ncomms15894
– reference: PeacockACSparksJRHealyNSemiconductor optical fibres: progress and opportunitiesLaser Photon. Rev.2014853722014LPRv....8...53P1:CAS:528:DC%2BC2cXltFeguw%3D%3D10.1002/lpor.201300016
– reference: KandaYPiezoresistance effect of siliconSens. Actuator A Phys.19912883911:CAS:528:DyaK3MXms1yitbo%3D10.1016/0924-4247(91)85017-I
– reference: ZhangNUltra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channelsLab Chip2018186556611:CAS:528:DC%2BC1cXht1Gks7Y%3D2936275610.1039/C7LC01247K
– reference: TunizAChemnitzMDellithJWeidlichSSchmidtMAHybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiberNano Lett.2017176316372017NanoL..17..631T1:CAS:528:DC%2BC28XitV2ksrbL2798386210.1021/acs.nanolett.6b03373
– reference: AbouraddyAFLarge-scale optical-field measurements with geometric fibre constructsNat. Mater.200655322006NatMa...5..532A1:CAS:528:DC%2BD28XmsVGjsbY%3D1679954910.1038/nmat1674
– reference: ZouYA bionic stretchable nanogenerator for underwater sensing and energy harvestingNat. Commun.2019102019NatCo..10.2695Z31217422658449810.1038/s41467-019-10433-41:CAS:528:DC%2BC1MXht1aqu7rP
– reference: WangXA highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronicsAdv. Mater.201830170673810.1002/adma.2017067381:CAS:528:DC%2BC1cXisFehtrw%3D
– reference: ZhangTUltraflexible glassy semiconductor fibers for thermal sensing and positioningACS Appl. Mater. Interfaces2018112441244710.1021/acsami.8b203071:CAS:528:DC%2BC1cXisFyhtbrO
– reference: FanFRTianZQWangZLFlexible triboelectric generatorNano Energy201213283341:CAS:528:DC%2BC3sXis1Sitrs%3D10.1016/j.nanoen.2012.01.004
– reference: BayindirMKilometer-long ordered nanophotonic devices by preform-to-fiber fabricationIEEE J. Sel. Top. Quantum Electron.200612120212132006IJSTQ..12.1202B1:CAS:528:DC%2BD2sXjslar10.1109/JSTQE.2006.882666
– reference: ReinMDiode fibres for fabric-based optical communicationsNature20185602142182018Natur.560..214R1:CAS:528:DC%2BC1cXhsVynsrfO3008992110.1038/s41586-018-0390-x
– reference: KwakSSFully stretchable textile triboelectric nanogenerator with knitted fabric structuresACS Nano20171110733107411:CAS:528:DC%2BC2sXhsFyru7rK2896806410.1021/acsnano.7b05203
– reference: Ramaswami, R., Sivarajan, K. & Sasaki, G. Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009).
– reference: ParidaKExtremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogeneratorNat. Commun.2019102019NatCo..10.2158P31089129651740610.1038/s41467-019-10061-y1:CAS:528:DC%2BC1MXps1Cnsbc%3D
– reference: FranzYMaterial properties of tapered crystalline silicon core fibersOpt. Mater. Express20177205520612017OMExp...7.2055F10.1364/OME.7.002055
– reference: Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2019).
– reference: RenHNonlinear optical properties of polycrystalline silicon core fibers from telecom wavelengths into the mid-infrared spectral regionOpt. Mater. Express20199127112792019OMExp...9.1271R1:CAS:528:DC%2BC1MXhslaltL7O10.1364/OME.9.001271
– reference: HealyNGibsonUPeacockACA review of materials engineering in silicon-based optical fibresSemicond. Sci. Technol.2018330230012018SeScT..33b3001H10.1088/1361-6641/aaa1431:CAS:528:DC%2BC1cXhsFyhs77K
– reference: BayindirMAbouraddyAFArnoldJJoannopoulosJDFinkYThermal-sensing fiber devices by multimaterial codrawingAdv. Mater.2006188458491:CAS:528:DC%2BD28XjvVClsL0%3D10.1002/adma.200502106
– reference: QuYSuperelastic multimaterial electronic and photonic fibers and devices via thermal drawingAdv. Mater.201830170725110.1002/adma.2017072511:CAS:528:DC%2BC1cXhtVSgtbfE
– reference: EgusaSMultimaterial piezoelectric fibresNat. Mater.201096432010NatMa...9..643E1:CAS:528:DC%2BC3cXpt1Srsbw%3D2062286410.1038/nmat2792
– reference: NiuSA wireless body area sensor network based on stretchable passive tagsNat. Electron.2019236136810.1038/s41928-019-0286-2
– reference: ParkSUltrastretchable elastic shape memory fibers with electrical conductivityAdv. Sci2019619015791:CAS:528:DC%2BC1MXisVWqtrjI10.1002/advs.201901579
– reference: WangSFlexible piezoelectric fibers for acoustic sensing and positioningAdv. Electron. Mater.20173160044910.1002/aelm.2016004491:CAS:528:DC%2BC2sXjtVegsrk%3D
– reference: YangYLiquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronicsACS Nano201812202720341:CAS:528:DC%2BC1cXisFaku7o%3D2942001110.1021/acsnano.8b00147
– reference: CooperCBStretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibersAdv. Funct. Mater.201727160563010.1002/adfm.2016056301:CAS:528:DC%2BC2sXkvFWmurs%3D
– reference: YuXA coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformationJ. Mater. Chem. A20175603260371:CAS:528:DC%2BC2sXjslSnu7k%3D10.1039/C7TA00248C
– reference: LeberACompressible and electrically conducting fibers for large-area sensing of pressuresAdv. Funct. Mater.201930190427410.1002/adfm.2019042741:CAS:528:DC%2BC1MXitVKrt77E
– reference: ChenMTuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effectsACS Nano201610607460791:CAS:528:DC%2BC28XpsFGls7c%3D2727616710.1021/acsnano.6b01666
– reference: ChenJMicro-cable structured textile for simultaneously harvesting solar and mechanical energyNat. Energy20161161382016NatEn...116138C1:CAS:528:DC%2BC2sXhtVers7o%3D10.1038/nenergy.2016.138
– reference: LuoJFlexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analyticsNat. Commun.2019102019NatCo..10.5147L31772189687960810.1038/s41467-019-13166-61:CAS:528:DC%2BC1MXitlSqs7zM
– reference: ChenBDWater wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogeneratorMater. Today20182188971:CAS:528:DC%2BC2sXhslehs7jO10.1016/j.mattod.2017.10.006
– reference: LiuYQuantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge densityNat. Commun.202011182020NatCo..11....3L1:CAS:528:DC%2BB3cXit1Sisb7I
– reference: WangSSkin electronics from scalable fabrication of an intrinsically stretchable transistor arrayNature2018555832018Natur.555...83W1:CAS:528:DC%2BC1cXivFGnu7Y%3D2946633410.1038/nature25494
– reference: XiaXFuJZiYA universal standardized method for output capability assessment of nanogeneratorsNat. Commun.201910192019OptCo.445....1X10.1038/s41467-019-12465-21:CAS:528:DC%2BC1MXmvVCms78%3D
– reference: XiongJSkin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvestingNat. Commun.201892018NatCo...9.4280X30323200618913410.1038/s41467-018-06759-01:CAS:528:DC%2BC1cXhvFCktb7N
– reference: HinchetRTranscutaneous ultrasound energy harvesting using capacitive triboelectric technologyScience20193654914942019Sci...365..491H1:CAS:528:DC%2BC1MXhsV2jsLjF3137161410.1126/science.aan3997
– reference: CoucheronDALaser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibresNat. Commun.201672016NatCo...713265C1:CAS:528:DC%2BC28XhslGrt7rP27775066507906210.1038/ncomms13265
– reference: Agrawal, G. P. Fiber-optic Communication Systems (John Wiley & Sons, 2012).
– reference: XuSSoft Microfluidic assemblies of sensors, circuits, and radios for the skinScience201434470742014Sci...344...70X1:CAS:528:DC%2BC2cXlt1ehsLo%3D2470085210.1126/science.1250169
– reference: CanalesAMultifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivoNat. Biotechnol.2015332771:CAS:528:DC%2BC2MXhtFKjsLo%3D2559917710.1038/nbt.3093
– reference: ZhangBSelf-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoringACS Nano201711744074461:CAS:528:DC%2BC2sXhtFSjtrrE2867181310.1021/acsnano.7b03818
– reference: YanWSemiconducting nanowire-based optoelectronic fibersAdv. Mater.201729170068110.1002/adma.2017006811:CAS:528:DC%2BC2sXnslKgurg%3D
– volume: 10
  year: 2019
  ident: 21729_CR50
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13166-6
– volume: 10
  year: 2019
  ident: 21729_CR56
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10433-4
– volume: 3
  start-page: 1600449
  year: 2017
  ident: 21729_CR21
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201600449
– volume: 23
  start-page: 2308
  year: 2013
  ident: 21729_CR28
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202405
– volume: 1
  start-page: 1600190
  year: 2016
  ident: 21729_CR18
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600190
– volume: 6
  start-page: 1901579
  year: 2019
  ident: 21729_CR29
  publication-title: Adv. Sci
  doi: 10.1002/advs.201901579
– volume: 7
  start-page: 2055
  year: 2017
  ident: 21729_CR7
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.7.002055
– volume: 119
  start-page: 28
  year: 2005
  ident: 21729_CR33
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/j.sna.2004.08.013
– ident: 21729_CR22
  doi: 10.1002/adma.201904911
– volume: 340
  start-page: 952
  year: 2013
  ident: 21729_CR35
  publication-title: Science
  doi: 10.1126/science.1234855
– volume: 27
  start-page: 1605630
  year: 2017
  ident: 21729_CR25
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201605630
– ident: 21729_CR1
– volume: 12
  start-page: 1202
  year: 2006
  ident: 21729_CR42
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2006.882666
– volume: 12
  start-page: 2027
  year: 2018
  ident: 21729_CR43
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00147
– volume: 2
  start-page: 361
  year: 2019
  ident: 21729_CR27
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0286-2
– volume: 11
  start-page: 2441
  year: 2018
  ident: 21729_CR17
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b20307
– volume: 9
  year: 2018
  ident: 21729_CR47
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06759-0
– volume: 8
  start-page: 53
  year: 2014
  ident: 21729_CR12
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201300016
– volume: 1
  start-page: 16138
  year: 2016
  ident: 21729_CR45
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.138
– volume: 2
  start-page: 75
  year: 2019
  ident: 21729_CR53
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-019-0206-5
– volume: 11
  start-page: 1
  year: 2020
  ident: 21729_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13993-7
– volume: 11
  start-page: 10733
  year: 2017
  ident: 21729_CR46
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b05203
– ident: 21729_CR2
– volume: 33
  start-page: 277
  year: 2015
  ident: 21729_CR14
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3093
– volume: 21
  start-page: 88
  year: 2018
  ident: 21729_CR55
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2017.10.006
– volume: 1
  start-page: 328
  year: 2012
  ident: 21729_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 29
  start-page: 1700681
  year: 2017
  ident: 21729_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700681
– volume: 344
  start-page: 70
  year: 2014
  ident: 21729_CR23
  publication-title: Science
  doi: 10.1126/science.1250169
– volume: 5
  start-page: 6032
  year: 2017
  ident: 21729_CR44
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA00248C
– volume: 30
  start-page: 1707251
  year: 2018
  ident: 21729_CR30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707251
– volume: 10
  start-page: 1
  year: 2019
  ident: 21729_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 365
  start-page: 491
  year: 2019
  ident: 21729_CR37
  publication-title: Science
  doi: 10.1126/science.aan3997
– volume: 555
  start-page: 83
  year: 2018
  ident: 21729_CR52
  publication-title: Nature
  doi: 10.1038/nature25494
– volume: 7
  year: 2016
  ident: 21729_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13265
– volume: 31
  start-page: 103004
  year: 2016
  ident: 21729_CR13
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/0268-1242/31/10/103004
– volume: 28
  start-page: 83
  year: 1991
  ident: 21729_CR32
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/0924-4247(91)85017-I
– volume: 10
  start-page: 6074
  year: 2016
  ident: 21729_CR54
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01666
– volume: 9
  start-page: 643
  year: 2010
  ident: 21729_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2792
– volume: 10
  year: 2019
  ident: 21729_CR38
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10061-y
– volume: 8
  year: 2017
  ident: 21729_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15894
– volume: 33
  start-page: 023001
  year: 2018
  ident: 21729_CR11
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aaa143
– volume: 24
  start-page: 5327
  year: 2012
  ident: 21729_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201355
– volume: 9
  start-page: 1271
  year: 2019
  ident: 21729_CR4
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.9.001271
– volume: 11
  start-page: 7440
  year: 2017
  ident: 21729_CR39
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b03818
– volume: 431
  start-page: 826
  year: 2004
  ident: 21729_CR9
  publication-title: Nature
  doi: 10.1038/nature02937
– volume: 5
  start-page: 532
  year: 2006
  ident: 21729_CR51
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1674
– volume: 6
  start-page: 788
  year: 2011
  ident: 21729_CR34
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2011.184
– volume: 17
  start-page: 631
  year: 2017
  ident: 21729_CR5
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b03373
– volume: 18
  start-page: 655
  year: 2018
  ident: 21729_CR19
  publication-title: Lab Chip
  doi: 10.1039/C7LC01247K
– volume: 529
  start-page: 509
  year: 2016
  ident: 21729_CR24
  publication-title: Nature
  doi: 10.1038/nature16521
– volume: 11
  start-page: 6574
  year: 2017
  ident: 21729_CR15
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07550
– volume: 24
  start-page: 7507
  year: 2016
  ident: 21729_CR3
  publication-title: Opt. Express
  doi: 10.1364/OE.24.007507
– volume: 560
  start-page: 214
  year: 2018
  ident: 21729_CR41
  publication-title: Nature
  doi: 10.1038/s41586-018-0390-x
– volume: 18
  start-page: 845
  year: 2006
  ident: 21729_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200502106
– volume: 30
  start-page: 1706738
  year: 2018
  ident: 21729_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706738
– volume: 30
  start-page: 1904274
  year: 2019
  ident: 21729_CR31
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201904274
SSID ssj0000391844
Score 2.6135163
Snippet The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale...
Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1416
SubjectTerms 639/166/987
639/301/1005/1007
639/301/923/3931
Fabrication
Fibers
Humanities and Social Sciences
multidisciplinary
Nanogenerators
Polymers
Production methods
Science
Science (multidisciplinary)
Sports
Undersea
Viscosity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiP0IKMxA2sJmvHjo-AqKoeuECl3ix7bAPSkl1tdoX67zvjZJcuzwvXxI4cz-ubePINYy-NbSBIaIVpdRRKoyl6nUEAJK2DCkbHUiD7QZ9dqPPL9vJGqy-qCRvpgceNO_E5KBXB1NlIhbEtQPDGhtBFAJlz4fnEmHcjmSo-WFpMXdT0l0wtu5NBFZ9AFQnUk8kKuxeJCmH_71Dmr8WSP52YlkB0eo_dnRAkfzOu_D67lfoH7PbYU_LqkIWPaZ7FkpqfpchLvSDFrvGTHx-oXr3_zCl4Rb7o-bBZppVIiKHxcTxT_cjAwxUnlQzzJIjlkhNI_Iaz48p_x9kP2cXp-0_vzsTUSEEAArK1CMQgA0TW52X2uoNGtt7OZqY2gAkF5Jyy0S2EnCg9as1MqjYhlMoxZYvp9iN20C_69IRxaesQbdToRDGzzNojxPGIKVIHSqe6rViz3VQHE8s4NbuYu3LaLTs3CsKhIFwRhLMVe7Wbsxw5Nv46-i3JajeS-LHLBdQaN2mN-5fWVOx4K2k3Ge3gqA23oQwT3-LF7jaaG52h-D4tNmWMaRA1S3zE41ExdiuRUtMha1Mxs6cye0vdv9N__VIovdFLknus2Outcv1Y1p-34un_2IojdmdGVkF1dfKYHaxXm_QMgdY6PC82dQ2uSSaQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEBIvE99kDGQk3sDQ1I4dPyAEiGlCgheotDfLnxtSSUvSCvrfc-ckRYWy19hn2b473-_i8x0hz5QuveO-YqqSgQkJqmhl8sz7KKUTTsmQA2Q_y7OZ-HhenR-QsdzRsIHdXtcO60nN2vnLXz82b0DhX_dPxutXncjqjsEGWG5JM32NXAfLpFBRPw1wP5_MXINDI4a3M_tJd-xTTuO_D3v-G0L51z1qNk-nt8jRgCvp214QbpOD2NwhN_pKk5u7xH2J88SWWBItBpqjCNGi9T8CaYdR7M0FRZMW6KKh3XoZWxYBWcNwNGFUSUfdhqKgunlkmPuSInT8DtShtT-B-h6ZnX74-v6MDeUVmAeYtmIO88p4TOFnebKy9iWvrJ5O1UR5cDN8SjEpWXmXIjpNlZpyUUUAWCnEpMEJv08Om0UTHxLK9cQFHSQcreBvJmkB-FhAGrH2QsZJVZBy3FTjh9zjWAJjbvIdOK9NzwgDjDCZEUYX5PmWZtln3riy9zvk1bYnZs3OHxbthRmU0NjkhAheTZLiAnCS884q7VwdvOcp8YKcjJw2oyQaLM6t0O-EVTzdNoMS4s2KbeJinfuoErA0hyEe9IKxnQnnEq9ey4KoHZHZmepuS_PtMif6hrMTD82CvBiF68-0_r8Vx1ev4hG5OUV5xzg6fkIOV-06PgZgtXJPsrb8BnmGH1E
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERKXqrwDBRmJG1gksWPHx7KiqjhwgUq9WX4WpCW72uwK9d93xnmghYLENbEjJzNjf2N_-YaQN0pX3nHfMNXIwISEULQyeeZ9lNIJp2TIBNnP8vxCfLpsLg9IPf0Lk0n7WdIyT9MTO-x9L3JII6EASypppu-Quyjdjl69kIt5XwUVz1shxv9jSt7e0nVvDcpS_bfhyz9pkr-dleYl6OyYHI3YkZ4Oo31ADmL3kNwbqklePyLuS1wmtsayZzHQzBTEVWvY7KM9MtW7K4rLVqCrjva7ddywCOgZHkcTMkd66q4pOqNbRob6lhTh4Q_oHTb2J_R-TC7OPn5dnLOxhALzAMW2zKF2jEeZPsuTla2veGN1XatSeUglfEoxKdl4lyImRo2quWgigKgUYtKQaD8hh92qi88I5bp0QQcJ0yfklElaADcW0ERsvZCxbApSTR_V-FFfHMtcLE0-5-atGQxhwBAmG8Logryd-6wHdY1_tv6AtppbojJ2vrDaXJnRU4xNTojgVZkUF4CFnHdWaefa4D1PiRfkZLK0GcO1N1iAW2FuCW_xer4NgYanJ7aLq11uoyrAyxwe8XRwjHkknEs8Xq0KovZcZm-o-3e679-ymDfMjzgxFuTd5Fy_hvX3T_H8_5q_IPdr9H_kzvETcrjd7OJLAFNb9ypHzw3lQxnz
  priority: 102
  providerName: Springer Nature
Title Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing
URI https://link.springer.com/article/10.1038/s41467-021-21729-9
https://www.ncbi.nlm.nih.gov/pubmed/33658511
https://www.proquest.com/docview/2495701445
https://www.proquest.com/docview/2497113933
https://pubmed.ncbi.nlm.nih.gov/PMC7930051
https://doaj.org/article/afb44dc70f734910bcba79bb8dcc3ff3
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUN9raJ2pEs2U8jDc1KYGWsK-RNWF_dILOzOGH0v9-d7LhkH32xwZaM7Dudfro7_46Qt6rMrOE2ZyqXjgkJU7GSwTJrvZRGGCVdTJA9l2eXYr7IF73Dre3TKnc2MRpq11j0kR9jjWSF8D__sPrJsGoURlf7Ehp3ySFSl2FKl1qowceC7OeFEP2_MikvjlsRLQPmJWBlppKVe-tRpO3_F9b8O2Xyj7hpXI5mD8mDHkfSSSf4R-SOrx-Te11lyesnxFz4ZWArLIHmHY1Zg7iCdY4_2mLWen1FcQlztKlpu135NfOApOFxNGAWSUvNNUXFNEvPkOuSIlT8Ab3duvoFvZ-Sy9np1-kZ68spMAuwbMMM8shYpOyreKhkYTOeV-V4rFJlYVthQ_BBydya4HGTlKsxF7kHQBWcDyVsup-Rg7qp_QtCeZkaVzoJphT2l0FWAHQqQBa-sEL6NE9Itvuo2vZc41jyYqljzJsXuhOEBkHoKAhdJuTd0GfVMW3c2voEZTW0RJbseKFZX-l-0ukqGCGcVWlQXAAuMtZUqjSmcNbyEHhCjnaS1v3UbfWNoiXkzXAbJh1GUqraN9vYRmWAnTk84nmnGMNIOJcYas0SovZUZm-o-3fq798isTfYSjSSCXm_U66bYf3_U7y8_S1ekftj1HfMm-NH5GCz3vrXAKQ2ZhRnCxyL2ccROZxM5hdzOJ-cnn_-AlencjqKLgo4fhLFb3OnIts
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ7CajR07OSDEq9rS0guttDcTvwrSNrvd7KraP8VvZMZJtloevfUaP-R4Xp894xlCXqpyYA23OVO5dExIEMVKBsus9VIaYZR0MUD2UA6PxZdRPtogv_q3MBhW2evEqKjdxOId-Q7WSFYI__N30zOGVaPQu9qX0GjZYt8vz-HI1rzd-wT0fZVlu5-PPg5ZV1WAWUAnc2YwnYrFzHUVD5Us7IDnVZllKlUW0LUNwQclc2uCx7NCrjIucg-4IjgfSjh7wrzXyHUwvClKlBqp1Z0OZlsvhOje5qS82GlE1EQYB4GVoEpWrtm_WCbgX9j27xDNP_y00fzt3iG3O9xK37eMdpds-PoeudFWslzeJ-abHwc2xZJr3tEYpYgWs71opA1GydcnFE2mo5OaNoupnzEPyB2mowGjVhpqlhQFwYw9w9yaFKHpKYx2s-ocRj8gx1ey0Q_JZj2p_SNCeZkaVzoJqhvOs0FWAKwqQDK-sEL6NE_IoN9Ubbvc5lhiY6yjj50XuiWEBkLoSAhdJuT1asy0zexxae8PSKtVT8zKHT9MZie6E3JdBSOEsyoNigvAYcaaSpXGFM5aHgJPyHZPad2pikZfMHZCXqyaQcjRc1PVfrKIfdQAsDqHKbZaxlithHOJrt1BQtQay6wtdb2l_vkjJhIH3YxKOSFveua6WNb_t-Lx5X_xnNwcHn090Ad7h_tPyK0MeR9j9vg22ZzPFv4pgLi5eRYlh5LvVy2qvwEu81jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE1htYsdOHhACRrUxNCHBpL6Z-DYmdWlpWk39a_w6znGSTuWyt70mtuX4XPzZ5-R8hLxQZWoNtzlTuXRMSDDFSgbLrPVSGmGUdDFB9lDuHYlP43y8RX71_8JgWmXvE6OjdlOLd-QD5EhWCP_zQejSIr7sjt7OfjJkkMJIa0-n0arIgV-dwfGtebO_C7J-mWWjj98-7LGOYYBZQCoLZrC0isUqdhUPlSxsyvOqzDI1VBaQtg3BByVza4LHc0OuMi5yDxgjOB9KOIfCuFfIVcXzFG1MjdX6fgcrrxdCdP_pDHkxaET0SpgTgaxQJSs39sJIGfAvnPt3uuYfMdu4FY5ukZsdhqXvWqW7TbZ8fYdca1ktV3eJ-eongc2Qfs07GjMWcfdsLx1pgxnz9THF7dPRaU2b5czPmQcUD8PRgBksDTUrikZhJp5hnU2KMPUUert5dQa975GjS1no-2S7ntb-IaG8HBpXOgluHM62QVYAsipANb6wQvphnpC0X1RtuzrnSLcx0THezgvdCkKDIHQUhC4T8mrdZ9ZW-biw9XuU1bolVuiOD6bzY90ZvK6CEcJZNQyKC8BkxppKlcYUzloeAk_ITi9p3bmNRp8reUKer1-DwWMUp6r9dBnbqBRwO4chHrSKsZ4J5xLDvGlC1IbKbEx180198iMWFQc_jQ46Ia975Tqf1v-X4tHFX_GMXAcj1Z_3Dw8ekxsZqj6m7_Edsr2YL_0TwHML8zQaDiXfL9tSfwNMNF0m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-powered+multifunctional+sensing+based+on+super-elastic+fibers+by+soluble-core+thermal+drawing&rft.jtitle=Nature+communications&rft.au=Chen+Mengxiao&rft.au=Wang%2C+Zhe&rft.au=Zhang+Qichong&rft.au=Wang+Zhixun&rft.date=2021-03-03&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-21729-9&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon