Reciprocity of thermal diffusion in time-modulated systems
The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with t...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 167 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.01.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.
The use of time modulation to break reciprocity is well understood for light, sound or charge diffusion, but it’s unclear whether it can work for thermal diffusion. Here, the authors answer in the negative by analysing diffusive processes under time modulation, and giving numerical and experimental evidence. |
---|---|
AbstractList | The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.
The use of time modulation to break reciprocity is well understood for light, sound or charge diffusion, but it’s unclear whether it can work for thermal diffusion. Here, the authors answer in the negative by analysing diffusive processes under time modulation, and giving numerical and experimental evidence. The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.The use of time modulation to break reciprocity is well understood for light, sound or charge diffusion, but it’s unclear whether it can work for thermal diffusion. Here, the authors answer in the negative by analysing diffusive processes under time modulation, and giving numerical and experimental evidence. The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility. The use of time modulation to break reciprocity is well understood for light, sound or charge diffusion, but it’s unclear whether it can work for thermal diffusion. Here, the authors answer in the negative by analysing diffusive processes under time modulation, and giving numerical and experimental evidence. The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility. |
ArticleNumber | 167 |
Author | Qiu, Cheng-Wei Zheng, Xu Li, Ying Li, Baowen Chen, Hongsheng Alù, Andrea Li, Jiaxin Cao, Pei-Chao Peng, Yu-Gui Qi, Minghong Zhu, Xue-Feng |
Author_xml | – sequence: 1 givenname: Jiaxin surname: Li fullname: Li, Jiaxin organization: Department of Electrical and Computer Engineering, National University of Singapore, School of Mechatronics Engineering, Harbin Institute of Technology – sequence: 2 givenname: Ying orcidid: 0000-0002-2730-7171 surname: Li fullname: Li, Ying email: eleying@zju.edu.cn organization: Department of Electrical and Computer Engineering, National University of Singapore, Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University – sequence: 3 givenname: Pei-Chao surname: Cao fullname: Cao, Pei-Chao organization: School of Physics and Innovation Institute, Huazhong University of Science and Technology – sequence: 4 givenname: Minghong surname: Qi fullname: Qi, Minghong organization: Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University – sequence: 5 givenname: Xu orcidid: 0000-0003-0947-4387 surname: Zheng fullname: Zheng, Xu organization: Department of Physics, University of Colorado – sequence: 6 givenname: Yu-Gui orcidid: 0000-0001-6637-7108 surname: Peng fullname: Peng, Yu-Gui organization: Photonics Initiative, Advanced Science Research Center, City University of New York – sequence: 7 givenname: Baowen orcidid: 0000-0002-8728-520X surname: Li fullname: Li, Baowen organization: Department of Physics, University of Colorado, Department of Mechanical Engineering, University of Colorado – sequence: 8 givenname: Xue-Feng orcidid: 0000-0002-1308-0834 surname: Zhu fullname: Zhu, Xue-Feng email: xfzhu@hust.edu.cn organization: School of Physics and Innovation Institute, Huazhong University of Science and Technology – sequence: 9 givenname: Andrea orcidid: 0000-0002-4297-5274 surname: Alù fullname: Alù, Andrea email: aalu@gc.cuny.edu organization: Photonics Initiative, Advanced Science Research Center, City University of New York, Physics Program, Graduate Center, City University of New York – sequence: 10 givenname: Hongsheng orcidid: 0000-0002-5735-9781 surname: Chen fullname: Chen, Hongsheng organization: Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University – sequence: 11 givenname: Cheng-Wei orcidid: 0000-0002-6605-500X surname: Qiu fullname: Qiu, Cheng-Wei email: chengwei.qiu@nus.edu.sg organization: Department of Electrical and Computer Engineering, National University of Singapore |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35013296$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1rFTEYhYNU7If9Ay5kwI2b0XxP4kKQYrVQEETXIZN5c5vLzOSaZAr335t2Wm27aDYJyTkPh7znGB3McQaE3hD8gWCmPmZOuOxaTElLO41Zy16gI4o5aUlH2cGD8yE6zXmL62KaKM5foUMmMGFUyyP06Se4sEvRhbJvom_KFaTJjs0QvF9yiHMT5qaECdopDstoCwxN3ucCU36NXno7Zji920_Q7_Ovv86-t5c_vl2cfblsneC4tBaEpYIwyZ2FgXbC4b4fnJZCDEyozjJFdYe51N5LIhnl0FPbaw_gqfI9O0EXK3eIdmt2KUw27U20wdxexLQxNpXgRjDY4QH3ShJMNcfSaubBE6qBOSzqdWV9Xlm7pZ9gcDCXZMdH0Mcvc7gym3htVMeV1LIC3t8BUvyzQC5mCtnBONoZ4pINlURpzIUSVfruiXQblzTXr7pRadGpjuqqevsw0b8o9yOqArUKXIo5J_CmzsqWOpoaMIyGYHNTCLMWwtRCmNtCGFat9In1nv6sia2mXMXzBtL_2M-4_gJF08a- |
CitedBy_id | crossref_primary_10_1016_j_ijnonlinmec_2024_104773 crossref_primary_10_1088_1367_2630_ad91da crossref_primary_10_1103_PhysRevA_109_063517 crossref_primary_10_1115_1_4063143 crossref_primary_10_1002_adma_202309835 crossref_primary_10_1088_0256_307X_39_5_057801 crossref_primary_10_1103_RevModPhys_96_015002 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126570 crossref_primary_10_1016_j_physrep_2024_05_004 crossref_primary_10_1103_PhysRevLett_129_155901 crossref_primary_10_1103_PhysRevApplied_20_034013 crossref_primary_10_1007_s12613_023_2811_6 crossref_primary_10_1063_5_0208656 crossref_primary_10_1063_5_0157847 crossref_primary_10_1088_0256_307X_40_10_106601 crossref_primary_10_1038_s41467_024_55425_1 crossref_primary_10_1073_pnas_2410041121 crossref_primary_10_1016_j_isci_2022_104183 crossref_primary_10_1016_j_ijthermalsci_2024_109097 crossref_primary_10_1103_PhysRevApplied_18_034049 crossref_primary_10_1103_PhysRevLett_130_233801 crossref_primary_10_1038_s41467_022_30023_1 crossref_primary_10_1103_PhysRevE_106_L032102 crossref_primary_10_1002_adma_202209123 crossref_primary_10_1103_PhysRevApplied_18_034080 crossref_primary_10_1002_smll_202402575 crossref_primary_10_1103_PhysRevApplied_19_054096 crossref_primary_10_1103_PhysRevLett_132_176302 crossref_primary_10_1038_s41467_024_46247_2 crossref_primary_10_1103_PhysRevB_109_165304 crossref_primary_10_1103_PhysRevApplied_21_054037 crossref_primary_10_1038_s42254_023_00565_4 crossref_primary_10_1103_PhysRevB_106_L100102 crossref_primary_10_1126_sciadv_adn1746 crossref_primary_10_1098_rspa_2024_0513 crossref_primary_10_1103_PhysRevApplied_23_014059 crossref_primary_10_1103_PhysRevLett_129_256601 |
Cites_doi | 10.1126/science.1214383 10.1103/RevModPhys.84.1045 10.1038/s41586-018-0245-5 10.1103/PhysRevLett.93.184301 10.1038/s41563-018-0239-6 10.1063/1.3253712 10.1038/s41467-017-00798-9 10.1103/PhysRevApplied.16.L041002 10.1186/s43593-021-00002-y 10.1126/science.aaw6259 10.1038/nmat2881 10.1016/j.solener.2008.09.001 10.1063/1.5001072 10.1038/nature22389 10.1103/PhysRevLett.120.125501 10.1103/PhysRevLett.109.033901 10.1038/s41467-018-04202-y 10.1364/OE.399799 10.1103/PhysRevApplied.10.047001 10.1038/nphoton.2014.133 10.1088/0034-4885/67/5/R03 10.1038/nmat3072 10.1103/PhysRevLett.117.055501 10.1038/s41928-018-0025-0 10.1103/PhysRevE.103.032128 10.1103/PhysRevLett.115.195503 10.1103/PhysRevB.80.092301 10.1038/nature08293 10.1016/j.ijheatmasstransfer.2019.01.028 10.1038/lsa.2015.57 10.1126/science.1132898 10.1038/s41566-017-0051-x 10.1073/pnas.1517363113 10.1002/adma.202003823 10.1103/PhysRevLett.110.093901 10.1038/s41467-020-17550-5 10.1103/PhysRevApplied.11.044021 10.1103/PhysRevB.103.014307 10.1038/nphoton.2008.273 10.1038/s41586-019-1445-3 10.1126/science.1246957 10.1016/j.ijheatmasstransfer.2021.122035 10.1038/nphoton.2011.180 10.1038/nphoton.2015.79 10.1038/ncomms11744 10.1201/9781420033373 10.1201/9781439895214 10.1002/9781118671627 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-27903-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Database Suite (ProQuest) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_0c0d0b861029406a93fef129e3c05861 PMC8748696 35013296 10_1038_s41467_021_27903_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 92163123 funderid: https://doi.org/10.13039/501100001809 – fundername: Ministry of Education - Singapore (MOE) grantid: R-263-000-E19-114 funderid: https://doi.org/10.13039/501100001459 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 92163123 – fundername: Ministry of Education - Singapore (MOE) grantid: R-263-000-E19-114 – fundername: ; grantid: 92163123 – fundername: ; grantid: R-263-000-E19-114 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-ae5a251364caed275c0bbdc9655d3587a382970469ff616324eb2ab9feef28fb3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:21 EDT 2025 Thu Aug 21 14:01:08 EDT 2025 Fri Jul 11 11:11:38 EDT 2025 Wed Aug 13 11:12:32 EDT 2025 Mon Jul 21 05:34:43 EDT 2025 Tue Jul 01 04:17:42 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:38:46 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-ae5a251364caed275c0bbdc9655d3587a382970469ff616324eb2ab9feef28fb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6637-7108 0000-0002-2730-7171 0000-0003-0947-4387 0000-0002-4297-5274 0000-0002-5735-9781 0000-0002-6605-500X 0000-0002-8728-520X 0000-0002-1308-0834 |
OpenAccessLink | https://doaj.org/article/0c0d0b861029406a93fef129e3c05861 |
PMID | 35013296 |
PQID | 2619578729 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c0d0b861029406a93fef129e3c05861 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8748696 proquest_miscellaneous_2618904585 proquest_journals_2619578729 pubmed_primary_35013296 crossref_citationtrail_10_1038_s41467_021_27903_3 crossref_primary_10_1038_s41467_021_27903_3 springer_journals_10_1038_s41467_021_27903_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-10 |
PublicationDateYYYYMMDD | 2022-01-10 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wehmeyer, Yabuki, Monachon, Wu, Dames (CR32) 2017; 4 Sun (CR31) 2019; 572 Cao (CR20) 2019; 7 Li, Wang, Casati (CR23) 2004; 93 Li (CR34) 2015; 115 Xu, Huang, Ouyang (CR48) 2021; 103 Caloz (CR2) 2018; 10 Wang, Chong, Joannopoulos, Soljačić (CR27) 2009; 461 Li, Li, Wang, Li, Qiu (CR17) 2020; 28 Yu, Fan (CR5) 2009; 3 Camacho, Edwards, Engheta (CR41) 2020; 11 Li (CR19) 2019; 364 Floess (CR9) 2015; 4 Sounas, Alù (CR36) 2017; 11 Hamed, Elzouka, Ndao (CR26) 2019; 134 CR3 Fleury, Sounas, Sieck, Haberman, Alù (CR12) 2014; 343 Chen, Segev (CR4) 2021; 1 CR47 Liang, Guo, Tu, Zhang, Cheng (CR10) 2010; 9 Boechler, Theocharis, Daraio (CR11) 2011; 10 CR44 CR43 Wang (CR39) 2013; 110 Kang, Butsch, Russell (CR6) 2011; 5 Li (CR16) 2019; 18 Li, Li, Qi, Qiu, Chen (CR21) 2021; 103 Shimokusu, Zhu, Rivera, Wehmeyer (CR50) 2022; 182 Li (CR18) 2020; 23 Laude, Achaoui, Benchabane, Khelif (CR45) 2009; 80 Sounas, Soric, Alù (CR8) 2018; 1 Chun (CR22) 2009; 83 Dinc (CR13) 2017; 8 Ruesink, Mathew, Miri, Alù, Verhagen (CR14) 2018; 9 Fan (CR29) 2012; 335 Torrent, Poncelet, Batsale (CR42) 2018; 120 Shen, Li, Jiang, Huang (CR35) 2016; 117 Chang (CR7) 2014; 8 Shi, Yu, Fan (CR30) 2015; 9 Lu (CR46) 2017; 546 Ordonez-Miranda, Guo, Alvarado-Gil, Volz, Nomura (CR49) 2021; 16 Chang, Okawa, Majumdar, Zettl (CR24) 2006; 314 Lira, Yu, Fan, Lipson (CR37) 2012; 109 Hadad, Soric, Alu (CR38) 2016; 113 Li (CR25) 2012; 84 Maayani (CR28) 2018; 558 Li (CR15) 2019; 11 Fleury, Khanikaev, Alù (CR40) 2016; 7 Potton (CR1) 2004; 67 Kobayashi, Teraoka, Terasaki (CR33) 2009; 95 A Hamed (27903_CR26) 2019; 134 JX Li (27903_CR15) 2019; 11 D Torrent (27903_CR42) 2018; 120 TJ Shimokusu (27903_CR50) 2022; 182 XY Shen (27903_CR35) 2016; 117 Y Shi (27903_CR30) 2015; 9 N Boechler (27903_CR11) 2011; 10 D Floess (27903_CR9) 2015; 4 C Caloz (27903_CR2) 2018; 10 J Ordonez-Miranda (27903_CR49) 2021; 16 27903_CR3 S Maayani (27903_CR28) 2018; 558 L Fan (27903_CR29) 2012; 335 Y Hadad (27903_CR38) 2016; 113 MS Kang (27903_CR6) 2011; 5 Z Wang (27903_CR27) 2009; 461 M Camacho (27903_CR41) 2020; 11 Z Chen (27903_CR4) 2021; 1 Y Li (27903_CR19) 2019; 364 B Li (27903_CR23) 2004; 93 R Fleury (27903_CR12) 2014; 343 D-W Wang (27903_CR39) 2013; 110 DL Sounas (27903_CR36) 2017; 11 N Li (27903_CR25) 2012; 84 DL Sounas (27903_CR8) 2018; 1 JX Li (27903_CR17) 2020; 28 F Ruesink (27903_CR14) 2018; 9 RJ Potton (27903_CR1) 2004; 67 B Liang (27903_CR10) 2010; 9 N Lu (27903_CR46) 2017; 546 Y Li (27903_CR16) 2019; 18 CW Chang (27903_CR24) 2006; 314 W Chun (27903_CR22) 2009; 83 R Fleury (27903_CR40) 2016; 7 L Chang (27903_CR7) 2014; 8 27903_CR47 H Lira (27903_CR37) 2012; 109 L Xu (27903_CR48) 2021; 103 Y Li (27903_CR34) 2015; 115 Z Yu (27903_CR5) 2009; 3 Z Sun (27903_CR31) 2019; 572 V Laude (27903_CR45) 2009; 80 T Dinc (27903_CR13) 2017; 8 27903_CR44 27903_CR43 Y Li (27903_CR21) 2021; 103 P Cao (27903_CR20) 2019; 7 G Wehmeyer (27903_CR32) 2017; 4 JX Li (27903_CR18) 2020; 23 W Kobayashi (27903_CR33) 2009; 95 |
References_xml | – volume: 335 start-page: 447 year: 2012 end-page: 450 ident: CR29 article-title: An all-silicon passive optical diode publication-title: Science doi: 10.1126/science.1214383 – volume: 84 start-page: 1045 year: 2012 end-page: 1066 ident: CR25 article-title: Colloquium: Phononics: manipulating heat flow with electronic analogs and beyond publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.1045 – volume: 558 start-page: 569 year: 2018 end-page: 572 ident: CR28 article-title: Flying couplers above spinning resonators generate irreversible refraction publication-title: Nature doi: 10.1038/s41586-018-0245-5 – volume: 93 start-page: 184301 year: 2004 ident: CR23 article-title: Thermal diode: rectification of heat flux publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.184301 – volume: 18 start-page: 48 year: 2019 end-page: 54 ident: CR16 article-title: Thermal meta-device in analogue of zero-index photonics publication-title: Nat. Mater. doi: 10.1038/s41563-018-0239-6 – volume: 95 start-page: 171905 year: 2009 ident: CR33 article-title: An oxide thermal rectifier publication-title: Appl. Phys. Lett. doi: 10.1063/1.3253712 – volume: 8 year: 2017 ident: CR13 article-title: Synchronized conductivity modulation to realize broadband lossless magnetic-free non-reciprocity publication-title: Nat. Commun. doi: 10.1038/s41467-017-00798-9 – volume: 16 start-page: L041002 year: 2021 ident: CR49 article-title: Thermal-wave diode publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.L041002 – volume: 1 start-page: 2 year: 2021 ident: CR4 article-title: Highlighting photonics: looking into the next decade publication-title: eLight doi: 10.1186/s43593-021-00002-y – volume: 364 start-page: 170 year: 2019 end-page: 173 ident: CR19 article-title: Anti–parity-time symmetry in diffusive systems publication-title: Science doi: 10.1126/science.aaw6259 – volume: 9 start-page: 989 year: 2010 end-page: 992 ident: CR10 article-title: An acoustic rectifier publication-title: Nat. Mater. doi: 10.1038/nmat2881 – volume: 83 start-page: 409 year: 2009 end-page: 419 ident: CR22 article-title: Effects of working fluids on the performance of a bi-directional thermodiode for solar energy utilization in buildings publication-title: Sol. Energy doi: 10.1016/j.solener.2008.09.001 – volume: 4 start-page: 041304 year: 2017 ident: CR32 article-title: Thermal diodes, regulators, and switches: Physical mechanisms and potential applications publication-title: Appl. Phys. Rev. doi: 10.1063/1.5001072 – volume: 546 start-page: 124 year: 2017 end-page: 128 ident: CR46 article-title: Electric-field control of tri-state phase transformation with a selective dual-ion switch publication-title: Nature doi: 10.1038/nature22389 – volume: 120 start-page: 125501 year: 2018 ident: CR42 article-title: Nonreciprocal thermal material by spatiotemporal modulation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.125501 – volume: 109 start-page: 033901 year: 2012 ident: CR37 article-title: Electrically driven nonreciprocity induced by interband photonic transition on a silicon chip publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.033901 – volume: 9 start-page: 1798 year: 2018 ident: CR14 article-title: Optical circulation in a multimode optomechanical resonator publication-title: Nat. Commun. doi: 10.1038/s41467-018-04202-y – volume: 28 start-page: 25894 year: 2020 end-page: 25907 ident: CR17 article-title: Effective medium theory for thermal scattering off rotating structures publication-title: Opt. Express doi: 10.1364/OE.399799 – volume: 7 start-page: 48 year: 2019 end-page: 55 ident: CR20 article-title: High-order exceptional points in diffusive systems: robust APT symmetry against perturbation and phase oscillation at APT symmetry breaking publication-title: Energy Environ. – volume: 10 start-page: 047001 year: 2018 ident: CR2 article-title: Electromagnetic nonreciprocity publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.047001 – volume: 8 start-page: 524 year: 2014 end-page: 529 ident: CR7 article-title: Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators publication-title: Nat. Photon doi: 10.1038/nphoton.2014.133 – volume: 67 start-page: 717 year: 2004 end-page: 754 ident: CR1 article-title: Reciprocity in optics publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/5/R03 – ident: CR43 – volume: 10 start-page: 665 year: 2011 end-page: 668 ident: CR11 article-title: Bifurcation-based acoustic switching and rectification publication-title: Nat. Mater. doi: 10.1038/nmat3072 – volume: 117 start-page: 055501 year: 2016 ident: CR35 article-title: Temperature trapping: energy-free maintenance of constant temperatures as ambient temperature gradients change publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.055501 – ident: CR47 – volume: 1 start-page: 113 year: 2018 end-page: 119 ident: CR8 article-title: Broadband passive isolators based on coupled nonlinear resonances publication-title: Nat. Electron. doi: 10.1038/s41928-018-0025-0 – volume: 103 start-page: 032128 year: 2021 ident: CR48 article-title: Tunable thermal wave nonreciprocity by spatiotemporal modulation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.032128 – volume: 115 start-page: 195503 year: 2015 ident: CR34 article-title: Temperature-dependent transformation thermotics: from switchable thermal cloaks to macroscopic thermal diodes publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.195503 – volume: 80 start-page: 092301 year: 2009 ident: CR45 article-title: Evanescent Bloch waves and the complex band structure of phononic crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.092301 – volume: 461 start-page: 772 year: 2009 end-page: 775 ident: CR27 article-title: Observation of unidirectional backscattering-immune topological electromagnetic states publication-title: Nature doi: 10.1038/nature08293 – volume: 134 start-page: 359 year: 2019 end-page: 365 ident: CR26 article-title: Thermal calculator publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.01.028 – volume: 4 start-page: e284 year: 2015 ident: CR9 article-title: Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.57 – volume: 314 start-page: 1121 year: 2006 end-page: 1124 ident: CR24 article-title: Solid-state thermal rectifier publication-title: Science doi: 10.1126/science.1132898 – volume: 11 start-page: 774 year: 2017 end-page: 783 ident: CR36 article-title: Non-reciprocal photonics based on time modulation publication-title: Nat. Photon doi: 10.1038/s41566-017-0051-x – volume: 113 start-page: 3471 year: 2016 end-page: 3475 ident: CR38 article-title: Breaking temporal symmetries for emission and absorption publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517363113 – ident: CR44 – volume: 23 start-page: 2003823 year: 2020 ident: CR18 article-title: A continuously tunable solid-like convective thermal metadevice on the reciprocal line publication-title: Adv. Mater. doi: 10.1002/adma.202003823 – volume: 110 start-page: 093901 year: 2013 ident: CR39 article-title: Optical diode made from a moving photonic crystal publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.093901 – ident: CR3 – volume: 11 year: 2020 ident: CR41 article-title: Achieving asymmetry and trapping in diffusion with spatiotemporal metamaterials publication-title: Nat. Commun. doi: 10.1038/s41467-020-17550-5 – volume: 11 start-page: 044021 year: 2019 ident: CR15 article-title: Doublet thermal metadevice publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.044021 – volume: 103 start-page: 014307 year: 2021 ident: CR21 article-title: Diffusive nonreciprocity and thermal diode publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.014307 – volume: 3 start-page: 91 year: 2009 end-page: 94 ident: CR5 article-title: Complete optical isolation created by indirect interband photonic transitions publication-title: Nat. Photon doi: 10.1038/nphoton.2008.273 – volume: 572 start-page: 497 year: 2019 end-page: 501 ident: CR31 article-title: Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 publication-title: Nature doi: 10.1038/s41586-019-1445-3 – volume: 343 start-page: 516 year: 2014 end-page: 519 ident: CR12 article-title: Sound isolation and giant linear nonreciprocity in a compact acoustic circulator publication-title: Science doi: 10.1126/science.1246957 – volume: 182 start-page: 122035 year: 2022 ident: CR50 article-title: Time-periodic thermal rectification in heterojunction thermal diodes publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.122035 – volume: 5 start-page: 549 year: 2011 end-page: 553 ident: CR6 article-title: Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre publication-title: Nat. Photon doi: 10.1038/nphoton.2011.180 – volume: 9 start-page: 388 year: 2015 end-page: 392 ident: CR30 article-title: Limitations of nonlinear optical isolators due to dynamic reciprocity publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.79 – volume: 7 year: 2016 ident: CR40 article-title: Floquet topological insulators for sound publication-title: Nat. Commun. doi: 10.1038/ncomms11744 – volume: 117 start-page: 055501 year: 2016 ident: 27903_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.055501 – volume: 83 start-page: 409 year: 2009 ident: 27903_CR22 publication-title: Sol. Energy doi: 10.1016/j.solener.2008.09.001 – volume: 103 start-page: 032128 year: 2021 ident: 27903_CR48 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.103.032128 – volume: 80 start-page: 092301 year: 2009 ident: 27903_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.80.092301 – volume: 93 start-page: 184301 year: 2004 ident: 27903_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.184301 – volume: 4 start-page: e284 year: 2015 ident: 27903_CR9 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.57 – volume: 182 start-page: 122035 year: 2022 ident: 27903_CR50 publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2021.122035 – volume: 9 start-page: 989 year: 2010 ident: 27903_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat2881 – volume: 11 year: 2020 ident: 27903_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17550-5 – volume: 1 start-page: 2 year: 2021 ident: 27903_CR4 publication-title: eLight doi: 10.1186/s43593-021-00002-y – volume: 109 start-page: 033901 year: 2012 ident: 27903_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.033901 – volume: 461 start-page: 772 year: 2009 ident: 27903_CR27 publication-title: Nature doi: 10.1038/nature08293 – volume: 84 start-page: 1045 year: 2012 ident: 27903_CR25 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.84.1045 – volume: 95 start-page: 171905 year: 2009 ident: 27903_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3253712 – volume: 572 start-page: 497 year: 2019 ident: 27903_CR31 publication-title: Nature doi: 10.1038/s41586-019-1445-3 – volume: 3 start-page: 91 year: 2009 ident: 27903_CR5 publication-title: Nat. Photon doi: 10.1038/nphoton.2008.273 – volume: 9 start-page: 388 year: 2015 ident: 27903_CR30 publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.79 – volume: 1 start-page: 113 year: 2018 ident: 27903_CR8 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0025-0 – volume: 11 start-page: 774 year: 2017 ident: 27903_CR36 publication-title: Nat. Photon doi: 10.1038/s41566-017-0051-x – ident: 27903_CR3 – volume: 5 start-page: 549 year: 2011 ident: 27903_CR6 publication-title: Nat. Photon doi: 10.1038/nphoton.2011.180 – volume: 7 year: 2016 ident: 27903_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms11744 – volume: 8 year: 2017 ident: 27903_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00798-9 – ident: 27903_CR47 doi: 10.1201/9781420033373 – volume: 546 start-page: 124 year: 2017 ident: 27903_CR46 publication-title: Nature doi: 10.1038/nature22389 – ident: 27903_CR43 doi: 10.1201/9781439895214 – volume: 103 start-page: 014307 year: 2021 ident: 27903_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.014307 – volume: 11 start-page: 044021 year: 2019 ident: 27903_CR15 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.044021 – volume: 134 start-page: 359 year: 2019 ident: 27903_CR26 publication-title: Int. J. Heat. Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.01.028 – volume: 120 start-page: 125501 year: 2018 ident: 27903_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.125501 – volume: 16 start-page: L041002 year: 2021 ident: 27903_CR49 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.L041002 – volume: 343 start-page: 516 year: 2014 ident: 27903_CR12 publication-title: Science doi: 10.1126/science.1246957 – volume: 314 start-page: 1121 year: 2006 ident: 27903_CR24 publication-title: Science doi: 10.1126/science.1132898 – ident: 27903_CR44 doi: 10.1002/9781118671627 – volume: 28 start-page: 25894 year: 2020 ident: 27903_CR17 publication-title: Opt. Express doi: 10.1364/OE.399799 – volume: 10 start-page: 665 year: 2011 ident: 27903_CR11 publication-title: Nat. Mater. doi: 10.1038/nmat3072 – volume: 9 start-page: 1798 year: 2018 ident: 27903_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04202-y – volume: 7 start-page: 48 year: 2019 ident: 27903_CR20 publication-title: Energy Environ. – volume: 67 start-page: 717 year: 2004 ident: 27903_CR1 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/67/5/R03 – volume: 8 start-page: 524 year: 2014 ident: 27903_CR7 publication-title: Nat. Photon doi: 10.1038/nphoton.2014.133 – volume: 23 start-page: 2003823 year: 2020 ident: 27903_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.202003823 – volume: 113 start-page: 3471 year: 2016 ident: 27903_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1517363113 – volume: 4 start-page: 041304 year: 2017 ident: 27903_CR32 publication-title: Appl. Phys. Rev. doi: 10.1063/1.5001072 – volume: 10 start-page: 047001 year: 2018 ident: 27903_CR2 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.047001 – volume: 558 start-page: 569 year: 2018 ident: 27903_CR28 publication-title: Nature doi: 10.1038/s41586-018-0245-5 – volume: 335 start-page: 447 year: 2012 ident: 27903_CR29 publication-title: Science doi: 10.1126/science.1214383 – volume: 364 start-page: 170 year: 2019 ident: 27903_CR19 publication-title: Science doi: 10.1126/science.aaw6259 – volume: 115 start-page: 195503 year: 2015 ident: 27903_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.195503 – volume: 18 start-page: 48 year: 2019 ident: 27903_CR16 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0239-6 – volume: 110 start-page: 093901 year: 2013 ident: 27903_CR39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.093901 |
SSID | ssj0000391844 |
Score | 2.58417 |
Snippet | The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in... The use of time modulation to break reciprocity is well understood for light, sound or charge diffusion, but it’s unclear whether it can work for thermal... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 167 |
SubjectTerms | 639/624/399/1015 639/766/25 639/766/530 Acoustic waves Acoustics Bias Continuity equation Diffusion Energy harvesting Heat conductivity Heat transfer Humanities and Social Sciences Laboratories Modulation multidisciplinary Photonics Physics Propagation Reciprocity Science Science (multidisciplinary) Sound Symmetry Thermal diffusion Thermal energy Thermal management Transport processes |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4VKiQuqLS0hG6rIPUGESHOw-6lalFXqBI9FWlvlp9lJUiA7B7675lxvEHbUm5RbEvOzNj-MjP-BuATE1ZQ3aPMK_JWOe8zbqxGW7a-Fpp5a-i-88XP-vyy_DGrZtHh1se0ytWeGDZq2xnykZ8Q0ifrKsSX27uMqkZRdDWW0NiAl0RdRildzawZfSzEfs7LMt6VyRk_6cuwM1BeQtEIulq2dh4F2v6nsOa_KZN_xU3DcTR9BTsRR6ZfB8XvwgvXvoatobLkH3wKmZ2mfwOfERjO6ZhCuJ12PiXAd4MjqTLKklxl6bxNqcJ8dtNZquXlbDrQO_d7cDn9_uvsPIsFEzKDwGuRKVcpxCusLo1ytmgqk2ttjairyrKKN4rRRVr6I_a-PiWidvyvVlp453zBvWZvYbPtWrcPKRF4Ki-EMkaU2CiMQ50yp60XrjQ-gdOV2KSJbOJU1OJahqg243IQtURRyyBqyRI4GsfcDlwaz_b-RtoYexIPdnjR3f-WcVnJ3OQ21xwxYCEQmijBvPMIYRwzeYWvE5isdCnj4uzloyklcDg247KiWIlqXbcMfbigIHKVwLtB9eNMKBbLClEn0KwZxdpU11va-VWg7uZNyWsaebwyn8dp_V8UB89_xXvYLuhSRk7JiRPYXNwv3QeESgv9MayHBxTMEKo priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEC5iRPAiajSOxjBCbjo6mZ5HlyCSiCEI8eRCbk0_zUIyo_sA8--t6plZWV1zyrUf0FRXdX_V1VUfwIFAh8x7lAXNr1U-hExaZ0iXXajRiOAs5zuffa1PJ-WX8-p8C0a6o0GA842uHfNJTWaXb3_9vP5IBv-hTxmX7-ZlNHf-bFA0yPlid-Au3UwNG-rZAPfjySyQHJpyyJ3ZPHXtfopl_Ddhz3-_UP4VR43X08lDeDDgyvSoV4RHsOXbx3CvZ5q83oH3BA-nfFkR6E67kDLsu6LxzI-y5AezdNqmzDOfXXWOGb28S_siz_MnMDn5_O3TaTbQJmSW4Nci077ShFpEXVrtXdFUNjfGWayryolKNlpwOi37xSHUh1yunbxrbTB4HwoZjHgK223X-meQchlPHRC1tVhSJ1pPOyu8cQF9aUMCh6OwlB1qijO1xaWKsW0hVS9gRQJWUcBKJPB6NedHX1HjxtHHvAerkVwNOzZ0s-9qMC6V29zlRhISLJAAikYRfCAg44XNK2pOYG_cQTVqmGLXkY-rAhN4teom4-KIiW59t4xjJHIouUpgt9_w1Uo4IisKrBNo1lRhbanrPe30Ihbwlk0pa575ZlSaP8v6vyie34YoXsD9ghM4cv7IuAfbi9nSvyRYtTD70VZ-A0xwHSo priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSyQxEC5cRdiL-FzbFy1408a2092TeNNBEUFPCt5CnrsDO93izBz891alHzLqCntNKhAqleRLquorgCMmrKC6R4lX9FvlvE-4sRpt2fpSaOatoXznu_vy5jG_fSqeFiDrcmFC0H6gtAzHdBcddjrJw5amgIJsICgn7AcsEXU7WfWwHPb_KsR4zvO8zY9JGf9i6NwdFKj6v8KXn8MkP_hKwxV0vQorLXaML5rZrsGCq9Zhuakm-boB5wgBR3QhIbCOax8TtBujPNVAmdGnWDyqYqoln4xrS1W7nI0bIufJJjxeXz0Mb5K2NEJiEGJNE-UKhciElblRzmaDwqRaWyPKorCs4APFKGWW3r7el2dEyY4vaKWFd85n3Gu2BYtVXbltiImqU3khlDEix05hHK4ec9p64XLjIzjrlCVNyxtO5Sv-yuC_Zlw2CpaoYBkULFkEx_2Y54Y141vpS1qDXpIYr0ND_fJbthYgU5PaVHNEe5lAEKIE884jWHHMpAU2R7DXraBst-FE0vOQjqRMRHDYd-MGIq-Iqlw9CzJckLu4iOBXs-D9TMjryjJRRjCYM4W5qc73VKM_gaQbbZOXNPKkM5r3af1bFTv_J74LPzNKx0gpLHEPFqcvM7ePIGmqD8KueAPy1QtT priority: 102 providerName: Springer Nature |
Title | Reciprocity of thermal diffusion in time-modulated systems |
URI | https://link.springer.com/article/10.1038/s41467-021-27903-3 https://www.ncbi.nlm.nih.gov/pubmed/35013296 https://www.proquest.com/docview/2619578729 https://www.proquest.com/docview/2618904585 https://pubmed.ncbi.nlm.nih.gov/PMC8748696 https://doaj.org/article/0c0d0b861029406a93fef129e3c05861 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB9apdAXqfbDtfbYQt_axXWzH0nfzsOrHCilrXBvIZ94oHvi3T343zuT7F29Vu1LX7KwSSBMJpmZzMxvAD4xYQXVPcq8otcq533GjdXIy9bXQjNvDeU7n57VJ-flaFyN75X6opiwCA8cCXeQm9zmmqOULwQKHyWYdx6FlGMmr3g0fFDm3TOmwh3MBJouZZclkzN-MCvDnUARCUUjKKlsTRIFwP6HtMy_gyX_8JgGQTR8BVudBpn248q34Zlrd-BFrCl5-xq-oiI4IbGE6nU69SkpeFc4niqhLOhpLJ20KVWUz66mlmp3OZtGOOfZGzgfHv8anGRdgYTMoKI1z5SrFOonrC6NcrZoKpNrbY2oq8qyijeKUeIsWcDe14cEzI52tNLCO-cL7jV7CxvttHW7kBJgp_JCKGNEiZ3CONxD5rT1wpXGJ3C4JJY0HXo4FbG4lMGLzbiMBJZIYBkILFkCn1dzriN2xpOjj2gPViMJ9zr8QG6QHTfIf3FDAvvLHZTdYZxJMhLpYipEAh9X3XiMyDeiWjddhDFckNO4SuBd3PDVSsj3ygpRJ9CsscLaUtd72slFgOrmTclrmvllyTS_l_U4Kfb-Bynew8uCUjVyClnch435zcJ9QAVqrnvwvBk32PLhtx5s9vujnyP8Hh2fff-Bfwf1oBdOE7anJb8Do4wbmA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwEB6VIgQXxFoCBYIEJ4ia2llsJITYqle6nFrp3YzjBZ7UJm3znlD_FL-RGWepHktvvUWxHTnjGc9nzwbwkksrqe5R4jXdVjnvE2FshbxsfSEr7q2heOe9_WJymH2d5tMV-DXEwpBb5bAnho3aNobuyDcI6RN3Mfn-5DShqlFkXR1KaHRssePOf-KRrX23_RnX9xVjW18OPk2SvqpAYhCdzBPtco1KnReZ0c6yMjdpVVkjizy3PBel5hRtSsdG74tNymaOh09dSe-cZ8JXHL97Da6j4k1JosppOd7pULZ1kWV9bE7KxUabhZ2I_CBYKSmUbUn_hTIB_8K2f7to_mGnDepv6w7c7nFr_KFjtLuw4up7cKOrZHmOT8GT1LT34S0C0RmpRYT3ceNjApjHOJIqsSzoai6e1TFVtE-OG0u1w5yNu3TS7QM4vBJSPoTVuqndI4gpYaj2UmpjZIaN0jjkIe4q66XLjI9gcyCbMn32ciqicaSCFZ0L1ZFaIalVILXiEbwex5x0uTsu7f2RVmPsSXm3w4vm7LvqxVilJrVpJRBzMolQSEvunUfI5LhJc3wdwfqwlqrfDFp1wboRvBibUYzJNqNr1yxCHyHJaJ1HsNYt_TgTsv1yJosIyiWmWJrqcks9-xFShYsyEwWNfDOwz8W0_k-Kx5f_xXO4OTnY21W72_s7T-AWo4CQlBwj12F1frZwTxGmzatnQTZi-HbVwvgbiAtOFQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIlBfEDeBAkGCJ4g2tXPYSAgBZdVSqHig0r4ZxwddiSal2RXqX-PXMeMc1XL0rW-r2I6y4xn7s-f4AJ5yaSXxHiVe022V8z4Rxlaoy9YXsuLeGsp3_rRf7BxkH2b5bA1-DbkwFFY5rIlhobaNoTvyCSF90i4mJ74Pi_i8PX19_CMhBinytA50Gp2K7LnTn3h8a1_tbuNcP2Ns-v7Lu52kZxhIDCKVRaJdrnGD50VmtLOszE1aVdbIIs8tz0WpOWWe0hHS-2KLKpvjQVRX0jvnmfAVx_degsslx3egLZWzcrzfocrrIsv6PJ2Ui0mbhVWJYiJYKSmtbWUvDJQB_8K5f4dr_uGzDVvh9Dpc6zFs_KZTuhuw5uqbcKVjtTzFXyGq1LS34CWC0jltkQj148bHBDaPcCSxsizpmi6e1zGx2ydHjSUeMWfjrrR0exsOLkSUd2C9bmp3D2IqHqq9lNoYmWGjNA71ibvKeuky4yPYGsSmTF_JnAg1vqvgUedCdaJWKGoVRK14BM_HMcddHY9ze7-l2Rh7Ug3u8KA5-aZ6k1apSW1aCcSfTCIs0pJ75xE-OW7SHB9HsDnMpeoXhladqXEET8ZmNGny0-jaNcvQR0hyYOcR3O2mfvwS8gNzJosIyhWlWPnU1ZZ6fhjKhosyEwWNfDGoz9ln_V8U98__F4_hKpqh-ri7v_cANhjlhqQUI7kJ64uTpXuIiG1RPQqmEcPXi7bF3y7LUks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reciprocity+of+thermal+diffusion+in+time-modulated+systems&rft.jtitle=Nature+communications&rft.au=Jiaxin+Li&rft.au=Ying+Li&rft.au=Pei-Chao+Cao&rft.au=Minghong+Qi&rft.date=2022-01-10&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-021-27903-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0c0d0b861029406a93fef129e3c05861 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |