Exploration of the effects of Coriolis force and thermal radiation on water-based hybrid nanofluid flow over an exponentially stretching plate
Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide C u - A l 2 O 3 -water based hybrid nanofluid flow within the...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 21733 - 13 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.12.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide
C
u
-
A
l
2
O
3
-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity
Ω
and the angle of inclination of the magnetic field is
γ
. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. |
---|---|
AbstractList | Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide
$$\left( Cu\text{- }Al_{2}O_{3}\right)$$
C
u
-
A
l
2
O
3
-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity
$$\Omega$$
Ω
and the angle of inclination of the magnetic field is
$$\gamma$$
γ
. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate.Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide [Formula: see text]-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity [Formula: see text] and the angle of inclination of the magnetic field is [Formula: see text]. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( Cu\text{- }Al_{2}O_{3}\right)$$\end{document} C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega$$\end{document} Ω and the angle of inclination of the magnetic field is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity Ω and the angle of inclination of the magnetic field is γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. Abstract Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide $$\left( Cu\text{- }Al_{2}O_{3}\right)$$ C u - A l 2 O 3 -water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity $$\Omega$$ Ω and the angle of inclination of the magnetic field is $$\gamma$$ γ . Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat transfer. The present study focuses on a three-dimensional Copper-Aluminium Oxide Cu-Al2O3-water based hybrid nanofluid flow within the boundary layer with heat transfer over a rotating exponentially stretching plate, subjected to an inclined magnetic field. The sheet rotates at an angular velocity Ω and the angle of inclination of the magnetic field is γ. Employing a set of appropriate similarity transformation reduces the governing PDEs to ODEs. The resulting ODEs are solved with the finite difference code with Shooting Technique. Primary velocity increases at large rotation but the secondary velocity reduces as the rotation increases. In addition, the magnetic field is found to oppose the flow and thereby causing a reduction in both the primary and secondary velocities. Increasing the volume fraction reduces the skin friction coefficient and enhances the heat transfer rate. |
ArticleNumber | 21733 |
Author | Oke, A. S. Prasannakumara, B. C. Bada, O. I. Kumar, R. Naveen Juma, B. A. Mutuku, W. N. Gowda, R. J. Punith |
Author_xml | – sequence: 1 givenname: A. S. surname: Oke fullname: Oke, A. S. email: okeabayomisamuel@gmail.com organization: Department of Mathematical Sciences, Adekunle Ajasin University, Department of Mathematics and Actuarial Science, Kenyatta University – sequence: 2 givenname: B. C. surname: Prasannakumara fullname: Prasannakumara, B. C. organization: Department of Studies and Research in Mathematics, Davangere University – sequence: 3 givenname: W. N. surname: Mutuku fullname: Mutuku, W. N. organization: Department of Mathematics and Actuarial Science, Kenyatta University – sequence: 4 givenname: R. J. Punith surname: Gowda fullname: Gowda, R. J. Punith organization: Department of Studies and Research in Mathematics, Davangere University – sequence: 5 givenname: B. A. surname: Juma fullname: Juma, B. A. organization: Department of Mathematics and Actuarial Science, Kenyatta University – sequence: 6 givenname: R. Naveen surname: Kumar fullname: Kumar, R. Naveen organization: Department of Studies and Research in Mathematics, Davangere University – sequence: 7 givenname: O. I. surname: Bada fullname: Bada, O. I. organization: Department of Mathematics, University of Benin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36526629$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UstuFDEQHKEgEkJ-gAOyxIXLgJ8z4wsSigJEisQFzlaPp73ryGsv9mweP8E3491NIMkhvrhtV5Wq3fW6OYgpYtO8ZfQjo2L4VCRTemgp5y1nvdatftEccSpVywXnBw_qw-aklEtal-JaMv2qORSd4l3H9VHz5-xmHVKG2adIkiPzEgk6h3Yu2-Npyj4FX4hL2SKBOG0ReQWBZJj8HS2Sa5gxtyMUnMjydsx-IhFicmFTKxfSNUlXmCuf4M26NhJnDyHckjJnnO3SxwVZh6rxpnnpIBQ8uduPm19fz36efm8vfnw7P_1y0Vol6dwCjEJ0kxq1tv0Ene76AQT2nUPOBqYROjqxHjQVWvYCUSg1MbBUoOukk-K4Od_rTgkuzTr7FeRbk8Cb3UXKCwN59jagccCdxE6NHKnsJQ5ytMABJLO8F6qrWp_3WuvNuMLJ1uYyhEeij1-iX5pFujK6VwMbeBX4cCeQ0-8NltmsfLEYAkRMm2J4r5TqpZaiQt8_gV6mTY71q3Yoymj9iop699DRPyv3Y6-AYQ-wOZWS0Rnr590wq0EfDKNmGzKzD5mpITO7kJktlT-h3qs_SxJ7UqnguMD83_YzrL9OHubh |
CitedBy_id | crossref_primary_10_1063_5_0201977 crossref_primary_10_1515_ntrev_2024_0083 crossref_primary_10_1038_s41598_023_42593_1 crossref_primary_10_1007_s10973_023_12691_3 crossref_primary_10_1007_s10973_024_13058_y crossref_primary_10_1016_j_aej_2024_07_018 crossref_primary_10_37394_232013_2023_18_13 crossref_primary_10_1177_16878132231180866 crossref_primary_10_1002_zamm_202301063 crossref_primary_10_1080_02286203_2024_2343997 crossref_primary_10_1088_1742_6596_2765_1_012020 crossref_primary_10_1515_jnet_2024_0011 crossref_primary_10_1002_zamm_202300932 crossref_primary_10_1080_10407782_2024_2328761 crossref_primary_10_1016_j_aej_2023_07_023 crossref_primary_10_1016_j_csite_2023_103892 crossref_primary_10_1038_s41598_024_67998_4 crossref_primary_10_1166_jon_2024_2186 crossref_primary_10_1080_10407790_2023_2269610 crossref_primary_10_1016_j_triboint_2023_109187 crossref_primary_10_3390_w15162879 crossref_primary_10_1007_s41939_024_00614_0 crossref_primary_10_1016_j_ijft_2024_100918 crossref_primary_10_1007_s12043_023_02650_w crossref_primary_10_1142_S0217984924503615 crossref_primary_10_37394_232029_2024_3_26 |
Cites_doi | 10.1021/acsomega.0c02173 10.1007/s10973-016-5436-4 10.1007/s10973-020-09720-w 10.1140/epjp/i2017-11277-3 10.1016/j.molliq.2017.05.071 10.1007/s13369-022-06838-x 10.1016/j.rser.2010.11.035 10.1088/1402-4896/abbeae 10.1016/j.surfin.2020.100864 10.1038/s41598-020-72182-5 10.1016/j.molliq.2018.05.124 10.1201/9781003217374-1 10.1016/j.cjche.2020.11.026 10.3390/math8081237 10.1016/j.asej.2020.09.009 10.1016/j.physleta.2018.05.008 10.1016/j.physa.2019.124026 10.1038/s41598-020-79628-w 10.1007/s13369-018-3473-y 10.1016/j.applthermaleng.2020.116159 10.1016/j.apt.2019.07.029 10.1038/s41598-020-61215-8 10.1016/j.camwa.2021.04.006 10.1016/j.cmpb.2020.105347 10.1002/eng2.12249 10.1016/j.cjph.2021.02.005 10.1080/15502287.2021.1900451 10.1088/1402-4896/ab4c50 10.1016/j.jtice.2021.05.045 10.1002/num.22610 10.1016/j.tca.2007.06.009 10.1142/S0217979221501459 10.1080/17455030.2022.2123114 10.9734/JAMCS/2017/36489 10.1016/j.rser.2016.11.068 10.1016/j.cjph.2020.10.014 10.1155/2014/147059 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-21799-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_fa2f4e65b2e0474e84bca2aa41c27356 PMC9758182 36526629 10_1038_s41598_022_21799_9 |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-aab336d5b99c7da69678a3e76fe21819ea60d17a9039473ee355d1ac03ef64f43 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:09:19 EDT 2025 Thu Aug 21 18:39:13 EDT 2025 Fri Jul 11 16:38:37 EDT 2025 Wed Aug 13 04:20:08 EDT 2025 Thu Jan 02 22:52:47 EST 2025 Thu Apr 24 23:08:40 EDT 2025 Tue Jul 01 00:55:37 EDT 2025 Fri Feb 21 02:38:56 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-aab336d5b99c7da69678a3e76fe21819ea60d17a9039473ee355d1ac03ef64f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doaj.org/article/fa2f4e65b2e0474e84bca2aa41c27356 |
PMID | 36526629 |
PQID | 2755010967 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fa2f4e65b2e0474e84bca2aa41c27356 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9758182 proquest_miscellaneous_2755574943 proquest_journals_2755010967 pubmed_primary_36526629 crossref_citationtrail_10_1038_s41598_022_21799_9 crossref_primary_10_1038_s41598_022_21799_9 springer_journals_10_1038_s41598_022_21799_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-16 |
PublicationDateYYYYMMDD | 2022-12-16 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | KhanMIQayyumSChuYKadrySNumerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energyNumer. Methods Partial Differ. Equ.202020202261010.1002/num.22610 OkeASConvergence of differential transform method for ordinary differential equationsJ. Adv. Math. Comput. Sci.201724611710.9734/JAMCS/2017/36489 Shampine, L.F., Reichelt, M.W. & Kierzenka, J. Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. (2010). LeongKYAhmadKZKOngHCGhazaliMJBaharumASynthesis and thermal conductivity characteristic of hybrid nanofluids—A reviewRenew. Sustain. Energy Rev.2017758688781:CAS:528:DC%2BC28XhvVChsrbN10.1016/j.rser.2016.11.068 KhanWAWaqasMKadrySAsgharZAbbasSZIrfanMOn the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditionsComput. Methods Programs Biomed.20201901:STN:280:DC%2BB387isFWhtA%3D%3D10.1016/j.cmpb.2020.105347 TliliINabweyHAAshwinkumarGPSandeepN3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effectSci. Rep.202010142652020NatSR..10.4265T1:CAS:528:DC%2BB3cXlvVOhtbo%3D10.1038/s41598-020-61215-8 TakabiBSalehiSAugmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluidAdv. Mech. Eng.2014610.1155/2014/147059 AnuarNSBachokNPopICu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditionsMathematics20208810.3390/math8081237 AliBNieYHussainSHabibDAbdalSInsight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo-Christov heat transfer, Coriolis force, and Arrhenius activation energyComput. Math. Appl.202193130143424611510.1016/j.camwa.2021.04.00607351716 Animasaun, I.L., Shah, N.A., Wakif, A., Mahanthesh, B., Sivaraj, R. & Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization . 1st edn. (Chapman and Hall/CRC, 2022). TliliINabweyHAReddyMGSandeepNPasupulaMEffect of resistive heating on incessantly poignant thin needle in magnetohydrodynamic Sakiadis hybrid nanofluidAin Shams Eng. J.20211211025103210.1016/j.asej.2020.09.009 RehmanAUAbbasNNadeemSSaleemASignificance of Coriolis force on the dynamics of water conveying copper and copper oxide nanoparticlesPhys. Scr.202095112020PhyS...95k5706R1:CAS:528:DC%2BB3cXis1emtLfF10.1088/1402-4896/abbeae JumaBAOkeASMutukuWNAriwayoAGOuruOJDynamics of Williamson fluid over an inclined surface subject to Coriolis and Lorentz forcesEng. Appl. Sci. Lett.2022513746 OkeASAnimasaunILMutukuWNKimathiMShahNASaleemSSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surfaceChin. J. Phys.20217171672742568661:CAS:528:DC%2BB3MXhtVenurrP10.1016/j.cjph.2021.02.005 OkeASCombined effects of Coriolis force and nanoparticle properties on the dynamics of gold-water nanofluid across nonuniform surfaceZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.202210294491560 PishnamaziMBabanezhadMNakhjiriATRezakazemiMMarjaniAShirazianSANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flowSci. Rep.202010110.1038/s41598-020-72182-5 SaidurRLeongKYMohammedHAA review on applications and challenges of nanofluidsRenew. Sustain. Energy Rev.2011153164616681:CAS:528:DC%2BC3MXhvVCnsr8%3D10.1016/j.rser.2010.11.035 NandeppanavarMMKemparajuMCRaveendraNMelting heat transfer of MHD stagnation point flow of non-Newtonian fluid due to an elastic sheetInt. J. Ambient Energy20211019 Oke, A.S., Fatunmbi, E.O., Animasaun, I.L. & Juma, B.A. Exploration of ternary-hybrid nanofluid experiencing Coriolis and Lorentz forces: case of three-dimensional flow of water conveying carbon nanotubes, graphene, and alumina nanoparticles. Waves Random Complex Med. (2022). KorikoOKAdegbieKSOkeASAnimasaunILExploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolutionPhys. Scr.2020952020PhyS...95c5210K10.1088/1402-4896/ab4c50 ZhouS-SIjaz KhanMQayyumSPrasannakumaraBCNaveen KumarRUllah KhanSPunith GowdaRJChuY-MNonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganismsInt. J. Mod. Phys. B2021351221501452021IJMPB..3550145Z1:CAS:528:DC%2BB3MXisFSru77O10.1142/S02179792215014591465.76006 MaboodFYusufTAKhanWACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiationJ. Therm. Anal. Calorim.202114329739841:CAS:528:DC%2BB3cXot1agsLg%3D10.1007/s10973-020-09720-w MonavariAJamaatiJBahiraeiMThermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensityJ. Taiwan Inst. Chem. Eng.20211251141:CAS:528:DC%2BB3MXhsF2hsL%2FO10.1016/j.jtice.2021.05.045 Oke, A.S. Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface. Arab. J. Sci. Eng. (2022). AliUMalikMYAlderremyAAAlySRehmanKUA generalized findings on thermal radiation and heat generation/absorption in nanofluid flow regimePhys. A Stat. Mech. Appl.202055341078441:CAS:528:DC%2BB3cXit1yjsb0%3D10.1016/j.physa.2019.12402607461781 OkeASMutukuWNKimathiMAnimasaunILCoriolis effects on MHD Newtonian flow over a rotating non-uniform surfaceProc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.20201333613368 JanaSSalehi-KhojinAZhongW-HEnhancement of fluid thermal conductivity by the addition of single and hybrid nano-additivesThermochim. Acta20074621–245551:CAS:528:DC%2BD2sXpsFSjsL8%3D10.1016/j.tca.2007.06.009 IrfanMKhanMKhanWAAyazMModern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transportPhys. Lett. A2018382199220022018PhLA..382.1992I1:CAS:528:DC%2BC1cXpt1Kju74%3D10.1016/j.physleta.2018.05.008 KhanNSGulnadTIslamSKhanWThermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheetEur. Phys. J. Plus201713211110.1140/epjp/i2017-11277-3 NguyenQNakhjiriATRezakazemiMShirazianSThermal and flow visualization of a square heat source in a nanofluid material with a cubic-interpolated pseudo-particleACS Omega202052817658176631:CAS:528:DC%2BB3cXhtlans7vJ10.1021/acsomega.0c02173 DasPKA review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluidsJ. Mol. Liq.20172404204461:CAS:528:DC%2BC2sXosFWgtr4%3D10.1016/j.molliq.2017.05.071 WaqasHImranMBhattiMMInfluence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotatingcylinderChin. J. Phys.2020685585771:CAS:528:DC%2BB3cXisFemtLnF10.1016/j.cjph.2020.10.014 BahiraeiMehdiHeshmatianSaeedGoodarziMarjanMoayediHosseinCFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurationsAdv. Powder Technol.20193011250325161:CAS:528:DC%2BC1MXhsFerurnN10.1016/j.apt.2019.07.029 BahiraeiMMonavariAImpact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic componentsChin. J. Chem. Eng.202140364710.1016/j.cjche.2020.11.026 ToghraieDChaharsoghiVAAfrandMMeasurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluidJ. Thermal Anal. Calorim.201612515275351:CAS:528:DC%2BC28XmtVKhsbY%3D10.1007/s10973-016-5436-4 AhmadiMHMirlohiANazariMAGhasempourRA review of thermal conductivity of various nanofluidsJ. Mol. Liq.20182651811881:CAS:528:DC%2BC1cXhtFSmurzL10.1016/j.molliq.2018.05.124 Stephen, U., Choi, S. & Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. in ASME International Mechanical Engineering Congress & Exposition (1995). BabanezhadMBehroyanINakhjiriATMarjaniAShirazianSPerformance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipeSci. Rep.202111110.1038/s41598-020-79628-w OkeASMutukuWNKimathiMAnimasaunILInsight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force: NonlinearEngineering2020913984112020NLE.....9..398O BahiraeiMMazaheriNDaneshyarMREmploying elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspectiveAppl. Therm. Eng.20211831:CAS:528:DC%2BB3cXit1altb7K10.1016/j.applthermaleng.2020.116159 OyemAOMutukuWNOkeASVariability effects on magnetohydrodynamic for Blasius and Sakiadis flows in the presence of Dufour and Soret about a flat plateEng. Rep.202021012249 GowdaRJPKumarRNAldalbahiAIssakhovAPrasannakumaraBCRahimi-GorjiMRahamanMThermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/ downward moving diskSurf. Interfaces20212210.1016/j.surfin.2020.100864 NayakMKShawSChamkhaAJ3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic fieldArab. J. Sci. Eng.2018441269128210.1007/s13369-018-3473-y KumarRSVDhananjayaPGKumarRNGowdaRJPPrasannakumaraBCModeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reactionInt. J. Comput. Methods Eng. Sci. Mech.20212311219436222910.1080/15502287.2021.1900451 AS Oke (21799_CR9) 2022; 102 KY Leong (21799_CR15) 2017; 75 AS Oke (21799_CR34) 2020; 13 21799_CR10 H Waqas (21799_CR3) 2020; 68 M Bahiraei (21799_CR19) 2021; 183 21799_CR38 D Toghraie (21799_CR13) 2016; 125 B Ali (21799_CR37) 2021; 93 AS Oke (21799_CR35) 2021; 71 NS Khan (21799_CR24) 2017; 132 I Tlili (21799_CR42) 2021; 12 B Takabi (21799_CR40) 2014; 6 PK Das (21799_CR14) 2017; 240 U Ali (21799_CR2) 2020; 553 Mehdi Bahiraei (21799_CR17) 2019; 30 I Tlili (21799_CR41) 2020; 10 MK Nayak (21799_CR39) 2018; 44 21799_CR1 R Saidur (21799_CR12) 2011; 15 AS Oke (21799_CR32) 2020; 9 S-S Zhou (21799_CR5) 2021; 35 M Bahiraei (21799_CR18) 2021; 40 AO Oyem (21799_CR30) 2020; 2 BA Juma (21799_CR31) 2022; 5 21799_CR44 AU Rehman (21799_CR33) 2020; 95 F Mabood (21799_CR22) 2021; 143 RSV Kumar (21799_CR28) 2021; 23 21799_CR25 MI Khan (21799_CR4) 2020; 2020 WA Khan (21799_CR29) 2020; 190 M Pishnamazi (21799_CR7) 2020; 10 M Babanezhad (21799_CR8) 2021; 11 MH Ahmadi (21799_CR16) 2018; 265 A Monavari (21799_CR20) 2021; 125 S Jana (21799_CR11) 2007; 462 MM Nandeppanavar (21799_CR27) 2021; 10 Q Nguyen (21799_CR6) 2020; 5 AS Oke (21799_CR43) 2017; 24 OK Koriko (21799_CR36) 2020; 95 RJP Gowda (21799_CR23) 2021; 22 M Irfan (21799_CR26) 2018; 382 NS Anuar (21799_CR21) 2020; 8 |
References_xml | – reference: LeongKYAhmadKZKOngHCGhazaliMJBaharumASynthesis and thermal conductivity characteristic of hybrid nanofluids—A reviewRenew. Sustain. Energy Rev.2017758688781:CAS:528:DC%2BC28XhvVChsrbN10.1016/j.rser.2016.11.068 – reference: WaqasHImranMBhattiMMInfluence of bioconvection on Maxwell nanofluid flow with the swimming of motile microorganisms over a vertical rotatingcylinderChin. J. Phys.2020685585771:CAS:528:DC%2BB3cXisFemtLnF10.1016/j.cjph.2020.10.014 – reference: RehmanAUAbbasNNadeemSSaleemASignificance of Coriolis force on the dynamics of water conveying copper and copper oxide nanoparticlesPhys. Scr.202095112020PhyS...95k5706R1:CAS:528:DC%2BB3cXis1emtLfF10.1088/1402-4896/abbeae – reference: Stephen, U., Choi, S. & Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. in ASME International Mechanical Engineering Congress & Exposition (1995). – reference: OkeASConvergence of differential transform method for ordinary differential equationsJ. Adv. Math. Comput. Sci.201724611710.9734/JAMCS/2017/36489 – reference: BahiraeiMMonavariAImpact of nanoparticle shape on thermohydraulic performance of a nanofluid in an enhanced microchannel heat sink for utilization in cooling of electronic componentsChin. J. Chem. Eng.202140364710.1016/j.cjche.2020.11.026 – reference: Oke, A.S. Heat and mass transfer in 3D MHD flow of EG-based ternary hybrid nanofluid over a rotating surface. Arab. J. Sci. Eng. (2022). – reference: ZhouS-SIjaz KhanMQayyumSPrasannakumaraBCNaveen KumarRUllah KhanSPunith GowdaRJChuY-MNonlinear mixed convective Williamson nanofluid flow with the suspension of gyrotactic microorganismsInt. J. Mod. Phys. B2021351221501452021IJMPB..3550145Z1:CAS:528:DC%2BB3MXisFSru77O10.1142/S02179792215014591465.76006 – reference: TliliINabweyHAReddyMGSandeepNPasupulaMEffect of resistive heating on incessantly poignant thin needle in magnetohydrodynamic Sakiadis hybrid nanofluidAin Shams Eng. J.20211211025103210.1016/j.asej.2020.09.009 – reference: AliUMalikMYAlderremyAAAlySRehmanKUA generalized findings on thermal radiation and heat generation/absorption in nanofluid flow regimePhys. A Stat. Mech. Appl.202055341078441:CAS:528:DC%2BB3cXit1yjsb0%3D10.1016/j.physa.2019.12402607461781 – reference: AnuarNSBachokNPopICu-Al2O3/water hybrid nanofluid stagnation point flow past MHD stretching/shrinking sheet in presence of homogeneous-heterogeneous and convective boundary conditionsMathematics20208810.3390/math8081237 – reference: OkeASMutukuWNKimathiMAnimasaunILCoriolis effects on MHD Newtonian flow over a rotating non-uniform surfaceProc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.20201333613368 – reference: TliliINabweyHAAshwinkumarGPSandeepN3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effectSci. Rep.202010142652020NatSR..10.4265T1:CAS:528:DC%2BB3cXlvVOhtbo%3D10.1038/s41598-020-61215-8 – reference: PishnamaziMBabanezhadMNakhjiriATRezakazemiMMarjaniAShirazianSANFIS grid partition framework with difference between two sigmoidal membership functions structure for validation of nanofluid flowSci. Rep.202010110.1038/s41598-020-72182-5 – reference: OkeASCombined effects of Coriolis force and nanoparticle properties on the dynamics of gold-water nanofluid across nonuniform surfaceZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech.202210294491560 – reference: NandeppanavarMMKemparajuMCRaveendraNMelting heat transfer of MHD stagnation point flow of non-Newtonian fluid due to an elastic sheetInt. J. Ambient Energy20211019 – reference: OyemAOMutukuWNOkeASVariability effects on magnetohydrodynamic for Blasius and Sakiadis flows in the presence of Dufour and Soret about a flat plateEng. Rep.202021012249 – reference: AhmadiMHMirlohiANazariMAGhasempourRA review of thermal conductivity of various nanofluidsJ. Mol. Liq.20182651811881:CAS:528:DC%2BC1cXhtFSmurzL10.1016/j.molliq.2018.05.124 – reference: MonavariAJamaatiJBahiraeiMThermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensityJ. Taiwan Inst. Chem. Eng.20211251141:CAS:528:DC%2BB3MXhsF2hsL%2FO10.1016/j.jtice.2021.05.045 – reference: BahiraeiMehdiHeshmatianSaeedGoodarziMarjanMoayediHosseinCFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: Effect of different configurationsAdv. Powder Technol.20193011250325161:CAS:528:DC%2BC1MXhsFerurnN10.1016/j.apt.2019.07.029 – reference: OkeASMutukuWNKimathiMAnimasaunILInsight into the dynamics of non-Newtonian Casson fluid over a rotating non-uniform surface subject to Coriolis force: NonlinearEngineering2020913984112020NLE.....9..398O – reference: SaidurRLeongKYMohammedHAA review on applications and challenges of nanofluidsRenew. Sustain. Energy Rev.2011153164616681:CAS:528:DC%2BC3MXhvVCnsr8%3D10.1016/j.rser.2010.11.035 – reference: KumarRSVDhananjayaPGKumarRNGowdaRJPPrasannakumaraBCModeling and theoretical investigation on Casson nanofluid flow over a curved stretching surface with the influence of magnetic field and chemical reactionInt. J. Comput. Methods Eng. Sci. Mech.20212311219436222910.1080/15502287.2021.1900451 – reference: KorikoOKAdegbieKSOkeASAnimasaunILExploration of Coriolis force on motion of air over the upper horizontal surface of a paraboloid of revolutionPhys. Scr.2020952020PhyS...95c5210K10.1088/1402-4896/ab4c50 – reference: TakabiBSalehiSAugmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluidAdv. Mech. Eng.2014610.1155/2014/147059 – reference: KhanWAWaqasMKadrySAsgharZAbbasSZIrfanMOn the evaluation of stratification based entropy optimized hydromagnetic flow featuring dissipation aspect and Robin conditionsComput. Methods Programs Biomed.20201901:STN:280:DC%2BB387isFWhtA%3D%3D10.1016/j.cmpb.2020.105347 – reference: Oke, A.S., Fatunmbi, E.O., Animasaun, I.L. & Juma, B.A. Exploration of ternary-hybrid nanofluid experiencing Coriolis and Lorentz forces: case of three-dimensional flow of water conveying carbon nanotubes, graphene, and alumina nanoparticles. Waves Random Complex Med. (2022). – reference: JumaBAOkeASMutukuWNAriwayoAGOuruOJDynamics of Williamson fluid over an inclined surface subject to Coriolis and Lorentz forcesEng. Appl. Sci. Lett.2022513746 – reference: DasPKA review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluidsJ. Mol. Liq.20172404204461:CAS:528:DC%2BC2sXosFWgtr4%3D10.1016/j.molliq.2017.05.071 – reference: NguyenQNakhjiriATRezakazemiMShirazianSThermal and flow visualization of a square heat source in a nanofluid material with a cubic-interpolated pseudo-particleACS Omega202052817658176631:CAS:528:DC%2BB3cXhtlans7vJ10.1021/acsomega.0c02173 – reference: BahiraeiMMazaheriNDaneshyarMREmploying elliptical pin-fins and nanofluid within a heat sink for cooling of electronic chips regarding energy efficiency perspectiveAppl. Therm. Eng.20211831:CAS:528:DC%2BB3cXit1altb7K10.1016/j.applthermaleng.2020.116159 – reference: AliBNieYHussainSHabibDAbdalSInsight into the dynamics of fluid conveying tiny particles over a rotating surface subject to Cattaneo-Christov heat transfer, Coriolis force, and Arrhenius activation energyComput. Math. Appl.202193130143424611510.1016/j.camwa.2021.04.00607351716 – reference: BabanezhadMBehroyanINakhjiriATMarjaniAShirazianSPerformance and application analysis of ANFIS artificial intelligence for pressure prediction of nanofluid convective flow in a heated pipeSci. Rep.202111110.1038/s41598-020-79628-w – reference: OkeASAnimasaunILMutukuWNKimathiMShahNASaleemSSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surfaceChin. J. Phys.20217171672742568661:CAS:528:DC%2BB3MXhtVenurrP10.1016/j.cjph.2021.02.005 – reference: KhanMIQayyumSChuYKadrySNumerical simulation and modeling of entropy generation in Marangoni convective flow of nanofluid with activation energyNumer. Methods Partial Differ. Equ.202020202261010.1002/num.22610 – reference: MaboodFYusufTAKhanWACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiationJ. Therm. Anal. Calorim.202114329739841:CAS:528:DC%2BB3cXot1agsLg%3D10.1007/s10973-020-09720-w – reference: Animasaun, I.L., Shah, N.A., Wakif, A., Mahanthesh, B., Sivaraj, R. & Koriko, O.K. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization . 1st edn. (Chapman and Hall/CRC, 2022). – reference: NayakMKShawSChamkhaAJ3D MHD free convective stretched flow of a radiative nanofluid inspired by variable magnetic fieldArab. J. Sci. Eng.2018441269128210.1007/s13369-018-3473-y – reference: ToghraieDChaharsoghiVAAfrandMMeasurement of thermal conductivity of ZnO-TiO2/EG hybrid nanofluidJ. Thermal Anal. Calorim.201612515275351:CAS:528:DC%2BC28XmtVKhsbY%3D10.1007/s10973-016-5436-4 – reference: IrfanMKhanMKhanWAAyazMModern development on the features of magnetic field and heat sink/source in Maxwell nanofluid subject to convective heat transportPhys. Lett. A2018382199220022018PhLA..382.1992I1:CAS:528:DC%2BC1cXpt1Kju74%3D10.1016/j.physleta.2018.05.008 – reference: Shampine, L.F., Reichelt, M.W. & Kierzenka, J. Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c. (2010). – reference: KhanNSGulnadTIslamSKhanWThermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheetEur. Phys. J. Plus201713211110.1140/epjp/i2017-11277-3 – reference: JanaSSalehi-KhojinAZhongW-HEnhancement of fluid thermal conductivity by the addition of single and hybrid nano-additivesThermochim. Acta20074621–245551:CAS:528:DC%2BD2sXpsFSjsL8%3D10.1016/j.tca.2007.06.009 – reference: GowdaRJPKumarRNAldalbahiAIssakhovAPrasannakumaraBCRahimi-GorjiMRahamanMThermophoretic particle deposition in time-dependent flow of hybrid nanofluid over rotating and vertically upward/ downward moving diskSurf. Interfaces20212210.1016/j.surfin.2020.100864 – volume: 5 start-page: 17658 issue: 28 year: 2020 ident: 21799_CR6 publication-title: ACS Omega doi: 10.1021/acsomega.0c02173 – volume: 125 start-page: 527 issue: 1 year: 2016 ident: 21799_CR13 publication-title: J. Thermal Anal. Calorim. doi: 10.1007/s10973-016-5436-4 – volume: 143 start-page: 973 issue: 2 year: 2021 ident: 21799_CR22 publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-020-09720-w – volume: 132 start-page: 11 issue: 1 year: 2017 ident: 21799_CR24 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/i2017-11277-3 – volume: 240 start-page: 420 year: 2017 ident: 21799_CR14 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2017.05.071 – ident: 21799_CR38 doi: 10.1007/s13369-022-06838-x – volume: 15 start-page: 1646 issue: 3 year: 2011 ident: 21799_CR12 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2010.11.035 – volume: 95 issue: 11 year: 2020 ident: 21799_CR33 publication-title: Phys. Scr. doi: 10.1088/1402-4896/abbeae – volume: 9 start-page: 398 issue: 1 year: 2020 ident: 21799_CR32 publication-title: Engineering – volume: 22 year: 2021 ident: 21799_CR23 publication-title: Surf. Interfaces doi: 10.1016/j.surfin.2020.100864 – volume: 10 start-page: 1 year: 2020 ident: 21799_CR7 publication-title: Sci. Rep. doi: 10.1038/s41598-020-72182-5 – volume: 265 start-page: 181 year: 2018 ident: 21799_CR16 publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.05.124 – ident: 21799_CR25 doi: 10.1201/9781003217374-1 – volume: 40 start-page: 36 year: 2021 ident: 21799_CR18 publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.11.026 – volume: 8 start-page: 8 year: 2020 ident: 21799_CR21 publication-title: Mathematics doi: 10.3390/math8081237 – volume: 12 start-page: 1025 issue: 1 year: 2021 ident: 21799_CR42 publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2020.09.009 – volume: 382 start-page: 1992 year: 2018 ident: 21799_CR26 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.05.008 – volume: 553 year: 2020 ident: 21799_CR2 publication-title: Phys. A Stat. Mech. Appl. doi: 10.1016/j.physa.2019.124026 – volume: 11 start-page: 1 year: 2021 ident: 21799_CR8 publication-title: Sci. Rep. doi: 10.1038/s41598-020-79628-w – volume: 44 start-page: 1269 year: 2018 ident: 21799_CR39 publication-title: Arab. J. Sci. Eng. doi: 10.1007/s13369-018-3473-y – volume: 183 year: 2021 ident: 21799_CR19 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2020.116159 – volume: 30 start-page: 2503 issue: 11 year: 2019 ident: 21799_CR17 publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.07.029 – volume: 10 start-page: 1 year: 2021 ident: 21799_CR27 publication-title: Int. J. Ambient Energy – volume: 10 start-page: 4265 issue: 1 year: 2020 ident: 21799_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-020-61215-8 – volume: 93 start-page: 130 year: 2021 ident: 21799_CR37 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2021.04.006 – volume: 190 year: 2020 ident: 21799_CR29 publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2020.105347 – volume: 2 start-page: 12249 issue: 10 year: 2020 ident: 21799_CR30 publication-title: Eng. Rep. doi: 10.1002/eng2.12249 – volume: 71 start-page: 716 year: 2021 ident: 21799_CR35 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.02.005 – volume: 23 start-page: 12 issue: 1 year: 2021 ident: 21799_CR28 publication-title: Int. J. Comput. Methods Eng. Sci. Mech. doi: 10.1080/15502287.2021.1900451 – volume: 95 year: 2020 ident: 21799_CR36 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ab4c50 – volume: 102 start-page: 9 year: 2022 ident: 21799_CR9 publication-title: ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. – volume: 125 start-page: 1 year: 2021 ident: 21799_CR20 publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2021.05.045 – volume: 2020 start-page: 22610 year: 2020 ident: 21799_CR4 publication-title: Numer. Methods Partial Differ. Equ. doi: 10.1002/num.22610 – volume: 462 start-page: 45 issue: 1–2 year: 2007 ident: 21799_CR11 publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.06.009 – volume: 5 start-page: 37 issue: 1 year: 2022 ident: 21799_CR31 publication-title: Eng. Appl. Sci. Lett. – volume: 13 start-page: 3361 year: 2020 ident: 21799_CR34 publication-title: Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. – volume: 35 start-page: 2150145 issue: 12 year: 2021 ident: 21799_CR5 publication-title: Int. J. Mod. Phys. B doi: 10.1142/S0217979221501459 – ident: 21799_CR44 – ident: 21799_CR10 doi: 10.1080/17455030.2022.2123114 – ident: 21799_CR1 – volume: 24 start-page: 1 issue: 6 year: 2017 ident: 21799_CR43 publication-title: J. Adv. Math. Comput. Sci. doi: 10.9734/JAMCS/2017/36489 – volume: 75 start-page: 868 year: 2017 ident: 21799_CR15 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.11.068 – volume: 68 start-page: 558 year: 2020 ident: 21799_CR3 publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.10.014 – volume: 6 year: 2014 ident: 21799_CR40 publication-title: Adv. Mech. Eng. doi: 10.1155/2014/147059 |
SSID | ssj0000529419 |
Score | 2.504129 |
Snippet | Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat... Hybrid nanofluids' enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring augmented heat... Abstract Hybrid nanofluids’ enhanced thermophysical properties make them applicable in a plethora of mechanical and engineering applications requiring... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 21733 |
SubjectTerms | 639/166/988 639/705/1041 Aluminum Aluminum oxide Bone Plates Boundary layers Coriolis Force Heat transfer Humanities and Social Sciences Magnetic fields multidisciplinary Science Science (multidisciplinary) Thermal radiation Velocity Water |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F23aVGht9bE1tM6tqEhFNpTA7mZsSyRgLHDPkj3T_Q3d0bybrN9Xgp78Foj7yCNPN-sZj4x9roRsgPnoDRV1KWqQ11CI0MZwTWygd5KT_9DfvpsTs_Ux3N9fuOoL8oJy_TAeeCOIoiogtGdCJWyKjSq8yAAVO3R8-pEto0-70YwlVm9hVO1m6tkKtkcLdFTUTUZxl6CWNBKt-eJEmH_71Dmr8mSP-2YJkd0co_dnREkf5c1v89uhfEBu53PlNw8ZN9yVl0acD5FjgCPz0kb9PV4WqDk5ZIjWPWBw9iTBL6dB74gmoLcbeTXiEEXJfm4nl9sqKyLjzBOcVjjVRyma065n9ifh69X00g5RzAMG061J6uUn8mvBnzGI3Z28uHL8Wk5H7pQegRvqxKgk9L0unPO2x6MQ28GMlgTA6EBF8BUfW3BVdIpK0NAwNLX4CsZolFRycfsYMSffcq49ZUOVBwM2IJviq6T2gVPJIE6aNEVrN5OQOtnRnI6GGNo0864bNo8aS1OWpsmrXUFe7Prc5X5OP4q_Z7mdSdJXNrpBlpYO1tY-y8LK9jh1iraeYEvW2ExtKsx_rMFe7VrxqVJ-y0whmmdZbRVTsmCPclGtNNEGo3QSKCGds-89lTdbxkvLxL9t8MQD6PCgr3dGuIPtf48FM_-x1A8Z3cEraAaP-aQHawW6_ACQdmqe5nW33e_UjSq priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6tJ_IpPCCqqCglOVNpbNHFsWilKtvtQ2T_Bb2Ym8W61PCrtYXdtJ7Znxv7seTH2tiplA86BMHnUQhWhEFDJICK4SlbQWunpHvLrN3N6pr7M9CxduC2TWeV2TRwX6nbwdEd-VFrE0gUCbvthfikoaxRpV1MKjdvsDoUuI5MuO7O7OxbSYqnCJV-ZXFZHS9yvyKcMT2AlxUITbm8_GsP2_wtr_m0y-YfedNyOTh6w-wlH8o8T4R-yW6F_xO5OmSU3j9mvybZunHY-RI4wjyfTDfp5jCMbuoslR8jqA4e-pRq4Rnd8QcEKpmY9v0IkuhC007X8fEPOXbyHfojdGr_FbrjiZAGK7Xn4OR96sjyCrttw8kBZjVaafN7hM56ws5PP349PRUq9IDxCuJUAaKQ0rW6c87YFg9NegQzWxECYwAUweVtYcLl0ysoQELa0BfhchmhUVPIpO-jxtc8Ztz7XgVyEAUtwvWgaqV3wFCpQB102GSu2BKh9iktO6TG6etSPy6qeiFYj0eqRaLXL2Ltdm_kUlePG2p-IrruaFFF7_GNY_KiTgNYRyqiC0U0ZcmVVqFTjoQRQhUeEp03GDrdcUScxX9bXTJmxN7tiFFDSukAfhvVUR1vllMzYs4mJdj2RRiNAKrGHdo-99rq6X9JfnI9BwB0e9PBsmLH3W0a87tb_p-LFzaN4ye6VJBsFfswhO1gt1uEVgq5V83qUrN_NtSvP priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-H29OyWCb1ps89k86uJxCPrkwb2FaZt6B6Vduruc-0_4NzuTtiurpyD0YbuZ7A7NJPObZuYXxl4XQpbgHKQma3Sq8pCnUMiQNuAKWUBtZUXvIT9_MecX6tOlvjxgYq6FiUn7kdIyLtNzdti7FToaKgbD0EkQiVnq7rC7RN1OVr0wi917Fdq5Urmb6mMyWdzSdc8HRar-2_Dln2mSv-2VRhd09pA9mLAjfz9q-4gdhO4xuzeeJrl9wn6M-XTxUfO-4Qjt-JSuQbeLfkDJ6xVHmFoFDl1NErgut3wggoKxW8dvEH0OKXm3ml9tqaCLd9D1TbvBT03b33DK-sT-PHxf9h1lG0HbbjlVnaxjZiZftvgbT9nF2cevi_N0Om4hrRC2rVOAUkpT69K5ytZgHPoxkMGaJhAOcAFMVucWXCadsjIEhCp1DlUmQ2NUo-Qzdtjh3x4xbqtMByoLBmzBNaIspXahInpAHbQoE5bPA-CriYucjsRofdwTl4UfB83joPk4aN4l7M2uz3Jk4vin9Aca150ksWjHL_rhm5-syjcgGhWMLkXIlFWhUGUFAkDlFaI6bRJ2OluFn6b2yguLQV2OkZ9N2KtdM05K2mmBLvSbUUZb5ZRM2PPRiHaaSKMRFAnU0O6Z156q-y3d9VUk_nYY3GE8mLC3syH-Uuvvj-L4_8RP2H1BcyXHy5yyw_WwCS8QeK3Ll3Gm_QQ8PCm3 priority: 102 providerName: Springer Nature |
Title | Exploration of the effects of Coriolis force and thermal radiation on water-based hybrid nanofluid flow over an exponentially stretching plate |
URI | https://link.springer.com/article/10.1038/s41598-022-21799-9 https://www.ncbi.nlm.nih.gov/pubmed/36526629 https://www.proquest.com/docview/2755010967 https://www.proquest.com/docview/2755574943 https://pubmed.ncbi.nlm.nih.gov/PMC9758182 https://doaj.org/article/fa2f4e65b2e0474e84bca2aa41c27356 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Za9tAEB5y0JKX0LtqU7OFvrVqJe2lfSjFMQnBkFDaGvwmVtIqCQjJlW0S_4n85s6uJAe3TsEgWztrLZoZzTfaOQA-xBFNtVLaF0HBfRaa0NcxNX6hVUxjnUua2feQ5xfibMLGUz7dgb7dUXcD51tdO9tPatKUn29_r76hwn9tU8bjL3M0QjZRDN2qyBY489Uu7KNlklZRzzu439b6jhQLVZc7s33qATymgqPZcqDz3lS5iv7bYOi_0ZR_bak6S3X6BA47iEmGrUw8hR1TPYNHbdPJ1XO4a8PuHEdIXRBEgKSL6rA_R3WDlNdzgmg2M0RXuaXAx3dJGlvHoJ1WkRsEqY1vjWBOrlY274tUuqqLconfirK-ITY4FOcTczurKxuUpMtyRWxyysIFcJJZif_xAianJ79GZ37XlcHPEN0tfK1TSkXOU6UymWuh0NxpaqQojIULymgR5KHUKqCKSWoMIpo81FlATSFYwehL2Kvwsq-ByCzgxmYPaxzBR0maUq5MZqsIcsOj1IOwZ0CSdSXLbeeMMnFb5zROWv4lyL_E8S9RHnxcz5m1BTv-S31s-bqmtMW23Ym6uUw63U0KHRXMCJ5GJmCSmZilmY60ZmGG4I8LD456qUh6AU4iib5fiA6i9OD9ehh1127I6MrUy5aGS6YY9eBVK0TrlfRC6IHcEK-NpW6OVNdXrj64Qh8Q3UYPPvWCeL-sh2_FmweX8BYOIqshIX7EEewtmqV5h1BskQ5gV07lAPaHw_HPMR6PTy6-_8CzIzEauNcbA6eBfwCd5TTJ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbKVgheEDeBAkaCJ4ia2I4dPyBES6uWtiuEWqlvruM4tFKULHto2T_BT-E3MpNjq-XoW6V92F0f682MZ76x5yDkdcp4ZrW2oYyKJBSxj0Obch8WVqc8tbniDs8hj4Zy70R8Pk1O18ivPhYG3Sp7mdgI6rx2eEa-yRRg6RgAt_ow-h5i1Si8Xe1LaLRsceAXczDZJu_3PwF93zC2u3O8vRd2VQVCB-hkGlqbcS7zJNPaqdxKmDG13CtZeFR32lsZ5bGyOuJaKO49aOQ8ti7ivpCiEBzmvUHWBQdTZkDWt3aGX74uT3Xw3kzEuovOiXi6OQENiVFsYPMxzL4W6hUN2BQK-Be6_dtJ84-b2kYB7t4ldzrkSj-2rHaPrPnqPrnZ1rJcPCA_W2--htC0LigAS9o5i-DHbXiWdXkxoQCSnae2yrEHaIWSjjE9QjusonPAvuMQdWtOzxcYTkYrW9VFOYN3RVnPKfqcwnjqf4zqCn2dbFkuKMa8TBu_UDoqYY6H5ORayPKIDCr42SeEKhclHoOSLbSAhMoynmjvMDlh4hOWBSTuCWBclwkdC3KUprmR56lpiWaAaKYhmtEBebscM2rzgFzZewvpuuyJObybL-rxN9OJBFNYVggvk4z5SCjhU5E5y6wVsQNMmciAbPRcYTrBMjGX2yAgr5bNIBLwnsdWvp61fRIltOABedwy0XIlXCYAyRisUK2w18pSV1uqi_Mm7bgG0xKs0YC86xnxcln_fxRPr_4XL8mtveOjQ3O4Pzx4Rm4z3CcxvOQGGUzHM_8cIN80e9HtM0rOrntr_wa-lWns |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYgLYi2BAkaCE0STxHYcHxCCllFLoeJApbkZx7FppSgZZtEwf4IfxK_jvWzVsPRWaQ4z42U8edtn-y2EPM8SlhulTJhGXoQ8dnFoMuZCb1TGMlNIZvEc8tNxenDCP0zEZIv86mNh0K2y14mNoi5qi2fko0QClo4BcMuR79wiPu-P30y_h1hBCm9a-3IaLYscufUKtm_z14f7QOsXSTJ-_2XvIOwqDIQWkMoiNCZnLC1ErpSVhUlh9swwJ1Pv0PQpZ9KoiKVREVNcMufAOhexsRFzPuWeM5j3CrkqmYhRxuREDuc7eIPGY9XF6UQsG83BVmI8G-z-EszDFqoNW9iUDPgXzv3bXfOPO9vGFI5vkZsdhqVvW6a7TbZcdYdca6taru-Sn61fX0NyWnsKEJN2biP4cQ-eZF2ezSnAZeuoqQrsAfahpDNMlNAOq-gKUPAsRCtb0NM1BpbRylS1L5fwzpf1iqL3KYyn7se0rtDryZTlmmL0y6LxEKXTEua4R04uhSj3yXYFP_uAUGkj4TA82UAL6Ko8Z0I5i2kKhRNJHpC4J4C2XU50LM1R6uZunmW6JZoGoumGaFoF5OUwZtpmBLmw9zuk69ATs3k3X9Szb7pTDtqbxHOXijxxEZfcZTy3JjGGxxbQpUgDsttzhe5UzFyfC0RAng3NoBzwxsdUrl62fYTkirOA7LRMNKyEpQLAWQIrlBvstbHUzZbq7LRJQK5gkwn70oC86hnxfFn_fxQPL_4XT8l1EGj98fD46BG5kaCYxPBKd8n2YrZ0jwH7LfInjZBR8vWypfo3fN1svA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploration+of+the+effects+of+Coriolis+force+and+thermal+radiation+on+water-based+hybrid+nanofluid+flow+over+an+exponentially+stretching+plate&rft.jtitle=Scientific+reports&rft.au=Oke%2C+A+S&rft.au=Prasannakumara%2C+B+C&rft.au=Mutuku%2C+W+N&rft.au=Gowda%2C+R+J+Punith&rft.date=2022-12-16&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft.spage=21733&rft_id=info:doi/10.1038%2Fs41598-022-21799-9&rft_id=info%3Apmid%2F36526629&rft.externalDocID=36526629 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |