Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing
The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 1416 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
03.03.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.
Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials. |
---|---|
AbstractList | The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.
Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials. The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection. The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection. The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale strand of fiber with the extended length up to thousand meters. In this work, we propose and demonstrate a two-step soluble-core fabrication method by combining such an inherently scalable manufacturing method with simple post-draw processing to explore the low viscosity polymer fibers and the potential of soft fiber electronics. As a result, an ultra-stretchable conductive fiber is achieved, which maintains excellent conductivity even under 1900% strain or 1.5 kg load/impact freefalling from 0.8-m height. Moreover, by combining with triboelectric nanogenerator technique, this fiber acts as a self-powered self-adapting multi-dimensional sensor attached on sports gears to monitor sports performance while bearing sudden impacts. Next, owing to its remarkable waterproof and easy packaging properties, this fiber detector can sense different ion movements in various solutions, revealing the promising applications for large-area undersea detection.Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials. Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low modulus materials. Here, the authors demonstrate a two-step soluble-core fiber fabrication method with wide applicability to soft polymer materials. |
ArticleNumber | 1416 |
Author | Wang, Zhe Chen, Ming Chen, Mengxiao Wang, Zhixun Liu, Wei Wei, Lei Zhang, Qichong |
Author_xml | – sequence: 1 givenname: Mengxiao surname: Chen fullname: Chen, Mengxiao organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 2 givenname: Zhe orcidid: 0000-0001-6869-7033 surname: Wang fullname: Wang, Zhe organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 3 givenname: Qichong surname: Zhang fullname: Zhang, Qichong organization: School of Electrical and Electronic Engineering, Nanyang Technological University, CINTRA CNRS/NTU/THALES, UMI3288, Research Techno Plaza – sequence: 4 givenname: Zhixun orcidid: 0000-0001-9918-9939 surname: Wang fullname: Wang, Zhixun organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 5 givenname: Wei orcidid: 0000-0002-3022-6874 surname: Liu fullname: Liu, Wei organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 6 givenname: Ming surname: Chen fullname: Chen, Ming organization: Center for Information Photonics and Energy Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences – sequence: 7 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei email: wei.lei@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, CINTRA CNRS/NTU/THALES, UMI3288, Research Techno Plaza |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33658511$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUJabG1to_4MJM4sYNCgM8ho2Jafxo0sSFuibAXF554cETZmz67-W9abXtomz4uOccDtzzEh2lnACh15S8p4QNHyqnfCUx6SnuqewVVs_QSU84xW3Hju6tj9FZrRvSBlN04PwFOmZsJQZB6QmyPyB6vMvXUGDstnOcgp-Tm0JOJnYVUg1p3VlTWzWnrs47KBiiqVNwnQ8WSu3sTVdznG0E7HKBbrqCsm3ssZjrxn6FnnsTK5zdzqfo15fPP8-_4cvvXy_OP11iJziZsKVKKEeYUIZ5sxocZcKovpdEOqGk8x68XAlnPVDKB9FexgUIyv0IXoFlp-hi0R2z2ehdCVtTbnQ2QR8OcllrU5rtCNp4y_noJPGScUWJddZIZe0wOse8Z03r46K1m-0WRgdpKiY-EH1YSeFKr_MfLRUjRNAm8O5WoOTfM9RJb0N1EKNJkOeqe64kpUyx_V1vH0E3eS7t-w8oIQnlXDTUm_uO_lm5a2UDDAvAlVxrAa9dmMy-kc1giJoSvQ-OXoKjW3D0IThaNWr_iHqn_iSJLaTawGkN5b_tJ1h_ARsj1wo |
CitedBy_id | crossref_primary_10_1016_j_matt_2024_08_021 crossref_primary_10_1002_adma_202305812 crossref_primary_10_1002_adma_202404330 crossref_primary_10_1016_j_carbon_2024_119009 crossref_primary_10_1016_j_xcrp_2023_101300 crossref_primary_10_1002_admt_202202030 crossref_primary_10_3389_fbioe_2024_1387969 crossref_primary_10_1038_s41467_022_29859_4 crossref_primary_10_1021_acsanm_4c03060 crossref_primary_10_1039_D2RA00858K crossref_primary_10_1002_smm2_1151 crossref_primary_10_1002_admt_202201294 crossref_primary_10_3390_nanoenergyadv4030016 crossref_primary_10_1016_j_mattod_2025_01_013 crossref_primary_10_1016_j_nanoen_2022_107540 crossref_primary_10_1016_j_nanoen_2024_109445 crossref_primary_10_1016_j_nanoen_2023_108235 crossref_primary_10_1016_j_nanoen_2023_108950 crossref_primary_10_1002_mabi_202300274 crossref_primary_10_1002_smll_202206107 crossref_primary_10_1021_acsaelm_2c00616 crossref_primary_10_1007_s11814_024_00339_3 crossref_primary_10_1002_adma_202300576 crossref_primary_10_1016_j_cej_2023_141777 crossref_primary_10_1007_s12274_022_5273_7 crossref_primary_10_1039_D3NR06195G crossref_primary_10_1126_sciadv_abo0869 crossref_primary_10_1016_j_materresbull_2024_112800 crossref_primary_10_1021_acsnano_1c09792 crossref_primary_10_1093_nsr_nwae158 crossref_primary_10_1002_lpor_202301125 crossref_primary_10_1021_acsnano_2c08166 crossref_primary_10_1039_D3TC01212C crossref_primary_10_1002_admt_202202079 crossref_primary_10_1016_j_cej_2024_157489 crossref_primary_10_1002_adma_202210915 crossref_primary_10_1021_acsanm_3c00765 crossref_primary_10_1002_advs_202203808 crossref_primary_10_1038_s41467_023_38269_z crossref_primary_10_1088_1741_2552_ac5267 crossref_primary_10_1016_j_nanoen_2023_109018 crossref_primary_10_1002_sus2_207 crossref_primary_10_1038_s41467_022_32361_6 crossref_primary_10_1016_j_nanoen_2023_109058 crossref_primary_10_1038_s41467_024_46516_0 crossref_primary_10_1039_D2TA03813G crossref_primary_10_1088_2631_7990_ace66a crossref_primary_10_1360_TB_2024_0455 crossref_primary_10_1021_acsnano_4c10111 crossref_primary_10_1002_advs_202400785 crossref_primary_10_1016_j_matt_2023_08_006 crossref_primary_10_1002_smll_202201402 crossref_primary_10_1002_adfm_202303292 crossref_primary_10_1002_adsr_202200044 crossref_primary_10_1002_inf2_12318 crossref_primary_10_1038_s41551_023_01116_z crossref_primary_10_1002_adfm_202304453 crossref_primary_10_1002_inf2_12555 crossref_primary_10_1021_acsnano_3c06245 crossref_primary_10_3390_nano13050863 crossref_primary_10_1002_cta_4514 crossref_primary_10_1007_s42765_022_00195_y crossref_primary_10_1039_D1TA10547G crossref_primary_10_1002_adfm_202406651 crossref_primary_10_1016_j_device_2024_100331 crossref_primary_10_1002_inf2_12391 crossref_primary_10_1039_D4CS00286E crossref_primary_10_1007_s40843_024_2961_5 crossref_primary_10_1016_j_nanoen_2024_110124 crossref_primary_10_1039_D4AY01127A crossref_primary_10_1007_s12200_022_00002_x crossref_primary_10_1155_2023_8811918 crossref_primary_10_3390_analytica4030025 crossref_primary_10_1109_TBCAS_2023_3309779 crossref_primary_10_1021_acsami_3c04791 crossref_primary_10_1016_j_compositesa_2024_108031 crossref_primary_10_1002_adfm_202308173 crossref_primary_10_1002_smtd_202300562 crossref_primary_10_1021_acsami_1c07928 crossref_primary_10_1002_adma_202305807 crossref_primary_10_1016_j_jmst_2024_02_028 crossref_primary_10_1063_5_0152744 crossref_primary_10_1002_admt_202201442 crossref_primary_10_1088_1361_6439_ac6b7e crossref_primary_10_1016_j_nanoen_2021_106329 crossref_primary_10_1038_s41467_024_51648_4 crossref_primary_10_1007_s12200_023_00058_3 crossref_primary_10_1002_aelm_202200680 crossref_primary_10_1016_j_nanoen_2023_108745 crossref_primary_10_1126_sciadv_ado5362 crossref_primary_10_1021_acsami_2c10679 |
Cites_doi | 10.1038/s41467-019-13166-6 10.1038/s41467-019-10433-4 10.1002/aelm.201600449 10.1002/adfm.201202405 10.1002/admt.201600190 10.1002/advs.201901579 10.1364/OME.7.002055 10.1016/j.sna.2004.08.013 10.1002/adma.201904911 10.1126/science.1234855 10.1002/adfm.201605630 10.1109/JSTQE.2006.882666 10.1021/acsnano.8b00147 10.1038/s41928-019-0286-2 10.1021/acsami.8b20307 10.1038/s41467-018-06759-0 10.1002/lpor.201300016 10.1038/nenergy.2016.138 10.1038/s41928-019-0206-5 10.1038/s41467-019-13993-7 10.1021/acsnano.7b05203 10.1038/nbt.3093 10.1016/j.mattod.2017.10.006 10.1016/j.nanoen.2012.01.004 10.1002/adma.201700681 10.1126/science.1250169 10.1039/C7TA00248C 10.1002/adma.201707251 10.1038/s41467-018-07882-8 10.1126/science.aan3997 10.1038/nature25494 10.1038/ncomms13265 10.1088/0268-1242/31/10/103004 10.1016/0924-4247(91)85017-I 10.1021/acsnano.6b01666 10.1038/nmat2792 10.1038/s41467-019-10061-y 10.1038/ncomms15894 10.1088/1361-6641/aaa143 10.1002/adma.201201355 10.1364/OME.9.001271 10.1021/acsnano.7b03818 10.1038/nature02937 10.1038/nmat1674 10.1038/nnano.2011.184 10.1021/acs.nanolett.6b03373 10.1039/C7LC01247K 10.1038/nature16521 10.1021/acsnano.6b07550 10.1364/OE.24.007507 10.1038/s41586-018-0390-x 10.1002/adma.200502106 10.1002/adma.201706738 10.1002/adfm.201904274 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-21729-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_afb44dc70f734910bcba79bb8dcc3ff3 PMC7930051 33658511 10_1038_s41467_021_21729_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Research Foundation Singapore (National Research Foundation-Prime Minister’s office, Republic of Singapore) grantid: NRF-CRP18-2017-02 funderid: https://doi.org/10.13039/501100001381 – fundername: Ministry of Education - Singapore (MOE) grantid: MOE2019-T2-2-127 and T2EP50120-0005; RG90/19 and RG73/19 funderid: https://doi.org/10.13039/501100001459 – fundername: Agency for Science, Technology and Research (A*STAR) grantid: AME IRG A2083c0062 funderid: https://doi.org/10.13039/501100001348 – fundername: ; grantid: MOE2019-T2-2-127 and T2EP50120-0005; RG90/19 and RG73/19 – fundername: ; grantid: AME IRG A2083c0062 – fundername: ; grantid: NRF-CRP18-2017-02 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-b1959c0359a3fa68c135a922707c597cffef765cbfe1148572345e514fdef9eb3 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:19 EDT 2025 Thu Aug 21 14:13:02 EDT 2025 Tue Aug 05 10:13:33 EDT 2025 Wed Aug 13 04:19:05 EDT 2025 Mon Jul 21 05:44:26 EDT 2025 Tue Jul 01 04:17:19 EDT 2025 Thu Apr 24 23:03:38 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b1959c0359a3fa68c135a922707c597cffef765cbfe1148572345e514fdef9eb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9918-9939 0000-0001-6869-7033 0000-0002-3022-6874 0000-0003-0819-8325 |
OpenAccessLink | https://www.proquest.com/docview/2495701445?pq-origsite=%requestingapplication% |
PMID | 33658511 |
PQID | 2495701445 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_afb44dc70f734910bcba79bb8dcc3ff3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7930051 proquest_miscellaneous_2497113933 proquest_journals_2495701445 pubmed_primary_33658511 crossref_citationtrail_10_1038_s41467_021_21729_9 crossref_primary_10_1038_s41467_021_21729_9 springer_journals_10_1038_s41467_021_21729_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-03 |
PublicationDateYYYYMMDD | 2021-03-03 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | BayindirMKilometer-long ordered nanophotonic devices by preform-to-fiber fabricationIEEE J. Sel. Top. Quantum Electron.200612120212132006IJSTQ..12.1202B1:CAS:528:DC%2BD2sXjslar10.1109/JSTQE.2006.882666 YangYLiquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronicsACS Nano201812202720341:CAS:528:DC%2BC1cXisFaku7o%3D2942001110.1021/acsnano.8b00147 YuXA coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformationJ. Mater. Chem. A20175603260371:CAS:528:DC%2BC2sXjslSnu7k%3D10.1039/C7TA00248C XuSSoft Microfluidic assemblies of sensors, circuits, and radios for the skinScience201434470742014Sci...344...70X1:CAS:528:DC%2BC2cXlt1ehsLo%3D2470085210.1126/science.1250169 WangSFlexible piezoelectric fibers for acoustic sensing and positioningAdv. Electron. Mater.20173160044910.1002/aelm.2016004491:CAS:528:DC%2BC2sXjtVegsrk%3D ZhuSUltrastretchable fibers with metallic conductivity using a liquid metal alloy coreAdv. Funct. Mater.201323230823141:CAS:528:DC%2BC38XhvVCht7bL10.1002/adfm.201202405 Agrawal, G. P. Fiber-optic Communication Systems (John Wiley & Sons, 2012). PeacockACHealyNSemiconductor optical fibres for infrared applications: a reviewSemicond. Sci. Technol.2016311030042016SeScT..31j3004P10.1088/0268-1242/31/10/1030041:CAS:528:DC%2BC28XhvFSktbvP WangSSkin electronics from scalable fabrication of an intrinsically stretchable transistor arrayNature2018555832018Natur.555...83W1:CAS:528:DC%2BC1cXivFGnu7Y%3D2946633410.1038/nature25494 NiuSA wireless body area sensor network based on stretchable passive tagsNat. Electron.2019236136810.1038/s41928-019-0286-2 AbouraddyAFLarge-scale optical-field measurements with geometric fibre constructsNat. Mater.200655322006NatMa...5..532A1:CAS:528:DC%2BD28XmsVGjsbY%3D1679954910.1038/nmat1674 BayindirMMetal-insulator-semiconductor optoelectronic fibresNature20044318262004Natur.431..826B1:CAS:528:DC%2BD2cXotl2ktr4%3D1548360710.1038/nature02937 LiuYQuantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge densityNat. Commun.202011182020NatCo..11....3L1:CAS:528:DC%2BB3cXit1Sisb7I KanikMMarcaliMYunusaMElbukenCBayindirMContinuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generationAdv. Mater. Technol.20161160019010.1002/admt.2016001901:CAS:528:DC%2BC2sXltlCmsbc%3D Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2019). ChenBDWater wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogeneratorMater. Today20182188971:CAS:528:DC%2BC2sXhslehs7jO10.1016/j.mattod.2017.10.006 WangXA highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronicsAdv. Mater.201830170673810.1002/adma.2017067381:CAS:528:DC%2BC1cXisFehtrw%3D FanFRTianZQWangZLFlexible triboelectric generatorNano Energy201213283341:CAS:528:DC%2BC3sXis1Sitrs%3D10.1016/j.nanoen.2012.01.004 GuoYPolymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfacesACS Nano201711657465851:CAS:528:DC%2BC2sXptFemu78%3D2857081310.1021/acsnano.6b07550 QuYSuperelastic multimaterial electronic and photonic fibers and devices via thermal drawingAdv. Mater.201830170725110.1002/adma.2017072511:CAS:528:DC%2BC1cXhtVSgtbfE PeacockACSparksJRHealyNSemiconductor optical fibres: progress and opportunitiesLaser Photon. Rev.2014853722014LPRv....8...53P1:CAS:528:DC%2BC2cXltFeguw%3D%3D10.1002/lpor.201300016 ParkSUltrastretchable elastic shape memory fibers with electrical conductivityAdv. Sci2019619015791:CAS:528:DC%2BC1MXisVWqtrjI10.1002/advs.201901579 FranzYMaterial properties of tapered crystalline silicon core fibersOpt. Mater. Express20177205520612017OMExp...7.2055F10.1364/OME.7.002055 LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotech.201167882011NatNa...6..788L1:CAS:528:DC%2BC3MXhtlKhtrvF10.1038/nnano.2011.184 WuWWenXWangZLTaxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imagingScience20133409529572013Sci...340..952W1:CAS:528:DC%2BC3sXnvFSrtr0%3D2361876110.1126/science.1234855 ZhangBSelf-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoringACS Nano201711744074461:CAS:528:DC%2BC2sXhtFSjtrrE2867181310.1021/acsnano.7b03818 EgusaSMultimaterial piezoelectric fibresNat. Mater.201096432010NatMa...9..643E1:CAS:528:DC%2BC3cXpt1Srsbw%3D2062286410.1038/nmat2792 TunizAChemnitzMDellithJWeidlichSSchmidtMAHybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiberNano Lett.2017176316372017NanoL..17..631T1:CAS:528:DC%2BC28XitV2ksrbL2798386210.1021/acs.nanolett.6b03373 CaoYSelf-healing electronic skins for aquatic environmentsNat. Electron.20192758210.1038/s41928-019-0206-5 ChenMTuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effectsACS Nano201610607460791:CAS:528:DC%2BC28XpsFGls7c%3D2727616710.1021/acsnano.6b01666 YanWSemiconducting nanowire-based optoelectronic fibersAdv. Mater.201729170068110.1002/adma.2017006811:CAS:528:DC%2BC2sXnslKgurg%3D KandaYPiezoresistance effect of siliconSens. Actuator A Phys.19912883911:CAS:528:DyaK3MXms1yitbo%3D10.1016/0924-4247(91)85017-I LeberACompressible and electrically conducting fibers for large-area sensing of pressuresAdv. Funct. Mater.201930190427410.1002/adfm.2019042741:CAS:528:DC%2BC1MXitVKrt77E BayindirMAbouraddyAFArnoldJJoannopoulosJDFinkYThermal-sensing fiber devices by multimaterial codrawingAdv. Mater.2006188458491:CAS:528:DC%2BD28XjvVClsL0%3D10.1002/adma.200502106 CooperCBStretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibersAdv. Funct. Mater.201727160563010.1002/adfm.2016056301:CAS:528:DC%2BC2sXkvFWmurs%3D LuoJFlexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analyticsNat. Commun.2019102019NatCo..10.5147L31772189687960810.1038/s41467-019-13166-61:CAS:528:DC%2BC1MXitlSqs7zM PengCTLinJCLinCTChiangKNPerformance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technologySens. Actuator A Phys.200511928371:CAS:528:DC%2BD2MXislSlsrc%3D10.1016/j.sna.2004.08.013 CanalesAMultifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivoNat. Biotechnol.2015332771:CAS:528:DC%2BC2MXhtFKjsLo%3D2559917710.1038/nbt.3093 ChocatNPiezoelectric fibers for conformal acousticsAdv. Mater.201224532753321:CAS:528:DC%2BC38XhtFShtLfM2283695510.1002/adma.201201355 XiongJSkin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvestingNat. Commun.201892018NatCo...9.4280X30323200618913410.1038/s41467-018-06759-01:CAS:528:DC%2BC1cXhvFCktb7N GaoWFully integrated wearable sensor arrays for multiplexed in situ perspiration analysisNature20165295095142016Natur.529..509G1:CAS:528:DC%2BC28Xhs12is78%3D26819044499607910.1038/nature16521 Ramaswami, R., Sivarajan, K. & Sasaki, G. Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009). ZhangNUltra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channelsLab Chip2018186556611:CAS:528:DC%2BC1cXht1Gks7Y%3D2936275610.1039/C7LC01247K ChenJMicro-cable structured textile for simultaneously harvesting solar and mechanical energyNat. Energy20161161382016NatEn...116138C1:CAS:528:DC%2BC2sXhtVers7o%3D10.1038/nenergy.2016.138 RenHNonlinear optical properties of polycrystalline silicon core fibers from telecom wavelengths into the mid-infrared spectral regionOpt. Mater. Express20199127112792019OMExp...9.1271R1:CAS:528:DC%2BC1MXhslaltL7O10.1364/OME.9.001271 ZouYA bionic stretchable nanogenerator for underwater sensing and energy harvestingNat. Commun.2019102019NatCo..10.2695Z31217422658449810.1038/s41467-019-10433-41:CAS:528:DC%2BC1MXht1aqu7rP ZhangTUltraflexible glassy semiconductor fibers for thermal sensing and positioningACS Appl. Mater. Interfaces2018112441244710.1021/acsami.8b203071:CAS:528:DC%2BC1cXisFyhtbrO HealyNGibsonUPeacockACA review of materials engineering in silicon-based optical fibresSemicond. Sci. Technol.2018330230012018SeScT..33b3001H10.1088/1361-6641/aaa1431:CAS:528:DC%2BC1cXhsFyhs77K ReinMDiode fibres for fabric-based optical communicationsNature20185602142182018Natur.560..214R1:CAS:528:DC%2BC1cXhsVynsrfO3008992110.1038/s41586-018-0390-x TunizASchmidtMABroadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotipsOpt. Express201624750775242016OExpr..24.7507T1:CAS:528:DC%2BC2sXmtl2gur0%3D2713704010.1364/OE.24.007507 ParidaKExtremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogeneratorNat. Commun.2019102019NatCo..10.2158P31089129651740610.1038/s41467-019-10061-y1:CAS:528:DC%2BC1MXps1Cnsbc%3D XiaXFuJZiYA universal standardized method for output capability assessment of nanogeneratorsNat. Commun.201910192019OptCo.445....1X10.1038/s41467-019-12465-21:CAS:528:DC%2BC1MXmvVCms78%3D JangK-ISelf-assembled three dimensional network designs for soft electronicsNat. Commun.201782017NatCo...815894J1:CAS:528:DC%2BC2sXhtVeqsbvE28635956548205710.1038/ncomms15894 CoucheronDALaser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibresNat. Commun.201672016NatCo...713265C1:CAS:528:DC%2BC28XhslGrt7rP27775066507906210.1038/ncomms13265 HinchetRTranscutaneous ultrasound energy harvesting using capacitive triboelectric technologyScience20193654914942019Sci...365..491H1:CAS:528:DC%2BC1MXhsV2jsLjF313716 W Gao (21729_CR24) 2016; 529 S Xu (21729_CR23) 2014; 344 S Wang (21729_CR21) 2017; 3 21729_CR2 S Zhu (21729_CR28) 2013; 23 21729_CR1 Y Cao (21729_CR53) 2019; 2 DA Coucheron (21729_CR6) 2016; 7 A Tuniz (21729_CR5) 2017; 17 AC Peacock (21729_CR12) 2014; 8 H Ren (21729_CR4) 2019; 9 Y Zou (21729_CR56) 2019; 10 S Wang (21729_CR52) 2018; 555 AF Abouraddy (21729_CR51) 2006; 5 M Bayindir (21729_CR16) 2006; 18 SS Kwak (21729_CR46) 2017; 11 A Tuniz (21729_CR3) 2016; 24 S Egusa (21729_CR10) 2010; 9 W Wu (21729_CR35) 2013; 340 M Bayindir (21729_CR9) 2004; 431 Y Qu (21729_CR30) 2018; 30 M Chen (21729_CR54) 2016; 10 M Rein (21729_CR41) 2018; 560 M Bayindir (21729_CR42) 2006; 12 B Zhang (21729_CR39) 2017; 11 Y Yang (21729_CR43) 2018; 12 CB Cooper (21729_CR25) 2017; 27 Y Kanda (21729_CR32) 1991; 28 J Chen (21729_CR45) 2016; 1 N Zhang (21729_CR19) 2018; 18 CT Peng (21729_CR33) 2005; 119 X Wang (21729_CR48) 2018; 30 K Parida (21729_CR38) 2019; 10 J Luo (21729_CR50) 2019; 10 W Yan (21729_CR8) 2017; 29 Y Liu (21729_CR49) 2020; 11 N Healy (21729_CR11) 2018; 33 N Chocat (21729_CR20) 2012; 24 A Canales (21729_CR14) 2015; 33 FR Fan (21729_CR36) 2012; 1 BD Chen (21729_CR55) 2018; 21 S Niu (21729_CR27) 2019; 2 R Hinchet (21729_CR37) 2019; 365 M Kanik (21729_CR18) 2016; 1 AC Peacock (21729_CR13) 2016; 31 T Zhang (21729_CR17) 2018; 11 S Park (21729_CR29) 2019; 6 21729_CR22 A Leber (21729_CR31) 2019; 30 K-I Jang (21729_CR26) 2017; 8 J Xiong (21729_CR47) 2018; 9 DJ Lipomi (21729_CR34) 2011; 6 Y Franz (21729_CR7) 2017; 7 Y Guo (21729_CR15) 2017; 11 X Yu (21729_CR44) 2017; 5 X Xia (21729_CR40) 2019; 10 |
References_xml | – reference: ChocatNPiezoelectric fibers for conformal acousticsAdv. Mater.201224532753321:CAS:528:DC%2BC38XhtFShtLfM2283695510.1002/adma.201201355 – reference: LipomiDJSkin-like pressure and strain sensors based on transparent elastic films of carbon nanotubesNat. Nanotech.201167882011NatNa...6..788L1:CAS:528:DC%2BC3MXhtlKhtrvF10.1038/nnano.2011.184 – reference: TunizASchmidtMABroadband efficient directional coupling to short-range plasmons: towards hybrid fiber nanotipsOpt. Express201624750775242016OExpr..24.7507T1:CAS:528:DC%2BC2sXmtl2gur0%3D2713704010.1364/OE.24.007507 – reference: PeacockACHealyNSemiconductor optical fibres for infrared applications: a reviewSemicond. Sci. Technol.2016311030042016SeScT..31j3004P10.1088/0268-1242/31/10/1030041:CAS:528:DC%2BC28XhvFSktbvP – reference: GuoYPolymer composite with carbon nanofibers aligned during thermal drawing as a microelectrode for chronic neural interfacesACS Nano201711657465851:CAS:528:DC%2BC2sXptFemu78%3D2857081310.1021/acsnano.6b07550 – reference: PengCTLinJCLinCTChiangKNPerformance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technologySens. Actuator A Phys.200511928371:CAS:528:DC%2BD2MXislSlsrc%3D10.1016/j.sna.2004.08.013 – reference: CaoYSelf-healing electronic skins for aquatic environmentsNat. Electron.20192758210.1038/s41928-019-0206-5 – reference: GaoWFully integrated wearable sensor arrays for multiplexed in situ perspiration analysisNature20165295095142016Natur.529..509G1:CAS:528:DC%2BC28Xhs12is78%3D26819044499607910.1038/nature16521 – reference: BayindirMMetal-insulator-semiconductor optoelectronic fibresNature20044318262004Natur.431..826B1:CAS:528:DC%2BD2cXotl2ktr4%3D1548360710.1038/nature02937 – reference: ZhuSUltrastretchable fibers with metallic conductivity using a liquid metal alloy coreAdv. Funct. Mater.201323230823141:CAS:528:DC%2BC38XhvVCht7bL10.1002/adfm.201202405 – reference: WuWWenXWangZLTaxel-addressable matrix of vertical-nanowire piezotronic transistors for active and adaptive tactile imagingScience20133409529572013Sci...340..952W1:CAS:528:DC%2BC3sXnvFSrtr0%3D2361876110.1126/science.1234855 – reference: KanikMMarcaliMYunusaMElbukenCBayindirMContinuous triboelectric power harvesting and biochemical sensing inside poly(vinylidene fluoride) hollow fibers using microfluidic droplet generationAdv. Mater. Technol.20161160019010.1002/admt.2016001901:CAS:528:DC%2BC2sXltlCmsbc%3D – reference: JangK-ISelf-assembled three dimensional network designs for soft electronicsNat. Commun.201782017NatCo...815894J1:CAS:528:DC%2BC2sXhtVeqsbvE28635956548205710.1038/ncomms15894 – reference: PeacockACSparksJRHealyNSemiconductor optical fibres: progress and opportunitiesLaser Photon. Rev.2014853722014LPRv....8...53P1:CAS:528:DC%2BC2cXltFeguw%3D%3D10.1002/lpor.201300016 – reference: KandaYPiezoresistance effect of siliconSens. Actuator A Phys.19912883911:CAS:528:DyaK3MXms1yitbo%3D10.1016/0924-4247(91)85017-I – reference: ZhangNUltra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channelsLab Chip2018186556611:CAS:528:DC%2BC1cXht1Gks7Y%3D2936275610.1039/C7LC01247K – reference: TunizAChemnitzMDellithJWeidlichSSchmidtMAHybrid-mode-assisted long-distance excitation of short-range surface plasmons in a nanotip-enhanced step-index fiberNano Lett.2017176316372017NanoL..17..631T1:CAS:528:DC%2BC28XitV2ksrbL2798386210.1021/acs.nanolett.6b03373 – reference: AbouraddyAFLarge-scale optical-field measurements with geometric fibre constructsNat. Mater.200655322006NatMa...5..532A1:CAS:528:DC%2BD28XmsVGjsbY%3D1679954910.1038/nmat1674 – reference: ZouYA bionic stretchable nanogenerator for underwater sensing and energy harvestingNat. Commun.2019102019NatCo..10.2695Z31217422658449810.1038/s41467-019-10433-41:CAS:528:DC%2BC1MXht1aqu7rP – reference: WangXA highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronicsAdv. Mater.201830170673810.1002/adma.2017067381:CAS:528:DC%2BC1cXisFehtrw%3D – reference: ZhangTUltraflexible glassy semiconductor fibers for thermal sensing and positioningACS Appl. Mater. Interfaces2018112441244710.1021/acsami.8b203071:CAS:528:DC%2BC1cXisFyhtbrO – reference: FanFRTianZQWangZLFlexible triboelectric generatorNano Energy201213283341:CAS:528:DC%2BC3sXis1Sitrs%3D10.1016/j.nanoen.2012.01.004 – reference: BayindirMKilometer-long ordered nanophotonic devices by preform-to-fiber fabricationIEEE J. Sel. Top. Quantum Electron.200612120212132006IJSTQ..12.1202B1:CAS:528:DC%2BD2sXjslar10.1109/JSTQE.2006.882666 – reference: ReinMDiode fibres for fabric-based optical communicationsNature20185602142182018Natur.560..214R1:CAS:528:DC%2BC1cXhsVynsrfO3008992110.1038/s41586-018-0390-x – reference: KwakSSFully stretchable textile triboelectric nanogenerator with knitted fabric structuresACS Nano20171110733107411:CAS:528:DC%2BC2sXhsFyru7rK2896806410.1021/acsnano.7b05203 – reference: Ramaswami, R., Sivarajan, K. & Sasaki, G. Optical Networks: A Practical Perspective (Morgan Kaufmann, 2009). – reference: ParidaKExtremely stretchable and self-healing conductor based on thermoplastic elastomer for all-three-dimensional printed triboelectric nanogeneratorNat. Commun.2019102019NatCo..10.2158P31089129651740610.1038/s41467-019-10061-y1:CAS:528:DC%2BC1MXps1Cnsbc%3D – reference: FranzYMaterial properties of tapered crystalline silicon core fibersOpt. Mater. Express20177205520612017OMExp...7.2055F10.1364/OME.7.002055 – reference: Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2019). – reference: RenHNonlinear optical properties of polycrystalline silicon core fibers from telecom wavelengths into the mid-infrared spectral regionOpt. Mater. Express20199127112792019OMExp...9.1271R1:CAS:528:DC%2BC1MXhslaltL7O10.1364/OME.9.001271 – reference: HealyNGibsonUPeacockACA review of materials engineering in silicon-based optical fibresSemicond. Sci. Technol.2018330230012018SeScT..33b3001H10.1088/1361-6641/aaa1431:CAS:528:DC%2BC1cXhsFyhs77K – reference: BayindirMAbouraddyAFArnoldJJoannopoulosJDFinkYThermal-sensing fiber devices by multimaterial codrawingAdv. Mater.2006188458491:CAS:528:DC%2BD28XjvVClsL0%3D10.1002/adma.200502106 – reference: QuYSuperelastic multimaterial electronic and photonic fibers and devices via thermal drawingAdv. Mater.201830170725110.1002/adma.2017072511:CAS:528:DC%2BC1cXhtVSgtbfE – reference: EgusaSMultimaterial piezoelectric fibresNat. Mater.201096432010NatMa...9..643E1:CAS:528:DC%2BC3cXpt1Srsbw%3D2062286410.1038/nmat2792 – reference: NiuSA wireless body area sensor network based on stretchable passive tagsNat. Electron.2019236136810.1038/s41928-019-0286-2 – reference: ParkSUltrastretchable elastic shape memory fibers with electrical conductivityAdv. Sci2019619015791:CAS:528:DC%2BC1MXisVWqtrjI10.1002/advs.201901579 – reference: WangSFlexible piezoelectric fibers for acoustic sensing and positioningAdv. Electron. Mater.20173160044910.1002/aelm.2016004491:CAS:528:DC%2BC2sXjtVegsrk%3D – reference: YangYLiquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronicsACS Nano201812202720341:CAS:528:DC%2BC1cXisFaku7o%3D2942001110.1021/acsnano.8b00147 – reference: CooperCBStretchable capacitive sensors of torsion, strain, and touch using double helix liquid metal fibersAdv. Funct. Mater.201727160563010.1002/adfm.2016056301:CAS:528:DC%2BC2sXkvFWmurs%3D – reference: YuXA coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformationJ. Mater. Chem. A20175603260371:CAS:528:DC%2BC2sXjslSnu7k%3D10.1039/C7TA00248C – reference: LeberACompressible and electrically conducting fibers for large-area sensing of pressuresAdv. Funct. Mater.201930190427410.1002/adfm.2019042741:CAS:528:DC%2BC1MXitVKrt77E – reference: ChenMTuning light emission of a pressure-sensitive silicon/ZnO nanowires heterostructure matrix through piezo-phototronic effectsACS Nano201610607460791:CAS:528:DC%2BC28XpsFGls7c%3D2727616710.1021/acsnano.6b01666 – reference: ChenJMicro-cable structured textile for simultaneously harvesting solar and mechanical energyNat. Energy20161161382016NatEn...116138C1:CAS:528:DC%2BC2sXhtVers7o%3D10.1038/nenergy.2016.138 – reference: LuoJFlexible and durable wood-based triboelectric nanogenerators for self-powered sensing in athletic big data analyticsNat. Commun.2019102019NatCo..10.5147L31772189687960810.1038/s41467-019-13166-61:CAS:528:DC%2BC1MXitlSqs7zM – reference: ChenBDWater wave energy harvesting and self-powered liquid-surface fluctuation sensing based on bionic-jellyfish triboelectric nanogeneratorMater. Today20182188971:CAS:528:DC%2BC2sXhslehs7jO10.1016/j.mattod.2017.10.006 – reference: LiuYQuantifying contact status and the air-breakdown model of charge-excitation triboelectric nanogenerators to maximize charge densityNat. Commun.202011182020NatCo..11....3L1:CAS:528:DC%2BB3cXit1Sisb7I – reference: WangSSkin electronics from scalable fabrication of an intrinsically stretchable transistor arrayNature2018555832018Natur.555...83W1:CAS:528:DC%2BC1cXivFGnu7Y%3D2946633410.1038/nature25494 – reference: XiaXFuJZiYA universal standardized method for output capability assessment of nanogeneratorsNat. Commun.201910192019OptCo.445....1X10.1038/s41467-019-12465-21:CAS:528:DC%2BC1MXmvVCms78%3D – reference: XiongJSkin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvestingNat. Commun.201892018NatCo...9.4280X30323200618913410.1038/s41467-018-06759-01:CAS:528:DC%2BC1cXhvFCktb7N – reference: HinchetRTranscutaneous ultrasound energy harvesting using capacitive triboelectric technologyScience20193654914942019Sci...365..491H1:CAS:528:DC%2BC1MXhsV2jsLjF3137161410.1126/science.aan3997 – reference: CoucheronDALaser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibresNat. Commun.201672016NatCo...713265C1:CAS:528:DC%2BC28XhslGrt7rP27775066507906210.1038/ncomms13265 – reference: Agrawal, G. P. Fiber-optic Communication Systems (John Wiley & Sons, 2012). – reference: XuSSoft Microfluidic assemblies of sensors, circuits, and radios for the skinScience201434470742014Sci...344...70X1:CAS:528:DC%2BC2cXlt1ehsLo%3D2470085210.1126/science.1250169 – reference: CanalesAMultifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivoNat. Biotechnol.2015332771:CAS:528:DC%2BC2MXhtFKjsLo%3D2559917710.1038/nbt.3093 – reference: ZhangBSelf-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoringACS Nano201711744074461:CAS:528:DC%2BC2sXhtFSjtrrE2867181310.1021/acsnano.7b03818 – reference: YanWSemiconducting nanowire-based optoelectronic fibersAdv. Mater.201729170068110.1002/adma.2017006811:CAS:528:DC%2BC2sXnslKgurg%3D – volume: 10 year: 2019 ident: 21729_CR50 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13166-6 – volume: 10 year: 2019 ident: 21729_CR56 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10433-4 – volume: 3 start-page: 1600449 year: 2017 ident: 21729_CR21 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201600449 – volume: 23 start-page: 2308 year: 2013 ident: 21729_CR28 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202405 – volume: 1 start-page: 1600190 year: 2016 ident: 21729_CR18 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600190 – volume: 6 start-page: 1901579 year: 2019 ident: 21729_CR29 publication-title: Adv. Sci doi: 10.1002/advs.201901579 – volume: 7 start-page: 2055 year: 2017 ident: 21729_CR7 publication-title: Opt. Mater. Express doi: 10.1364/OME.7.002055 – volume: 119 start-page: 28 year: 2005 ident: 21729_CR33 publication-title: Sens. Actuator A Phys. doi: 10.1016/j.sna.2004.08.013 – ident: 21729_CR22 doi: 10.1002/adma.201904911 – volume: 340 start-page: 952 year: 2013 ident: 21729_CR35 publication-title: Science doi: 10.1126/science.1234855 – volume: 27 start-page: 1605630 year: 2017 ident: 21729_CR25 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201605630 – ident: 21729_CR1 – volume: 12 start-page: 1202 year: 2006 ident: 21729_CR42 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2006.882666 – volume: 12 start-page: 2027 year: 2018 ident: 21729_CR43 publication-title: ACS Nano doi: 10.1021/acsnano.8b00147 – volume: 2 start-page: 361 year: 2019 ident: 21729_CR27 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0286-2 – volume: 11 start-page: 2441 year: 2018 ident: 21729_CR17 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b20307 – volume: 9 year: 2018 ident: 21729_CR47 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06759-0 – volume: 8 start-page: 53 year: 2014 ident: 21729_CR12 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201300016 – volume: 1 start-page: 16138 year: 2016 ident: 21729_CR45 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.138 – volume: 2 start-page: 75 year: 2019 ident: 21729_CR53 publication-title: Nat. Electron. doi: 10.1038/s41928-019-0206-5 – volume: 11 start-page: 1 year: 2020 ident: 21729_CR49 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13993-7 – volume: 11 start-page: 10733 year: 2017 ident: 21729_CR46 publication-title: ACS Nano doi: 10.1021/acsnano.7b05203 – ident: 21729_CR2 – volume: 33 start-page: 277 year: 2015 ident: 21729_CR14 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3093 – volume: 21 start-page: 88 year: 2018 ident: 21729_CR55 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.10.006 – volume: 1 start-page: 328 year: 2012 ident: 21729_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 29 start-page: 1700681 year: 2017 ident: 21729_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201700681 – volume: 344 start-page: 70 year: 2014 ident: 21729_CR23 publication-title: Science doi: 10.1126/science.1250169 – volume: 5 start-page: 6032 year: 2017 ident: 21729_CR44 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA00248C – volume: 30 start-page: 1707251 year: 2018 ident: 21729_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201707251 – volume: 10 start-page: 1 year: 2019 ident: 21729_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 365 start-page: 491 year: 2019 ident: 21729_CR37 publication-title: Science doi: 10.1126/science.aan3997 – volume: 555 start-page: 83 year: 2018 ident: 21729_CR52 publication-title: Nature doi: 10.1038/nature25494 – volume: 7 year: 2016 ident: 21729_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms13265 – volume: 31 start-page: 103004 year: 2016 ident: 21729_CR13 publication-title: Semicond. Sci. Technol. doi: 10.1088/0268-1242/31/10/103004 – volume: 28 start-page: 83 year: 1991 ident: 21729_CR32 publication-title: Sens. Actuator A Phys. doi: 10.1016/0924-4247(91)85017-I – volume: 10 start-page: 6074 year: 2016 ident: 21729_CR54 publication-title: ACS Nano doi: 10.1021/acsnano.6b01666 – volume: 9 start-page: 643 year: 2010 ident: 21729_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat2792 – volume: 10 year: 2019 ident: 21729_CR38 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10061-y – volume: 8 year: 2017 ident: 21729_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms15894 – volume: 33 start-page: 023001 year: 2018 ident: 21729_CR11 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aaa143 – volume: 24 start-page: 5327 year: 2012 ident: 21729_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201201355 – volume: 9 start-page: 1271 year: 2019 ident: 21729_CR4 publication-title: Opt. Mater. Express doi: 10.1364/OME.9.001271 – volume: 11 start-page: 7440 year: 2017 ident: 21729_CR39 publication-title: ACS Nano doi: 10.1021/acsnano.7b03818 – volume: 431 start-page: 826 year: 2004 ident: 21729_CR9 publication-title: Nature doi: 10.1038/nature02937 – volume: 5 start-page: 532 year: 2006 ident: 21729_CR51 publication-title: Nat. Mater. doi: 10.1038/nmat1674 – volume: 6 start-page: 788 year: 2011 ident: 21729_CR34 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2011.184 – volume: 17 start-page: 631 year: 2017 ident: 21729_CR5 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03373 – volume: 18 start-page: 655 year: 2018 ident: 21729_CR19 publication-title: Lab Chip doi: 10.1039/C7LC01247K – volume: 529 start-page: 509 year: 2016 ident: 21729_CR24 publication-title: Nature doi: 10.1038/nature16521 – volume: 11 start-page: 6574 year: 2017 ident: 21729_CR15 publication-title: ACS Nano doi: 10.1021/acsnano.6b07550 – volume: 24 start-page: 7507 year: 2016 ident: 21729_CR3 publication-title: Opt. Express doi: 10.1364/OE.24.007507 – volume: 560 start-page: 214 year: 2018 ident: 21729_CR41 publication-title: Nature doi: 10.1038/s41586-018-0390-x – volume: 18 start-page: 845 year: 2006 ident: 21729_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.200502106 – volume: 30 start-page: 1706738 year: 2018 ident: 21729_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.201706738 – volume: 30 start-page: 1904274 year: 2019 ident: 21729_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201904274 |
SSID | ssj0000391844 |
Score | 2.6135163 |
Snippet | The well-developed preform-to-fiber thermal drawing technique owns the benefit to maintain the cross-section architecture and obtain an individual micro-scale... Though thermal drawing methods are attractive for fabricating fiber-based sensor devices, existing methods allow limited access to low viscosity and low... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1416 |
SubjectTerms | 639/166/987 639/301/1005/1007 639/301/923/3931 Fabrication Fibers Humanities and Social Sciences multidisciplinary Nanogenerators Polymers Production methods Science Science (multidisciplinary) Sports Undersea Viscosity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuCCiP0IKMxA2sJmvHjo-AqKoeuECl3ix7bAPSkl1tdoX67zvjZJcuzwvXxI4cz-ubePINYy-NbSBIaIVpdRRKoyl6nUEAJK2DCkbHUiD7QZ9dqPPL9vJGqy-qCRvpgceNO_E5KBXB1NlIhbEtQPDGhtBFAJlz4fnEmHcjmSo-WFpMXdT0l0wtu5NBFZ9AFQnUk8kKuxeJCmH_71Dmr8WSP52YlkB0eo_dnRAkfzOu_D67lfoH7PbYU_LqkIWPaZ7FkpqfpchLvSDFrvGTHx-oXr3_zCl4Rb7o-bBZppVIiKHxcTxT_cjAwxUnlQzzJIjlkhNI_Iaz48p_x9kP2cXp-0_vzsTUSEEAArK1CMQgA0TW52X2uoNGtt7OZqY2gAkF5Jyy0S2EnCg9as1MqjYhlMoxZYvp9iN20C_69IRxaesQbdToRDGzzNojxPGIKVIHSqe6rViz3VQHE8s4NbuYu3LaLTs3CsKhIFwRhLMVe7Wbsxw5Nv46-i3JajeS-LHLBdQaN2mN-5fWVOx4K2k3Ge3gqA23oQwT3-LF7jaaG52h-D4tNmWMaRA1S3zE41ExdiuRUtMha1Mxs6cye0vdv9N__VIovdFLknus2Outcv1Y1p-34un_2IojdmdGVkF1dfKYHaxXm_QMgdY6PC82dQ2uSSaQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEBIvE99kDGQk3sDQ1I4dPyAEiGlCgheotDfLnxtSSUvSCvrfc-ckRYWy19hn2b473-_i8x0hz5QuveO-YqqSgQkJqmhl8sz7KKUTTsmQA2Q_y7OZ-HhenR-QsdzRsIHdXtcO60nN2vnLXz82b0DhX_dPxutXncjqjsEGWG5JM32NXAfLpFBRPw1wP5_MXINDI4a3M_tJd-xTTuO_D3v-G0L51z1qNk-nt8jRgCvp214QbpOD2NwhN_pKk5u7xH2J88SWWBItBpqjCNGi9T8CaYdR7M0FRZMW6KKh3XoZWxYBWcNwNGFUSUfdhqKgunlkmPuSInT8DtShtT-B-h6ZnX74-v6MDeUVmAeYtmIO88p4TOFnebKy9iWvrJ5O1UR5cDN8SjEpWXmXIjpNlZpyUUUAWCnEpMEJv08Om0UTHxLK9cQFHSQcreBvJmkB-FhAGrH2QsZJVZBy3FTjh9zjWAJjbvIdOK9NzwgDjDCZEUYX5PmWZtln3riy9zvk1bYnZs3OHxbthRmU0NjkhAheTZLiAnCS884q7VwdvOcp8YKcjJw2oyQaLM6t0O-EVTzdNoMS4s2KbeJinfuoErA0hyEe9IKxnQnnEq9ey4KoHZHZmepuS_PtMif6hrMTD82CvBiF68-0_r8Vx1ev4hG5OUV5xzg6fkIOV-06PgZgtXJPsrb8BnmGH1E priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERKXqrwDBRmJG1gksWPHx7KiqjhwgUq9WX4WpCW72uwK9d93xnmghYLENbEjJzNjf2N_-YaQN0pX3nHfMNXIwISEULQyeeZ9lNIJp2TIBNnP8vxCfLpsLg9IPf0Lk0n7WdIyT9MTO-x9L3JII6EASypppu-Quyjdjl69kIt5XwUVz1shxv9jSt7e0nVvDcpS_bfhyz9pkr-dleYl6OyYHI3YkZ4Oo31ADmL3kNwbqklePyLuS1wmtsayZzHQzBTEVWvY7KM9MtW7K4rLVqCrjva7ddywCOgZHkcTMkd66q4pOqNbRob6lhTh4Q_oHTb2J_R-TC7OPn5dnLOxhALzAMW2zKF2jEeZPsuTla2veGN1XatSeUglfEoxKdl4lyImRo2quWgigKgUYtKQaD8hh92qi88I5bp0QQcJ0yfklElaADcW0ERsvZCxbApSTR_V-FFfHMtcLE0-5-atGQxhwBAmG8Logryd-6wHdY1_tv6AtppbojJ2vrDaXJnRU4xNTojgVZkUF4CFnHdWaefa4D1PiRfkZLK0GcO1N1iAW2FuCW_xer4NgYanJ7aLq11uoyrAyxwe8XRwjHkknEs8Xq0KovZcZm-o-3e679-ymDfMjzgxFuTd5Fy_hvX3T_H8_5q_IPdr9H_kzvETcrjd7OJLAFNb9ypHzw3lQxnz priority: 102 providerName: Springer Nature |
Title | Self-powered multifunctional sensing based on super-elastic fibers by soluble-core thermal drawing |
URI | https://link.springer.com/article/10.1038/s41467-021-21729-9 https://www.ncbi.nlm.nih.gov/pubmed/33658511 https://www.proquest.com/docview/2495701445 https://www.proquest.com/docview/2497113933 https://pubmed.ncbi.nlm.nih.gov/PMC7930051 https://doaj.org/article/afb44dc70f734910bcba79bb8dcc3ff3 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUN9raJ2pEs2U8jDc1KYGWsK-RNWF_dILOzOGH0v9-d7LhkH32xwZaM7Dudfro7_46Qt6rMrOE2ZyqXjgkJU7GSwTJrvZRGGCVdTJA9l2eXYr7IF73Dre3TKnc2MRpq11j0kR9jjWSF8D__sPrJsGoURlf7Ehp3ySFSl2FKl1qowceC7OeFEP2_MikvjlsRLQPmJWBlppKVe-tRpO3_F9b8O2Xyj7hpXI5mD8mDHkfSSSf4R-SOrx-Te11lyesnxFz4ZWArLIHmHY1Zg7iCdY4_2mLWen1FcQlztKlpu135NfOApOFxNGAWSUvNNUXFNEvPkOuSIlT8Ab3duvoFvZ-Sy9np1-kZ68spMAuwbMMM8shYpOyreKhkYTOeV-V4rFJlYVthQ_BBydya4HGTlKsxF7kHQBWcDyVsup-Rg7qp_QtCeZkaVzoJphT2l0FWAHQqQBa-sEL6NE9Itvuo2vZc41jyYqljzJsXuhOEBkHoKAhdJuTd0GfVMW3c2voEZTW0RJbseKFZX-l-0ukqGCGcVWlQXAAuMtZUqjSmcNbyEHhCjnaS1v3UbfWNoiXkzXAbJh1GUqraN9vYRmWAnTk84nmnGMNIOJcYas0SovZUZm-o-3fq798isTfYSjSSCXm_U66bYf3_U7y8_S1ekftj1HfMm-NH5GCz3vrXAKQ2ZhRnCxyL2ccROZxM5hdzOJ-cnn_-AlencjqKLgo4fhLFb3OnIts |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ7CajR07OSDEq9rS0guttDcTvwrSNrvd7KraP8VvZMZJtloevfUaP-R4Xp894xlCXqpyYA23OVO5dExIEMVKBsus9VIaYZR0MUD2UA6PxZdRPtogv_q3MBhW2evEqKjdxOId-Q7WSFYI__N30zOGVaPQu9qX0GjZYt8vz-HI1rzd-wT0fZVlu5-PPg5ZV1WAWUAnc2YwnYrFzHUVD5Us7IDnVZllKlUW0LUNwQclc2uCx7NCrjIucg-4IjgfSjh7wrzXyHUwvClKlBqp1Z0OZlsvhOje5qS82GlE1EQYB4GVoEpWrtm_WCbgX9j27xDNP_y00fzt3iG3O9xK37eMdpds-PoeudFWslzeJ-abHwc2xZJr3tEYpYgWs71opA1GydcnFE2mo5OaNoupnzEPyB2mowGjVhpqlhQFwYw9w9yaFKHpKYx2s-ocRj8gx1ey0Q_JZj2p_SNCeZkaVzoJqhvOs0FWAKwqQDK-sEL6NE_IoN9Ubbvc5lhiY6yjj50XuiWEBkLoSAhdJuT1asy0zexxae8PSKtVT8zKHT9MZie6E3JdBSOEsyoNigvAYcaaSpXGFM5aHgJPyHZPad2pikZfMHZCXqyaQcjRc1PVfrKIfdQAsDqHKbZaxlithHOJrt1BQtQay6wtdb2l_vkjJhIH3YxKOSFveua6WNb_t-Lx5X_xnNwcHn090Ad7h_tPyK0MeR9j9vg22ZzPFv4pgLi5eRYlh5LvVy2qvwEu81jw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE1htYsdOHhACRrUxNCHBpL6Z-DYmdWlpWk39a_w6znGSTuWyt70mtuX4XPzZ5-R8hLxQZWoNtzlTuXRMSDDFSgbLrPVSGmGUdDFB9lDuHYlP43y8RX71_8JgWmXvE6OjdlOLd-QD5EhWCP_zQejSIr7sjt7OfjJkkMJIa0-n0arIgV-dwfGtebO_C7J-mWWjj98-7LGOYYBZQCoLZrC0isUqdhUPlSxsyvOqzDI1VBaQtg3BByVza4LHc0OuMi5yDxgjOB9KOIfCuFfIVcXzFG1MjdX6fgcrrxdCdP_pDHkxaET0SpgTgaxQJSs39sJIGfAvnPt3uuYfMdu4FY5ukZsdhqXvWqW7TbZ8fYdca1ktV3eJ-eongc2Qfs07GjMWcfdsLx1pgxnz9THF7dPRaU2b5czPmQcUD8PRgBksDTUrikZhJp5hnU2KMPUUert5dQa975GjS1no-2S7ntb-IaG8HBpXOgluHM62QVYAsipANb6wQvphnpC0X1RtuzrnSLcx0THezgvdCkKDIHQUhC4T8mrdZ9ZW-biw9XuU1bolVuiOD6bzY90ZvK6CEcJZNQyKC8BkxppKlcYUzloeAk_ITi9p3bmNRp8reUKer1-DwWMUp6r9dBnbqBRwO4chHrSKsZ4J5xLDvGlC1IbKbEx180198iMWFQc_jQ46Ia975Tqf1v-X4tHFX_GMXAcj1Z_3Dw8ekxsZqj6m7_Edsr2YL_0TwHML8zQaDiXfL9tSfwNMNF0m |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-powered+multifunctional+sensing+based+on+super-elastic+fibers+by+soluble-core+thermal+drawing&rft.jtitle=Nature+communications&rft.au=Chen+Mengxiao&rft.au=Wang%2C+Zhe&rft.au=Zhang+Qichong&rft.au=Wang+Zhixun&rft.date=2021-03-03&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-21729-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |