PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids
The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of...
Saved in:
Published in | Scientific reports Vol. 8; no. 1; pp. 17923 - 11 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
18.12.2018
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-36203-8 |
Cover
Loading…
Abstract | The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at
https://github.com/abelavit/PhoglyStruct
. |
---|---|
AbstractList | The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct. The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct . The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct .The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell biology and pathogenesis. There have been many recently reported PTMs, but lysine phosphoglycerylation has emerged as the most recent subject of interest. Despite a large number of proteins being sequenced, the experimental method for detection of phosphoglycerylated residues remains an expensive, time-consuming and inefficient endeavor in the post-genomic era. Instead, the computational methods are being proposed for accurately predicting phosphoglycerylated lysines. Though a number of predictors are available, performance in detecting phosphoglycerylated lysine residues is still limited. In this paper, we propose a new predictor called PhoglyStruct that utilizes structural information of amino acids alongside a multilayer perceptron classifier for predicting phosphoglycerylated and non-phosphoglycerylated lysine residues. For the experiment, we located phosphoglycerylated and non-phosphoglycerylated lysines in our employed benchmark. We then derived and integrated properties such as accessible surface area, backbone torsion angles, and local structure conformations. PhoglyStruct showed significant improvement in the ability to detect phosphoglycerylated residues from non-phosphoglycerylated ones when compared to previous predictors. The sensitivity, specificity, accuracy, Mathews correlation coefficient and AUC were 0.8542, 0.7597, 0.7834, 0.5468 and 0.8077, respectively. The data and Matlab/Octave software packages are available at https://github.com/abelavit/PhoglyStruct . |
ArticleNumber | 17923 |
Author | Ranganathan, Shoba Chou, Kuo-Chen Sharma, Alok Tsunoda, Tatsuhiko Jokhan, Anjeela Chandra, Abel Dehzangi, Abdollah |
Author_xml | – sequence: 1 givenname: Abel surname: Chandra fullname: Chandra, Abel email: abelavit@gmail.com organization: School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific – sequence: 2 givenname: Alok orcidid: 0000-0002-7668-3501 surname: Sharma fullname: Sharma, Alok email: alok.sharma@griffith.edu.au organization: Institute for Integrated and Intelligent Systems, Griffith University, Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, School of Engineering and Physics, Faculty of Science Technology and Environment, University of the South Pacific, CREST, JST – sequence: 3 givenname: Abdollah surname: Dehzangi fullname: Dehzangi, Abdollah organization: Department of Computer Science, Morgan State University – sequence: 4 givenname: Shoba surname: Ranganathan fullname: Ranganathan, Shoba organization: Department of Molecular Sciences, Macquarie University – sequence: 5 givenname: Anjeela surname: Jokhan fullname: Jokhan, Anjeela organization: Faculty of Science Technology and Environment, University of the South Pacific – sequence: 6 givenname: Kuo-Chen surname: Chou fullname: Chou, Kuo-Chen organization: The Gordon Life Science Institute – sequence: 7 givenname: Tatsuhiko surname: Tsunoda fullname: Tsunoda, Tatsuhiko organization: Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, CREST, JST |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30560923$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1DAUhS1UREvpH2CBIrFhE7h-js0Cqap4SZWoBKwtx3FmPMrYwXaQ5t_jmZRSuqg3cXS_c3yuznN0EmJwCL3E8BYDle8yw1zJFrBsqSBAW_kEnRFgvCWUkJN791N0kfMW6uFEMayeoVMKXIAi9AxtbzZxPe6_lzTb8r65Sa73tvgYmjg00ybm6Ti3Lu1HU1zfjPvsg2uSy76fXW7m-rtu8lE_JzM2U4qTS8XXWbUwOx9iY6zv8wv0dDBjdhe333P089PHH1df2utvn79eXV63ljMobQdWDHbVASPcdsJQ0YGgA1FYrgT0FBNle7WiHaOVpxYGzhWTVPWYOiwZPUcfFt9p7nauty6UmktPye9M2utovP5_EvxGr-NvLYhSoGQ1eHNrkOKvumPRO5-tG0cTXJyzJphLwoAArujrB-g2zinU9RaKCgaqUq_uJ7qL8reGCpAFsCnmnNxwh2DQh7r1Ureudetj3foQUz4QWV_Mobu6lR8fl9JFmus7Ye3Sv9iPqP4ASN_ABg |
CitedBy_id | crossref_primary_10_1109_TCBB_2019_2919025 crossref_primary_10_1007_s00438_019_01570_y crossref_primary_10_1109_ACCESS_2020_2989713 crossref_primary_10_1016_j_compbiolchem_2020_107235 crossref_primary_10_1093_database_baz131 crossref_primary_10_1186_s12859_024_05708_7 crossref_primary_10_3390_biom11060872 crossref_primary_10_1007_s10989_019_09893_5 crossref_primary_10_3390_genes11121431 crossref_primary_10_1109_TCBB_2020_2968441 crossref_primary_10_1038_s41598_022_15403_3 crossref_primary_10_1038_s41598_024_58450_8 crossref_primary_10_1038_s41598_023_47624_5 crossref_primary_10_1109_ACCESS_2020_3041044 crossref_primary_10_1007_s10989_019_09910_7 crossref_primary_10_2174_1568026619666191018100141 crossref_primary_10_1016_j_chemolab_2019_103811 crossref_primary_10_3390_genes11091023 crossref_primary_10_1186_s12860_019_0240_1 crossref_primary_10_2174_1389202920666190819091609 crossref_primary_10_1186_s12864_018_5383_5 crossref_primary_10_1016_j_jtbi_2019_02_007 crossref_primary_10_3390_genes11121524 crossref_primary_10_1016_j_csbj_2020_02_012 crossref_primary_10_1002_bit_28091 crossref_primary_10_1093_bib_bbz156 crossref_primary_10_2174_1389202920666190809095206 |
Cites_doi | 10.1093/glycob/cwl009 10.1080/07391102.2014.968875 10.1186/1471-2105-14-233 10.1126/science.1238327 10.1016/j.ab.2014.12.009 10.1002/prot.1035 10.1038/s41598-017-07199-4 10.1093/bioinformatics/btw539 10.3390/molecules21010095 10.1371/journal.pone.0107464 10.1093/bioinformatics/btx579 10.1038/srep11476 10.1016/j.omtn.2017.04.008 10.1371/journal.pone.0045854 10.1016/0005-2795(75)90109-9 10.1186/s12864-017-4336-8 10.1111/j.1742-1241.2011.02795.x 10.1016/j.ab.2016.05.005 10.1016/j.jtbi.2015.04.016 10.1145/1656274.1656278 10.1016/j.jmgm.2017.07.022 10.1002/prot.21940 10.1016/j.jtbi.2016.02.020 10.1093/bioinformatics/btv665 10.1110/ps.0304803 10.1021/acs.jproteome.6b00240 10.1093/nar/gkt1093 10.1093/bioinformatics/btl158 10.1016/j.ab.2017.03.021 10.1016/j.jtbi.2016.12.004 10.1016/j.jtbi.2010.12.024 10.1093/bioinformatics/btw387 10.1016/j.str.2009.09.006 10.1186/1745-6150-3-45 10.1016/j.jtbi.2017.04.027 10.1038/s41598-018-19491-y 10.1002/jcc.24314 10.1016/j.chroma.2014.10.107 10.1126/science.1175371 10.1038/srep42362 10.1177/0300060515593258 10.3109/10409239509083488 10.1016/j.ab.2007.07.006 10.1016/j.jtbi.2017.05.005 10.1039/C6CC05490K 10.1371/journal.pone.0191900 10.1016/j.jtbi.2018.02.002 10.2174/1573406411666141229162834 10.1016/j.jtbi.2017.09.022 10.1007/s00726-014-1669-3 10.1371/journal.pone.0039308 10.4236/ns.2009.12011 10.1093/bioinformatics/btx476 10.7150/ijbs.24121 10.1021/acs.jcim.6b00320 10.1002/prot.21408 10.1038/srep38318 10.1089/cmb.2011.0197 10.2174/1573406413666170515120507 10.2174/1568026617666170414145508 10.1016/j.molcel.2013.06.001 10.1074/mcp.M800224-MCP200 10.1007/s00438-015-1108-5 10.1002/msb.134974 10.1016/j.jtbi.2018.01.023 10.1016/j.cell.2011.08.008 10.2174/1386207320666170314102647 10.1039/C6MB00875E 10.1016/j.jtbi.2014.04.040 10.1093/bioinformatics/16.4.404 10.1371/journal.pone.0089575 10.1002/jcc.23718 10.1186/gm424 10.1080/07391102.2014.998710 10.7717/peerj.3261 10.1002/jcc.21968 10.1093/cvr/cvr071 10.1016/j.ab.2015.12.009 10.1016/j.gene.2017.07.036 10.1093/database/baw133 10.18632/oncotarget.13758 10.1007/978-1-4939-6406-2_6 10.1002/pmic.201800058 10.1016/j.ygeno.2017.10.002 10.1016/j.ygeno.2018.01.005 10.1142/9789814295291_0036 10.1016/j.ygeno.2017.10.008 10.1051/bmdcn/2017070315 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-36203-8 |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central - New (Subscription) Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | PMC6299098 30560923 10_1038_s41598_018_36203_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 17h06299; 17H06307 funderid: https://doi.org/10.13039/501100001691 – fundername: JST | Core Research for Evolutional Science and Technology (CREST) grantid: jpmjcr1412 funderid: https://doi.org/10.13039/501100003382 – fundername: Nanken-Kyoten, TMDU, Japan. – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 17H06307 – fundername: JST | Core Research for Evolutional Science and Technology (CREST) grantid: jpmjcr1412 – fundername: Japan Society for the Promotion of Science (JSPS) grantid: 17h06299 – fundername: ; – fundername: ; grantid: 17h06299; 17H06307 – fundername: ; grantid: jpmjcr1412 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE IPNFZ KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-b0c6fc7b0425cb6a36b063f2918760d3129cd973b435403c0f5594839d13e1843 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:06:20 EDT 2025 Thu Jul 10 17:22:24 EDT 2025 Wed Aug 13 04:44:36 EDT 2025 Thu Apr 03 07:09:59 EDT 2025 Thu Apr 24 23:00:35 EDT 2025 Tue Jul 01 00:58:24 EDT 2025 Fri Feb 21 02:38:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-b0c6fc7b0425cb6a36b063f2918760d3129cd973b435403c0f5594839d13e1843 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7668-3501 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-36203-8 |
PMID | 30560923 |
PQID | 2158236409 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6299098 proquest_miscellaneous_2158240201 proquest_journals_2158236409 pubmed_primary_30560923 crossref_primary_10_1038_s41598_018_36203_8 crossref_citationtrail_10_1038_s41598_018_36203_8 springer_journals_10_1038_s41598_018_36203_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-18 |
PublicationDateYYYYMMDD | 2018-12-18 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Bakhtiarizadeh, Moradi-Shahrbabak, Ebrahimi, Ebrahimie (CR32) 2014; 356 McGuffin, Bryson, Jones (CR49) 2000; 16 Chou, Shen (CR79) 2009; 1 Matthews (CR63) 1975; 405 Chou (CR65) 2001; 43 Park (CR6) 2013; 50 Li, Cai, Feng, Zhao (CR75) 2012; 7 Tripathi, Pandey (CR70) 2017; 424 Du (CR26) 2016; 15 Li, Godzik (CR40) 2006; 22 Liu, Xiao, Qiu, Chou (CR42) 2015; 474 CR77 CR30 Liu (CR3) 2014; 42 Zhang (CR74) 2014; 9 Kabir, Hayat (CR67) 2016; 291 Chou, Shen (CR20) 2007; 370 Liu, Wang, Xi, Luo, Li (CR33) 2018; 14 Uddin (CR56) 2018; 443 Ehsan, Mahmood, Khan, Khan, Chou (CR86) 2018; 8 Huang, Wang, Ye, Zou (CR1) 2014; 1372 Xiang, Feng, Liao, Liu, Huang (CR25) 2017; 20 Lins, Thomas, Brasseur (CR57) 2003; 12 Taherzadeh, Yang, Zhang, Liew, Zhou (CR52) 2016; 37 Xu, Ding, Ding, Wu, Deng (CR36) 2015; 379 Li (CR76) 2012; 7 Song (CR78) 2017; 7 Xiao (CR71) 2015; 33 CR47 Jia, Zhang, Liu, Xiao, Chou (CR29) 2016; 32 Ju, Gu (CR31) 2016; 507 CR87 Song (CR89) 2018; 443 Dehzangi, Karamizadeh (CR73) 2011; 14 CR85 Heffernan (CR44) 2015; 5 Chou (CR91) 2015; 11 CR81 Xu, Ding, Ding, Wu, Xue (CR24) 2016; 6 Lanouette, Mongeon, Figeys, Couture (CR2) 2014; 10 Chou (CR90) 2017; 17 Moellering, Cravatt (CR16) 2013; 341 Dor, Zhou (CR59) 2007; 68 Heffernan (CR46) 2015; 32 Spinelli (CR14) 2016; 44 López (CR22) 2018; 19 Ju, Cao, Gu (CR15) 2016; 397 Dehzangi (CR19) 2017; 425 Meher, Sahu, Saini, Rao (CR69) 2017; 7 Johansen, Kiemer, Brunak (CR5) 2006; 16 Shatabda, Saha, Sharma, Dehzangi (CR72) 2017; 435 Kolwicz, Tian (CR18) 2011; 90 Liu, Wang, Long, Chou (CR83) 2016; 33 CR12 CR11 CR55 Chou, Zhang (CR64) 1995; 30 CR54 Chen (CR80) 2017; 8 Cheng (CR9) 2009; 8 Dehzangi (CR41) 2018; 13 Tan (CR7) 2011; 146 Jia, Liu, Xiao, Liu, Chou (CR21) 2016; 497 Faraggi, Zhang, Yang, Kurgan, Zhou (CR48) 2012; 33 Chen, Tang, Du (CR37) 2017; 13 Taherzadeh, Zhou, Liew, Yang (CR51) 2016; 56 Cheng, Zhao, Lin, Xiao, Chou (CR82) 2017; 33 Chou (CR66) 2011; 273 Hall (CR61) 2009; 11 Liu, Yang, Chou (CR84) 2017; 7 Hamada, Asai (CR62) 2012; 19 Fan (CR35) 2014; 46 Khan, Hayat, Khan, Iqbal (CR68) 2017; 415 Ju, He (CR23) 2017; 76 Bulcun, Ekici, Ekici (CR17) 2012; 66 Hou (CR28) 2014; 9 Jia, Liu, Xiao, Liu, Chou (CR43) 2016; 21 Pan (CR58) 2016; 52 Lan, Shi (CR8) 2009; 52 Xue, Dor, Faraggi, Zhou (CR60) 2008; 72 Qiu, Xiao, Lin, Chou (CR27) 2015; 33 Liu, Xu, Chou (CR38) 2017; 13 López (CR53) 2017; 527 Iyer, Burroughs, Aravind (CR10) 2008; 3 Lyons (CR45) 2014; 35 Sharma (CR39) 2013; 14 Faraggi, Yang, Zhang, Zhou (CR50) 2009; 17 Choudhary (CR4) 2009; 325 Liddy, White, Cordwell (CR13) 2013; 5 Liu, Yang, Huang, Chou (CR88) 2017; 34 Wang, Wang, Li (CR34) 2017; 5 RE Moellering (36203_CR16) 2013; 341 M Hamada (36203_CR62) 2012; 19 J Jia (36203_CR43) 2016; 21 A Dehzangi (36203_CR19) 2017; 425 Y Liu (36203_CR33) 2018; 14 Q Xiang (36203_CR25) 2017; 20 FR Spinelli (36203_CR14) 2016; 44 B-Q Li (36203_CR76) 2012; 7 LJ McGuffin (36203_CR49) 2000; 16 E Faraggi (36203_CR48) 2012; 33 J Lyons (36203_CR45) 2014; 35 J Park (36203_CR6) 2013; 50 A Ehsan (36203_CR86) 2018; 8 Y Xu (36203_CR36) 2015; 379 S Shatabda (36203_CR72) 2017; 435 R Heffernan (36203_CR44) 2015; 5 BW Matthews (36203_CR63) 1975; 405 S Lanouette (36203_CR2) 2014; 10 K-C Chou (36203_CR20) 2007; 370 J Huang (36203_CR1) 2014; 1372 G Taherzadeh (36203_CR52) 2016; 37 O Dor (36203_CR59) 2007; 68 36203_CR30 B Wang (36203_CR34) 2017; 5 C Choudhary (36203_CR4) 2009; 325 36203_CR77 K-C Chou (36203_CR91) 2015; 11 J Jia (36203_CR21) 2016; 497 A Sharma (36203_CR39) 2013; 14 B Liu (36203_CR88) 2017; 34 M Hall (36203_CR61) 2009; 11 W-R Qiu (36203_CR27) 2015; 33 Q-Y Chen (36203_CR37) 2017; 13 L Lins (36203_CR57) 2003; 12 Z Cheng (36203_CR9) 2009; 8 B-B Pan (36203_CR58) 2016; 52 F Lan (36203_CR8) 2009; 52 Z Ju (36203_CR15) 2016; 397 MB Johansen (36203_CR5) 2006; 16 J Jia (36203_CR29) 2016; 32 36203_CR85 J Song (36203_CR78) 2017; 7 36203_CR87 A Dehzangi (36203_CR73) 2011; 14 K-C Chou (36203_CR66) 2011; 273 W Li (36203_CR40) 2006; 22 36203_CR47 PK Meher (36203_CR69) 2017; 7 X Cheng (36203_CR82) 2017; 33 M Tan (36203_CR7) 2011; 146 KC Chou (36203_CR65) 2001; 43 Y Du (36203_CR26) 2016; 15 Z Liu (36203_CR42) 2015; 474 Z Liu (36203_CR3) 2014; 42 Y López (36203_CR22) 2018; 19 Y Xu (36203_CR24) 2016; 6 36203_CR81 J Song (36203_CR89) 2018; 443 Y López (36203_CR53) 2017; 527 E Faraggi (36203_CR50) 2009; 17 P Tripathi (36203_CR70) 2017; 424 W Fan (36203_CR35) 2014; 46 K-C Chou (36203_CR64) 1995; 30 W Chen (36203_CR80) 2017; 8 R Heffernan (36203_CR46) 2015; 32 E Bulcun (36203_CR17) 2012; 66 T Hou (36203_CR28) 2014; 9 A Dehzangi (36203_CR41) 2018; 13 B-Q Li (36203_CR75) 2012; 7 Z Ju (36203_CR23) 2017; 76 MR Bakhtiarizadeh (36203_CR32) 2014; 356 L-M Liu (36203_CR38) 2017; 13 36203_CR54 36203_CR11 36203_CR55 X Xiao (36203_CR71) 2015; 33 36203_CR12 B Xue (36203_CR60) 2008; 72 Z Ju (36203_CR31) 2016; 507 KA Liddy (36203_CR13) 2013; 5 SC Kolwicz Jr. (36203_CR18) 2011; 90 B Liu (36203_CR84) 2017; 7 LM Iyer (36203_CR10) 2008; 3 G Taherzadeh (36203_CR51) 2016; 56 KC Chou (36203_CR90) 2017; 17 B Liu (36203_CR83) 2016; 33 M Kabir (36203_CR67) 2016; 291 MR Uddin (36203_CR56) 2018; 443 M Khan (36203_CR68) 2017; 415 N Zhang (36203_CR74) 2014; 9 K-C Chou (36203_CR79) 2009; 1 |
References_xml | – volume: 16 start-page: 844 year: 2006 end-page: 853 ident: CR5 article-title: Analysis and prediction of mammalian protein glycation publication-title: Glycobiology doi: 10.1093/glycob/cwl009 – volume: 33 start-page: 1731 year: 2015 end-page: 1742 ident: CR27 article-title: iUbiq-Lys: prediction of lysine ubiquitination sites in proteins by extracting sequence evolution information via a gray system model publication-title: Journal of Biomolecular Structure and Dynamics doi: 10.1080/07391102.2014.968875 – volume: 14 year: 2013 ident: CR39 article-title: A strategy to select suitable physicochemical attributes of amino acids for protein fold recognition publication-title: BMC bioinformatics doi: 10.1186/1471-2105-14-233 – volume: 341 start-page: 549 year: 2013 end-page: 553 ident: CR16 article-title: Functional lysine modification by an intrinsically reactive primary glycolytic metabolite publication-title: Science doi: 10.1126/science.1238327 – volume: 474 start-page: 69 year: 2015 end-page: 77 ident: CR42 article-title: iDNA-Methyl: Identifying DNA methylation sites via pseudo trinucleotide composition publication-title: Analytical biochemistry doi: 10.1016/j.ab.2014.12.009 – volume: 43 start-page: 246 year: 2001 end-page: 255 ident: CR65 article-title: Prediction of protein cellular attributes using pseudo‐amino acid composition publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.1035 – volume: 7 year: 2017 ident: CR78 article-title: PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection publication-title: Scientific Reports doi: 10.1038/s41598-017-07199-4 – volume: 33 start-page: 35 year: 2016 end-page: 41 ident: CR83 article-title: iRSpot-EL: identify recombination spots with an ensemble learning approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw539 – ident: CR87 – volume: 21 start-page: 95 year: 2016 ident: CR43 article-title: iPPBS-Opt: a sequence-based ensemble classifier for identifying protein-protein binding sites by optimizing imbalanced training datasets publication-title: Molecules doi: 10.3390/molecules21010095 – volume: 9 start-page: e107464 year: 2014 ident: CR74 article-title: Discriminating between lysine sumoylation and lysine acetylation using mRMR feature selection and analysis publication-title: PloS one doi: 10.1371/journal.pone.0107464 – volume: 34 start-page: 33 year: 2017 end-page: 40 ident: CR88 article-title: iPromoter-2L: a two-layer predictor for identifying promoters and their types by multi-window-based PseKNC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx579 – ident: CR12 – volume: 5 year: 2015 ident: CR44 article-title: Improving prediction of secondary structure, local backbone angles, and solvent accessible surface area of proteins by iterative deep learning publication-title: Scientific reports doi: 10.1038/srep11476 – volume: 14 start-page: 3611 year: 2011 ident: CR73 article-title: Solving protein fold prediction problem using fusion of heterogeneous classifiers publication-title: International Information Institute (Tokyo). Information – volume: 8 start-page: 4208 year: 2017 ident: CR80 article-title: iRNA-AI: identifying the adenosine to inosine editing sites in RNA sequences publication-title: Oncotarget – volume: 7 start-page: 267 year: 2017 end-page: 277 ident: CR84 article-title: 2L-piRNA: a two-layer ensemble classifier for identifying piwi-interacting RNAs and their function publication-title: Molecular Therapy-Nucleic Acids doi: 10.1016/j.omtn.2017.04.008 – volume: 7 start-page: e45854 year: 2012 ident: CR75 article-title: Prediction of protein cleavage site with feature selection by random forest publication-title: PloS one doi: 10.1371/journal.pone.0045854 – volume: 405 start-page: 442 year: 1975 end-page: 451 ident: CR63 article-title: Comparison of the predicted and observed secondary structure of T4 phage lysozyme publication-title: Biochimica et Biophysica Acta (BBA)-Protein Structure doi: 10.1016/0005-2795(75)90109-9 – volume: 19 year: 2018 ident: CR22 article-title: Success: evolutionary and structural properties of amino acids prove effective for succinylation site prediction publication-title: BMC Genomics doi: 10.1186/s12864-017-4336-8 – ident: CR54 – volume: 66 start-page: 91 year: 2012 end-page: 97 ident: CR17 article-title: Disorders of glucose metabolism and insulin resistance in patients with obstructive sleep apnoea syndrome publication-title: International journal of clinical practice doi: 10.1111/j.1742-1241.2011.02795.x – ident: CR77 – volume: 507 start-page: 1 year: 2016 end-page: 6 ident: CR31 article-title: Predicting pupylation sites in prokaryotic proteins using semi-supervised self-training support vector machine algorithm publication-title: Analytical biochemistry doi: 10.1016/j.ab.2016.05.005 – volume: 379 start-page: 10 year: 2015 end-page: 15 ident: CR36 article-title: Phogly–PseAAC: prediction of lysine phosphoglycerylation in proteins incorporating with position-specific propensity publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2015.04.016 – volume: 11 start-page: 10 year: 2009 end-page: 18 ident: CR61 article-title: The WEKA data mining software: an update publication-title: ACM SIGKDD explorations newsletter doi: 10.1145/1656274.1656278 – volume: 76 start-page: 356 year: 2017 end-page: 363 ident: CR23 article-title: Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou’s PseAAC publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2017.07.022 – volume: 72 start-page: 427 year: 2008 end-page: 433 ident: CR60 article-title: Real‐value prediction of backbone torsion angles publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.21940 – volume: 397 start-page: 145 year: 2016 end-page: 150 ident: CR15 article-title: Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou’s general PseAAC publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2016.02.020 – volume: 32 start-page: 843 year: 2015 end-page: 849 ident: CR46 article-title: Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv665 – volume: 12 start-page: 1406 year: 2003 end-page: 1417 ident: CR57 article-title: Analysis of accessible surface of residues in proteins publication-title: Protein science doi: 10.1110/ps.0304803 – volume: 15 start-page: 4234 year: 2016 end-page: 4244 ident: CR26 article-title: Prediction of Protein Lysine Acylation by Integrating Primary Sequence Information with Multiple Functional Features publication-title: Journal of proteome research doi: 10.1021/acs.jproteome.6b00240 – volume: 42 start-page: D531 year: 2014 end-page: D536 ident: CR3 article-title: CPLM: a database of protein lysine modifications publication-title: Nucleic acids research doi: 10.1093/nar/gkt1093 – volume: 22 start-page: 1658 year: 2006 end-page: 1659 ident: CR40 article-title: Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 527 start-page: 24 year: 2017 end-page: 32 ident: CR53 article-title: SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2017.03.021 – volume: 415 start-page: 13 year: 2017 end-page: 19 ident: CR68 article-title: Unb-DPC: Identify mycobacterial membrane protein types by incorporating un-biased dipeptide composition into Chou’s general PseAAC publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2016.12.004 – volume: 273 start-page: 236 year: 2011 end-page: 247 ident: CR66 article-title: Some remarks on protein attribute prediction and pseudo amino acid composition publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2010.12.024 – volume: 52 start-page: 311 year: 2009 end-page: 322 ident: CR8 article-title: Epigenetic regulation: methylation of histone and non-histone proteins publication-title: Science in China Series C: Life Sciences – volume: 32 start-page: 3133 year: 2016 end-page: 3141 ident: CR29 article-title: pSumo-CD: predicting sumoylation sites in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into general PseAAC publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw387 – volume: 17 start-page: 1515 year: 2009 end-page: 1527 ident: CR50 article-title: Predicting continuous local structure and the effect of its substitution for secondary structure in fragment-free protein structure prediction publication-title: Structure doi: 10.1016/j.str.2009.09.006 – volume: 3 year: 2008 ident: CR10 article-title: Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination publication-title: Biology direct doi: 10.1186/1745-6150-3-45 – volume: 424 start-page: 49 year: 2017 end-page: 54 ident: CR70 article-title: A novel alignment-free method to classify protein folding types by combining spectral graph clustering with Chou’s pseudo amino acid composition publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2017.04.027 – volume: 8 year: 2018 ident: CR86 article-title: A Novel Modeling in Mathematical Biology for Classification of Signal Peptides publication-title: Scientific reports doi: 10.1038/s41598-018-19491-y – ident: CR11 – volume: 37 start-page: 1223 year: 2016 end-page: 1229 ident: CR52 article-title: Sequence‐based prediction of protein–peptide binding sites using support vector machine publication-title: Journal of computational chemistry doi: 10.1002/jcc.24314 – volume: 1372 start-page: 1 year: 2014 end-page: 17 ident: CR1 article-title: Enrichment and separation techniques for large-scale proteomics analysis of the protein post-translational modifications publication-title: Journal of Chromatography A doi: 10.1016/j.chroma.2014.10.107 – volume: 325 start-page: 834 year: 2009 end-page: 840 ident: CR4 article-title: Lysine acetylation targets protein complexes and co-regulates major cellular functions publication-title: Science doi: 10.1126/science.1175371 – volume: 7 year: 2017 ident: CR69 article-title: Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC publication-title: Scientific reports doi: 10.1038/srep42362 – ident: CR85 – volume: 44 start-page: 81 year: 2016 end-page: 84 ident: CR14 article-title: Post-translational modifications in rheumatoid arthritis and atherosclerosis: Focus on citrullination and carbamylation publication-title: Journal of International Medical Research doi: 10.1177/0300060515593258 – ident: CR81 – volume: 30 start-page: 275 year: 1995 end-page: 349 ident: CR64 article-title: Prediction of protein structural classes publication-title: Critical reviews in biochemistry and molecular biology doi: 10.3109/10409239509083488 – volume: 370 start-page: 1 year: 2007 end-page: 16 ident: CR20 article-title: Recent progress in protein subcellular location prediction publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2007.07.006 – volume: 425 start-page: 97 year: 2017 end-page: 102 ident: CR19 article-title: PSSM-Suc: Accurately predicting succinylation using position specific scoring matrix into bigram for feature extraction publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2017.05.005 – volume: 52 start-page: 10237 year: 2016 end-page: 10240 ident: CR58 article-title: 3D structure determination of a protein in living cells using paramagnetic NMR spectroscopy publication-title: Chemical Communications doi: 10.1039/C6CC05490K – volume: 13 start-page: e0191900 year: 2018 ident: CR41 article-title: Improving succinylation prediction accuracy by incorporating the secondary structure via helix, strand and coil, and evolutionary information from profile bigrams publication-title: PloS one doi: 10.1371/journal.pone.0191900 – volume: 443 start-page: 138 year: 2018 end-page: 146 ident: CR56 article-title: EvoStruct-Sub: An accurate Gram-positive protein subcellular localization predictor using evolutionary and structural features publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2018.02.002 – volume: 11 start-page: 218 year: 2015 end-page: 234 ident: CR91 article-title: Impacts of bioinformatics to medicinal chemistry publication-title: Medicinal chemistry doi: 10.2174/1573406411666141229162834 – volume: 435 start-page: 229 year: 2017 end-page: 237 ident: CR72 article-title: iPHLoc-ES: Identification of bacteriophage protein locations using evolutionary and structural features publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2017.09.022 – volume: 46 start-page: 1069 year: 2014 end-page: 1078 ident: CR35 article-title: Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest publication-title: Amino acids doi: 10.1007/s00726-014-1669-3 – volume: 7 start-page: e39308 year: 2012 ident: CR76 article-title: Prediction of protein domain with mRMR feature selection and analysis publication-title: PLoS One doi: 10.1371/journal.pone.0039308 – ident: CR47 – volume: 1 start-page: 63 year: 2009 ident: CR79 article-title: Recent advances in developing web-servers for predicting protein attributes publication-title: Natural Science doi: 10.4236/ns.2009.12011 – volume: 33 start-page: 3524 year: 2017 end-page: 3531 ident: CR82 article-title: pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx476 – ident: CR30 – volume: 14 start-page: 946 year: 2018 end-page: 956 ident: CR33 article-title: PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile publication-title: International Journal of Biological Sciences doi: 10.7150/ijbs.24121 – volume: 56 start-page: 2115 year: 2016 end-page: 2122 ident: CR51 article-title: Sequence-based prediction of protein–carbohydrate binding sites using support vector machines publication-title: Journal of chemical information and modeling doi: 10.1021/acs.jcim.6b00320 – volume: 68 start-page: 76 year: 2007 end-page: 81 ident: CR59 article-title: Real‐SPINE: An integrated system of neural networks for real‐value prediction of protein structural properties publication-title: PROTEINS: Structure, Function, and Bioinformatics doi: 10.1002/prot.21408 – volume: 6 year: 2016 ident: CR24 article-title: Mal-Lys: prediction of lysine malonylation sites in proteins integrated sequence-based features with mRMR feature selection publication-title: Scientific reports doi: 10.1038/srep38318 – volume: 19 start-page: 532 year: 2012 end-page: 549 ident: CR62 article-title: A classification of bioinformatics algorithms from the viewpoint of maximizing expected accuracy (MEA) publication-title: Journal of Computational Biology doi: 10.1089/cmb.2011.0197 – volume: 13 start-page: 552 year: 2017 end-page: 559 ident: CR38 article-title: iPGK-PseAAC: identify lysine phosphoglycerylation sites in proteins by incorporating four different tiers of amino acid pairwise coupling information into the general PseAAC publication-title: Medicinal Chemistry doi: 10.2174/1573406413666170515120507 – volume: 17 start-page: 2337 year: 2017 end-page: 2358 ident: CR90 article-title: An Unprecedented Revolution in Medicinal Chemistry Driven by the Progress of Biological Science publication-title: Current Topics in Medicinal Chemistry doi: 10.2174/1568026617666170414145508 – volume: 50 start-page: 919 year: 2013 end-page: 930 ident: CR6 article-title: SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways publication-title: Molecular cell doi: 10.1016/j.molcel.2013.06.001 – volume: 8 start-page: 45 year: 2009 end-page: 52 ident: CR9 article-title: Molecular characterization of propionyllysines in non-histone proteins publication-title: Molecular & Cellular Proteomics doi: 10.1074/mcp.M800224-MCP200 – volume: 291 start-page: 285 year: 2016 end-page: 296 ident: CR67 article-title: iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou’s PseAAC to formulate DNA samples publication-title: Molecular genetics and genomics doi: 10.1007/s00438-015-1108-5 – volume: 10 start-page: 724 year: 2014 ident: CR2 article-title: The functional diversity of protein lysine methylation publication-title: Molecular systems biology doi: 10.1002/msb.134974 – volume: 443 start-page: 125 year: 2018 end-page: 137 ident: CR89 article-title: PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2018.01.023 – volume: 146 start-page: 1016 year: 2011 end-page: 1028 ident: CR7 article-title: Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 20 start-page: 622 year: 2017 end-page: 628 ident: CR25 article-title: Prediction of Lysine Malonylation Sites Based on Pseudo Amino Acid publication-title: Combinatorial chemistry & high throughput screening doi: 10.2174/1386207320666170314102647 – volume: 13 start-page: 874 year: 2017 end-page: 882 ident: CR37 article-title: Predicting protein lysine phosphoglycerylation sites by hybridizing many sequence based features publication-title: Molecular BioSystems doi: 10.1039/C6MB00875E – volume: 356 start-page: 213 year: 2014 end-page: 222 ident: CR32 article-title: Neural network and SVM classifiers accurately predict lipid binding proteins, irrespective of sequence homology publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2014.04.040 – volume: 16 start-page: 404 year: 2000 end-page: 405 ident: CR49 article-title: The PSIPRED protein structure prediction server publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.4.404 – volume: 9 start-page: e89575 year: 2014 ident: CR28 article-title: LAceP: lysine acetylation site prediction using logistic regression classifiers publication-title: PloS one doi: 10.1371/journal.pone.0089575 – volume: 35 start-page: 2040 year: 2014 end-page: 2046 ident: CR45 article-title: Predicting backbone Cα angles and dihedrals from protein sequences by stacked sparse auto‐encoder deep neural network publication-title: Journal of computational chemistry doi: 10.1002/jcc.23718 – volume: 5 year: 2013 ident: CR13 article-title: Functional decorations: post-translational modifications and heart disease delineated by targeted proteomics publication-title: Genome medicine doi: 10.1186/gm424 – volume: 33 start-page: 2221 year: 2015 end-page: 2233 ident: CR71 article-title: iDrug-Target: predicting the interactions between drug compounds and target proteins in cellular networking via the benchmark dataset optimization approach publication-title: J Biomol Struct Dyn (JBSD) doi: 10.1080/07391102.2014.998710 – ident: CR55 – volume: 5 start-page: e3261 year: 2017 ident: CR34 article-title: Prediction of post-translational modification sites using multiple kernel support vector machine publication-title: PeerJ doi: 10.7717/peerj.3261 – volume: 33 start-page: 259 year: 2012 end-page: 267 ident: CR48 article-title: SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles publication-title: Journal of computational chemistry doi: 10.1002/jcc.21968 – volume: 90 start-page: 194 year: 2011 end-page: 201 ident: CR18 article-title: Glucose metabolism and cardiac hypertrophy publication-title: Cardiovascular research doi: 10.1093/cvr/cvr071 – volume: 497 start-page: 48 year: 2016 end-page: 56 ident: CR21 article-title: iSuc-PseOpt: identifying lysine succinylation sites in proteins by incorporating sequence-coupling effects into pseudo components and optimizing imbalanced training dataset publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2015.12.009 – volume: 44 start-page: 81 year: 2016 ident: 36203_CR14 publication-title: Journal of International Medical Research doi: 10.1177/0300060515593258 – volume: 325 start-page: 834 year: 2009 ident: 36203_CR4 publication-title: Science doi: 10.1126/science.1175371 – volume: 13 start-page: 874 year: 2017 ident: 36203_CR37 publication-title: Molecular BioSystems doi: 10.1039/C6MB00875E – ident: 36203_CR85 doi: 10.1016/j.gene.2017.07.036 – volume: 76 start-page: 356 year: 2017 ident: 36203_CR23 publication-title: Journal of Molecular Graphics and Modelling doi: 10.1016/j.jmgm.2017.07.022 – volume: 425 start-page: 97 year: 2017 ident: 36203_CR19 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2017.05.005 – volume: 52 start-page: 10237 year: 2016 ident: 36203_CR58 publication-title: Chemical Communications doi: 10.1039/C6CC05490K – ident: 36203_CR77 doi: 10.1093/database/baw133 – volume: 507 start-page: 1 year: 2016 ident: 36203_CR31 publication-title: Analytical biochemistry doi: 10.1016/j.ab.2016.05.005 – volume: 22 start-page: 1658 year: 2006 ident: 36203_CR40 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl158 – volume: 341 start-page: 549 year: 2013 ident: 36203_CR16 publication-title: Science doi: 10.1126/science.1238327 – volume: 527 start-page: 24 year: 2017 ident: 36203_CR53 publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2017.03.021 – volume: 68 start-page: 76 year: 2007 ident: 36203_CR59 publication-title: PROTEINS: Structure, Function, and Bioinformatics doi: 10.1002/prot.21408 – volume: 7 start-page: e39308 year: 2012 ident: 36203_CR76 publication-title: PLoS One doi: 10.1371/journal.pone.0039308 – volume: 8 start-page: 4208 year: 2017 ident: 36203_CR80 publication-title: Oncotarget doi: 10.18632/oncotarget.13758 – volume: 9 start-page: e89575 year: 2014 ident: 36203_CR28 publication-title: PloS one doi: 10.1371/journal.pone.0089575 – volume: 370 start-page: 1 year: 2007 ident: 36203_CR20 publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2007.07.006 – volume: 14 start-page: 946 year: 2018 ident: 36203_CR33 publication-title: International Journal of Biological Sciences doi: 10.7150/ijbs.24121 – volume: 1372 start-page: 1 year: 2014 ident: 36203_CR1 publication-title: Journal of Chromatography A doi: 10.1016/j.chroma.2014.10.107 – volume: 37 start-page: 1223 year: 2016 ident: 36203_CR52 publication-title: Journal of computational chemistry doi: 10.1002/jcc.24314 – volume: 11 start-page: 218 year: 2015 ident: 36203_CR91 publication-title: Medicinal chemistry doi: 10.2174/1573406411666141229162834 – volume: 13 start-page: e0191900 year: 2018 ident: 36203_CR41 publication-title: PloS one doi: 10.1371/journal.pone.0191900 – volume: 5 year: 2015 ident: 36203_CR44 publication-title: Scientific reports doi: 10.1038/srep11476 – volume: 146 start-page: 1016 year: 2011 ident: 36203_CR7 publication-title: Cell doi: 10.1016/j.cell.2011.08.008 – volume: 14 start-page: 3611 year: 2011 ident: 36203_CR73 publication-title: International Information Institute (Tokyo). Information – volume: 20 start-page: 622 year: 2017 ident: 36203_CR25 publication-title: Combinatorial chemistry & high throughput screening doi: 10.2174/1386207320666170314102647 – volume: 17 start-page: 1515 year: 2009 ident: 36203_CR50 publication-title: Structure doi: 10.1016/j.str.2009.09.006 – volume: 30 start-page: 275 year: 1995 ident: 36203_CR64 publication-title: Critical reviews in biochemistry and molecular biology doi: 10.3109/10409239509083488 – volume: 34 start-page: 33 year: 2017 ident: 36203_CR88 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx579 – volume: 56 start-page: 2115 year: 2016 ident: 36203_CR51 publication-title: Journal of chemical information and modeling doi: 10.1021/acs.jcim.6b00320 – volume: 10 start-page: 724 year: 2014 ident: 36203_CR2 publication-title: Molecular systems biology doi: 10.1002/msb.134974 – volume: 52 start-page: 311 year: 2009 ident: 36203_CR8 publication-title: Science in China Series C: Life Sciences – volume: 443 start-page: 138 year: 2018 ident: 36203_CR56 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2018.02.002 – volume: 43 start-page: 246 year: 2001 ident: 36203_CR65 publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.1035 – volume: 16 start-page: 404 year: 2000 ident: 36203_CR49 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.4.404 – volume: 15 start-page: 4234 year: 2016 ident: 36203_CR26 publication-title: Journal of proteome research doi: 10.1021/acs.jproteome.6b00240 – volume: 21 start-page: 95 year: 2016 ident: 36203_CR43 publication-title: Molecules doi: 10.3390/molecules21010095 – ident: 36203_CR47 doi: 10.1007/978-1-4939-6406-2_6 – ident: 36203_CR55 doi: 10.1002/pmic.201800058 – volume: 50 start-page: 919 year: 2013 ident: 36203_CR6 publication-title: Molecular cell doi: 10.1016/j.molcel.2013.06.001 – volume: 443 start-page: 125 year: 2018 ident: 36203_CR89 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2018.01.023 – volume: 5 year: 2013 ident: 36203_CR13 publication-title: Genome medicine doi: 10.1186/gm424 – volume: 66 start-page: 91 year: 2012 ident: 36203_CR17 publication-title: International journal of clinical practice doi: 10.1111/j.1742-1241.2011.02795.x – volume: 33 start-page: 2221 year: 2015 ident: 36203_CR71 publication-title: J Biomol Struct Dyn (JBSD) doi: 10.1080/07391102.2014.998710 – volume: 12 start-page: 1406 year: 2003 ident: 36203_CR57 publication-title: Protein science doi: 10.1110/ps.0304803 – volume: 19 start-page: 532 year: 2012 ident: 36203_CR62 publication-title: Journal of Computational Biology doi: 10.1089/cmb.2011.0197 – volume: 11 start-page: 10 year: 2009 ident: 36203_CR61 publication-title: ACM SIGKDD explorations newsletter doi: 10.1145/1656274.1656278 – volume: 19 year: 2018 ident: 36203_CR22 publication-title: BMC Genomics doi: 10.1186/s12864-017-4336-8 – volume: 3 year: 2008 ident: 36203_CR10 publication-title: Biology direct doi: 10.1186/1745-6150-3-45 – volume: 291 start-page: 285 year: 2016 ident: 36203_CR67 publication-title: Molecular genetics and genomics doi: 10.1007/s00438-015-1108-5 – ident: 36203_CR81 doi: 10.1016/j.ygeno.2017.10.002 – volume: 32 start-page: 3133 year: 2016 ident: 36203_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw387 – volume: 424 start-page: 49 year: 2017 ident: 36203_CR70 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2017.04.027 – volume: 8 start-page: 45 year: 2009 ident: 36203_CR9 publication-title: Molecular & Cellular Proteomics doi: 10.1074/mcp.M800224-MCP200 – ident: 36203_CR87 doi: 10.1016/j.ygeno.2018.01.005 – volume: 356 start-page: 213 year: 2014 ident: 36203_CR32 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2014.04.040 – volume: 7 start-page: e45854 year: 2012 ident: 36203_CR75 publication-title: PloS one doi: 10.1371/journal.pone.0045854 – volume: 273 start-page: 236 year: 2011 ident: 36203_CR66 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2010.12.024 – volume: 32 start-page: 843 year: 2015 ident: 36203_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv665 – volume: 7 year: 2017 ident: 36203_CR69 publication-title: Scientific reports doi: 10.1038/srep42362 – ident: 36203_CR54 – volume: 415 start-page: 13 year: 2017 ident: 36203_CR68 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2016.12.004 – volume: 90 start-page: 194 year: 2011 ident: 36203_CR18 publication-title: Cardiovascular research doi: 10.1093/cvr/cvr071 – volume: 397 start-page: 145 year: 2016 ident: 36203_CR15 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2016.02.020 – volume: 6 year: 2016 ident: 36203_CR24 publication-title: Scientific reports doi: 10.1038/srep38318 – volume: 35 start-page: 2040 year: 2014 ident: 36203_CR45 publication-title: Journal of computational chemistry doi: 10.1002/jcc.23718 – volume: 1 start-page: 63 year: 2009 ident: 36203_CR79 publication-title: Natural Science doi: 10.4236/ns.2009.12011 – volume: 405 start-page: 442 year: 1975 ident: 36203_CR63 publication-title: Biochimica et Biophysica Acta (BBA)-Protein Structure doi: 10.1016/0005-2795(75)90109-9 – volume: 5 start-page: e3261 year: 2017 ident: 36203_CR34 publication-title: PeerJ doi: 10.7717/peerj.3261 – volume: 33 start-page: 3524 year: 2017 ident: 36203_CR82 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx476 – volume: 8 year: 2018 ident: 36203_CR86 publication-title: Scientific reports doi: 10.1038/s41598-018-19491-y – volume: 379 start-page: 10 year: 2015 ident: 36203_CR36 publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2015.04.016 – ident: 36203_CR12 doi: 10.1142/9789814295291_0036 – volume: 474 start-page: 69 year: 2015 ident: 36203_CR42 publication-title: Analytical biochemistry doi: 10.1016/j.ab.2014.12.009 – volume: 9 start-page: e107464 year: 2014 ident: 36203_CR74 publication-title: PloS one doi: 10.1371/journal.pone.0107464 – ident: 36203_CR30 doi: 10.1016/j.ygeno.2017.10.008 – volume: 33 start-page: 259 year: 2012 ident: 36203_CR48 publication-title: Journal of computational chemistry doi: 10.1002/jcc.21968 – volume: 72 start-page: 427 year: 2008 ident: 36203_CR60 publication-title: Proteins: Structure, Function, and Bioinformatics doi: 10.1002/prot.21940 – volume: 7 start-page: 267 year: 2017 ident: 36203_CR84 publication-title: Molecular Therapy-Nucleic Acids doi: 10.1016/j.omtn.2017.04.008 – ident: 36203_CR11 doi: 10.1051/bmdcn/2017070315 – volume: 7 year: 2017 ident: 36203_CR78 publication-title: Scientific Reports doi: 10.1038/s41598-017-07199-4 – volume: 16 start-page: 844 year: 2006 ident: 36203_CR5 publication-title: Glycobiology doi: 10.1093/glycob/cwl009 – volume: 46 start-page: 1069 year: 2014 ident: 36203_CR35 publication-title: Amino acids doi: 10.1007/s00726-014-1669-3 – volume: 435 start-page: 229 year: 2017 ident: 36203_CR72 publication-title: Journal of theoretical biology doi: 10.1016/j.jtbi.2017.09.022 – volume: 14 year: 2013 ident: 36203_CR39 publication-title: BMC bioinformatics doi: 10.1186/1471-2105-14-233 – volume: 33 start-page: 35 year: 2016 ident: 36203_CR83 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw539 – volume: 42 start-page: D531 year: 2014 ident: 36203_CR3 publication-title: Nucleic acids research doi: 10.1093/nar/gkt1093 – volume: 33 start-page: 1731 year: 2015 ident: 36203_CR27 publication-title: Journal of Biomolecular Structure and Dynamics doi: 10.1080/07391102.2014.968875 – volume: 17 start-page: 2337 year: 2017 ident: 36203_CR90 publication-title: Current Topics in Medicinal Chemistry doi: 10.2174/1568026617666170414145508 – volume: 497 start-page: 48 year: 2016 ident: 36203_CR21 publication-title: Analytical Biochemistry doi: 10.1016/j.ab.2015.12.009 – volume: 13 start-page: 552 year: 2017 ident: 36203_CR38 publication-title: Medicinal Chemistry doi: 10.2174/1573406413666170515120507 |
SSID | ssj0000529419 |
Score | 2.4148889 |
Snippet | The biological process known as post-translational modification (PTM) contributes to diversifying the proteome hence affecting many aspects of normal cell... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 17923 |
SubjectTerms | 119/118 631/114/2784 631/114/663/2009 Algorithms Amino acids Computational Biology - methods Computer applications Correlation coefficient Experimental methods Glycerol - chemistry Humanities and Social Sciences Information processing Lysine Lysine - chemistry Molecular Conformation multidisciplinary Phosphorylation Post-translation Protein Processing, Post-Translational Proteomes Residues Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7RIqReEKVAAwUZiRtYtdd52FyqCrWqkECVaKW9RYntdLfaJmGzHPbfM5N4Uy0VPUZ2Ettjz9PzDcAnjVq3E77iKaX_xkYl3FSZ47ooU9RmE1Foykb-8TO9uI6_T5NpcLh14Vrlhif2jNo1lnzkxyiaqDY3miMn7W9OVaMouhpKaOzAU4IuI-Mrm2ajj4WiWLE0IVdGKH3cobyinDKpOXJuobjelkcPlMyHdyX_CZj2cuj8BTwPCiQ7HSi-D098_RKeDSUl1wdwezlrbhbrXz0s7Fd2uaRADC0-ayrWzpqu7dutX64XqGY6RpAktWdodc8djonRRfgbNsDKEiQHa8ldvyTcVfpEcTevG1bYuetewfX52dW3Cx7qKXCLetmKl8JSZk9J59SWaaHSEhWUamIkskThFIp-60ymypicQcqKKiEwF2WcVJ7qwryG3bqp_SGwdGIqURVeOvx0ZrzGB4ucUsVJpZR3EcjNquY2gI1TzYtF3ge9lc4HSuRIibynRK4j-Dy-0w5QG4_2PtoQKw_HrsvvN0kEH8dmPDAUBSlq3_wJfchqlhG8GWg7_o7sKYEqbwTZFtXHDgTGvd1Sz2c9KHdKct3gsL5s9sf9sP4_i7ePz-Id7E1or8oJl_oIdpH2_j0qQavyQ7_T_wKQrgXV priority: 102 providerName: ProQuest – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6SlEAupa-kTtKiQG6tiGTZXqm3sjSEQksgCeRmbEnObtjYy-72sP--M_KjbJMUejSSbFkjaT5pZr4BONWIup3wFc8o_DcxKuWmGjmuizJDNJuKQlM08o-f2cVN8v02vd2CuI-FCU77gdIybNO9d9jZEhUNBYNJzXHLFYrrbXhB1O3kxjfOxsO9ClmuEmm6-Bih9BNNN3XQI2D52D_yLyNp0D3nr-BlBxrZ17abr2HL129gt00juX4L95eT5m62vgpUsF_Y5YKMLzTgrKnYfNIs56Hc-sV6htDSMaIhqT3Dk_bUYZ8YOb_fsZZKlmg42Jyu6BfEtUqvKB6mdcMKO3XLd3Bz_u16fMG7HArcIhZb8VJYiuYpaW3aMitUViIoqWIjcRsUTqG6t86MVJnQBZCyokqJwEUZJ5WnXDD7sFM3tX8PLItNJarCS4evHhmv8cHi7qiStFLKuwhkP6q57QjGKc_FLA-GbqXzVhI5SiIPksh1BJ-GNvOWXuOftY97YeXdUlvmiFkoaTueUyM4GYpxkZDlo6h986urQydlGcFBK9vhc3SGEghzIxhtSH2oQATcmyX1dBKIuDPS5Qa79bmfH3-69fxfHP5f9SPYi2nuyphLfQw7OBf8BwRCq_JjmPm_AVM5A60 priority: 102 providerName: Springer Nature |
Title | PhoglyStruct: Prediction of phosphoglycerylated lysine residues using structural properties of amino acids |
URI | https://link.springer.com/article/10.1038/s41598-018-36203-8 https://www.ncbi.nlm.nih.gov/pubmed/30560923 https://www.proquest.com/docview/2158236409 https://www.proquest.com/docview/2158240201 https://pubmed.ncbi.nlm.nih.gov/PMC6299098 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3rb9MwED_tIdC-TDxHxqiMxDcwxHEeNhJCpdo0VdpUMSr1W5TYzlpUktIOif733OVRVLbxKUpsJ47v7Pv5cb8DeKMQdVvfFTwm999Qy4jrIrFcZXmMaDbyM0XeyBeX8fk4HE6iyQ504Y7aBlzdObWjeFLj5fz975_rz9jhPzUu4-rDCo0QOYoJxXE49iVXu7CPlimhUA4XLdxvuL4DHQrd-s7cXfQAHhKq9nUgt03VLfx5-xjlP3uptYk6ewSHLbZk_UYZHsOOK5_Agyba5PopfB9Nq-v5-qpmjP3IRkvaoyG5sKpgi2m1WtTpxi3Xc0SglhFbSekYTshnFuvE6Iz8NWsYZ4mtgy1oJX9JlKz0iuzHrKxYZmZ29QzGZ6ffBue8DbXADUK2G577hpx-curCJo8zGeeIXYpACxwtfSsRFRirE5mHtE4kjV9ExPMitRXSUciY57BXVqV7ASwOdOEXmRMWX51op_DG4CAqw6iQ0lkPRNeqqWl5yCkcxjyt98OlShuhpCiUtBZKqjx4uymzaFg4_pv7pBNW2ilUitCGYrvjdNaD15tk7Eu0QZKVrvrV5qEJtfDgqJHt5nOdUniQbEl9k4F4urdTytm05uuOyeRrrNa7Tj_-Vuv-vzi-twov4SAgjRUBF-oE9lDs7hVCo5u8B7vJJOnBfr8_vBri9cvp5egrPh3Eg1693NCre8Qfm1kOsw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NToi9IL4JDDASPIG1JE5SBwkhPjZ1bKsq2KS9eYntrJ1KEpoh1H-Kv5G7fE1lYm97rOy4Tu7s-53P9zuAVxJRt3FtxiNK_w1iEfI4GxoukzRCNBu6iaRs5INxNDoKvh6Hx2vwp8uFoWuV3Z5Yb9Sm0HRGvoWmiWpzozvyofzJqWoURVe7EhqNWuzZ5W902ar3u19Qvq99f2f78POIt1UFuEZ0cs5TV1N-S0raqtMoEVGKZjrzYw83BtcINIDaxEORBnQkIrSbhURpImLjCUvVUXDcG7AeCIQKA1j_tD2efOtPdShuFnhxm53jCrlVoYWkLDZPcrQVruBy1QJegrWXb2f-E6KtLd_OHbjdQlb2sdGxu7Bm83twsyliubwPZ5NpcTpffq-JaN-xyYJCPyRuVmSsnBZVWbdru1jOEdgaRiQouWXo588MzonR1ftT1hDZEgkIKylAsCCmVxoi-THLC5bomakewNG1fOuHMMiL3D4GFvlx5maJ9QwOPYytxB8a92YRhJkQ1jjgdV9V6ZbenKpszFUdZhdSNZJQKAlVS0JJB970z5QNuceVvTc7Yal2oVfqQi0deNk34xKluEuS2-JX24f8dM-BR41s-78jD85FkO3AcEXqfQei_15tyWfTmgY8IiQR47TedvpxMa3_v8WTq9_iBdwaHR7sq_3d8d5T2PBJbz2fe3ITBqgH9hlCsPP0eav3DE6ue6n9Bd8jQYg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEIgXNL62woAgwRNE1zT9SCchhBinjcF0Eky6t65N0t2hoy3XIXT_Gn8ddr-mY2Jve6ySpkltx3Yc_wzwUqHVbVyb85DSf_1YBjzOI8NVmoVozQZuqigb-ctxeHDif5oG0w340-fC0LXKfk9sNmpTajojH6Fqotrc6I6M8u5axGR__K76yamCFEVa-3IaLYsc2dVvdN_qt4f7SOtXnjf--O3DAe8qDHCNlso5z1xNuS4Zca7OwlSGGars3IsFbhKukagMtYkjmfl0PCK1mwcEbyJjI6SlSik47g24GUlUmyhL0TQazncoguaLuMvTcaUa1agrKZ9NKI5aw5VcrevCSwbu5Xua_wRrGx043oK7nfHK3rfcdg82bHEfbrXlLFcP4PtkVp4tVl8bSNo9NllSEIgIz8qcVbOyrpp2bZerBZq4hhEcSmEZevxzg3NidAn_jLWQtgQHwioKFSwJ85WGSH_Mi5Klem7qh3ByLX_6EWwWZWF3gIVenLt5aoXBoaPYKnzQuEtLP8iltMYB0f_VRHdA51RvY5E0AXepkpYSCVIiaSiRKAdeD-9ULczHlb13e2IlncjXyQWDOvBiaEZhpQhMWtjyV9eHPHbhwHZL2-Fz5Mu5aG47EK1RfehAQODrLcV81gCCh2RTxDitNz1_XEzr_6t4fPUqnsNtFLDk8-Hx0RO44xHbCo8LtQubyAb2Kdpi59mzhukZnF63lP0FXxJEWA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PhoglyStruct%3A+Prediction+of+phosphoglycerylated+lysine+residues+using+structural+properties+of+amino+acids&rft.jtitle=Scientific+reports&rft.au=Chandra%2C+Abel&rft.au=Sharma%2C+Alok&rft.au=Dehzangi%2C+Abdollah&rft.au=Ranganathan%2C+Shoba&rft.date=2018-12-18&rft.eissn=2045-2322&rft.volume=8&rft.issue=1&rft.spage=17923&rft_id=info:doi/10.1038%2Fs41598-018-36203-8&rft_id=info%3Apmid%2F30560923&rft.externalDocID=30560923 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |