Higher-order and fractional discrete time crystals in clean long-range interacting systems
Discrete time crystals are periodically driven systems characterized by a response with periodicity n T , with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 2341 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Discrete time crystals are periodically driven systems characterized by a response with periodicity
n
T
, with
T
the period of the drive and
n
> 1. Typically,
n
is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with
n
restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different ‘higher-order’ discrete time crystals with integer and, surprisingly, even fractional
n
> 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions.
Discrete time crystals are typically characterized by a period doubled response with respect to an external drive. Here, the authors predict the emergence of rich dynamical phases with higher-order and fractional periods in clean spin-1/2 chains with long-range interactions. |
---|---|
AbstractList | Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different ‘higher-order’ discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions.Discrete time crystals are typically characterized by a period doubled response with respect to an external drive. Here, the authors predict the emergence of rich dynamical phases with higher-order and fractional periods in clean spin-1/2 chains with long-range interactions. Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different 'higher-order' discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions. Discrete time crystals are periodically driven systems characterized by a response with periodicity n T , with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different ‘higher-order’ discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions. Discrete time crystals are typically characterized by a period doubled response with respect to an external drive. Here, the authors predict the emergence of rich dynamical phases with higher-order and fractional periods in clean spin-1/2 chains with long-range interactions. Discrete time crystals are typically characterized by a period doubled response with respect to an external drive. Here, the authors predict the emergence of rich dynamical phases with higher-order and fractional periods in clean spin-1/2 chains with long-range interactions. Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different 'higher-order' discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions.Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different 'higher-order' discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions. Discrete time crystals are periodically driven systems characterized by a response with periodicity n T , with T the period of the drive and n > 1. Typically, n is an integer and bounded from above by the dimension of the local (or single particle) Hilbert space, the most prominent example being spin-1/2 systems with n restricted to 2. Here, we show that a clean spin-1/2 system in the presence of long-range interactions and transverse field can sustain a huge variety of different ‘higher-order’ discrete time crystals with integer and, surprisingly, even fractional n > 2. We characterize these (arguably prethermal) non-equilibrium phases of matter thoroughly using a combination of exact diagonalization, semiclassical methods, and spin-wave approximations, which enable us to establish their stability in the presence of competing long- and short-range interactions. Remarkably, these phases emerge in a model with continous driving and time-independent interactions, convenient for experimental implementations with ultracold atoms or trapped ions. |
ArticleNumber | 2341 |
Author | Knolle, Johannes Nunnenkamp, Andreas Pizzi, Andrea |
Author_xml | – sequence: 1 givenname: Andrea orcidid: 0000-0002-6714-7360 surname: Pizzi fullname: Pizzi, Andrea organization: Cavendish Laboratory, University of Cambridge – sequence: 2 givenname: Johannes orcidid: 0000-0002-0956-2419 surname: Knolle fullname: Knolle, Johannes email: j.knolle@tum.de organization: Department of Physics, Technische Universität München, Munich Center for Quantum Science and Technology (MCQST), Blackett Laboratory, Imperial College London – sequence: 3 givenname: Andreas orcidid: 0000-0003-2390-7636 surname: Nunnenkamp fullname: Nunnenkamp, Andreas organization: School of Physics and Astronomy and Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33879787$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1rFTEUDVKx9dk_4EIG3LgZzecksxGkqC0U3OjGTcjHnWkeM0lN5hX6781702rbRQMh4eack5Oc-xodxRQBobcEfySYqU-FE97JFlPSUioUa8ULdEIxJy2RlB092B-j01K2uA7WE8X5K3TMmJK9VPIE_T4P4xXkNmUPuTHRN0M2bgkpmqnxobgMCzRLmKFx-bYsZipNiI2bwMRmSnFss4kj1NoCB2Icm1JxMJc36OVQ4XB6t27Qr29ff56dt5c_vl-cfblsneB4aY0Bz-nQ2ToFtlJxgRmhyviOSQcGWwEdtwakcOAV75mnAzaCOOWYVZ5t0MWq65PZ6uscZpNvdTJBHwopj9rkJVTLGtuhqkgpLTAOzlrVY2D7-1UvHeZV6_Oqdb2zM3gHcclmeiT6-CSGKz2mG62wUFh1VeDDnUBOf3ZQFj3XT4RpMhHSrmgqSFfzovWNG_T-CXSbdrn--wEluCLdwdG7h47-WbmPsALUCnA5lZJh0C4sZp9gNRgmTbDeN4xeG0bXhtGHhtGiUukT6r36syS2kkoF1-jzf9vPsP4C-UbTvw |
CitedBy_id | crossref_primary_10_1007_JHEP05_2023_066 crossref_primary_10_1103_PhysRevX_15_011020 crossref_primary_10_1103_PhysRevB_106_224308 crossref_primary_10_1103_PhysRevB_111_024315 crossref_primary_10_1103_PhysRevResearch_3_043203 crossref_primary_10_1103_PhysRevLett_127_090602 crossref_primary_10_1103_PhysRevB_106_144312 crossref_primary_10_1103_PhysRevB_103_L220301 crossref_primary_10_3390_chemengineering7050088 crossref_primary_10_1038_s41467_022_28462_x crossref_primary_10_1103_PRXQuantum_3_020308 crossref_primary_10_1103_PhysRevA_109_032204 crossref_primary_10_1103_RevModPhys_95_035002 crossref_primary_10_1103_PhysRevResearch_6_033092 crossref_primary_10_1088_2399_6528_acdd4f crossref_primary_10_1103_PhysRevB_106_064307 crossref_primary_10_1103_PhysRevB_111_104302 crossref_primary_10_1016_j_physrep_2024_04_005 crossref_primary_10_1088_1367_2630_acc04e crossref_primary_10_1103_PhysRevB_108_L140102 crossref_primary_10_1103_PhysRevResearch_3_L042023 crossref_primary_10_3390_sym14122562 crossref_primary_10_1103_PhysRevA_109_L050203 crossref_primary_10_1038_s41467_025_56712_1 crossref_primary_10_1103_PhysRevResearch_5_L032024 crossref_primary_10_3390_cryst14100901 crossref_primary_10_21468_SciPostPhysCore_4_3_021 crossref_primary_10_1103_PhysRevB_106_L060305 crossref_primary_10_1103_PhysRevResearch_4_023018 crossref_primary_10_1007_s43673_022_00041_8 crossref_primary_10_1103_PhysRevB_103_245303 crossref_primary_10_1103_PhysRevE_110_064150 crossref_primary_10_1038_s41598_023_37984_3 crossref_primary_10_1103_PhysRevB_108_014434 crossref_primary_10_1103_PhysRevLett_127_140602 crossref_primary_10_1103_PhysRevB_111_L100304 crossref_primary_10_1103_PhysRevLett_127_263003 crossref_primary_10_1088_1402_4896_ad9d85 crossref_primary_10_1103_PhysRevB_109_174310 crossref_primary_10_1103_PhysRevA_105_043311 crossref_primary_10_1103_PhysRevB_104_L180304 crossref_primary_10_1103_PhysRevX_12_031037 crossref_primary_10_1103_PhysRevB_108_024302 crossref_primary_10_1038_s41467_024_53712_5 crossref_primary_10_1016_j_physleta_2024_129552 crossref_primary_10_1103_PhysRevA_104_053327 crossref_primary_10_1103_PhysRevB_104_094308 crossref_primary_10_1103_PhysRevA_109_042212 crossref_primary_10_1103_PhysRevResearch_4_023151 crossref_primary_10_1103_PhysRevResearch_6_013311 crossref_primary_10_21468_SciPostPhysCore_6_3_053 |
Cites_doi | 10.1038/nature21426 10.1103/PhysRevB.99.045128 10.1038/nphys4106 10.1209/0295-5075/125/26001 10.1088/1361-6633/aa8b38 10.1103/PhysRevLett.120.180603 10.1007/BF02154750 10.1103/PhysRevA.90.053602 10.1103/PhysRevLett.50.1637 10.1103/PhysRevA.98.013613 10.1103/PhysRevLett.121.185301 10.1103/PhysRevB.16.4860 10.1103/PhysRevLett.120.130603 10.1103/PhysRevLett.110.135704 10.1038/nature10981 10.1103/PhysRevLett.95.010402 10.1103/PhysRevLett.123.150601 10.1103/PhysRevB.99.121112 10.1103/PhysRevB.95.214307 10.1103/PhysRevLett.122.015701 10.1103/PhysRevA.99.033626 10.1126/science.6849136 10.1103/PhysRevLett.117.090402 10.1103/PhysRevLett.122.150601 10.1126/science.1232296 10.1038/nature21413 10.1103/PhysRevB.94.085112 10.1103/PhysRevB.93.245146 10.1103/PhysRevLett.121.250602 10.1103/PhysRevA.91.033617 10.1103/PhysRevLett.118.030401 10.1038/s41567-018-0137-5 10.1103/PhysRevLett.116.250401 10.1103/PhysRevB.94.045127 10.1103/PhysRevResearch.2.022002 10.1103/PhysRevA.100.052103 10.1088/1367-2630/ab2afe 10.1103/PhysRevX.10.011043 10.1103/PhysRevE.100.060105 10.1146/annurev-conmatphys-031119-050658 10.1103/PhysRevB.99.104303 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-22583-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_0bf75c777be34ecbb890e3ed42897c04 PMC8058086 33879787 10_1038_s41467_021_22583_5 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-aaed42f6b2f650b784503128ad637cea0b5e64bae75ced8493d2f0a51c8c3b8d3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:13 EDT 2025 Thu Aug 21 17:57:36 EDT 2025 Thu Jul 10 23:28:26 EDT 2025 Wed Aug 13 05:16:28 EDT 2025 Thu Apr 03 07:05:48 EDT 2025 Tue Jul 01 04:17:23 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-aaed42f6b2f650b784503128ad637cea0b5e64bae75ced8493d2f0a51c8c3b8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0956-2419 0000-0002-6714-7360 0000-0003-2390-7636 |
OpenAccessLink | https://www.nature.com/articles/s41467-021-22583-5 |
PMID | 33879787 |
PQID | 2515481604 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0bf75c777be34ecbb890e3ed42897c04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8058086 proquest_miscellaneous_2516225250 proquest_journals_2515481604 pubmed_primary_33879787 crossref_citationtrail_10_1038_s41467_021_22583_5 crossref_primary_10_1038_s41467_021_22583_5 springer_journals_10_1038_s41467_021_22583_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-20 |
PublicationDateYYYYMMDD | 2021-04-20 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Albiez (CR34) 2005; 95 Else, Bauer, Nayak (CR5) 2016; 117 Else, Bauer, Nayak (CR14) 2017; 7 Matus, Sacha (CR27) 2019; 99 Sacha (CR4) 2015; 91 CR15 CR11 CR10 Lerose, Žunkovič, Silva, Gambassi (CR29) 2019; 99 CR32 Turner, Michailidis, Abanin, Serbyn, Papić (CR3) 2018; 14 CR31 Lerose, Marino, Žunkovič, Gambassi, Silva (CR36) 2018; 120 Lerose, Žunkovič, Marino, Gambassi, Silva (CR37) 2019; 99 Zhang (CR17) 2017; 543 Giergiel, Kosior, Hannaford, Sacha (CR26) 2018; 98 Jensen, Bak, Bohr (CR38) 1983; 50 Choi (CR18) 2017; 543 Bramble, Carrier (CR41) 1983; 219 Gambetta, Carollo, Marcuzzi, Garrahan, Lesanovsky (CR23) 2019; 122 Else, Ho, Dumitrescu (CR33) 2020; 10 Rovny, Blum, Barrett (CR19) 2018; 120 Bilitewski, Bhattacharjee, Moessner (CR44) 2018; 121 Cosme, Fialko (CR35) 2014; 90 Pizzi, Knolle, Nunnenkamp (CR28) 2019; 123 Britton (CR43) 2012; 484 Liu (CR30) 2019; 122 Khemani, Lazarides, Moessner, Sondhi (CR8) 2016; 116 Smits, Liao, Stoof, van der Straten (CR20) 2018; 121 Heyl, Polkovnikov, Kehrein (CR1) 2013; 110 Sreejith, Lazarides, Moessner (CR24) 2016; 94 CR25 Yao, Potter, Potirniche, Vishwanath (CR16) 2017; 118 CR22 CR21 Belykh, Pedersen, Soerensen (CR39) 1977; 16 Sacha, Zakrzewski (CR9) 2017; 81 Moessner, Sondhi (CR13) 2017; 13 Islam (CR42) 2013; 340 Guevara, Glass (CR40) 1982; 14 Russomanno, Iemini, Dalmonte, Fazio (CR12) 2017; 95 Heyl (CR2) 2019; 125 von Keyserlingk, Khemani, Sondhi (CR7) 2016; 94 von Keyserlingk, Sondhi (CR6) 2016; 93 DV Else (22583_CR33) 2020; 10 JG Cosme (22583_CR35) 2014; 90 A Lerose (22583_CR36) 2018; 120 MR Guevara (22583_CR40) 1982; 14 CJ Turner (22583_CR3) 2018; 14 A Pizzi (22583_CR28) 2019; 123 A Lerose (22583_CR37) 2019; 99 J Smits (22583_CR20) 2018; 121 J Rovny (22583_CR19) 2018; 120 GJ Sreejith (22583_CR24) 2016; 94 R Islam (22583_CR42) 2013; 340 R Moessner (22583_CR13) 2017; 13 22583_CR22 M Heyl (22583_CR1) 2013; 110 22583_CR21 22583_CR15 DV Else (22583_CR14) 2017; 7 F Liu (22583_CR30) 2019; 122 S Choi (22583_CR18) 2017; 543 CW von Keyserlingk (22583_CR6) 2016; 93 A Lerose (22583_CR29) 2019; 99 V Khemani (22583_CR8) 2016; 116 JW Britton (22583_CR43) 2012; 484 K Giergiel (22583_CR26) 2018; 98 V Belykh (22583_CR39) 1977; 16 DM Bramble (22583_CR41) 1983; 219 DV Else (22583_CR5) 2016; 117 22583_CR11 P Matus (22583_CR27) 2019; 99 22583_CR31 22583_CR10 J Zhang (22583_CR17) 2017; 543 22583_CR32 A Russomanno (22583_CR12) 2017; 95 F Gambetta (22583_CR23) 2019; 122 CW von Keyserlingk (22583_CR7) 2016; 94 M Albiez (22583_CR34) 2005; 95 22583_CR25 K Sacha (22583_CR9) 2017; 81 NY Yao (22583_CR16) 2017; 118 M Heyl (22583_CR2) 2019; 125 MH Jensen (22583_CR38) 1983; 50 T Bilitewski (22583_CR44) 2018; 121 K Sacha (22583_CR4) 2015; 91 |
References_xml | – ident: CR22 – volume: 543 start-page: 221 year: 2017 ident: CR18 article-title: Observation of discrete time-crystalline order in a disordered dipolar many-body system publication-title: Nature doi: 10.1038/nature21426 – volume: 99 start-page: 045128 year: 2019 ident: CR37 article-title: Impact of nonequilibrium fluctuations on prethermal dynamical phase transitions in long-range interacting spin chains publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045128 – ident: CR10 – volume: 13 start-page: 424 year: 2017 ident: CR13 article-title: Equilibration and order in quantum floquet matter publication-title: Nat. Phys. doi: 10.1038/nphys4106 – volume: 125 start-page: 26001 year: 2019 ident: CR2 article-title: Dynamical quantum phase transitions: a brief survey publication-title: EPL Europhys. Lett. doi: 10.1209/0295-5075/125/26001 – volume: 81 start-page: 016401 year: 2017 ident: CR9 article-title: Time crystals: a review publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa8b38 – volume: 7 start-page: 011026 year: 2017 ident: CR14 article-title: Prethermal phases of matter protected by time-translation symmetry publication-title: Phys. Rev. X – volume: 120 start-page: 180603 year: 2018 ident: CR19 article-title: Observation of discrete-time-crystal signatures in an ordered dipolar many-body system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.180603 – volume: 14 start-page: 1 year: 1982 end-page: 23 ident: CR40 article-title: Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias publication-title: J. Math. Biol. doi: 10.1007/BF02154750 – volume: 90 start-page: 053602 year: 2014 ident: CR35 article-title: Thermalization in closed quantum systems: semiclassical approach publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.053602 – volume: 50 start-page: 1637 year: 1983 ident: CR38 article-title: Complete devil’s staircase, fractal dimension, and universality of mode-locking structure in the circle map publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1637 – volume: 98 start-page: 013613 year: 2018 ident: CR26 article-title: Time crystals: analysis of experimental conditions publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.013613 – volume: 121 start-page: 185301 year: 2018 ident: CR20 article-title: Observation of a space-time crystal in a superfluid quantum gas publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.185301 – volume: 16 start-page: 4860 year: 1977 ident: CR39 article-title: Shunted-josephson-junction model. ii. the nonautonomous case publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.4860 – volume: 120 start-page: 130603 year: 2018 ident: CR36 article-title: Chaotic dynamical ferromagnetic phase induced by nonequilibrium quantum fluctuations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.130603 – ident: CR25 – volume: 110 start-page: 135704 year: 2013 ident: CR1 article-title: Dynamical quantum phase transitions in the transverse-field ising model publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.135704 – volume: 484 start-page: 489 year: 2012 ident: CR43 article-title: Engineered two-dimensional ising interactions in a trapped-ion quantum simulator with hundreds of spins publication-title: Nature doi: 10.1038/nature10981 – ident: CR21 – volume: 95 start-page: 010402 year: 2005 ident: CR34 article-title: Direct observation of tunneling and nonlinear self-trapping in a single bosonic josephson junction publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.010402 – volume: 123 start-page: 150601 year: 2019 ident: CR28 article-title: Period-n discrete time crystals and quasicrystals with ultracold bosons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.150601 – volume: 99 start-page: 121112 year: 2019 ident: CR29 article-title: Quasilocalized excitations induced by long-range interactions in translationally invariant quantum spin chains publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.121112 – volume: 95 start-page: 214307 year: 2017 ident: CR12 article-title: Floquet time crystal in the lipkin-meshkov-glick model publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.214307 – volume: 122 start-page: 015701 year: 2019 ident: CR23 article-title: Discrete time crystals in the absence of manifest symmetries or disorder in open quantum systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.015701 – volume: 10 start-page: 021032 year: 2020 ident: CR33 article-title: Long-lived interacting phases of matter protected by multiple time-translation symmetries in quasiperiodically driven systems publication-title: Phys. Rev. X – volume: 99 start-page: 033626 year: 2019 ident: CR27 article-title: Fractional time crystals publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.033626 – volume: 219 start-page: 251 year: 1983 end-page: 256 ident: CR41 article-title: Running and breathing in mammals publication-title: Science doi: 10.1126/science.6849136 – volume: 117 start-page: 090402 year: 2016 ident: CR5 article-title: Floquet time crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.090402 – ident: CR15 – volume: 122 start-page: 150601 year: 2019 ident: CR30 article-title: Confined quasiparticle dynamics in long-range interacting quantum spin chains publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.150601 – volume: 340 start-page: 583 year: 2013 end-page: 587 ident: CR42 article-title: Emergence and frustration of magnetism with variable-range interactions in a quantum simulator publication-title: Science doi: 10.1126/science.1232296 – volume: 543 start-page: 217 year: 2017 ident: CR17 article-title: Observation of a discrete time crystal publication-title: Nature doi: 10.1038/nature21413 – ident: CR31 – ident: CR11 – volume: 94 start-page: 085112 year: 2016 ident: CR7 article-title: Absolute stability and spatiotemporal long-range order in floquet systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.085112 – ident: CR32 – volume: 93 start-page: 245146 year: 2016 ident: CR6 article-title: Phase structure of one-dimensional interacting floquet systems. ii. symmetry-broken phases publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.245146 – volume: 121 start-page: 250602 year: 2018 ident: CR44 article-title: Temperature dependence of the butterfly effect in a classical many-body system publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.250602 – volume: 91 start-page: 033617 year: 2015 ident: CR4 article-title: Modeling spontaneous breaking of time-translation symmetry publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.033617 – volume: 118 start-page: 030401 year: 2017 ident: CR16 article-title: Discrete time crystals: rigidity, criticality, and realizations publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.030401 – volume: 14 start-page: 745 year: 2018 ident: CR3 article-title: Weak ergodicity breaking from quantum many-body scars publication-title: Nat. Phys. doi: 10.1038/s41567-018-0137-5 – volume: 116 start-page: 250401 year: 2016 ident: CR8 article-title: Phase structure of driven quantum systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.250401 – volume: 94 start-page: 045127 year: 2016 ident: CR24 article-title: Parafermion chain with 2 /k floquet edge modes publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.045127 – volume: 117 start-page: 090402 year: 2016 ident: 22583_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.090402 – volume: 95 start-page: 214307 year: 2017 ident: 22583_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.214307 – volume: 14 start-page: 1 year: 1982 ident: 22583_CR40 publication-title: J. Math. Biol. doi: 10.1007/BF02154750 – volume: 121 start-page: 185301 year: 2018 ident: 22583_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.185301 – ident: 22583_CR22 doi: 10.1103/PhysRevResearch.2.022002 – volume: 121 start-page: 250602 year: 2018 ident: 22583_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.250602 – volume: 99 start-page: 045128 year: 2019 ident: 22583_CR37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.045128 – volume: 91 start-page: 033617 year: 2015 ident: 22583_CR4 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.91.033617 – volume: 116 start-page: 250401 year: 2016 ident: 22583_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.250401 – volume: 340 start-page: 583 year: 2013 ident: 22583_CR42 publication-title: Science doi: 10.1126/science.1232296 – volume: 110 start-page: 135704 year: 2013 ident: 22583_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.135704 – ident: 22583_CR31 doi: 10.1103/PhysRevA.100.052103 – volume: 219 start-page: 251 year: 1983 ident: 22583_CR41 publication-title: Science doi: 10.1126/science.6849136 – volume: 81 start-page: 016401 year: 2017 ident: 22583_CR9 publication-title: Rep. Prog. Phys. doi: 10.1088/1361-6633/aa8b38 – ident: 22583_CR11 – volume: 120 start-page: 180603 year: 2018 ident: 22583_CR19 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.180603 – volume: 10 start-page: 021032 year: 2020 ident: 22583_CR33 publication-title: Phys. Rev. X – volume: 94 start-page: 085112 year: 2016 ident: 22583_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.085112 – ident: 22583_CR15 doi: 10.1088/1367-2630/ab2afe – volume: 99 start-page: 033626 year: 2019 ident: 22583_CR27 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.99.033626 – volume: 94 start-page: 045127 year: 2016 ident: 22583_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.045127 – ident: 22583_CR32 doi: 10.1103/PhysRevX.10.011043 – volume: 543 start-page: 221 year: 2017 ident: 22583_CR18 publication-title: Nature doi: 10.1038/nature21426 – volume: 125 start-page: 26001 year: 2019 ident: 22583_CR2 publication-title: EPL Europhys. Lett. doi: 10.1209/0295-5075/125/26001 – volume: 99 start-page: 121112 year: 2019 ident: 22583_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.121112 – volume: 123 start-page: 150601 year: 2019 ident: 22583_CR28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.150601 – volume: 93 start-page: 245146 year: 2016 ident: 22583_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.245146 – ident: 22583_CR21 doi: 10.1103/PhysRevE.100.060105 – volume: 13 start-page: 424 year: 2017 ident: 22583_CR13 publication-title: Nat. Phys. doi: 10.1038/nphys4106 – volume: 122 start-page: 015701 year: 2019 ident: 22583_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.015701 – volume: 14 start-page: 745 year: 2018 ident: 22583_CR3 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0137-5 – ident: 22583_CR10 doi: 10.1146/annurev-conmatphys-031119-050658 – volume: 7 start-page: 011026 year: 2017 ident: 22583_CR14 publication-title: Phys. Rev. X – volume: 16 start-page: 4860 year: 1977 ident: 22583_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.16.4860 – volume: 122 start-page: 150601 year: 2019 ident: 22583_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.150601 – volume: 98 start-page: 013613 year: 2018 ident: 22583_CR26 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.98.013613 – volume: 543 start-page: 217 year: 2017 ident: 22583_CR17 publication-title: Nature doi: 10.1038/nature21413 – volume: 90 start-page: 053602 year: 2014 ident: 22583_CR35 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.90.053602 – volume: 118 start-page: 030401 year: 2017 ident: 22583_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.030401 – volume: 50 start-page: 1637 year: 1983 ident: 22583_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.50.1637 – ident: 22583_CR25 doi: 10.1103/PhysRevB.99.104303 – volume: 95 start-page: 010402 year: 2005 ident: 22583_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.010402 – volume: 120 start-page: 130603 year: 2018 ident: 22583_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.130603 – volume: 484 start-page: 489 year: 2012 ident: 22583_CR43 publication-title: Nature doi: 10.1038/nature10981 |
SSID | ssj0000391844 |
Score | 2.5775592 |
Snippet | Discrete time crystals are periodically driven systems characterized by a response with periodicity
n
T
, with
T
the period of the drive and
n
> 1. Typically,... Discrete time crystals are periodically driven systems characterized by a response with periodicity nT, with T the period of the drive and n > 1. Typically, n... Discrete time crystals are typically characterized by a period doubled response with respect to an external drive. Here, the authors predict the emergence of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2341 |
SubjectTerms | 639/766/119/2795 639/766/483/1139 Approximation Crystals Discrete time systems Equilibrium Hilbert space Humanities and Social Sciences Integers Laboratories Magnetic fields multidisciplinary Periodicity Phases Physics Science Science (multidisciplinary) Symmetry |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC5kQfAivm1dJYI3DZvpJJ30UcVlEfTkwuIl5LkuDBnpmT3sv7eS9Iw7Pi8e5tJJhqIeyVck9RXAS8V5r5ROVIXRUqGcpjoJRkUMqe9jL5Iu9c4fPw0np-LDmTy71uqrvAlr9MBNcUfMJSW9UspFLqJ3To8s8hgQNo_KNyZQPPOuJVN1D-Yjpi5irpJhXB-tRd0TyosEdGHNqdw7iSph_-9Q5q-PJX-6Ma0H0fEduD0jSPKmSX4XbsR8D262npJX9-FLe7lBK6cmsTmQNLXiBVxUanAnhMmktJQnfrpCbLhck4tM8K9sJstVPqdTqTcghUeiLsznpNE9rx_A6fH7z-9O6NxAgXoEYhtqbdFTGhz-JHNKC4kx3GsbBq58tMzJOAhnI2o4Bi1GHvrErFx47bnTgT-Eg7zK8TGQOHjlU1wkK7nAFGf0wqZUyfPH3oexg8VWmcbP7OKlycXS1Fturk0zgEEDmGoAIzt4tVvzrXFr_HX222Kj3czCi10_oLeY2VvMv7ylg8Othc0crGuDEA_ztsVQhl_shjHMyt2JzXF1WecMKAgCxg4eNYfYSYJZvsJkXHWg9lxlT9T9kXzxtVJ5ayY1JpUdvN461Q-x_qyKJ_9DFU_hVl-igQncKQ_hYDNdxmcIsDbueY2l76D-Ijs priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyI1o-u1hLBm4bmbZJN9iQqLaWgJwsPLyGfz8IjW3dfD_3vnWT3bXl-9LCwbJIlycwkM8nMbxB6JxmrpVSRSN8awqVVREVOCQ8-1nWoeVQ53vnrt-bsgp8vxXI6cBsmt8rtmlgWat-5fEZ-DPswKNeLhvKPV79IzhqVb1enFBr30YMMXZZduuRSzmcsGf1ccT7FylCmjgdeVobslwCMrBgRO_tRge3_l675t8vkH_emZTs6fYIeT3ok_jQS_im6F9I-ejhmlryBt-LZ6YZn6MfoyUEKxiY2yePYj8EM0DzH5PagNuOcYh67_gZ0xfWALxOGn5qE111akT7HH-CMK1EaphUe4Z-H5-ji9OT7lzMyJVQgDhSzDTEmeF7HxsIjqJWKC5DpWhnfMOmCoVaEhlsTpHDBK94yX0dqxMIpx6zy7AXaS10KBwiHxkkXwyIawTiYPK3jJsYCpt_WzrcVWmynVbsJbTwnvVjrcuvNlB5JoYEUupBCiwq9n9tcjVgbd9b-nKk118w42eVD16_0JHaa2ghjkVLawHhw1qqWBpZnQbXSUV6hwy2t9SS8g75ltQq9nYtB7PJdikmhuy51GugIKJAVejmyxtwTsPolGOeyQnKHaXa6uluSLn8WaG9FhQIjs0Iftux1263_T8Wru0fxGj2qM8dTDmviIdrb9NfhDahSG3tU5OU3x7UcIQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB5qRfCl1N9rq0TwTaN7m2STfRBRsRShPnlQfAlJNjkLR67du0Lvv3eS3T05PQUf9mUzWbKZmeQbkvkG4KVkrJJSBSrbxlAuraIq8JJy34aq8hUPKuU7n32tT6f8y7k434Ox3NEwgcudoV2qJzXt5m9urtbv0eHf9Snj6u2SZ3dPlw3QOhWj4hbcxp1JJkc9G-B-XplZgwENH3Jndnfd2p8yjf8u7PnnFcrfzlHz9nRyCAcDriQfekO4B3s-3oc7faXJ9QP43t_noJlpk5jYktD1KQ3YKWXmdgieSSo0T1y3RsQ4X5KLSPBTJpL5Is5ol7IQSGKXyB3jjPQk0MuHMD35_O3TKR3KKlCH8GxFjfEtr0Jt8RGllYoL9OxKmbZm0nlTWuFrbo2XwvlW8Ya1VSiNmDjlmFUtewT7cRH9EyC-dtIFPwlGMI6BT-O4CSFT6jeVa5sCJuNkajdwjqfSF3Odz76Z0r0CNCpAZwVoUcCrTZ_LnnHjn9Ifk442koktO79YdDM9OJ8ubcB_kVJaz7h31qqm9CzNgmqkK3kBx6OG9WiBGoEfRnOTOjW_2DSj86UTFRP94jrL1DgQhJEFPO4NYjMSjP0lhuiyALllKltD3W6JFz8ywbcqhcJQs4DXo1H9Gtbfp-Lp_4kfwd0q2X3JcaU8hv1Vd-2fIcBa2efZa34CDW4gkg priority: 102 providerName: Scholars Portal |
Title | Higher-order and fractional discrete time crystals in clean long-range interacting systems |
URI | https://link.springer.com/article/10.1038/s41467-021-22583-5 https://www.ncbi.nlm.nih.gov/pubmed/33879787 https://www.proquest.com/docview/2515481604 https://www.proquest.com/docview/2516225250 https://pubmed.ncbi.nlm.nih.gov/PMC8058086 https://doaj.org/article/0bf75c777be34ecbb890e3ed42897c04 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8dvquUTwTYPdfDTp495y67Fwh6gHiy8lSZP1YOlKd-_h_nsnabeyego-NIUmKdPMTDOTzPwC8FZxzpTSgaq6NFQoq6kOIqfC14Exz0TQMd_54rI4vxLzhVwcANvlwqSg_QRpmX7Tu-iwDxuRVDoGFKAEak7lIRxH6PYo1dNiOqyrRMRzLUSfH5NzfUfXvTkoQfXfZV_-GSb5215pmoJmD-FBbzuSSUftIzjwzWO4150mefsEvnUxGzShaRLT1CS0XdoCdorZty0ayCQeJk9ce4tW4WpDrhuCrzINWa2bJW1jpgGJCBKpY7MkHdDz5ilczc6-Ts9pf3QCdWiCbakxvhYsFBYvmVulhUTtZdrUBVfOm9xKXwhrvJLO11qUvGYhN3LstONW1_wZHDXrxr8A4gunXPDjYCQX6NyUTpgQEmx-yVxdZjDeDWblelzxeLzFqkr721xXHQMqZECVGFDJDN4NfX50qBr_bH0aeTS0jIjY6cG6XVa9hFS5DfgtSinrufDOWl3mnsdR0KVyucjgZMfhqlfTTYXGHXps4yJWvxmqUcHirolp_PomtSmQEDQVM3jeCcRACfr3Ct1wlYHaE5U9UvdrmuvvCcRb51KjO5nB-51Q_SLr70Px8v-av4L7LMp9LvBveAJH2_bGv0YjamtHcKgWCks9-ziC48lk_mWO99Ozy0-fR0mjRml5AssLoX8CrMMdtg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ7DqtZ3YOSDEq9rSx6mVVlyM7dhLpVW2JFuh_VP8RsZOstXy6K2HSFFsR7bn4bE98w1CLyXnTEoViKxKQ4S0iqggKBG-Cox5JoKK8c6HR8X4RHyZ5JMN9GuIhYlulYNOTIq6mrt4Rr4D6zAY16OCindnP0jMGhVvV4cUGh1b7PvlT9iytW_3PgF9XzG2-_n445j0WQWIA-tkQYzxlWChsPDk1EolcmBspkxVcOm8oTb3hbDGy9z5SomSVyxQk4-cctyqisN_r6HrsPDSKFFyIldnOhFtXQnRx-ZQrnZakTRR9IMAwVGc5GvrX0oT8C_b9m8XzT_uadPyt3sH3e7tVvy-Y7S7aMPX99CNLpPlEt6SJ6lr76OvnecISZie2NQVDk0XPAHNYwxwA2Y6jintsWuWYJvOWnxaY_ipqfFsXk9JE-MdcMSxSA3rKe7gptsH6ORKpvoh2qzntX-EsC-cdMGPgsm5gC1W6YQJIYH3l8xVZYZGw7Rq16ObxyQbM51u2bnSHSk0kEInUug8Q69Xbc46bI9La3-I1FrVjLjc6cO8mepezDW1AcYipbSeC--sVSX1PM6CKqWjIkPbA611ryxafcHaGXqxKgYxj3c3pvbz81SngI6AwZqhrY41Vj3hXMkSFG-G5BrTrHV1vaQ-_Z6gxBXNFWxqM_RmYK-Lbv1_Kh5fPorn6Ob4-PBAH-wd7T9Bt1jkfipAH2-jzUVz7p-CGbewz5LsYPTtqoX1N_3XWiA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNZ6_YidA0JAWbUUKg5UWnEJtmMvlVbZkmyF9q_x6xg7yVbLo7ceIkWxHdmeh8f2zDcIPVOcM6V0IKoqDBHKaqKDoET4KjDmmQg6xjt_Osz3jsSHqZxuoV9DLEx0qxx0YlLU1cLFM_IRrMNgXI9zKkahd4v4vDt5ffKDxAxS8aZ1SKfRsciBX_2E7Vv7an8XaP2cscn7L-_2SJ9hgDiwVJbEGF8JFnILj6RWaSGByZk2Vc6V84Za6XNhjVfS-UqLglcsUCPHTjtudcXhv5fQZcXlOMqYmqr1-U5EXtdC9HE6lOtRK5JWij4RIESaE7mxFqaUAf-yc_921_zjzjYthZMb6Hpvw-I3HdPdRFu-voWudFktV_CWvEpdext97bxISML3xKaucGi6QApoHuOBGzDZcUxvj12zAjt13uLjGsNPTY3ni3pGmhj7gCOmRWpYz3AHPd3eQUcXMtV30Xa9qP19hH3ulAt-HIzkArZbhRMmhATkXzBXFRkaD9Nauh7pPCbcmJfpxp3rsiNFCaQoEylKmaEX6zYnHc7HubXfRmqta0aM7vRh0czKXuRLagOMRSllPRfeWasL6nmcBV0oR0WGdgZal73iaMszNs_Q03UxiHy8xzG1X5ymOjl0BIzXDN3rWGPdE861KkAJZ0htMM1GVzdL6uPvCVZcU6lhg5uhlwN7nXXr_1Px4PxRPEFXQUzLj_uHBw_RNRaZnwpQzTtoe9mc-kdg0S3t4yQ6GH27aFn9DR8oXlY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Higher-order+and+fractional+discrete+time+crystals+in+clean+long-range+interacting+systems&rft.jtitle=Nature+communications&rft.au=Pizzi%2C+Andrea&rft.au=Knolle%2C+Johannes&rft.au=Nunnenkamp%2C+Andreas&rft.date=2021-04-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-22583-5&rft.externalDocID=10_1038_s41467_021_22583_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |