Exploration of the effects of Coriolis force and thermal radiation on water-based hybrid nanofluid flow over an exponentially stretching plate

Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide C u - A l 2 O 3 -water based hybrid nanofluid flow within the...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 12; no. 1; pp. 21733 - 13
Main Authors Oke, A. S., Prasannakumara, B. C., Mutuku, W. N., Gowda, R. J. Punith, Juma, B. A., Kumar, R. Naveen, Bada, O. I.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity Ω and the angle of inclination of the magnetic field is γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
AbstractList Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide $$\left( Cu\text{- }Al_{2}O_{3}\right)$$ C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity $$\Omega$$ Ω and the angle of inclination of the magnetic field is $$\gamma$$ γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( Cu\text{- }Al_{2}O_{3}\right)$$\end{document} C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} Ω and the angle of inclination of the magnetic field is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity Ω and the angle of inclination of the magnetic field is γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
Abstract Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide $$\left( Cu\text{- }Al_{2}O_{3}\right)$$ C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity $$\Omega$$ Ω and the angle of inclination of the magnetic field is $$\gamma$$ γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide Cu-Al2O3-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity Ω and the angle of inclination of the magnetic field is γ. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.
ArticleNumber 21733
Author Oke, A. S.
Prasannakumara, B. C.
Bada, O. I.
Kumar, R. Naveen
Juma, B. A.
Mutuku, W. N.
Gowda, R. J. Punith
Author_xml – sequence: 1
  givenname: A. S.
  surname: Oke
  fullname: Oke, A. S.
  email: okeabayomisamuel@gmail.com
  organization: Department of Mathematical Sciences, Adekunle Ajasin University, Department of Mathematics and Actuarial Science, Kenyatta University
– sequence: 2
  givenname: B. C.
  surname: Prasannakumara
  fullname: Prasannakumara, B. C.
  organization: Department of Studies and Research in Mathematics, Davangere University
– sequence: 3
  givenname: W. N.
  surname: Mutuku
  fullname: Mutuku, W. N.
  organization: Department of Mathematics and Actuarial Science, Kenyatta University
– sequence: 4
  givenname: R. J. Punith
  surname: Gowda
  fullname: Gowda, R. J. Punith
  organization: Department of Studies and Research in Mathematics, Davangere University
– sequence: 5
  givenname: B. A.
  surname: Juma
  fullname: Juma, B. A.
  organization: Department of Mathematics and Actuarial Science, Kenyatta University
– sequence: 6
  givenname: R. Naveen
  surname: Kumar
  fullname: Kumar, R. Naveen
  organization: Department of Studies and Research in Mathematics, Davangere University
– sequence: 7
  givenname: O. I.
  surname: Bada
  fullname: Bada, O. I.
  organization: Department of Mathematics, University of Benin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36526629$$D View this record in MEDLINE/PubMed
BookMark eNp9UstuFDEQHKEgEkJ-gAOyxIXLgJ8z4wsSigJEisQFzlaPp73ryGsv9mweP8E3491NIMkhvrhtV5Wq3fW6OYgpYtO8ZfQjo2L4VCRTemgp5y1nvdatftEccSpVywXnBw_qw-aklEtal-JaMv2qORSd4l3H9VHz5-xmHVKG2adIkiPzEgk6h3Yu2-Npyj4FX4hL2SKBOG0ReQWBZJj8HS2Sa5gxtyMUnMjydsx-IhFicmFTKxfSNUlXmCuf4M26NhJnDyHckjJnnO3SxwVZh6rxpnnpIBQ8uduPm19fz36efm8vfnw7P_1y0Vol6dwCjEJ0kxq1tv0Ene76AQT2nUPOBqYROjqxHjQVWvYCUSg1MbBUoOukk-K4Od_rTgkuzTr7FeRbk8Cb3UXKCwN59jagccCdxE6NHKnsJQ5ytMABJLO8F6qrWp_3WuvNuMLJ1uYyhEeij1-iX5pFujK6VwMbeBX4cCeQ0-8NltmsfLEYAkRMm2J4r5TqpZaiQt8_gV6mTY71q3Yoymj9iop699DRPyv3Y6-AYQ-wOZWS0Rnr590wq0EfDKNmGzKzD5mpITO7kJktlT-h3qs_SxJ7UqnguMD83_YzrL9OHubh
CitedBy_id crossref_primary_10_1063_5_0201977
crossref_primary_10_1515_ntrev_2024_0083
crossref_primary_10_1038_s41598_023_42593_1
crossref_primary_10_1007_s10973_023_12691_3
crossref_primary_10_1007_s10973_024_13058_y
crossref_primary_10_1016_j_aej_2024_07_018
crossref_primary_10_37394_232013_2023_18_13
crossref_primary_10_1177_16878132231180866
crossref_primary_10_1002_zamm_202301063
crossref_primary_10_1080_02286203_2024_2343997
crossref_primary_10_1088_1742_6596_2765_1_012020
crossref_primary_10_1515_jnet_2024_0011
crossref_primary_10_1002_zamm_202300932
crossref_primary_10_1080_10407782_2024_2328761
crossref_primary_10_1016_j_aej_2023_07_023
crossref_primary_10_1016_j_csite_2023_103892
crossref_primary_10_1038_s41598_024_67998_4
crossref_primary_10_1166_jon_2024_2186
crossref_primary_10_1080_10407790_2023_2269610
crossref_primary_10_1016_j_triboint_2023_109187
crossref_primary_10_3390_w15162879
crossref_primary_10_1007_s41939_024_00614_0
crossref_primary_10_1016_j_ijft_2024_100918
crossref_primary_10_1007_s12043_023_02650_w
crossref_primary_10_1142_S0217984924503615
crossref_primary_10_37394_232029_2024_3_26
Cites_doi 10.1021/acsomega.0c02173
10.1007/s10973-016-5436-4
10.1007/s10973-020-09720-w
10.1140/epjp/i2017-11277-3
10.1016/j.molliq.2017.05.071
10.1007/s13369-022-06838-x
10.1016/j.rser.2010.11.035
10.1088/1402-4896/abbeae
10.1016/j.surfin.2020.100864
10.1038/s41598-020-72182-5
10.1016/j.molliq.2018.05.124
10.1201/9781003217374-1
10.1016/j.cjche.2020.11.026
10.3390/math8081237
10.1016/j.asej.2020.09.009
10.1016/j.physleta.2018.05.008
10.1016/j.physa.2019.124026
10.1038/s41598-020-79628-w
10.1007/s13369-018-3473-y
10.1016/j.applthermaleng.2020.116159
10.1016/j.apt.2019.07.029
10.1038/s41598-020-61215-8
10.1016/j.camwa.2021.04.006
10.1016/j.cmpb.2020.105347
10.1002/eng2.12249
10.1016/j.cjph.2021.02.005
10.1080/15502287.2021.1900451
10.1088/1402-4896/ab4c50
10.1016/j.jtice.2021.05.045
10.1002/num.22610
10.1016/j.tca.2007.06.009
10.1142/S0217979221501459
10.1080/17455030.2022.2123114
10.9734/JAMCS/2017/36489
10.1016/j.rser.2016.11.068
10.1016/j.cjph.2020.10.014
10.1155/2014/147059
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-022-21799-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database ProQuest
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic



Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 13
ExternalDocumentID oai_doaj_org_article_fa2f4e65b2e0474e84bca2aa41c27356
PMC9758182
36526629
10_1038_s41598_022_21799_9
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-aab336d5b99c7da69678a3e76fe21819ea60d17a9039473ee355d1ac03ef64f43
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:09:19 EDT 2025
Thu Aug 21 18:39:13 EDT 2025
Fri Jul 11 16:38:37 EDT 2025
Wed Aug 13 04:20:08 EDT 2025
Thu Jan 02 22:52:47 EST 2025
Thu Apr 24 23:08:40 EDT 2025
Tue Jul 01 00:55:37 EDT 2025
Fri Feb 21 02:38:56 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-aab336d5b99c7da69678a3e76fe21819ea60d17a9039473ee355d1ac03ef64f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/fa2f4e65b2e0474e84bca2aa41c27356
PMID 36526629
PQID 2755010967
PQPubID 2041939
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_fa2f4e65b2e0474e84bca2aa41c27356
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9758182
proquest_miscellaneous_2755574943
proquest_journals_2755010967
pubmed_primary_36526629
crossref_citationtrail_10_1038_s41598_022_21799_9
crossref_primary_10_1038_s41598_022_21799_9
springer_journals_10_1038_s41598_022_21799_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-16
PublicationDateYYYYMMDD 2022-12-16
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References KhanMIQayyumSChuYKadrySNumerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energyNumer. Methods Partial Differ. Equ.202020202261010.1002/num.22610
OkeASConvergence of differential transform method for ordinary differential equationsJ. Adv. Math. Comput. Sci.201724611710.9734/JAMCS/2017/36489
Shampine, L.F., Reichelt, M.W. &  Kierzenka, J. Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. (2010).
LeongKYAhmadKZKOngHCGhazaliMJBaharumASynthesis and thermal conductivity characteristic of hybrid nanofluids—A reviewRenew. Sustain. Energy Rev.2017758688781:CAS:528:DC%2BC28XhvVChsrbN10.1016/j.rser.2016.11.068
KhanWAWaqasMKadrySAsgharZAbbasSZIrfanMOn the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditionsComput. Methods Programs Biomed.20201901:STN:280:DC%2BB387isFWhtA%3D%3D10.1016/j.cmpb.2020.105347
TliliINabweyHAAshwinkumarGPSandeepN3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effectSci. Rep.202010142652020NatSR..10.4265T1:CAS:528:DC%2BB3cXlvVOhtbo%3D10.1038/s41598-020-61215-8
TakabiBSalehiSAugmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluidAdv. Mech. Eng.2014610.1155/2014/147059
AnuarNSBachokNPopICu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditionsMathematics20208810.3390/math8081237
AliBNieYHussainSHabibDAbdalSInsight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo-Christov heat transfer, Coriolis force, and Arrhenius activation energyComput. Math. Appl.202193130143424611510.1016/j.camwa.2021.04.00607351716
Animasaun, I.L., Shah, N.A.,  Wakif, A.,  Mahanthesh, B.,  Sivaraj, R. & Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization . 1st edn. (Chapman and Hall/CRC, 2022).
TliliINabweyHAReddyMGSandeepNPasupulaMEffect of resistive heating on incessantly poignant thin needle in magnetohydrodynamic Sakiadis hybrid nanofluidAin Shams Eng. J.20211211025103210.1016/j.asej.2020.09.009
RehmanAUAbbasNNadeemSSaleemASignificance of Coriolis force on the dynamics of water conveying copper and copper oxide nanoparticlesPhys. Scr.202095112020PhyS...95k5706R1:CAS:528:DC%2BB3cXis1emtLfF10.1088/1402-4896/abbeae
JumaBAOkeASMutukuWNAriwayoAGOuruOJDynamics of Williamson fluid over an inclined surface subject to Coriolis and Lorentz forcesEng. Appl. Sci. Lett.2022513746
OkeASAnimasaunILMutukuWNKimathiMShahNASaleemSSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surfaceChin. J. Phys.20217171672742568661:CAS:528:DC%2BB3MXhtVenurrP10.1016/j.cjph.2021.02.005
OkeASCombined effects of Coriolis force and nanoparticle properties on the dynamics of gold-water nanofluid across nonuniform surfaceZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.202210294491560
PishnamaziMBabanezhadMNakhjiriATRezakazemiMMarjaniAShirazianSANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flowSci. Rep.202010110.1038/s41598-020-72182-5
SaidurRLeongKYMohammedHAA review on applications and challenges of nanofluidsRenew. Sustain. Energy Rev.2011153164616681:CAS:528:DC%2BC3MXhvVCnsr8%3D10.1016/j.rser.2010.11.035
NandeppanavarMMKemparajuMCRaveendraNMelting heat transfer of MHD stagnation point flow of non-Newtonian fluid due to an elastic sheetInt. J. Ambient Energy20211019
Oke, A.S., Fatunmbi, E.O., Animasaun, I.L. & Juma, B.A. Exploration of ternary-hybrid nanofluid experiencing Coriolis and Lorentz forces: case of three-dimensional flow of water conveying carbon nanotubes, graphene, and alumina nanoparticles. Waves Random Complex Med. (2022).
KorikoOKAdegbieKSOkeASAnimasaunILExploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolutionPhys. Scr.2020952020PhyS...95c5210K10.1088/1402-4896/ab4c50
ZhouS-SIjaz KhanMQayyumSPrasannakumaraBCNaveen KumarRUllah KhanSPunith GowdaRJChuY-MNonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganismsInt. J. Mod. Phys. B2021351221501452021IJMPB..3550145Z1:CAS:528:DC%2BB3MXisFSru77O10.1142/S02179792215014591465.76006
MaboodFYusufTAKhanWACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiationJ. Therm. Anal. Calorim.202114329739841:CAS:528:DC%2BB3cXot1agsLg%3D10.1007/s10973-020-09720-w
MonavariAJamaatiJBahiraeiMThermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensityJ. Taiwan Inst. Chem. Eng.20211251141:CAS:528:DC%2BB3MXhsF2hsL%2FO10.1016/j.jtice.2021.05.045
Oke, A.S. Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface. Arab. J. Sci. Eng. (2022).
AliUMalikMYAlderremyAAAlySRehmanKUA generalized findings on thermal radiation and heat generation/absorption in nanofluid flow regimePhys. A Stat. Mech. Appl.202055341078441:CAS:528:DC%2BB3cXit1yjsb0%3D10.1016/j.physa.2019.12402607461781
OkeASMutukuWNKimathiMAnimasaunILCoriolis effects on MHD Newtonian flow over a rotating non-uniform surfaceProc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.20201333613368
JanaSSalehi-KhojinAZhongW-HEnhancement of fluid thermal conductivity by the addition of single and hybrid nano-additivesThermochim. Acta20074621–245551:CAS:528:DC%2BD2sXpsFSjsL8%3D10.1016/j.tca.2007.06.009
IrfanMKhanMKhanWAAyazMModern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transportPhys. Lett. A2018382199220022018PhLA..382.1992I1:CAS:528:DC%2BC1cXpt1Kju74%3D10.1016/j.physleta.2018.05.008
KhanNSGulnadTIslamSKhanWThermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheetEur. Phys. J. Plus201713211110.1140/epjp/i2017-11277-3
NguyenQNakhjiriATRezakazemiMShirazianSThermal and flow visualization of a square heat source in a nanofluid material with a cubic-interpolated pseudo-particleACS Omega202052817658176631:CAS:528:DC%2BB3cXhtlans7vJ10.1021/acsomega.0c02173
DasPKA review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluidsJ. Mol. Liq.20172404204461:CAS:528:DC%2BC2sXosFWgtr4%3D10.1016/j.molliq.2017.05.071
WaqasHImranMBhattiMMInfluence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotatingcylinderChin. J. Phys.2020685585771:CAS:528:DC%2BB3cXisFemtLnF10.1016/j.cjph.2020.10.014
BahiraeiMehdiHeshmatianSaeedGoodarziMarjanMoayediHosseinCFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurationsAdv. Powder Technol.20193011250325161:CAS:528:DC%2BC1MXhsFerurnN10.1016/j.apt.2019.07.029
BahiraeiMMonavariAImpact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic componentsChin. J. Chem. Eng.202140364710.1016/j.cjche.2020.11.026
ToghraieDChaharsoghiVAAfrandMMeasurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluidJ. Thermal Anal. Calorim.201612515275351:CAS:528:DC%2BC28XmtVKhsbY%3D10.1007/s10973-016-5436-4
AhmadiMHMirlohiANazariMAGhasempourRA review of thermal conductivity of various nanofluidsJ. Mol. Liq.20182651811881:CAS:528:DC%2BC1cXhtFSmurzL10.1016/j.molliq.2018.05.124
Stephen, U., Choi, S. & Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. in ASME International Mechanical Engineering Congress & Exposition (1995).
BabanezhadMBehroyanINakhjiriATMarjaniAShirazianSPerformance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipeSci. Rep.202111110.1038/s41598-020-79628-w
OkeASMutukuWNKimathiMAnimasaunILInsight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force: NonlinearEngineering2020913984112020NLE.....9..398O
BahiraeiMMazaheriNDaneshyarMREmploying elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspectiveAppl. Therm. Eng.20211831:CAS:528:DC%2BB3cXit1altb7K10.1016/j.applthermaleng.2020.116159
OyemAOMutukuWNOkeASVariability effects on magnetohydrodynamic for Blasius and Sakiadis flows in the presence of Dufour and Soret about a flat plateEng. Rep.202021012249
GowdaRJPKumarRNAldalbahiAIssakhovAPrasannakumaraBCRahimi-GorjiMRahamanMThermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/ downward moving diskSurf. Interfaces20212210.1016/j.surfin.2020.100864
NayakMKShawSChamkhaAJ3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic fieldArab. J. Sci. Eng.2018441269128210.1007/s13369-018-3473-y
KumarRSVDhananjayaPGKumarRNGowdaRJPPrasannakumaraBCModeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reactionInt. J. Comput. Methods Eng. Sci. Mech.20212311219436222910.1080/15502287.2021.1900451
AS Oke (21799_CR9) 2022; 102
KY Leong (21799_CR15) 2017; 75
AS Oke (21799_CR34) 2020; 13
21799_CR10
H Waqas (21799_CR3) 2020; 68
M Bahiraei (21799_CR19) 2021; 183
21799_CR38
D Toghraie (21799_CR13) 2016; 125
B Ali (21799_CR37) 2021; 93
AS Oke (21799_CR35) 2021; 71
NS Khan (21799_CR24) 2017; 132
I Tlili (21799_CR42) 2021; 12
B Takabi (21799_CR40) 2014; 6
PK Das (21799_CR14) 2017; 240
U Ali (21799_CR2) 2020; 553
Mehdi Bahiraei (21799_CR17) 2019; 30
I Tlili (21799_CR41) 2020; 10
MK Nayak (21799_CR39) 2018; 44
21799_CR1
R Saidur (21799_CR12) 2011; 15
AS Oke (21799_CR32) 2020; 9
S-S Zhou (21799_CR5) 2021; 35
M Bahiraei (21799_CR18) 2021; 40
AO Oyem (21799_CR30) 2020; 2
BA Juma (21799_CR31) 2022; 5
21799_CR44
AU Rehman (21799_CR33) 2020; 95
F Mabood (21799_CR22) 2021; 143
RSV Kumar (21799_CR28) 2021; 23
21799_CR25
MI Khan (21799_CR4) 2020; 2020
WA Khan (21799_CR29) 2020; 190
M Pishnamazi (21799_CR7) 2020; 10
M Babanezhad (21799_CR8) 2021; 11
MH Ahmadi (21799_CR16) 2018; 265
A Monavari (21799_CR20) 2021; 125
S Jana (21799_CR11) 2007; 462
MM Nandeppanavar (21799_CR27) 2021; 10
Q Nguyen (21799_CR6) 2020; 5
AS Oke (21799_CR43) 2017; 24
OK Koriko (21799_CR36) 2020; 95
RJP Gowda (21799_CR23) 2021; 22
M Irfan (21799_CR26) 2018; 382
NS Anuar (21799_CR21) 2020; 8
References_xml – reference: LeongKYAhmadKZKOngHCGhazaliMJBaharumASynthesis and thermal conductivity characteristic of hybrid nanofluids—A reviewRenew. Sustain. Energy Rev.2017758688781:CAS:528:DC%2BC28XhvVChsrbN10.1016/j.rser.2016.11.068
– reference: WaqasHImranMBhattiMMInfluence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotatingcylinderChin. J. Phys.2020685585771:CAS:528:DC%2BB3cXisFemtLnF10.1016/j.cjph.2020.10.014
– reference: RehmanAUAbbasNNadeemSSaleemASignificance of Coriolis force on the dynamics of water conveying copper and copper oxide nanoparticlesPhys. Scr.202095112020PhyS...95k5706R1:CAS:528:DC%2BB3cXis1emtLfF10.1088/1402-4896/abbeae
– reference: Stephen, U., Choi, S. & Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. in ASME International Mechanical Engineering Congress & Exposition (1995).
– reference: OkeASConvergence of differential transform method for ordinary differential equationsJ. Adv. Math. Comput. Sci.201724611710.9734/JAMCS/2017/36489
– reference: BahiraeiMMonavariAImpact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic componentsChin. J. Chem. Eng.202140364710.1016/j.cjche.2020.11.026
– reference: Oke, A.S. Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface. Arab. J. Sci. Eng. (2022).
– reference: ZhouS-SIjaz KhanMQayyumSPrasannakumaraBCNaveen KumarRUllah KhanSPunith GowdaRJChuY-MNonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganismsInt. J. Mod. Phys. B2021351221501452021IJMPB..3550145Z1:CAS:528:DC%2BB3MXisFSru77O10.1142/S02179792215014591465.76006
– reference: TliliINabweyHAReddyMGSandeepNPasupulaMEffect of resistive heating on incessantly poignant thin needle in magnetohydrodynamic Sakiadis hybrid nanofluidAin Shams Eng. J.20211211025103210.1016/j.asej.2020.09.009
– reference: AliUMalikMYAlderremyAAAlySRehmanKUA generalized findings on thermal radiation and heat generation/absorption in nanofluid flow regimePhys. A Stat. Mech. Appl.202055341078441:CAS:528:DC%2BB3cXit1yjsb0%3D10.1016/j.physa.2019.12402607461781
– reference: AnuarNSBachokNPopICu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditionsMathematics20208810.3390/math8081237
– reference: OkeASMutukuWNKimathiMAnimasaunILCoriolis effects on MHD Newtonian flow over a rotating non-uniform surfaceProc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.20201333613368
– reference: TliliINabweyHAAshwinkumarGPSandeepN3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effectSci. Rep.202010142652020NatSR..10.4265T1:CAS:528:DC%2BB3cXlvVOhtbo%3D10.1038/s41598-020-61215-8
– reference: PishnamaziMBabanezhadMNakhjiriATRezakazemiMMarjaniAShirazianSANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flowSci. Rep.202010110.1038/s41598-020-72182-5
– reference: OkeASCombined effects of Coriolis force and nanoparticle properties on the dynamics of gold-water nanofluid across nonuniform surfaceZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.202210294491560
– reference: NandeppanavarMMKemparajuMCRaveendraNMelting heat transfer of MHD stagnation point flow of non-Newtonian fluid due to an elastic sheetInt. J. Ambient Energy20211019
– reference: OyemAOMutukuWNOkeASVariability effects on magnetohydrodynamic for Blasius and Sakiadis flows in the presence of Dufour and Soret about a flat plateEng. Rep.202021012249
– reference: AhmadiMHMirlohiANazariMAGhasempourRA review of thermal conductivity of various nanofluidsJ. Mol. Liq.20182651811881:CAS:528:DC%2BC1cXhtFSmurzL10.1016/j.molliq.2018.05.124
– reference: MonavariAJamaatiJBahiraeiMThermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensityJ. Taiwan Inst. Chem. Eng.20211251141:CAS:528:DC%2BB3MXhsF2hsL%2FO10.1016/j.jtice.2021.05.045
– reference: BahiraeiMehdiHeshmatianSaeedGoodarziMarjanMoayediHosseinCFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurationsAdv. Powder Technol.20193011250325161:CAS:528:DC%2BC1MXhsFerurnN10.1016/j.apt.2019.07.029
– reference: OkeASMutukuWNKimathiMAnimasaunILInsight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force: NonlinearEngineering2020913984112020NLE.....9..398O
– reference: SaidurRLeongKYMohammedHAA review on applications and challenges of nanofluidsRenew. Sustain. Energy Rev.2011153164616681:CAS:528:DC%2BC3MXhvVCnsr8%3D10.1016/j.rser.2010.11.035
– reference: KumarRSVDhananjayaPGKumarRNGowdaRJPPrasannakumaraBCModeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reactionInt. J. Comput. Methods Eng. Sci. Mech.20212311219436222910.1080/15502287.2021.1900451
– reference: KorikoOKAdegbieKSOkeASAnimasaunILExploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolutionPhys. Scr.2020952020PhyS...95c5210K10.1088/1402-4896/ab4c50
– reference: TakabiBSalehiSAugmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluidAdv. Mech. Eng.2014610.1155/2014/147059
– reference: KhanWAWaqasMKadrySAsgharZAbbasSZIrfanMOn the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditionsComput. Methods Programs Biomed.20201901:STN:280:DC%2BB387isFWhtA%3D%3D10.1016/j.cmpb.2020.105347
– reference: Oke, A.S., Fatunmbi, E.O., Animasaun, I.L. & Juma, B.A. Exploration of ternary-hybrid nanofluid experiencing Coriolis and Lorentz forces: case of three-dimensional flow of water conveying carbon nanotubes, graphene, and alumina nanoparticles. Waves Random Complex Med. (2022).
– reference: JumaBAOkeASMutukuWNAriwayoAGOuruOJDynamics of Williamson fluid over an inclined surface subject to Coriolis and Lorentz forcesEng. Appl. Sci. Lett.2022513746
– reference: DasPKA review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluidsJ. Mol. Liq.20172404204461:CAS:528:DC%2BC2sXosFWgtr4%3D10.1016/j.molliq.2017.05.071
– reference: NguyenQNakhjiriATRezakazemiMShirazianSThermal and flow visualization of a square heat source in a nanofluid material with a cubic-interpolated pseudo-particleACS Omega202052817658176631:CAS:528:DC%2BB3cXhtlans7vJ10.1021/acsomega.0c02173
– reference: BahiraeiMMazaheriNDaneshyarMREmploying elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspectiveAppl. Therm. Eng.20211831:CAS:528:DC%2BB3cXit1altb7K10.1016/j.applthermaleng.2020.116159
– reference: AliBNieYHussainSHabibDAbdalSInsight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo-Christov heat transfer, Coriolis force, and Arrhenius activation energyComput. Math. Appl.202193130143424611510.1016/j.camwa.2021.04.00607351716
– reference: BabanezhadMBehroyanINakhjiriATMarjaniAShirazianSPerformance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipeSci. Rep.202111110.1038/s41598-020-79628-w
– reference: OkeASAnimasaunILMutukuWNKimathiMShahNASaleemSSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surfaceChin. J. Phys.20217171672742568661:CAS:528:DC%2BB3MXhtVenurrP10.1016/j.cjph.2021.02.005
– reference: KhanMIQayyumSChuYKadrySNumerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energyNumer. Methods Partial Differ. Equ.202020202261010.1002/num.22610
– reference: MaboodFYusufTAKhanWACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiationJ. Therm. Anal. Calorim.202114329739841:CAS:528:DC%2BB3cXot1agsLg%3D10.1007/s10973-020-09720-w
– reference: Animasaun, I.L., Shah, N.A.,  Wakif, A.,  Mahanthesh, B.,  Sivaraj, R. & Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization . 1st edn. (Chapman and Hall/CRC, 2022).
– reference: NayakMKShawSChamkhaAJ3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic fieldArab. J. Sci. Eng.2018441269128210.1007/s13369-018-3473-y
– reference: ToghraieDChaharsoghiVAAfrandMMeasurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluidJ. Thermal Anal. Calorim.201612515275351:CAS:528:DC%2BC28XmtVKhsbY%3D10.1007/s10973-016-5436-4
– reference: IrfanMKhanMKhanWAAyazMModern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transportPhys. Lett. A2018382199220022018PhLA..382.1992I1:CAS:528:DC%2BC1cXpt1Kju74%3D10.1016/j.physleta.2018.05.008
– reference: Shampine, L.F., Reichelt, M.W. &  Kierzenka, J. Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. (2010).
– reference: KhanNSGulnadTIslamSKhanWThermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheetEur. Phys. J. Plus201713211110.1140/epjp/i2017-11277-3
– reference: JanaSSalehi-KhojinAZhongW-HEnhancement of fluid thermal conductivity by the addition of single and hybrid nano-additivesThermochim. Acta20074621–245551:CAS:528:DC%2BD2sXpsFSjsL8%3D10.1016/j.tca.2007.06.009
– reference: GowdaRJPKumarRNAldalbahiAIssakhovAPrasannakumaraBCRahimi-GorjiMRahamanMThermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/ downward moving diskSurf. Interfaces20212210.1016/j.surfin.2020.100864
– volume: 5
  start-page: 17658
  issue: 28
  year: 2020
  ident: 21799_CR6
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c02173
– volume: 125
  start-page: 527
  issue: 1
  year: 2016
  ident: 21799_CR13
  publication-title: J. Thermal Anal. Calorim.
  doi: 10.1007/s10973-016-5436-4
– volume: 143
  start-page: 973
  issue: 2
  year: 2021
  ident: 21799_CR22
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-020-09720-w
– volume: 132
  start-page: 11
  issue: 1
  year: 2017
  ident: 21799_CR24
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/i2017-11277-3
– volume: 240
  start-page: 420
  year: 2017
  ident: 21799_CR14
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2017.05.071
– ident: 21799_CR38
  doi: 10.1007/s13369-022-06838-x
– volume: 15
  start-page: 1646
  issue: 3
  year: 2011
  ident: 21799_CR12
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2010.11.035
– volume: 95
  issue: 11
  year: 2020
  ident: 21799_CR33
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/abbeae
– volume: 9
  start-page: 398
  issue: 1
  year: 2020
  ident: 21799_CR32
  publication-title: Engineering
– volume: 22
  year: 2021
  ident: 21799_CR23
  publication-title: Surf. Interfaces
  doi: 10.1016/j.surfin.2020.100864
– volume: 10
  start-page: 1
  year: 2020
  ident: 21799_CR7
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-72182-5
– volume: 265
  start-page: 181
  year: 2018
  ident: 21799_CR16
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2018.05.124
– ident: 21799_CR25
  doi: 10.1201/9781003217374-1
– volume: 40
  start-page: 36
  year: 2021
  ident: 21799_CR18
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.11.026
– volume: 8
  start-page: 8
  year: 2020
  ident: 21799_CR21
  publication-title: Mathematics
  doi: 10.3390/math8081237
– volume: 12
  start-page: 1025
  issue: 1
  year: 2021
  ident: 21799_CR42
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.09.009
– volume: 382
  start-page: 1992
  year: 2018
  ident: 21799_CR26
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.05.008
– volume: 553
  year: 2020
  ident: 21799_CR2
  publication-title: Phys. A Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.124026
– volume: 11
  start-page: 1
  year: 2021
  ident: 21799_CR8
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-79628-w
– volume: 44
  start-page: 1269
  year: 2018
  ident: 21799_CR39
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-018-3473-y
– volume: 183
  year: 2021
  ident: 21799_CR19
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116159
– volume: 30
  start-page: 2503
  issue: 11
  year: 2019
  ident: 21799_CR17
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2019.07.029
– volume: 10
  start-page: 1
  year: 2021
  ident: 21799_CR27
  publication-title: Int. J. Ambient Energy
– volume: 10
  start-page: 4265
  issue: 1
  year: 2020
  ident: 21799_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-61215-8
– volume: 93
  start-page: 130
  year: 2021
  ident: 21799_CR37
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2021.04.006
– volume: 190
  year: 2020
  ident: 21799_CR29
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2020.105347
– volume: 2
  start-page: 12249
  issue: 10
  year: 2020
  ident: 21799_CR30
  publication-title: Eng. Rep.
  doi: 10.1002/eng2.12249
– volume: 71
  start-page: 716
  year: 2021
  ident: 21799_CR35
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.02.005
– volume: 23
  start-page: 12
  issue: 1
  year: 2021
  ident: 21799_CR28
  publication-title: Int. J. Comput. Methods Eng. Sci. Mech.
  doi: 10.1080/15502287.2021.1900451
– volume: 95
  year: 2020
  ident: 21799_CR36
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ab4c50
– volume: 102
  start-page: 9
  year: 2022
  ident: 21799_CR9
  publication-title: ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.
– volume: 125
  start-page: 1
  year: 2021
  ident: 21799_CR20
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2021.05.045
– volume: 2020
  start-page: 22610
  year: 2020
  ident: 21799_CR4
  publication-title: Numer. Methods Partial Differ. Equ.
  doi: 10.1002/num.22610
– volume: 462
  start-page: 45
  issue: 1–2
  year: 2007
  ident: 21799_CR11
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2007.06.009
– volume: 5
  start-page: 37
  issue: 1
  year: 2022
  ident: 21799_CR31
  publication-title: Eng. Appl. Sci. Lett.
– volume: 13
  start-page: 3361
  year: 2020
  ident: 21799_CR34
  publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
– volume: 35
  start-page: 2150145
  issue: 12
  year: 2021
  ident: 21799_CR5
  publication-title: Int. J. Mod. Phys. B
  doi: 10.1142/S0217979221501459
– ident: 21799_CR44
– ident: 21799_CR10
  doi: 10.1080/17455030.2022.2123114
– ident: 21799_CR1
– volume: 24
  start-page: 1
  issue: 6
  year: 2017
  ident: 21799_CR43
  publication-title: J. Adv. Math. Comput. Sci.
  doi: 10.9734/JAMCS/2017/36489
– volume: 75
  start-page: 868
  year: 2017
  ident: 21799_CR15
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.11.068
– volume: 68
  start-page: 558
  year: 2020
  ident: 21799_CR3
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.10.014
– volume: 6
  year: 2014
  ident: 21799_CR40
  publication-title: Adv. Mech. Eng.
  doi: 10.1155/2014/147059
SSID ssj0000529419
Score 2.504129
Snippet Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat...
Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat...
Abstract Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21733
SubjectTerms 639/166/988
639/705/1041
Aluminum
Aluminum oxide
Bone Plates
Boundary layers
Coriolis Force
Heat transfer
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Science
Science (multidisciplinary)
Thermal radiation
Velocity
Water
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVGht9bE1tM6tqEhFNpTA7mZsSyRgLHDPkj3T_Q3d0bybrN9Xgp78Foj7yCNPN-sZj4x9roRsgPnoDRV1KWqQ11CI0MZwTWygd5KT_9DfvpsTs_Ux3N9fuOoL8oJy_TAeeCOIoiogtGdCJWyKjSq8yAAVO3R8-pEto0-70YwlVm9hVO1m6tkKtkcLdFTUTUZxl6CWNBKt-eJEmH_71Dmr8mSP-2YJkd0co_dnREkf5c1v89uhfEBu53PlNw8ZN9yVl0acD5FjgCPz0kb9PV4WqDk5ZIjWPWBw9iTBL6dB74gmoLcbeTXiEEXJfm4nl9sqKyLjzBOcVjjVRyma065n9ifh69X00g5RzAMG061J6uUn8mvBnzGI3Z28uHL8Wk5H7pQegRvqxKgk9L0unPO2x6MQ28GMlgTA6EBF8BUfW3BVdIpK0NAwNLX4CsZolFRycfsYMSffcq49ZUOVBwM2IJviq6T2gVPJIE6aNEVrN5OQOtnRnI6GGNo0864bNo8aS1OWpsmrXUFe7Prc5X5OP4q_Z7mdSdJXNrpBlpYO1tY-y8LK9jh1iraeYEvW2ExtKsx_rMFe7VrxqVJ-y0whmmdZbRVTsmCPclGtNNEGo3QSKCGds-89lTdbxkvLxL9t8MQD6PCgr3dGuIPtf48FM_-x1A8Z3cEraAaP-aQHawW6_ACQdmqe5nW33e_UjSq
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6tJ_IpPCCqqCglOVNpbNHFsWilKtvtQ2T_Bb2Ym8W61PCrtYXdtJ7Znxv7seTH2tiplA86BMHnUQhWhEFDJICK4SlbQWunpHvLrN3N6pr7M9CxduC2TWeV2TRwX6nbwdEd-VFrE0gUCbvthfikoaxRpV1MKjdvsDoUuI5MuO7O7OxbSYqnCJV-ZXFZHS9yvyKcMT2AlxUITbm8_GsP2_wtr_m0y-YfedNyOTh6w-wlH8o8T4R-yW6F_xO5OmSU3j9mvybZunHY-RI4wjyfTDfp5jCMbuoslR8jqA4e-pRq4Rnd8QcEKpmY9v0IkuhC007X8fEPOXbyHfojdGr_FbrjiZAGK7Xn4OR96sjyCrttw8kBZjVaafN7hM56ws5PP349PRUq9IDxCuJUAaKQ0rW6c87YFg9NegQzWxECYwAUweVtYcLl0ysoQELa0BfhchmhUVPIpO-jxtc8Ztz7XgVyEAUtwvWgaqV3wFCpQB102GSu2BKh9iktO6TG6etSPy6qeiFYj0eqRaLXL2Ltdm_kUlePG2p-IrruaFFF7_GNY_KiTgNYRyqiC0U0ZcmVVqFTjoQRQhUeEp03GDrdcUScxX9bXTJmxN7tiFFDSukAfhvVUR1vllMzYs4mJdj2RRiNAKrGHdo-99rq6X9JfnI9BwB0e9PBsmLH3W0a87tb_p-LFzaN4ye6VJBsFfswhO1gt1uEVgq5V83qUrN_NtSvP
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-H29OyWCb1ps89k86uJxCPrkwb2FaZt6B6Vduruc-0_4NzuTtiurpyD0YbuZ7A7NJPObZuYXxl4XQpbgHKQma3Sq8pCnUMiQNuAKWUBtZUXvIT9_MecX6tOlvjxgYq6FiUn7kdIyLtNzdti7FToaKgbD0EkQiVnq7rC7RN1OVr0wi917Fdq5Urmb6mMyWdzSdc8HRar-2_Dln2mSv-2VRhd09pA9mLAjfz9q-4gdhO4xuzeeJrl9wn6M-XTxUfO-4Qjt-JSuQbeLfkDJ6xVHmFoFDl1NErgut3wggoKxW8dvEH0OKXm3ml9tqaCLd9D1TbvBT03b33DK-sT-PHxf9h1lG0HbbjlVnaxjZiZftvgbT9nF2cevi_N0Om4hrRC2rVOAUkpT69K5ytZgHPoxkMGaJhAOcAFMVucWXCadsjIEhCp1DlUmQ2NUo-Qzdtjh3x4xbqtMByoLBmzBNaIspXahInpAHbQoE5bPA-CriYucjsRofdwTl4UfB83joPk4aN4l7M2uz3Jk4vin9Aca150ksWjHL_rhm5-syjcgGhWMLkXIlFWhUGUFAkDlFaI6bRJ2OluFn6b2yguLQV2OkZ9N2KtdM05K2mmBLvSbUUZb5ZRM2PPRiHaaSKMRFAnU0O6Z156q-y3d9VUk_nYY3GE8mLC3syH-Uuvvj-L4_8RP2H1BcyXHy5yyw_WwCS8QeK3Ll3Gm_QQ8PCm3
  priority: 102
  providerName: Springer Nature
Title Exploration of the effects of Coriolis force and thermal radiation on water-based hybrid nanofluid flow over an exponentially stretching plate
URI https://link.springer.com/article/10.1038/s41598-022-21799-9
https://www.ncbi.nlm.nih.gov/pubmed/36526629
https://www.proquest.com/docview/2755010967
https://www.proquest.com/docview/2755574943
https://pubmed.ncbi.nlm.nih.gov/PMC9758182
https://doaj.org/article/fa2f4e65b2e0474e84bca2aa41c27356
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB5y0JKX0LtqU7OFvrVqJe2lfSjFMQnBkFDaGvwmVtIqCQjJlW0S_4n85s6uJAe3TsEgWztrLZoZzTfaOQA-xBFNtVLaF0HBfRaa0NcxNX6hVUxjnUua2feQ5xfibMLGUz7dgb7dUXcD51tdO9tPatKUn29_r76hwn9tU8bjL3M0QjZRDN2qyBY489Uu7KNlklZRzzu439b6jhQLVZc7s33qATymgqPZcqDz3lS5iv7bYOi_0ZR_bak6S3X6BA47iEmGrUw8hR1TPYNHbdPJ1XO4a8PuHEdIXRBEgKSL6rA_R3WDlNdzgmg2M0RXuaXAx3dJGlvHoJ1WkRsEqY1vjWBOrlY274tUuqqLconfirK-ITY4FOcTczurKxuUpMtyRWxyysIFcJJZif_xAianJ79GZ37XlcHPEN0tfK1TSkXOU6UymWuh0NxpaqQojIULymgR5KHUKqCKSWoMIpo81FlATSFYwehL2Kvwsq-ByCzgxmYPaxzBR0maUq5MZqsIcsOj1IOwZ0CSdSXLbeeMMnFb5zROWv4lyL_E8S9RHnxcz5m1BTv-S31s-bqmtMW23Ym6uUw63U0KHRXMCJ5GJmCSmZilmY60ZmGG4I8LD456qUh6AU4iib5fiA6i9OD9ehh1127I6MrUy5aGS6YY9eBVK0TrlfRC6IHcEK-NpW6OVNdXrj64Qh8Q3UYPPvWCeL-sh2_FmweX8BYOIqshIX7EEewtmqV5h1BskQ5gV07lAPaHw_HPMR6PTy6-_8CzIzEauNcbA6eBfwCd5TTJ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVgheEDeBAkaCJ4ia2I4dPyBES6uWtiuEWqlvruM4tFKULHto2T_BT-E3MpNjq-XoW6V92F0f682MZ76x5yDkdcp4ZrW2oYyKJBSxj0Obch8WVqc8tbniDs8hj4Zy70R8Pk1O18ivPhYG3Sp7mdgI6rx2eEa-yRRg6RgAt_ow-h5i1Si8Xe1LaLRsceAXczDZJu_3PwF93zC2u3O8vRd2VQVCB-hkGlqbcS7zJNPaqdxKmDG13CtZeFR32lsZ5bGyOuJaKO49aOQ8ti7ivpCiEBzmvUHWBQdTZkDWt3aGX74uT3Xw3kzEuovOiXi6OQENiVFsYPMxzL4W6hUN2BQK-Be6_dtJ84-b2kYB7t4ldzrkSj-2rHaPrPnqPrnZ1rJcPCA_W2--htC0LigAS9o5i-DHbXiWdXkxoQCSnae2yrEHaIWSjjE9QjusonPAvuMQdWtOzxcYTkYrW9VFOYN3RVnPKfqcwnjqf4zqCn2dbFkuKMa8TBu_UDoqYY6H5ORayPKIDCr42SeEKhclHoOSLbSAhMoynmjvMDlh4hOWBSTuCWBclwkdC3KUprmR56lpiWaAaKYhmtEBebscM2rzgFzZewvpuuyJObybL-rxN9OJBFNYVggvk4z5SCjhU5E5y6wVsQNMmciAbPRcYTrBMjGX2yAgr5bNIBLwnsdWvp61fRIltOABedwy0XIlXCYAyRisUK2w18pSV1uqi_Mm7bgG0xKs0YC86xnxcln_fxRPr_4XL8mtveOjQ3O4Pzx4Rm4z3CcxvOQGGUzHM_8cIN80e9HtM0rOrntr_wa-lWns
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYi2BAkaCE0STxHYcHxCCllFLoeJApbkZx7FppSgZZtEwf4IfxK_jvWzVsPRWaQ4z42U8edtn-y2EPM8SlhulTJhGXoQ8dnFoMuZCb1TGMlNIZvEc8tNxenDCP0zEZIv86mNh0K2y14mNoi5qi2fko0QClo4BcMuR79wiPu-P30y_h1hBCm9a-3IaLYscufUKtm_z14f7QOsXSTJ-_2XvIOwqDIQWkMoiNCZnLC1ErpSVhUlh9swwJ1Pv0PQpZ9KoiKVREVNcMufAOhexsRFzPuWeM5j3CrkqmYhRxuREDuc7eIPGY9XF6UQsG83BVmI8G-z-EszDFqoNW9iUDPgXzv3bXfOPO9vGFI5vkZsdhqVvW6a7TbZcdYdca6taru-Sn61fX0NyWnsKEJN2biP4cQ-eZF2ezSnAZeuoqQrsAfahpDNMlNAOq-gKUPAsRCtb0NM1BpbRylS1L5fwzpf1iqL3KYyn7se0rtDryZTlmmL0y6LxEKXTEua4R04uhSj3yXYFP_uAUGkj4TA82UAL6Ko8Z0I5i2kKhRNJHpC4J4C2XU50LM1R6uZunmW6JZoGoumGaFoF5OUwZtpmBLmw9zuk69ATs3k3X9Szb7pTDtqbxHOXijxxEZfcZTy3JjGGxxbQpUgDsttzhe5UzFyfC0RAng3NoBzwxsdUrl62fYTkirOA7LRMNKyEpQLAWQIrlBvstbHUzZbq7LRJQK5gkwn70oC86hnxfFn_fxQPL_4XT8l1EGj98fD46BG5kaCYxPBKd8n2YrZ0jwH7LfInjZBR8vWypfo3fN1svA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+the+effects+of+Coriolis+force+and+thermal+radiation+on+water-based+hybrid+nanofluid+flow+over+an+exponentially+stretching+plate&rft.jtitle=Scientific+reports&rft.au=Oke%2C+A+S&rft.au=Prasannakumara%2C+B+C&rft.au=Mutuku%2C+W+N&rft.au=Gowda%2C+R+J+Punith&rft.date=2022-12-16&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=21733&rft_id=info:doi/10.1038%2Fs41598-022-21799-9&rft_id=info%3Apmid%2F36526629&rft.externalDocID=36526629
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon