PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids

The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 8; no. 1; pp. 17923 - 11
Main Authors Chandra, Abel, Sharma, Alok, Dehzangi, Abdollah, Ranganathan, Shoba, Jokhan, Anjeela, Chou, Kuo-Chen, Tsunoda, Tatsuhiko
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.12.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-018-36203-8

Cover

Loading…
Abstract The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct .
AbstractList The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct.
The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct .
The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct .The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct .
ArticleNumber 17923
Author Ranganathan, Shoba
Chou, Kuo-Chen
Sharma, Alok
Tsunoda, Tatsuhiko
Jokhan, Anjeela
Chandra, Abel
Dehzangi, Abdollah
Author_xml – sequence: 1
  givenname: Abel
  surname: Chandra
  fullname: Chandra, Abel
  email: abelavit@gmail.com
  organization: School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific
– sequence: 2
  givenname: Alok
  orcidid: 0000-0002-7668-3501
  surname: Sharma
  fullname: Sharma, Alok
  email: alok.sharma@griffith.edu.au
  organization: Institute for Integrated and Intelligent Systems, Griffith University, Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, CREST, JST
– sequence: 3
  givenname: Abdollah
  surname: Dehzangi
  fullname: Dehzangi, Abdollah
  organization: Department of Computer Science, Morgan State University
– sequence: 4
  givenname: Shoba
  surname: Ranganathan
  fullname: Ranganathan, Shoba
  organization: Department of Molecular Sciences, Macquarie University
– sequence: 5
  givenname: Anjeela
  surname: Jokhan
  fullname: Jokhan, Anjeela
  organization: Faculty of Science Technology and Environment, University of the South Pacific
– sequence: 6
  givenname: Kuo-Chen
  surname: Chou
  fullname: Chou, Kuo-Chen
  organization: The Gordon Life Science Institute
– sequence: 7
  givenname: Tatsuhiko
  surname: Tsunoda
  fullname: Tsunoda, Tatsuhiko
  organization: Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, CREST, JST
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30560923$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1UREvpH2CBIrFhE7h-js0Cqap4SZWoBKwtx3FmPMrYwXaQ5t_jmZRSuqg3cXS_c3yuznN0EmJwCL3E8BYDle8yw1zJFrBsqSBAW_kEnRFgvCWUkJN791N0kfMW6uFEMayeoVMKXIAi9AxtbzZxPe6_lzTb8r65Sa73tvgYmjg00ybm6Ti3Lu1HU1zfjPvsg2uSy76fXW7m-rtu8lE_JzM2U4qTS8XXWbUwOx9iY6zv8wv0dDBjdhe333P089PHH1df2utvn79eXV63ljMobQdWDHbVASPcdsJQ0YGgA1FYrgT0FBNle7WiHaOVpxYGzhWTVPWYOiwZPUcfFt9p7nauty6UmktPye9M2utovP5_EvxGr-NvLYhSoGQ1eHNrkOKvumPRO5-tG0cTXJyzJphLwoAArujrB-g2zinU9RaKCgaqUq_uJ7qL8reGCpAFsCnmnNxwh2DQh7r1Ureudetj3foQUz4QWV_Mobu6lR8fl9JFmus7Ye3Sv9iPqP4ASN_ABg
CitedBy_id crossref_primary_10_1109_TCBB_2019_2919025
crossref_primary_10_1007_s00438_019_01570_y
crossref_primary_10_1109_ACCESS_2020_2989713
crossref_primary_10_1016_j_compbiolchem_2020_107235
crossref_primary_10_1093_database_baz131
crossref_primary_10_1186_s12859_024_05708_7
crossref_primary_10_3390_biom11060872
crossref_primary_10_1007_s10989_019_09893_5
crossref_primary_10_3390_genes11121431
crossref_primary_10_1109_TCBB_2020_2968441
crossref_primary_10_1038_s41598_022_15403_3
crossref_primary_10_1038_s41598_024_58450_8
crossref_primary_10_1038_s41598_023_47624_5
crossref_primary_10_1109_ACCESS_2020_3041044
crossref_primary_10_1007_s10989_019_09910_7
crossref_primary_10_2174_1568026619666191018100141
crossref_primary_10_1016_j_chemolab_2019_103811
crossref_primary_10_3390_genes11091023
crossref_primary_10_1186_s12860_019_0240_1
crossref_primary_10_2174_1389202920666190819091609
crossref_primary_10_1186_s12864_018_5383_5
crossref_primary_10_1016_j_jtbi_2019_02_007
crossref_primary_10_3390_genes11121524
crossref_primary_10_1016_j_csbj_2020_02_012
crossref_primary_10_1002_bit_28091
crossref_primary_10_1093_bib_bbz156
crossref_primary_10_2174_1389202920666190809095206
Cites_doi 10.1093/glycob/cwl009
10.1080/07391102.2014.968875
10.1186/1471-2105-14-233
10.1126/science.1238327
10.1016/j.ab.2014.12.009
10.1002/prot.1035
10.1038/s41598-017-07199-4
10.1093/bioinformatics/btw539
10.3390/molecules21010095
10.1371/journal.pone.0107464
10.1093/bioinformatics/btx579
10.1038/srep11476
10.1016/j.omtn.2017.04.008
10.1371/journal.pone.0045854
10.1016/0005-2795(75)90109-9
10.1186/s12864-017-4336-8
10.1111/j.1742-1241.2011.02795.x
10.1016/j.ab.2016.05.005
10.1016/j.jtbi.2015.04.016
10.1145/1656274.1656278
10.1016/j.jmgm.2017.07.022
10.1002/prot.21940
10.1016/j.jtbi.2016.02.020
10.1093/bioinformatics/btv665
10.1110/ps.0304803
10.1021/acs.jproteome.6b00240
10.1093/nar/gkt1093
10.1093/bioinformatics/btl158
10.1016/j.ab.2017.03.021
10.1016/j.jtbi.2016.12.004
10.1016/j.jtbi.2010.12.024
10.1093/bioinformatics/btw387
10.1016/j.str.2009.09.006
10.1186/1745-6150-3-45
10.1016/j.jtbi.2017.04.027
10.1038/s41598-018-19491-y
10.1002/jcc.24314
10.1016/j.chroma.2014.10.107
10.1126/science.1175371
10.1038/srep42362
10.1177/0300060515593258
10.3109/10409239509083488
10.1016/j.ab.2007.07.006
10.1016/j.jtbi.2017.05.005
10.1039/C6CC05490K
10.1371/journal.pone.0191900
10.1016/j.jtbi.2018.02.002
10.2174/1573406411666141229162834
10.1016/j.jtbi.2017.09.022
10.1007/s00726-014-1669-3
10.1371/journal.pone.0039308
10.4236/ns.2009.12011
10.1093/bioinformatics/btx476
10.7150/ijbs.24121
10.1021/acs.jcim.6b00320
10.1002/prot.21408
10.1038/srep38318
10.1089/cmb.2011.0197
10.2174/1573406413666170515120507
10.2174/1568026617666170414145508
10.1016/j.molcel.2013.06.001
10.1074/mcp.M800224-MCP200
10.1007/s00438-015-1108-5
10.1002/msb.134974
10.1016/j.jtbi.2018.01.023
10.1016/j.cell.2011.08.008
10.2174/1386207320666170314102647
10.1039/C6MB00875E
10.1016/j.jtbi.2014.04.040
10.1093/bioinformatics/16.4.404
10.1371/journal.pone.0089575
10.1002/jcc.23718
10.1186/gm424
10.1080/07391102.2014.998710
10.7717/peerj.3261
10.1002/jcc.21968
10.1093/cvr/cvr071
10.1016/j.ab.2015.12.009
10.1016/j.gene.2017.07.036
10.1093/database/baw133
10.18632/oncotarget.13758
10.1007/978-1-4939-6406-2_6
10.1002/pmic.201800058
10.1016/j.ygeno.2017.10.002
10.1016/j.ygeno.2018.01.005
10.1142/9789814295291_0036
10.1016/j.ygeno.2017.10.008
10.1051/bmdcn/2017070315
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-018-36203-8
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central - New (Subscription)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID PMC6299098
30560923
10_1038_s41598_018_36203_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 17h06299; 17H06307
  funderid: https://doi.org/10.13039/501100001691
– fundername: JST | Core Research for Evolutional Science and Technology (CREST)
  grantid: jpmjcr1412
  funderid: https://doi.org/10.13039/501100003382
– fundername: Nanken-Kyoten, TMDU, Japan.
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 17H06307
– fundername: JST | Core Research for Evolutional Science and Technology (CREST)
  grantid: jpmjcr1412
– fundername: Japan Society for the Promotion of Science (JSPS)
  grantid: 17h06299
– fundername: ;
– fundername: ;
  grantid: 17h06299; 17H06307
– fundername: ;
  grantid: jpmjcr1412
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
IPNFZ
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c540t-b0c6fc7b0425cb6a36b063f2918760d3129cd973b435403c0f5594839d13e1843
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:06:20 EDT 2025
Thu Jul 10 17:22:24 EDT 2025
Wed Aug 13 04:44:36 EDT 2025
Thu Apr 03 07:09:59 EDT 2025
Thu Apr 24 23:00:35 EDT 2025
Tue Jul 01 00:58:24 EDT 2025
Fri Feb 21 02:38:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-b0c6fc7b0425cb6a36b063f2918760d3129cd973b435403c0f5594839d13e1843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7668-3501
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-36203-8
PMID 30560923
PQID 2158236409
PQPubID 2041939
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6299098
proquest_miscellaneous_2158240201
proquest_journals_2158236409
pubmed_primary_30560923
crossref_primary_10_1038_s41598_018_36203_8
crossref_citationtrail_10_1038_s41598_018_36203_8
springer_journals_10_1038_s41598_018_36203_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-18
PublicationDateYYYYMMDD 2018-12-18
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-18
  day: 18
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Bakhtiarizadeh, Moradi-Shahrbabak, Ebrahimi, Ebrahimie (CR32) 2014; 356
McGuffin, Bryson, Jones (CR49) 2000; 16
Chou, Shen (CR79) 2009; 1
Matthews (CR63) 1975; 405
Chou (CR65) 2001; 43
Park (CR6) 2013; 50
Li, Cai, Feng, Zhao (CR75) 2012; 7
Tripathi, Pandey (CR70) 2017; 424
Du (CR26) 2016; 15
Li, Godzik (CR40) 2006; 22
Liu, Xiao, Qiu, Chou (CR42) 2015; 474
CR77
CR30
Liu (CR3) 2014; 42
Zhang (CR74) 2014; 9
Kabir, Hayat (CR67) 2016; 291
Chou, Shen (CR20) 2007; 370
Liu, Wang, Xi, Luo, Li (CR33) 2018; 14
Uddin (CR56) 2018; 443
Ehsan, Mahmood, Khan, Khan, Chou (CR86) 2018; 8
Huang, Wang, Ye, Zou (CR1) 2014; 1372
Xiang, Feng, Liao, Liu, Huang (CR25) 2017; 20
Lins, Thomas, Brasseur (CR57) 2003; 12
Taherzadeh, Yang, Zhang, Liew, Zhou (CR52) 2016; 37
Xu, Ding, Ding, Wu, Deng (CR36) 2015; 379
Li (CR76) 2012; 7
Song (CR78) 2017; 7
Xiao (CR71) 2015; 33
CR47
Jia, Zhang, Liu, Xiao, Chou (CR29) 2016; 32
Ju, Gu (CR31) 2016; 507
CR87
Song (CR89) 2018; 443
Dehzangi, Karamizadeh (CR73) 2011; 14
CR85
Heffernan (CR44) 2015; 5
Chou (CR91) 2015; 11
CR81
Xu, Ding, Ding, Wu, Xue (CR24) 2016; 6
Lanouette, Mongeon, Figeys, Couture (CR2) 2014; 10
Chou (CR90) 2017; 17
Moellering, Cravatt (CR16) 2013; 341
Dor, Zhou (CR59) 2007; 68
Heffernan (CR46) 2015; 32
Spinelli (CR14) 2016; 44
López (CR22) 2018; 19
Ju, Cao, Gu (CR15) 2016; 397
Dehzangi (CR19) 2017; 425
Meher, Sahu, Saini, Rao (CR69) 2017; 7
Johansen, Kiemer, Brunak (CR5) 2006; 16
Shatabda, Saha, Sharma, Dehzangi (CR72) 2017; 435
Kolwicz, Tian (CR18) 2011; 90
Liu, Wang, Long, Chou (CR83) 2016; 33
CR12
CR11
CR55
Chou, Zhang (CR64) 1995; 30
CR54
Chen (CR80) 2017; 8
Cheng (CR9) 2009; 8
Dehzangi (CR41) 2018; 13
Tan (CR7) 2011; 146
Jia, Liu, Xiao, Liu, Chou (CR21) 2016; 497
Faraggi, Zhang, Yang, Kurgan, Zhou (CR48) 2012; 33
Chen, Tang, Du (CR37) 2017; 13
Taherzadeh, Zhou, Liew, Yang (CR51) 2016; 56
Cheng, Zhao, Lin, Xiao, Chou (CR82) 2017; 33
Chou (CR66) 2011; 273
Hall (CR61) 2009; 11
Liu, Yang, Chou (CR84) 2017; 7
Hamada, Asai (CR62) 2012; 19
Fan (CR35) 2014; 46
Khan, Hayat, Khan, Iqbal (CR68) 2017; 415
Ju, He (CR23) 2017; 76
Bulcun, Ekici, Ekici (CR17) 2012; 66
Hou (CR28) 2014; 9
Jia, Liu, Xiao, Liu, Chou (CR43) 2016; 21
Pan (CR58) 2016; 52
Lan, Shi (CR8) 2009; 52
Xue, Dor, Faraggi, Zhou (CR60) 2008; 72
Qiu, Xiao, Lin, Chou (CR27) 2015; 33
Liu, Xu, Chou (CR38) 2017; 13
López (CR53) 2017; 527
Iyer, Burroughs, Aravind (CR10) 2008; 3
Lyons (CR45) 2014; 35
Sharma (CR39) 2013; 14
Faraggi, Yang, Zhang, Zhou (CR50) 2009; 17
Choudhary (CR4) 2009; 325
Liddy, White, Cordwell (CR13) 2013; 5
Liu, Yang, Huang, Chou (CR88) 2017; 34
Wang, Wang, Li (CR34) 2017; 5
RE Moellering (36203_CR16) 2013; 341
M Hamada (36203_CR62) 2012; 19
J Jia (36203_CR43) 2016; 21
A Dehzangi (36203_CR19) 2017; 425
Y Liu (36203_CR33) 2018; 14
Q Xiang (36203_CR25) 2017; 20
FR Spinelli (36203_CR14) 2016; 44
B-Q Li (36203_CR76) 2012; 7
LJ McGuffin (36203_CR49) 2000; 16
E Faraggi (36203_CR48) 2012; 33
J Lyons (36203_CR45) 2014; 35
J Park (36203_CR6) 2013; 50
A Ehsan (36203_CR86) 2018; 8
Y Xu (36203_CR36) 2015; 379
S Shatabda (36203_CR72) 2017; 435
R Heffernan (36203_CR44) 2015; 5
BW Matthews (36203_CR63) 1975; 405
S Lanouette (36203_CR2) 2014; 10
K-C Chou (36203_CR20) 2007; 370
J Huang (36203_CR1) 2014; 1372
G Taherzadeh (36203_CR52) 2016; 37
O Dor (36203_CR59) 2007; 68
36203_CR30
B Wang (36203_CR34) 2017; 5
C Choudhary (36203_CR4) 2009; 325
36203_CR77
K-C Chou (36203_CR91) 2015; 11
J Jia (36203_CR21) 2016; 497
A Sharma (36203_CR39) 2013; 14
B Liu (36203_CR88) 2017; 34
M Hall (36203_CR61) 2009; 11
W-R Qiu (36203_CR27) 2015; 33
Q-Y Chen (36203_CR37) 2017; 13
L Lins (36203_CR57) 2003; 12
Z Cheng (36203_CR9) 2009; 8
B-B Pan (36203_CR58) 2016; 52
F Lan (36203_CR8) 2009; 52
Z Ju (36203_CR15) 2016; 397
MB Johansen (36203_CR5) 2006; 16
J Jia (36203_CR29) 2016; 32
36203_CR85
J Song (36203_CR78) 2017; 7
36203_CR87
A Dehzangi (36203_CR73) 2011; 14
K-C Chou (36203_CR66) 2011; 273
W Li (36203_CR40) 2006; 22
36203_CR47
PK Meher (36203_CR69) 2017; 7
X Cheng (36203_CR82) 2017; 33
M Tan (36203_CR7) 2011; 146
KC Chou (36203_CR65) 2001; 43
Y Du (36203_CR26) 2016; 15
Z Liu (36203_CR42) 2015; 474
Z Liu (36203_CR3) 2014; 42
Y López (36203_CR22) 2018; 19
Y Xu (36203_CR24) 2016; 6
36203_CR81
J Song (36203_CR89) 2018; 443
Y López (36203_CR53) 2017; 527
E Faraggi (36203_CR50) 2009; 17
P Tripathi (36203_CR70) 2017; 424
W Fan (36203_CR35) 2014; 46
K-C Chou (36203_CR64) 1995; 30
W Chen (36203_CR80) 2017; 8
R Heffernan (36203_CR46) 2015; 32
E Bulcun (36203_CR17) 2012; 66
T Hou (36203_CR28) 2014; 9
A Dehzangi (36203_CR41) 2018; 13
B-Q Li (36203_CR75) 2012; 7
Z Ju (36203_CR23) 2017; 76
MR Bakhtiarizadeh (36203_CR32) 2014; 356
L-M Liu (36203_CR38) 2017; 13
36203_CR54
36203_CR11
36203_CR55
X Xiao (36203_CR71) 2015; 33
36203_CR12
B Xue (36203_CR60) 2008; 72
Z Ju (36203_CR31) 2016; 507
KA Liddy (36203_CR13) 2013; 5
SC Kolwicz Jr. (36203_CR18) 2011; 90
B Liu (36203_CR84) 2017; 7
LM Iyer (36203_CR10) 2008; 3
G Taherzadeh (36203_CR51) 2016; 56
KC Chou (36203_CR90) 2017; 17
B Liu (36203_CR83) 2016; 33
M Kabir (36203_CR67) 2016; 291
MR Uddin (36203_CR56) 2018; 443
M Khan (36203_CR68) 2017; 415
N Zhang (36203_CR74) 2014; 9
K-C Chou (36203_CR79) 2009; 1
References_xml – volume: 16
  start-page: 844
  year: 2006
  end-page: 853
  ident: CR5
  article-title: Analysis and prediction of mammalian protein glycation
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwl009
– volume: 33
  start-page: 1731
  year: 2015
  end-page: 1742
  ident: CR27
  article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model
  publication-title: Journal of Biomolecular Structure and Dynamics
  doi: 10.1080/07391102.2014.968875
– volume: 14
  year: 2013
  ident: CR39
  article-title: A strategy to select suitable physicochemical attributes of amino acids for protein fold recognition
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-14-233
– volume: 341
  start-page: 549
  year: 2013
  end-page: 553
  ident: CR16
  article-title: Functional lysine modification by an intrinsically reactive primary glycolytic metabolite
  publication-title: Science
  doi: 10.1126/science.1238327
– volume: 474
  start-page: 69
  year: 2015
  end-page: 77
  ident: CR42
  article-title: iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition
  publication-title: Analytical biochemistry
  doi: 10.1016/j.ab.2014.12.009
– volume: 43
  start-page: 246
  year: 2001
  end-page: 255
  ident: CR65
  article-title: Prediction of protein cellular attributes using pseudo‐amino acid composition
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.1035
– volume: 7
  year: 2017
  ident: CR78
  article-title: PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-07199-4
– volume: 33
  start-page: 35
  year: 2016
  end-page: 41
  ident: CR83
  article-title: iRSpot-EL: identify recombination spots with an ensemble learning approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw539
– ident: CR87
– volume: 21
  start-page: 95
  year: 2016
  ident: CR43
  article-title: iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets
  publication-title: Molecules
  doi: 10.3390/molecules21010095
– volume: 9
  start-page: e107464
  year: 2014
  ident: CR74
  article-title: Discriminating between lysine sumoylation and lysine acetylation using mRMR feature selection and analysis
  publication-title: PloS one
  doi: 10.1371/journal.pone.0107464
– volume: 34
  start-page: 33
  year: 2017
  end-page: 40
  ident: CR88
  article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx579
– ident: CR12
– volume: 5
  year: 2015
  ident: CR44
  article-title: Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning
  publication-title: Scientific reports
  doi: 10.1038/srep11476
– volume: 14
  start-page: 3611
  year: 2011
  ident: CR73
  article-title: Solving protein fold prediction problem using fusion of heterogeneous classifiers
  publication-title: International Information Institute (Tokyo). Information
– volume: 8
  start-page: 4208
  year: 2017
  ident: CR80
  article-title: iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences
  publication-title: Oncotarget
– volume: 7
  start-page: 267
  year: 2017
  end-page: 277
  ident: CR84
  article-title: 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function
  publication-title: Molecular Therapy-Nucleic Acids
  doi: 10.1016/j.omtn.2017.04.008
– volume: 7
  start-page: e45854
  year: 2012
  ident: CR75
  article-title: Prediction of protein cleavage site with feature selection by random forest
  publication-title: PloS one
  doi: 10.1371/journal.pone.0045854
– volume: 405
  start-page: 442
  year: 1975
  end-page: 451
  ident: CR63
  article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme
  publication-title: Biochimica et Biophysica Acta (BBA)-Protein Structure
  doi: 10.1016/0005-2795(75)90109-9
– volume: 19
  year: 2018
  ident: CR22
  article-title: Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4336-8
– ident: CR54
– volume: 66
  start-page: 91
  year: 2012
  end-page: 97
  ident: CR17
  article-title: Disorders of glucose metabolism and insulin resistance in patients with obstructive sleep apnoea syndrome
  publication-title: International journal of clinical practice
  doi: 10.1111/j.1742-1241.2011.02795.x
– ident: CR77
– volume: 507
  start-page: 1
  year: 2016
  end-page: 6
  ident: CR31
  article-title: Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm
  publication-title: Analytical biochemistry
  doi: 10.1016/j.ab.2016.05.005
– volume: 379
  start-page: 10
  year: 2015
  end-page: 15
  ident: CR36
  article-title: Phogly–PseAAC: prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2015.04.016
– volume: 11
  start-page: 10
  year: 2009
  end-page: 18
  ident: CR61
  article-title: The WEKA data mining software: an update
  publication-title: ACM SIGKDD explorations newsletter
  doi: 10.1145/1656274.1656278
– volume: 76
  start-page: 356
  year: 2017
  end-page: 363
  ident: CR23
  article-title: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou’s PseAAC
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2017.07.022
– volume: 72
  start-page: 427
  year: 2008
  end-page: 433
  ident: CR60
  article-title: Real‐value prediction of backbone torsion angles
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21940
– volume: 397
  start-page: 145
  year: 2016
  end-page: 150
  ident: CR15
  article-title: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou’s general PseAAC
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2016.02.020
– volume: 32
  start-page: 843
  year: 2015
  end-page: 849
  ident: CR46
  article-title: Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv665
– volume: 12
  start-page: 1406
  year: 2003
  end-page: 1417
  ident: CR57
  article-title: Analysis of accessible surface of residues in proteins
  publication-title: Protein science
  doi: 10.1110/ps.0304803
– volume: 15
  start-page: 4234
  year: 2016
  end-page: 4244
  ident: CR26
  article-title: Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features
  publication-title: Journal of proteome research
  doi: 10.1021/acs.jproteome.6b00240
– volume: 42
  start-page: D531
  year: 2014
  end-page: D536
  ident: CR3
  article-title: CPLM: a database of protein lysine modifications
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkt1093
– volume: 22
  start-page: 1658
  year: 2006
  end-page: 1659
  ident: CR40
  article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 527
  start-page: 24
  year: 2017
  end-page: 32
  ident: CR53
  article-title: SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids
  publication-title: Analytical Biochemistry
  doi: 10.1016/j.ab.2017.03.021
– volume: 415
  start-page: 13
  year: 2017
  end-page: 19
  ident: CR68
  article-title: Unb-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou’s general PseAAC
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2016.12.004
– volume: 273
  start-page: 236
  year: 2011
  end-page: 247
  ident: CR66
  article-title: Some remarks on protein attribute prediction and pseudo amino acid composition
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 52
  start-page: 311
  year: 2009
  end-page: 322
  ident: CR8
  article-title: Epigenetic regulation: methylation of histone and non-histone proteins
  publication-title: Science in China Series C: Life Sciences
– volume: 32
  start-page: 3133
  year: 2016
  end-page: 3141
  ident: CR29
  article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw387
– volume: 17
  start-page: 1515
  year: 2009
  end-page: 1527
  ident: CR50
  article-title: Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction
  publication-title: Structure
  doi: 10.1016/j.str.2009.09.006
– volume: 3
  year: 2008
  ident: CR10
  article-title: Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination
  publication-title: Biology direct
  doi: 10.1186/1745-6150-3-45
– volume: 424
  start-page: 49
  year: 2017
  end-page: 54
  ident: CR70
  article-title: A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou’s pseudo amino acid composition
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2017.04.027
– volume: 8
  year: 2018
  ident: CR86
  article-title: A Novel Modeling in Mathematical Biology for Classification of Signal Peptides
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-19491-y
– ident: CR11
– volume: 37
  start-page: 1223
  year: 2016
  end-page: 1229
  ident: CR52
  article-title: Sequence‐based prediction of protein–peptide binding sites using support vector machine
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.24314
– volume: 1372
  start-page: 1
  year: 2014
  end-page: 17
  ident: CR1
  article-title: Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2014.10.107
– volume: 325
  start-page: 834
  year: 2009
  end-page: 840
  ident: CR4
  article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 7
  year: 2017
  ident: CR69
  article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
  publication-title: Scientific reports
  doi: 10.1038/srep42362
– ident: CR85
– volume: 44
  start-page: 81
  year: 2016
  end-page: 84
  ident: CR14
  article-title: Post-translational modifications in rheumatoid arthritis and atherosclerosis: Focus on citrullination and carbamylation
  publication-title: Journal of International Medical Research
  doi: 10.1177/0300060515593258
– ident: CR81
– volume: 30
  start-page: 275
  year: 1995
  end-page: 349
  ident: CR64
  article-title: Prediction of protein structural classes
  publication-title: Critical reviews in biochemistry and molecular biology
  doi: 10.3109/10409239509083488
– volume: 370
  start-page: 1
  year: 2007
  end-page: 16
  ident: CR20
  article-title: Recent progress in protein subcellular location prediction
  publication-title: Analytical Biochemistry
  doi: 10.1016/j.ab.2007.07.006
– volume: 425
  start-page: 97
  year: 2017
  end-page: 102
  ident: CR19
  article-title: PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2017.05.005
– volume: 52
  start-page: 10237
  year: 2016
  end-page: 10240
  ident: CR58
  article-title: 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy
  publication-title: Chemical Communications
  doi: 10.1039/C6CC05490K
– volume: 13
  start-page: e0191900
  year: 2018
  ident: CR41
  article-title: Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams
  publication-title: PloS one
  doi: 10.1371/journal.pone.0191900
– volume: 443
  start-page: 138
  year: 2018
  end-page: 146
  ident: CR56
  article-title: EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2018.02.002
– volume: 11
  start-page: 218
  year: 2015
  end-page: 234
  ident: CR91
  article-title: Impacts of bioinformatics to medicinal chemistry
  publication-title: Medicinal chemistry
  doi: 10.2174/1573406411666141229162834
– volume: 435
  start-page: 229
  year: 2017
  end-page: 237
  ident: CR72
  article-title: iPHLoc-ES: Identification of bacteriophage protein locations using evolutionary and structural features
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2017.09.022
– volume: 46
  start-page: 1069
  year: 2014
  end-page: 1078
  ident: CR35
  article-title: Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest
  publication-title: Amino acids
  doi: 10.1007/s00726-014-1669-3
– volume: 7
  start-page: e39308
  year: 2012
  ident: CR76
  article-title: Prediction of protein domain with mRMR feature selection and analysis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039308
– ident: CR47
– volume: 1
  start-page: 63
  year: 2009
  ident: CR79
  article-title: Recent advances in developing web-servers for predicting protein attributes
  publication-title: Natural Science
  doi: 10.4236/ns.2009.12011
– volume: 33
  start-page: 3524
  year: 2017
  end-page: 3531
  ident: CR82
  article-title: pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx476
– ident: CR30
– volume: 14
  start-page: 946
  year: 2018
  end-page: 956
  ident: CR33
  article-title: PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile
  publication-title: International Journal of Biological Sciences
  doi: 10.7150/ijbs.24121
– volume: 56
  start-page: 2115
  year: 2016
  end-page: 2122
  ident: CR51
  article-title: Sequence-based prediction of protein–carbohydrate binding sites using support vector machines
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/acs.jcim.6b00320
– volume: 68
  start-page: 76
  year: 2007
  end-page: 81
  ident: CR59
  article-title: Real‐SPINE: An integrated system of neural networks for real‐value prediction of protein structural properties
  publication-title: PROTEINS: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21408
– volume: 6
  year: 2016
  ident: CR24
  article-title: Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection
  publication-title: Scientific reports
  doi: 10.1038/srep38318
– volume: 19
  start-page: 532
  year: 2012
  end-page: 549
  ident: CR62
  article-title: A classification of bioinformatics algorithms from the viewpoint of maximizing expected accuracy (MEA)
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2011.0197
– volume: 13
  start-page: 552
  year: 2017
  end-page: 559
  ident: CR38
  article-title: iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC
  publication-title: Medicinal Chemistry
  doi: 10.2174/1573406413666170515120507
– volume: 17
  start-page: 2337
  year: 2017
  end-page: 2358
  ident: CR90
  article-title: An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science
  publication-title: Current Topics in Medicinal Chemistry
  doi: 10.2174/1568026617666170414145508
– volume: 50
  start-page: 919
  year: 2013
  end-page: 930
  ident: CR6
  article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 8
  start-page: 45
  year: 2009
  end-page: 52
  ident: CR9
  article-title: Molecular characterization of propionyllysines in non-histone proteins
  publication-title: Molecular & Cellular Proteomics
  doi: 10.1074/mcp.M800224-MCP200
– volume: 291
  start-page: 285
  year: 2016
  end-page: 296
  ident: CR67
  article-title: iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples
  publication-title: Molecular genetics and genomics
  doi: 10.1007/s00438-015-1108-5
– volume: 10
  start-page: 724
  year: 2014
  ident: CR2
  article-title: The functional diversity of protein lysine methylation
  publication-title: Molecular systems biology
  doi: 10.1002/msb.134974
– volume: 443
  start-page: 125
  year: 2018
  end-page: 137
  ident: CR89
  article-title: PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2018.01.023
– volume: 146
  start-page: 1016
  year: 2011
  end-page: 1028
  ident: CR7
  article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 20
  start-page: 622
  year: 2017
  end-page: 628
  ident: CR25
  article-title: Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid
  publication-title: Combinatorial chemistry & high throughput screening
  doi: 10.2174/1386207320666170314102647
– volume: 13
  start-page: 874
  year: 2017
  end-page: 882
  ident: CR37
  article-title: Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features
  publication-title: Molecular BioSystems
  doi: 10.1039/C6MB00875E
– volume: 356
  start-page: 213
  year: 2014
  end-page: 222
  ident: CR32
  article-title: Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2014.04.040
– volume: 16
  start-page: 404
  year: 2000
  end-page: 405
  ident: CR49
  article-title: The PSIPRED protein structure prediction server
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.4.404
– volume: 9
  start-page: e89575
  year: 2014
  ident: CR28
  article-title: LAceP: lysine acetylation site prediction using logistic regression classifiers
  publication-title: PloS one
  doi: 10.1371/journal.pone.0089575
– volume: 35
  start-page: 2040
  year: 2014
  end-page: 2046
  ident: CR45
  article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto‐encoder deep neural network
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.23718
– volume: 5
  year: 2013
  ident: CR13
  article-title: Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics
  publication-title: Genome medicine
  doi: 10.1186/gm424
– volume: 33
  start-page: 2221
  year: 2015
  end-page: 2233
  ident: CR71
  article-title: iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach
  publication-title: J Biomol Struct Dyn (JBSD)
  doi: 10.1080/07391102.2014.998710
– ident: CR55
– volume: 5
  start-page: e3261
  year: 2017
  ident: CR34
  article-title: Prediction of post-translational modification sites using multiple kernel support vector machine
  publication-title: PeerJ
  doi: 10.7717/peerj.3261
– volume: 33
  start-page: 259
  year: 2012
  end-page: 267
  ident: CR48
  article-title: SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.21968
– volume: 90
  start-page: 194
  year: 2011
  end-page: 201
  ident: CR18
  article-title: Glucose metabolism and cardiac hypertrophy
  publication-title: Cardiovascular research
  doi: 10.1093/cvr/cvr071
– volume: 497
  start-page: 48
  year: 2016
  end-page: 56
  ident: CR21
  article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset
  publication-title: Analytical Biochemistry
  doi: 10.1016/j.ab.2015.12.009
– volume: 44
  start-page: 81
  year: 2016
  ident: 36203_CR14
  publication-title: Journal of International Medical Research
  doi: 10.1177/0300060515593258
– volume: 325
  start-page: 834
  year: 2009
  ident: 36203_CR4
  publication-title: Science
  doi: 10.1126/science.1175371
– volume: 13
  start-page: 874
  year: 2017
  ident: 36203_CR37
  publication-title: Molecular BioSystems
  doi: 10.1039/C6MB00875E
– ident: 36203_CR85
  doi: 10.1016/j.gene.2017.07.036
– volume: 76
  start-page: 356
  year: 2017
  ident: 36203_CR23
  publication-title: Journal of Molecular Graphics and Modelling
  doi: 10.1016/j.jmgm.2017.07.022
– volume: 425
  start-page: 97
  year: 2017
  ident: 36203_CR19
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2017.05.005
– volume: 52
  start-page: 10237
  year: 2016
  ident: 36203_CR58
  publication-title: Chemical Communications
  doi: 10.1039/C6CC05490K
– ident: 36203_CR77
  doi: 10.1093/database/baw133
– volume: 507
  start-page: 1
  year: 2016
  ident: 36203_CR31
  publication-title: Analytical biochemistry
  doi: 10.1016/j.ab.2016.05.005
– volume: 22
  start-page: 1658
  year: 2006
  ident: 36203_CR40
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl158
– volume: 341
  start-page: 549
  year: 2013
  ident: 36203_CR16
  publication-title: Science
  doi: 10.1126/science.1238327
– volume: 527
  start-page: 24
  year: 2017
  ident: 36203_CR53
  publication-title: Analytical Biochemistry
  doi: 10.1016/j.ab.2017.03.021
– volume: 68
  start-page: 76
  year: 2007
  ident: 36203_CR59
  publication-title: PROTEINS: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21408
– volume: 7
  start-page: e39308
  year: 2012
  ident: 36203_CR76
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0039308
– volume: 8
  start-page: 4208
  year: 2017
  ident: 36203_CR80
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.13758
– volume: 9
  start-page: e89575
  year: 2014
  ident: 36203_CR28
  publication-title: PloS one
  doi: 10.1371/journal.pone.0089575
– volume: 370
  start-page: 1
  year: 2007
  ident: 36203_CR20
  publication-title: Analytical Biochemistry
  doi: 10.1016/j.ab.2007.07.006
– volume: 14
  start-page: 946
  year: 2018
  ident: 36203_CR33
  publication-title: International Journal of Biological Sciences
  doi: 10.7150/ijbs.24121
– volume: 1372
  start-page: 1
  year: 2014
  ident: 36203_CR1
  publication-title: Journal of Chromatography A
  doi: 10.1016/j.chroma.2014.10.107
– volume: 37
  start-page: 1223
  year: 2016
  ident: 36203_CR52
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.24314
– volume: 11
  start-page: 218
  year: 2015
  ident: 36203_CR91
  publication-title: Medicinal chemistry
  doi: 10.2174/1573406411666141229162834
– volume: 13
  start-page: e0191900
  year: 2018
  ident: 36203_CR41
  publication-title: PloS one
  doi: 10.1371/journal.pone.0191900
– volume: 5
  year: 2015
  ident: 36203_CR44
  publication-title: Scientific reports
  doi: 10.1038/srep11476
– volume: 146
  start-page: 1016
  year: 2011
  ident: 36203_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2011.08.008
– volume: 14
  start-page: 3611
  year: 2011
  ident: 36203_CR73
  publication-title: International Information Institute (Tokyo). Information
– volume: 20
  start-page: 622
  year: 2017
  ident: 36203_CR25
  publication-title: Combinatorial chemistry & high throughput screening
  doi: 10.2174/1386207320666170314102647
– volume: 17
  start-page: 1515
  year: 2009
  ident: 36203_CR50
  publication-title: Structure
  doi: 10.1016/j.str.2009.09.006
– volume: 30
  start-page: 275
  year: 1995
  ident: 36203_CR64
  publication-title: Critical reviews in biochemistry and molecular biology
  doi: 10.3109/10409239509083488
– volume: 34
  start-page: 33
  year: 2017
  ident: 36203_CR88
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx579
– volume: 56
  start-page: 2115
  year: 2016
  ident: 36203_CR51
  publication-title: Journal of chemical information and modeling
  doi: 10.1021/acs.jcim.6b00320
– volume: 10
  start-page: 724
  year: 2014
  ident: 36203_CR2
  publication-title: Molecular systems biology
  doi: 10.1002/msb.134974
– volume: 52
  start-page: 311
  year: 2009
  ident: 36203_CR8
  publication-title: Science in China Series C: Life Sciences
– volume: 443
  start-page: 138
  year: 2018
  ident: 36203_CR56
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2018.02.002
– volume: 43
  start-page: 246
  year: 2001
  ident: 36203_CR65
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.1035
– volume: 16
  start-page: 404
  year: 2000
  ident: 36203_CR49
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.4.404
– volume: 15
  start-page: 4234
  year: 2016
  ident: 36203_CR26
  publication-title: Journal of proteome research
  doi: 10.1021/acs.jproteome.6b00240
– volume: 21
  start-page: 95
  year: 2016
  ident: 36203_CR43
  publication-title: Molecules
  doi: 10.3390/molecules21010095
– ident: 36203_CR47
  doi: 10.1007/978-1-4939-6406-2_6
– ident: 36203_CR55
  doi: 10.1002/pmic.201800058
– volume: 50
  start-page: 919
  year: 2013
  ident: 36203_CR6
  publication-title: Molecular cell
  doi: 10.1016/j.molcel.2013.06.001
– volume: 443
  start-page: 125
  year: 2018
  ident: 36203_CR89
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2018.01.023
– volume: 5
  year: 2013
  ident: 36203_CR13
  publication-title: Genome medicine
  doi: 10.1186/gm424
– volume: 66
  start-page: 91
  year: 2012
  ident: 36203_CR17
  publication-title: International journal of clinical practice
  doi: 10.1111/j.1742-1241.2011.02795.x
– volume: 33
  start-page: 2221
  year: 2015
  ident: 36203_CR71
  publication-title: J Biomol Struct Dyn (JBSD)
  doi: 10.1080/07391102.2014.998710
– volume: 12
  start-page: 1406
  year: 2003
  ident: 36203_CR57
  publication-title: Protein science
  doi: 10.1110/ps.0304803
– volume: 19
  start-page: 532
  year: 2012
  ident: 36203_CR62
  publication-title: Journal of Computational Biology
  doi: 10.1089/cmb.2011.0197
– volume: 11
  start-page: 10
  year: 2009
  ident: 36203_CR61
  publication-title: ACM SIGKDD explorations newsletter
  doi: 10.1145/1656274.1656278
– volume: 19
  year: 2018
  ident: 36203_CR22
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4336-8
– volume: 3
  year: 2008
  ident: 36203_CR10
  publication-title: Biology direct
  doi: 10.1186/1745-6150-3-45
– volume: 291
  start-page: 285
  year: 2016
  ident: 36203_CR67
  publication-title: Molecular genetics and genomics
  doi: 10.1007/s00438-015-1108-5
– ident: 36203_CR81
  doi: 10.1016/j.ygeno.2017.10.002
– volume: 32
  start-page: 3133
  year: 2016
  ident: 36203_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw387
– volume: 424
  start-page: 49
  year: 2017
  ident: 36203_CR70
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2017.04.027
– volume: 8
  start-page: 45
  year: 2009
  ident: 36203_CR9
  publication-title: Molecular & Cellular Proteomics
  doi: 10.1074/mcp.M800224-MCP200
– ident: 36203_CR87
  doi: 10.1016/j.ygeno.2018.01.005
– volume: 356
  start-page: 213
  year: 2014
  ident: 36203_CR32
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2014.04.040
– volume: 7
  start-page: e45854
  year: 2012
  ident: 36203_CR75
  publication-title: PloS one
  doi: 10.1371/journal.pone.0045854
– volume: 273
  start-page: 236
  year: 2011
  ident: 36203_CR66
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 32
  start-page: 843
  year: 2015
  ident: 36203_CR46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv665
– volume: 7
  year: 2017
  ident: 36203_CR69
  publication-title: Scientific reports
  doi: 10.1038/srep42362
– ident: 36203_CR54
– volume: 415
  start-page: 13
  year: 2017
  ident: 36203_CR68
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2016.12.004
– volume: 90
  start-page: 194
  year: 2011
  ident: 36203_CR18
  publication-title: Cardiovascular research
  doi: 10.1093/cvr/cvr071
– volume: 397
  start-page: 145
  year: 2016
  ident: 36203_CR15
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2016.02.020
– volume: 6
  year: 2016
  ident: 36203_CR24
  publication-title: Scientific reports
  doi: 10.1038/srep38318
– volume: 35
  start-page: 2040
  year: 2014
  ident: 36203_CR45
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.23718
– volume: 1
  start-page: 63
  year: 2009
  ident: 36203_CR79
  publication-title: Natural Science
  doi: 10.4236/ns.2009.12011
– volume: 405
  start-page: 442
  year: 1975
  ident: 36203_CR63
  publication-title: Biochimica et Biophysica Acta (BBA)-Protein Structure
  doi: 10.1016/0005-2795(75)90109-9
– volume: 5
  start-page: e3261
  year: 2017
  ident: 36203_CR34
  publication-title: PeerJ
  doi: 10.7717/peerj.3261
– volume: 33
  start-page: 3524
  year: 2017
  ident: 36203_CR82
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx476
– volume: 8
  year: 2018
  ident: 36203_CR86
  publication-title: Scientific reports
  doi: 10.1038/s41598-018-19491-y
– volume: 379
  start-page: 10
  year: 2015
  ident: 36203_CR36
  publication-title: Journal of Theoretical Biology
  doi: 10.1016/j.jtbi.2015.04.016
– ident: 36203_CR12
  doi: 10.1142/9789814295291_0036
– volume: 474
  start-page: 69
  year: 2015
  ident: 36203_CR42
  publication-title: Analytical biochemistry
  doi: 10.1016/j.ab.2014.12.009
– volume: 9
  start-page: e107464
  year: 2014
  ident: 36203_CR74
  publication-title: PloS one
  doi: 10.1371/journal.pone.0107464
– ident: 36203_CR30
  doi: 10.1016/j.ygeno.2017.10.008
– volume: 33
  start-page: 259
  year: 2012
  ident: 36203_CR48
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.21968
– volume: 72
  start-page: 427
  year: 2008
  ident: 36203_CR60
  publication-title: Proteins: Structure, Function, and Bioinformatics
  doi: 10.1002/prot.21940
– volume: 7
  start-page: 267
  year: 2017
  ident: 36203_CR84
  publication-title: Molecular Therapy-Nucleic Acids
  doi: 10.1016/j.omtn.2017.04.008
– ident: 36203_CR11
  doi: 10.1051/bmdcn/2017070315
– volume: 7
  year: 2017
  ident: 36203_CR78
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-07199-4
– volume: 16
  start-page: 844
  year: 2006
  ident: 36203_CR5
  publication-title: Glycobiology
  doi: 10.1093/glycob/cwl009
– volume: 46
  start-page: 1069
  year: 2014
  ident: 36203_CR35
  publication-title: Amino acids
  doi: 10.1007/s00726-014-1669-3
– volume: 435
  start-page: 229
  year: 2017
  ident: 36203_CR72
  publication-title: Journal of theoretical biology
  doi: 10.1016/j.jtbi.2017.09.022
– volume: 14
  year: 2013
  ident: 36203_CR39
  publication-title: BMC bioinformatics
  doi: 10.1186/1471-2105-14-233
– volume: 33
  start-page: 35
  year: 2016
  ident: 36203_CR83
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw539
– volume: 42
  start-page: D531
  year: 2014
  ident: 36203_CR3
  publication-title: Nucleic acids research
  doi: 10.1093/nar/gkt1093
– volume: 33
  start-page: 1731
  year: 2015
  ident: 36203_CR27
  publication-title: Journal of Biomolecular Structure and Dynamics
  doi: 10.1080/07391102.2014.968875
– volume: 17
  start-page: 2337
  year: 2017
  ident: 36203_CR90
  publication-title: Current Topics in Medicinal Chemistry
  doi: 10.2174/1568026617666170414145508
– volume: 497
  start-page: 48
  year: 2016
  ident: 36203_CR21
  publication-title: Analytical Biochemistry
  doi: 10.1016/j.ab.2015.12.009
– volume: 13
  start-page: 552
  year: 2017
  ident: 36203_CR38
  publication-title: Medicinal Chemistry
  doi: 10.2174/1573406413666170515120507
SSID ssj0000529419
Score 2.4148889
Snippet The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 17923
SubjectTerms 119/118
631/114/2784
631/114/663/2009
Algorithms
Amino acids
Computational Biology - methods
Computer applications
Correlation coefficient
Experimental methods
Glycerol - chemistry
Humanities and Social Sciences
Information processing
Lysine
Lysine - chemistry
Molecular Conformation
multidisciplinary
Phosphorylation
Post-translation
Protein Processing, Post-Translational
Proteomes
Residues
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIqReEKVAAwUZiRtYtdd52FyqCrWqkECVaKW9RYntdLfaJmGzHPbfM5N4Uy0VPUZ2Ettjz9PzDcAnjVq3E77iKaX_xkYl3FSZ47ooU9RmE1Foykb-8TO9uI6_T5NpcLh14Vrlhif2jNo1lnzkxyiaqDY3miMn7W9OVaMouhpKaOzAU4IuI-Mrm2ajj4WiWLE0IVdGKH3cobyinDKpOXJuobjelkcPlMyHdyX_CZj2cuj8BTwPCiQ7HSi-D098_RKeDSUl1wdwezlrbhbrXz0s7Fd2uaRADC0-ayrWzpqu7dutX64XqGY6RpAktWdodc8djonRRfgbNsDKEiQHa8ldvyTcVfpEcTevG1bYuetewfX52dW3Cx7qKXCLetmKl8JSZk9J59SWaaHSEhWUamIkskThFIp-60ymypicQcqKKiEwF2WcVJ7qwryG3bqp_SGwdGIqURVeOvx0ZrzGB4ucUsVJpZR3EcjNquY2gI1TzYtF3ge9lc4HSuRIibynRK4j-Dy-0w5QG4_2PtoQKw_HrsvvN0kEH8dmPDAUBSlq3_wJfchqlhG8GWg7_o7sKYEqbwTZFtXHDgTGvd1Sz2c9KHdKct3gsL5s9sf9sP4_i7ePz-Id7E1or8oJl_oIdpH2_j0qQavyQ7_T_wKQrgXV
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SlEAupa-kTtKiQG6tiGTZXqm3sjSEQksgCeRmbEnObtjYy-72sP--M_KjbJMUejSSbFkjaT5pZr4BONWIup3wFc8o_DcxKuWmGjmuizJDNJuKQlM08o-f2cVN8v02vd2CuI-FCU77gdIybNO9d9jZEhUNBYNJzXHLFYrrbXhB1O3kxjfOxsO9ClmuEmm6-Bih9BNNN3XQI2D52D_yLyNp0D3nr-BlBxrZ17abr2HL129gt00juX4L95eT5m62vgpUsF_Y5YKMLzTgrKnYfNIs56Hc-sV6htDSMaIhqT3Dk_bUYZ8YOb_fsZZKlmg42Jyu6BfEtUqvKB6mdcMKO3XLd3Bz_u16fMG7HArcIhZb8VJYiuYpaW3aMitUViIoqWIjcRsUTqG6t86MVJnQBZCyokqJwEUZJ5WnXDD7sFM3tX8PLItNJarCS4evHhmv8cHi7qiStFLKuwhkP6q57QjGKc_FLA-GbqXzVhI5SiIPksh1BJ-GNvOWXuOftY97YeXdUlvmiFkoaTueUyM4GYpxkZDlo6h986urQydlGcFBK9vhc3SGEghzIxhtSH2oQATcmyX1dBKIuDPS5Qa79bmfH3-69fxfHP5f9SPYi2nuyphLfQw7OBf8BwRCq_JjmPm_AVM5A60
  priority: 102
  providerName: Springer Nature
Title PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids
URI https://link.springer.com/article/10.1038/s41598-018-36203-8
https://www.ncbi.nlm.nih.gov/pubmed/30560923
https://www.proquest.com/docview/2158236409
https://www.proquest.com/docview/2158240201
https://pubmed.ncbi.nlm.nih.gov/PMC6299098
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED_tIdC-TDxHxqiMxDcwxHEeNhJCpdo0VdpUMSr1W5TYzlpUktIOif733OVRVLbxKUpsJ47v7Pv5cb8DeKMQdVvfFTwm999Qy4jrIrFcZXmMaDbyM0XeyBeX8fk4HE6iyQ504Y7aBlzdObWjeFLj5fz975_rz9jhPzUu4-rDCo0QOYoJxXE49iVXu7CPlimhUA4XLdxvuL4DHQrd-s7cXfQAHhKq9nUgt03VLfx5-xjlP3uptYk6ewSHLbZk_UYZHsOOK5_Agyba5PopfB9Nq-v5-qpmjP3IRkvaoyG5sKpgi2m1WtTpxi3Xc0SglhFbSekYTshnFuvE6Iz8NWsYZ4mtgy1oJX9JlKz0iuzHrKxYZmZ29QzGZ6ffBue8DbXADUK2G577hpx-curCJo8zGeeIXYpACxwtfSsRFRirE5mHtE4kjV9ExPMitRXSUciY57BXVqV7ASwOdOEXmRMWX51op_DG4CAqw6iQ0lkPRNeqqWl5yCkcxjyt98OlShuhpCiUtBZKqjx4uymzaFg4_pv7pBNW2ilUitCGYrvjdNaD15tk7Eu0QZKVrvrV5qEJtfDgqJHt5nOdUniQbEl9k4F4urdTytm05uuOyeRrrNa7Tj_-Vuv-vzi-twov4SAgjRUBF-oE9lDs7hVCo5u8B7vJJOnBfr8_vBri9cvp5egrPh3Eg1693NCre8Qfm1kOsw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToi9IL4JDDASPIG1JE5SBwkhPjZ1bKsq2KS9eYntrJ1KEpoh1H-Kv5G7fE1lYm97rOy4Tu7s-53P9zuAVxJRt3FtxiNK_w1iEfI4GxoukzRCNBu6iaRs5INxNDoKvh6Hx2vwp8uFoWuV3Z5Yb9Sm0HRGvoWmiWpzozvyofzJqWoURVe7EhqNWuzZ5W902ar3u19Qvq99f2f78POIt1UFuEZ0cs5TV1N-S0raqtMoEVGKZjrzYw83BtcINIDaxEORBnQkIrSbhURpImLjCUvVUXDcG7AeCIQKA1j_tD2efOtPdShuFnhxm53jCrlVoYWkLDZPcrQVruBy1QJegrWXb2f-E6KtLd_OHbjdQlb2sdGxu7Bm83twsyliubwPZ5NpcTpffq-JaN-xyYJCPyRuVmSsnBZVWbdru1jOEdgaRiQouWXo588MzonR1ftT1hDZEgkIKylAsCCmVxoi-THLC5bomakewNG1fOuHMMiL3D4GFvlx5maJ9QwOPYytxB8a92YRhJkQ1jjgdV9V6ZbenKpszFUdZhdSNZJQKAlVS0JJB970z5QNuceVvTc7Yal2oVfqQi0deNk34xKluEuS2-JX24f8dM-BR41s-78jD85FkO3AcEXqfQei_15tyWfTmgY8IiQR47TedvpxMa3_v8WTq9_iBdwaHR7sq_3d8d5T2PBJbz2fe3ITBqgH9hlCsPP0eav3DE6ue6n9Bd8jQYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEIgXNL62woAgwRNE1zT9SCchhBinjcF0Eky6t65N0t2hoy3XIXT_Gn8ddr-mY2Jve6ySpkltx3Yc_wzwUqHVbVyb85DSf_1YBjzOI8NVmoVozQZuqigb-ctxeHDif5oG0w340-fC0LXKfk9sNmpTajojH6Fqotrc6I6M8u5axGR__K76yamCFEVa-3IaLYsc2dVvdN_qt4f7SOtXnjf--O3DAe8qDHCNlso5z1xNuS4Zca7OwlSGGars3IsFbhKukagMtYkjmfl0PCK1mwcEbyJjI6SlSik47g24GUlUmyhL0TQazncoguaLuMvTcaUa1agrKZ9NKI5aw5VcrevCSwbu5Xua_wRrGx043oK7nfHK3rfcdg82bHEfbrXlLFcP4PtkVp4tVl8bSNo9NllSEIgIz8qcVbOyrpp2bZerBZq4hhEcSmEZevxzg3NidAn_jLWQtgQHwioKFSwJ85WGSH_Mi5Klem7qh3ByLX_6EWwWZWF3gIVenLt5aoXBoaPYKnzQuEtLP8iltMYB0f_VRHdA51RvY5E0AXepkpYSCVIiaSiRKAdeD-9ULczHlb13e2IlncjXyQWDOvBiaEZhpQhMWtjyV9eHPHbhwHZL2-Fz5Mu5aG47EK1RfehAQODrLcV81gCCh2RTxDitNz1_XEzr_6t4fPUqnsNtFLDk8-Hx0RO44xHbCo8LtQubyAb2Kdpi59mzhukZnF63lP0FXxJEWA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PhoglyStruct%3A+Prediction+of+phosphoglycerylated+lysine+residues+using+structural+properties+of+amino+acids&rft.jtitle=Scientific+reports&rft.au=Chandra%2C+Abel&rft.au=Sharma%2C+Alok&rft.au=Dehzangi%2C+Abdollah&rft.au=Ranganathan%2C+Shoba&rft.date=2018-12-18&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft.spage=17923&rft_id=info:doi/10.1038%2Fs41598-018-36203-8&rft_id=info%3Apmid%2F30560923&rft.externalDocID=30560923
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon