Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours
Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 2609 - 10 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.07.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm
-2
current densities.
Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the authors prepare active water-splitting electrocatalysts via corrosion engineering that are stable for thousands of hours. |
---|---|
AbstractList | Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm
-2
current densities.
Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the authors prepare active water-splitting electrocatalysts via corrosion engineering that are stable for thousands of hours. Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm -2 current densities. Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities. Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities.Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities. Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the authors prepare active water-splitting electrocatalysts via corrosion engineering that are stable for thousands of hours. Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm current densities. |
ArticleNumber | 2609 |
Author | Gu, Lin Liu, Yipu Zhang, Yu Liang, Xiao Li, Guo-Dong Zou, Xiaoxin Chen, Jie-Sheng |
Author_xml | – sequence: 1 givenname: Yipu surname: Liu fullname: Liu, Yipu organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 2 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 3 givenname: Lin surname: Gu fullname: Gu, Lin organization: Institute of Physics, Chinese Academy of Sciences – sequence: 4 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: School of Chemistry, Beihang University – sequence: 5 givenname: Guo-Dong surname: Li fullname: Li, Guo-Dong organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 6 givenname: Xiaoxin orcidid: 0000-0003-4143-9274 surname: Zou fullname: Zou, Xiaoxin email: xxzou@jlu.edu.cn organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University – sequence: 7 givenname: Jie-Sheng surname: Chen fullname: Chen, Jie-Sheng organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29973591$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBLLFhE_ArcbxBQiMelSqxgbV1Y19PXWXiYnumnX-PZ6aUtot6Yyv-7vHJved1czTHGZvmLaMfGRXDpyyZ7FVL2dDSjjLddi-aE04la5ni4ujB-bg5y_mK1iU0G6R81RxzrZXoNDtpNouYUswhzgTnZZgRU5iXpMQbSC4T9D7YgHMh8Xa7xApt4rQue3xCW1J0mMlNKJckFxgnJBYKTNsSLAFbwiaULfExkbjBRPrqgVzGdcpvmpcepoxnd_tp8_vb11-LH-3Fz-_niy8Xre0kLS1oYOOAg4DRWUU1cOqUBUc5Az5IrZz2nfacSYlqdL4TmnpBHRNMu1GBOG3OD7ouwpW5TmEFaWsiBLP_ENPSQKpmJzSd5hScG7wSXnLuRtpb7WzvxxFVB7ZqfT5oXa_HFTpbu5JgeiT6-GYOl2YZN6angvVDXwU-3Amk-GeNuZhVyBanCWaM62w47aVSWvRdRd8_Qa9q2-baqj3FBZV7wXcPHd1b-TfeCvADYOuMc0J_jzBqdjEyhxiZGiOzj5HZvT08KbKhwG7m9a_C9HypOJTm612MMP23_UzVX2eb3qY |
CitedBy_id | crossref_primary_10_1021_acssuschemeng_9b07481 crossref_primary_10_1360_TB_2024_0397 crossref_primary_10_1039_C8DT02302F crossref_primary_10_1016_j_jiec_2022_12_030 crossref_primary_10_1002_admi_202101576 crossref_primary_10_1002_adma_202101845 crossref_primary_10_1016_j_apcatb_2021_119881 crossref_primary_10_3390_catal13030586 crossref_primary_10_1016_j_carbon_2018_12_032 crossref_primary_10_1007_s11051_018_4436_7 crossref_primary_10_1007_s12274_023_5615_0 crossref_primary_10_1149_1945_7111_ab72ee crossref_primary_10_1002_aenm_202303001 crossref_primary_10_1016_j_cej_2020_127670 crossref_primary_10_1038_s41467_021_27664_z crossref_primary_10_1021_acssuschemeng_0c04666 crossref_primary_10_1039_D0QI00614A crossref_primary_10_1016_j_cej_2023_141457 crossref_primary_10_1016_j_scib_2020_06_003 crossref_primary_10_1016_j_coelec_2021_100788 crossref_primary_10_1039_D2DT00157H crossref_primary_10_1002_anie_202215804 crossref_primary_10_1016_j_jelechem_2022_116213 crossref_primary_10_1038_s41467_023_43977_7 crossref_primary_10_1021_acsaem_2c01523 crossref_primary_10_1016_j_jechem_2020_10_010 crossref_primary_10_1002_adma_202110696 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1007_s10853_020_05026_2 crossref_primary_10_1002_adma_201905107 crossref_primary_10_1039_C9NR10437B crossref_primary_10_1002_ange_202309293 crossref_primary_10_1039_D2MH00075J crossref_primary_10_3390_nano12121975 crossref_primary_10_1016_j_jcis_2021_12_179 crossref_primary_10_1002_smll_202000663 crossref_primary_10_1021_acs_inorgchem_8b03063 crossref_primary_10_3390_catal13030569 crossref_primary_10_1002_adfm_202413533 crossref_primary_10_1007_s10008_019_04362_x crossref_primary_10_1002_aenm_202303261 crossref_primary_10_1002_anie_202002240 crossref_primary_10_1002_adfm_202202068 crossref_primary_10_1016_j_esci_2024_100334 crossref_primary_10_1021_acsenergylett_1c02380 crossref_primary_10_1021_acsaem_2c01548 crossref_primary_10_1039_C9TA10059H crossref_primary_10_3390_ma16083044 crossref_primary_10_1016_j_electacta_2019_06_088 crossref_primary_10_1021_acsanm_2c00363 crossref_primary_10_1002_aenm_201803358 crossref_primary_10_1007_s12274_022_5163_z crossref_primary_10_1021_acsmaterialslett_0c00536 crossref_primary_10_3390_molecules27228019 crossref_primary_10_1039_D0DT01520B crossref_primary_10_1016_j_jcis_2023_05_123 crossref_primary_10_1002_aenm_201900954 crossref_primary_10_1039_D2EE03936B crossref_primary_10_1016_j_cej_2023_145905 crossref_primary_10_1039_D0TA02858D crossref_primary_10_1016_j_coelec_2022_100991 crossref_primary_10_1039_D2QI00003B crossref_primary_10_1016_j_cclet_2024_110232 crossref_primary_10_1039_D0CC07643K crossref_primary_10_1021_acsaem_2c03514 crossref_primary_10_1002_smll_202001571 crossref_primary_10_1021_acs_cgd_0c01273 crossref_primary_10_3390_catal15030211 crossref_primary_10_1007_s11426_024_2153_4 crossref_primary_10_1002_adfm_202423537 crossref_primary_10_1002_aenm_202204403 crossref_primary_10_1016_j_jechem_2020_12_038 crossref_primary_10_1039_D1TA06370G crossref_primary_10_1016_j_nanoen_2020_105115 crossref_primary_10_1016_j_ijhydene_2024_10_314 crossref_primary_10_1016_j_apcatb_2022_122171 crossref_primary_10_1039_C9NR06169J crossref_primary_10_1039_C9QI01394F crossref_primary_10_1039_D1SE01284C crossref_primary_10_1021_acsami_1c05123 crossref_primary_10_1002_ange_202002240 crossref_primary_10_1039_D0TA09156A crossref_primary_10_1002_smll_201905083 crossref_primary_10_1021_acsami_2c00016 crossref_primary_10_1016_j_surfin_2023_103508 crossref_primary_10_1016_j_cej_2024_157275 crossref_primary_10_1016_j_apcatb_2022_121199 crossref_primary_10_1002_smll_202104354 crossref_primary_10_1007_s41918_024_00237_6 crossref_primary_10_1021_acsnano_2c11939 crossref_primary_10_1016_j_jpowsour_2019_227375 crossref_primary_10_1016_j_jpowsour_2021_229493 crossref_primary_10_1007_s11426_022_1435_6 crossref_primary_10_1002_smll_202311763 crossref_primary_10_1021_acscatal_4c06509 crossref_primary_10_1039_D1EE02512K crossref_primary_10_1002_smll_202300509 crossref_primary_10_1002_cctc_202101553 crossref_primary_10_1039_D3TA04805E crossref_primary_10_1002_cctc_201901638 crossref_primary_10_1002_cctc_202401950 crossref_primary_10_1039_D1TA00072A crossref_primary_10_3389_fchem_2022_895168 crossref_primary_10_1007_s11356_022_24203_1 crossref_primary_10_1021_acsaem_9b02055 crossref_primary_10_1016_j_jmst_2021_05_078 crossref_primary_10_1016_j_cej_2024_149890 crossref_primary_10_1016_j_asems_2023_100046 crossref_primary_10_1016_j_jechem_2019_01_017 crossref_primary_10_1039_D0NR00607F crossref_primary_10_1039_D4YA00272E crossref_primary_10_1016_j_ccr_2024_216190 crossref_primary_10_1021_acsami_2c16543 crossref_primary_10_2351_7_0000056 crossref_primary_10_1039_D1MA00381J crossref_primary_10_1039_D4CS00333K crossref_primary_10_1016_j_jallcom_2020_155298 crossref_primary_10_3390_nano11112989 crossref_primary_10_1039_D0SE00466A crossref_primary_10_1002_aenm_202200409 crossref_primary_10_1016_j_electacta_2019_135395 crossref_primary_10_1002_adfm_202405726 crossref_primary_10_1039_D0TA05623E crossref_primary_10_1002_asia_202000213 crossref_primary_10_1016_j_apsusc_2019_05_189 crossref_primary_10_17159_sajs_2024_16026 crossref_primary_10_1002_anie_202214794 crossref_primary_10_1002_aenm_202000184 crossref_primary_10_1002_adfm_202212479 crossref_primary_10_1016_j_apcatb_2021_119902 crossref_primary_10_1002_eom2_12254 crossref_primary_10_1021_acs_chemrev_3c00723 crossref_primary_10_1016_j_cej_2021_131398 crossref_primary_10_1002_smll_202404205 crossref_primary_10_1016_j_fuel_2022_125780 crossref_primary_10_1016_j_jcis_2024_04_180 crossref_primary_10_1021_acscatal_1c01973 crossref_primary_10_1016_j_gee_2023_02_011 crossref_primary_10_1016_j_jcis_2019_11_032 crossref_primary_10_1021_acscatal_1c01607 crossref_primary_10_1002_ange_202215804 crossref_primary_10_1002_anie_202103824 crossref_primary_10_1002_er_7457 crossref_primary_10_1021_acsnano_2c00332 crossref_primary_10_1016_j_ijhydene_2020_01_085 crossref_primary_10_1002_anie_202112775 crossref_primary_10_1016_j_apcatb_2021_120150 crossref_primary_10_1016_j_cjsc_2023_100200 crossref_primary_10_1016_j_jcis_2023_10_151 crossref_primary_10_1016_j_jcis_2023_04_036 crossref_primary_10_1002_adma_202007100 crossref_primary_10_1039_C8CC09104H crossref_primary_10_1016_j_gee_2021_11_006 crossref_primary_10_1016_j_jece_2024_114552 crossref_primary_10_1016_j_mcat_2020_111082 crossref_primary_10_1021_jacs_5c00668 crossref_primary_10_3390_inorganics11050191 crossref_primary_10_1016_j_jece_2024_113223 crossref_primary_10_1039_D0DT04133E crossref_primary_10_1021_acssuschemeng_2c02114 crossref_primary_10_1016_j_nanoen_2019_02_020 crossref_primary_10_1002_chem_202301469 crossref_primary_10_1021_acsaem_0c00348 crossref_primary_10_1021_acs_chemmater_0c00081 crossref_primary_10_1021_acs_jpclett_3c00988 crossref_primary_10_1016_j_apcatb_2022_122101 crossref_primary_10_1039_C9DT04295D crossref_primary_10_1007_s10853_021_06451_7 crossref_primary_10_1002_adfm_202316150 crossref_primary_10_1002_adma_202404658 crossref_primary_10_1016_j_jechem_2020_02_025 crossref_primary_10_1016_j_electacta_2019_03_208 crossref_primary_10_1016_j_mtsust_2023_100451 crossref_primary_10_1002_anie_202112953 crossref_primary_10_1039_D3SE00802A crossref_primary_10_1007_s12274_021_3366_3 crossref_primary_10_1021_acscatal_3c05053 crossref_primary_10_1002_smtd_202200855 crossref_primary_10_1007_s40843_020_1536_6 crossref_primary_10_1039_D0DT04397D crossref_primary_10_1016_j_cej_2023_144877 crossref_primary_10_1039_C9TA00489K crossref_primary_10_1016_j_ijhydene_2024_09_075 crossref_primary_10_1002_aenm_202102074 crossref_primary_10_1021_acssuschemeng_9b02296 crossref_primary_10_1021_acs_jpcc_4c04258 crossref_primary_10_1016_j_jcat_2024_115771 crossref_primary_10_1016_j_apcatb_2022_121230 crossref_primary_10_1021_acsaem_1c00891 crossref_primary_10_1021_jacs_4c10685 crossref_primary_10_1039_C9EE02388G crossref_primary_10_1002_smll_202104513 crossref_primary_10_1149_1945_7111_ad2597 crossref_primary_10_1021_acsami_0c15240 crossref_primary_10_1016_j_jpowsour_2021_230757 crossref_primary_10_1002_chem_202101182 crossref_primary_10_1016_j_jechem_2020_02_002 crossref_primary_10_1039_D1SE00558H crossref_primary_10_1142_S1793292021500727 crossref_primary_10_1088_2752_5724_ada99c crossref_primary_10_1016_j_electacta_2023_143511 crossref_primary_10_1038_s41467_020_18891_x crossref_primary_10_1016_j_jechem_2021_11_032 crossref_primary_10_1016_j_electacta_2021_137848 crossref_primary_10_1021_acsaem_1c02604 crossref_primary_10_1039_D3QM01179H crossref_primary_10_1039_D2TA06319K crossref_primary_10_1016_j_cej_2021_130688 crossref_primary_10_1021_acs_inorgchem_2c00862 crossref_primary_10_1002_aenm_202102372 crossref_primary_10_1021_acssuschemeng_9b06959 crossref_primary_10_1016_j_jallcom_2023_171665 crossref_primary_10_1007_s10008_019_04444_w crossref_primary_10_1039_C9RA04368C crossref_primary_10_1039_D4CY00328D crossref_primary_10_1595_205651321X16067419458185 crossref_primary_10_1039_C8EE03405B crossref_primary_10_1088_2752_5724_aceef3 crossref_primary_10_1016_j_jcis_2022_01_132 crossref_primary_10_1021_acsenergylett_4c01568 crossref_primary_10_1002_celc_202200148 crossref_primary_10_1016_j_cej_2024_156430 crossref_primary_10_1039_D2TA02374A crossref_primary_10_1039_C9RE00334G crossref_primary_10_1039_D2SE01197B crossref_primary_10_1002_adfm_201902180 crossref_primary_10_3390_nano14181533 crossref_primary_10_1002_ange_202112775 crossref_primary_10_1016_j_cclet_2020_09_030 crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1002_adfm_202401095 crossref_primary_10_1021_acs_jpclett_3c03256 crossref_primary_10_1002_ange_202103824 crossref_primary_10_1039_C8TA10378J crossref_primary_10_1002_celc_202100409 crossref_primary_10_1016_j_ijhydene_2022_06_071 crossref_primary_10_1021_acssuschemeng_0c06052 crossref_primary_10_1039_D3CC00134B crossref_primary_10_1016_j_apcatb_2020_119707 crossref_primary_10_1016_j_jallcom_2021_161270 crossref_primary_10_1016_j_jechem_2022_02_010 crossref_primary_10_1002_ange_202214794 crossref_primary_10_1039_C9RA01802F crossref_primary_10_1016_j_ijhydene_2023_05_207 crossref_primary_10_1002_nano_202100286 crossref_primary_10_1016_j_ijoes_2024_100826 crossref_primary_10_1016_j_jmst_2021_09_003 crossref_primary_10_1002_smll_202301255 crossref_primary_10_1039_D2EE03642H crossref_primary_10_1002_adsu_202000136 crossref_primary_10_1002_adfm_202213976 crossref_primary_10_1039_D0RA01813A crossref_primary_10_1039_D0NR05458E crossref_primary_10_1016_j_jechem_2022_02_005 crossref_primary_10_1039_C8TA11223A crossref_primary_10_1007_s40820_020_00476_4 crossref_primary_10_1021_acsami_1c12155 crossref_primary_10_1002_adfm_202101820 crossref_primary_10_1016_j_apcatb_2019_118017 crossref_primary_10_1021_acsmaterialslett_9b00414 crossref_primary_10_1016_j_ijhydene_2023_07_026 crossref_primary_10_1002_adsu_202000122 crossref_primary_10_1016_j_cej_2023_142081 crossref_primary_10_1021_acsaem_1c01679 crossref_primary_10_1002_adma_202306097 crossref_primary_10_1016_j_apsusc_2024_159505 crossref_primary_10_1016_j_jcou_2019_05_026 crossref_primary_10_1002_advs_201901833 crossref_primary_10_1016_j_jcis_2018_10_099 crossref_primary_10_1007_s11581_023_05330_2 crossref_primary_10_1016_j_ijhydene_2018_12_098 crossref_primary_10_1039_C8CS00699G crossref_primary_10_1002_aenm_202402633 crossref_primary_10_1016_j_catcom_2020_106006 crossref_primary_10_1039_C8TA07832G crossref_primary_10_1021_acs_chemrev_3c00229 crossref_primary_10_1007_s12274_022_5094_8 crossref_primary_10_1021_acs_jpcc_2c03807 crossref_primary_10_1021_acsami_1c03618 crossref_primary_10_1002_adma_202208209 crossref_primary_10_1039_D1TA07972G crossref_primary_10_1039_D2TA09052J crossref_primary_10_1016_j_mtchem_2019_100239 crossref_primary_10_1038_s44221_023_00169_3 crossref_primary_10_1002_adsu_202300275 crossref_primary_10_1016_j_ijhydene_2025_02_398 crossref_primary_10_1002_aesr_202200178 crossref_primary_10_1021_acs_chemrev_1c01003 crossref_primary_10_1002_adma_202200840 crossref_primary_10_3390_nano11030657 crossref_primary_10_1016_j_jssc_2024_124553 crossref_primary_10_1021_acscatal_1c04117 crossref_primary_10_1088_2515_7655_ab9fe2 crossref_primary_10_1021_acs_chemmater_2c00932 crossref_primary_10_1016_j_ijhydene_2024_01_292 crossref_primary_10_1016_j_foodchem_2023_138163 crossref_primary_10_1002_cey2_327 crossref_primary_10_1002_aenm_202303730 crossref_primary_10_1039_D2TA07852J crossref_primary_10_1016_j_apcatb_2022_121762 crossref_primary_10_1039_C8EE01669K crossref_primary_10_1016_j_ijhydene_2021_08_106 crossref_primary_10_1002_smll_202301294 crossref_primary_10_1016_j_ceramint_2019_02_137 crossref_primary_10_1039_C9TA04163J crossref_primary_10_1002_smll_201905884 crossref_primary_10_1002_aenm_202102353 crossref_primary_10_1016_j_jallcom_2020_154465 crossref_primary_10_1016_j_cej_2022_139369 crossref_primary_10_1021_acs_jpcc_9b03418 crossref_primary_10_1016_j_jelechem_2023_117451 crossref_primary_10_1039_D0TA02125C crossref_primary_10_1016_j_ijhydene_2021_10_127 crossref_primary_10_1002_cctc_202000004 crossref_primary_10_1007_s40843_022_2190_7 crossref_primary_10_1002_eem2_12033 crossref_primary_10_1007_s12274_022_5006_y crossref_primary_10_1002_smll_202300194 crossref_primary_10_1002_smll_202200303 crossref_primary_10_1016_j_cej_2020_125507 crossref_primary_10_1016_j_apcatb_2020_118782 crossref_primary_10_1002_aenm_202201913 crossref_primary_10_1021_acsnano_4c04832 crossref_primary_10_1002_slct_202201266 crossref_primary_10_1016_j_ijhydene_2025_01_212 crossref_primary_10_1039_D1TA05332A crossref_primary_10_1021_acsanm_3c02844 crossref_primary_10_1038_s41929_024_01210_8 crossref_primary_10_26599_NRE_2022_9120029 crossref_primary_10_26599_NRE_2022_9120028 crossref_primary_10_1016_j_ijhydene_2021_10_117 crossref_primary_10_54227_elab_20220013 crossref_primary_10_1021_acsaem_9b01644 crossref_primary_10_1016_j_apcatb_2021_120914 crossref_primary_10_1016_j_cej_2024_151705 crossref_primary_10_1002_smll_202304260 crossref_primary_10_1016_j_apcatb_2022_121605 crossref_primary_10_1016_j_ccr_2023_215381 crossref_primary_10_1039_D0RA10418C crossref_primary_10_1002_smll_201902222 crossref_primary_10_1039_D1NR04965H crossref_primary_10_1021_acs_chemmater_9b02790 crossref_primary_10_1021_acs_chemmater_3c02978 crossref_primary_10_1002_eem2_12457 crossref_primary_10_1021_acsaem_3c00010 crossref_primary_10_1016_j_ijhydene_2021_12_239 crossref_primary_10_1016_j_matlet_2020_127877 crossref_primary_10_1016_j_jechem_2022_01_025 crossref_primary_10_1016_j_jechem_2023_02_002 crossref_primary_10_1039_C9TA02451D crossref_primary_10_1002_adfm_202422889 crossref_primary_10_1021_acsami_8b14603 crossref_primary_10_1021_acs_nanolett_3c03913 crossref_primary_10_1016_j_joule_2020_09_020 crossref_primary_10_1016_j_jpowsour_2022_231774 crossref_primary_10_1039_D1TA05411B crossref_primary_10_1016_j_ijhydene_2020_12_061 crossref_primary_10_1002_admi_202102154 crossref_primary_10_1021_acs_nanolett_1c04940 crossref_primary_10_1038_s41467_020_19214_w crossref_primary_10_1021_acscatal_0c04200 crossref_primary_10_1021_jacsau_2c00314 crossref_primary_10_1126_sciadv_abk0919 crossref_primary_10_1002_adma_202001136 crossref_primary_10_1021_acscatal_4c03700 crossref_primary_10_1039_D3QM00730H crossref_primary_10_1021_acsaem_1c01030 crossref_primary_10_1016_j_jechem_2020_08_001 crossref_primary_10_1016_j_jcat_2020_06_022 crossref_primary_10_1038_s41467_021_24828_9 crossref_primary_10_1038_s41929_024_01209_1 crossref_primary_10_1021_acs_langmuir_4c04407 crossref_primary_10_1016_j_jpowsour_2021_230279 crossref_primary_10_1016_j_apcatb_2023_123297 crossref_primary_10_1002_smll_202304245 crossref_primary_10_1002_adfm_202406175 crossref_primary_10_1002_cssc_201902505 crossref_primary_10_1149_1945_7111_abab24 crossref_primary_10_1016_j_nanoen_2022_108044 crossref_primary_10_1016_j_cej_2021_128556 crossref_primary_10_1016_j_cej_2024_148887 crossref_primary_10_1038_s42004_020_00406_w crossref_primary_10_1002_adfm_202400979 crossref_primary_10_1039_C9TA03707A crossref_primary_10_1002_ange_202112953 crossref_primary_10_1016_j_jpowsour_2023_232700 crossref_primary_10_1039_D1CC02349G crossref_primary_10_1002_smll_202406075 crossref_primary_10_1039_D1TA10546A crossref_primary_10_1021_acsami_1c01424 crossref_primary_10_1016_j_jmst_2022_08_012 crossref_primary_10_1002_adfm_202009032 crossref_primary_10_1016_j_jechem_2023_10_033 crossref_primary_10_1002_aenm_202400053 crossref_primary_10_1002_anie_202309293 crossref_primary_10_1016_j_gee_2023_05_003 crossref_primary_10_3390_molecules29225298 crossref_primary_10_1002_smll_202100639 crossref_primary_10_1021_acsami_9b08194 crossref_primary_10_1002_adma_202307925 crossref_primary_10_1016_j_nanoen_2018_10_032 crossref_primary_10_1002_adma_202002435 crossref_primary_10_1016_j_jelechem_2022_116805 crossref_primary_10_1016_j_jmst_2021_08_083 crossref_primary_10_1039_D3TA06035G crossref_primary_10_1016_j_apcatb_2019_118199 crossref_primary_10_1016_j_apsusc_2024_160342 crossref_primary_10_1016_j_ijhydene_2019_11_156 crossref_primary_10_1016_j_mset_2020_09_005 crossref_primary_10_1039_D3DT02712K crossref_primary_10_1016_j_cej_2020_126092 crossref_primary_10_1002_smll_202203663 crossref_primary_10_1002_smll_202404808 crossref_primary_10_1021_acsami_8b22268 crossref_primary_10_1002_eem2_12441 crossref_primary_10_1039_D3TA02524A crossref_primary_10_1021_acsaem_1c04100 crossref_primary_10_1039_D3QM00557G crossref_primary_10_1021_acssuschemeng_2c07592 crossref_primary_10_1039_D1TA00817J crossref_primary_10_1021_acs_accounts_0c00127 crossref_primary_10_1063_5_0161844 crossref_primary_10_1016_j_cej_2023_146253 crossref_primary_10_1016_j_jpowsour_2019_02_098 crossref_primary_10_1039_D3CC00652B crossref_primary_10_1002_adfm_202410618 crossref_primary_10_1021_acs_nanolett_8b04466 crossref_primary_10_1021_acsnano_1c06662 crossref_primary_10_1016_j_mtphys_2020_100216 crossref_primary_10_3390_su142416359 crossref_primary_10_1021_acsenergylett_9b00333 crossref_primary_10_1016_j_apcatb_2024_124415 crossref_primary_10_1016_j_electacta_2018_09_053 crossref_primary_10_1016_j_jcis_2025_01_012 crossref_primary_10_1002_smll_202310829 crossref_primary_10_1016_j_cej_2024_156219 crossref_primary_10_1002_adma_201900528 crossref_primary_10_1016_j_apcatb_2023_123386 |
Cites_doi | 10.1021/ja405351s 10.1126/science.aaf1525 10.1021/acsnano.7b00233 10.1038/ncomms12272 10.1002/adma.201602270 10.1002/anie.201701477 10.1126/science.1233638 10.1038/nchem.931 10.1038/ncomms5477 10.1021/ja5082553 10.1021/acs.jpcc.6b10159 10.1021/acs.chemrev.6b00398 10.1039/C4CC01625D 10.1021/ja4027715 10.1021/jacs.5b00281 10.1021/jacs.7b07117 10.1002/adma.201700017 10.1039/C8CC00701B 10.1126/science.1258307 10.1038/ncomms14586 10.1002/adma.201700404 10.1149/1.2113856 10.1126/science.aam7092 10.1038/ncomms8261 10.1021/jacs.7b03507 10.1002/adma.201501901 10.1039/C6CS00328A 10.1021/ja511559d 10.1039/C3CS60468C 10.1021/ja407174u 10.1126/science.1212858 10.1038/ncomms7616 10.1007/430_006 10.1039/c0cc00313a 10.1126/science.aad4998 10.1039/C5SC02417J 10.1021/cr200434v 10.1016/0920-5861(91)80068-K 10.1021/acs.chemmater.6b02796 10.1039/C4CS00448E 10.1038/ncomms11981 10.1021/acs.chemrev.7b00051 10.1007/b118420 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-05019-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_5920add8f73f422db06c9dc6fbbe75ac PMC6031686 29973591 10_1038_s41467_018_05019_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fok Ying Tong Education Foundation grantid: 161011 funderid: https://doi.org/10.13039/501100004806 – fundername: National Natural Science Foundation of China, Grant No.2017YFA0207800. Jilin Province Science and Technology Development Plan, Grant No. 20170101141JC Young Elite Scientist Sponsorship Program by cst(No Grant No.Available). Program for JLU Science and Technology Innovative Research Team (JLUSTIRT)(No Grant No.Available). – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 217710079 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 217710079 – fundername: Fok Ying Tong Education Foundation grantid: 161011 – fundername: ; – fundername: ; grantid: 161011 – fundername: ; grantid: 217710079 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-a9a1b8e83abdc709a20d7cad021a28497d9f59f2144e7bdf5390f30d1319db7a3 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:28 EDT 2025 Thu Aug 21 17:58:10 EDT 2025 Fri Jul 11 16:34:18 EDT 2025 Wed Aug 13 11:27:10 EDT 2025 Thu Apr 03 07:09:28 EDT 2025 Thu Apr 24 23:10:07 EDT 2025 Tue Jul 01 02:21:14 EDT 2025 Fri Feb 21 02:39:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-a9a1b8e83abdc709a20d7cad021a28497d9f59f2144e7bdf5390f30d1319db7a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4143-9274 |
OpenAccessLink | https://doaj.org/article/5920add8f73f422db06c9dc6fbbe75ac |
PMID | 29973591 |
PQID | 2064230486 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5920add8f73f422db06c9dc6fbbe75ac pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031686 proquest_miscellaneous_2064779365 proquest_journals_2064230486 pubmed_primary_29973591 crossref_primary_10_1038_s41467_018_05019_5 crossref_citationtrail_10_1038_s41467_018_05019_5 springer_journals_10_1038_s41467_018_05019_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-04 |
PublicationDateYYYYMMDD | 2018-07-04 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR6) 2015; 6 Morales-Guio, Stern, Hu (CR28) 2014; 43 Xu, Yan, Wei (CR31) 2017; 121 Louie, Bell (CR7) 2013; 135 CR36 Lu, Zhao (CR9) 2015; 6 Guo, Li (CR10) 2018; 54 Zou (CR11) 2017; 29 Zou, Goswami, Asefa (CR17) 2013; 135 Cheng (CR22) 2011; 3 Smith (CR27) 2013; 340 Zhang (CR8) 2016; 352 Jia (CR19) 2017; 29 Stevens, Trang, Enman, Deng, Boettcher (CR38) 2017; 139 Suen (CR4) 2017; 46 Luo (CR13) 2014; 345 Tang (CR23) 2017; 139 Zhu (CR29) 2016; 7 Zhao (CR26) 2017; 8 Zhao, Yan, Chen, Chen (CR20) 2017; 117 Song, Hu (CR15) 2014; 5 Stevens (CR44) 2016; 29 Zou, Zhang (CR1) 2015; 44 Seh (CR2) 2017; 355 Li (CR37) 2015; 6 Suntivich, May, Gasteiger, Goodenough, Shao-Horn (CR25) 2011; 334 Lu (CR12) 2014; 50 Hwang (CR24) 2017; 358 Wang, O’Hare (CR34) 2012; 112 Hall (CR43) 1985; 132 Hunter, Gray, Müller (CR3) 2016; 116 Park (CR41) 2017; 11 He (CR32) 2006; 119 Burke, Kast, Trotochaud, Smith, Boettcher (CR42) 2015; 137 Gong (CR14) 2013; 135 Friebel (CR39) 2015; 137 Cavani, Trifirò, Vaccari (CR33) 1991; 11 Wang (CR16) 2017; 56 Fan (CR18) 2016; 7 Ma, Dai, Jaroniec, Qiao (CR21) 2014; 136 Tang (CR40) 2015; 27 Han, Dong, Wang (CR5) 2016; 28 Ritter (CR30) 2010 Guo, Zhang, Evans, Duan (CR35) 2010; 46 ZW Seh (5019_CR2) 2017; 355 CX Guo (5019_CR10) 2018; 54 C Tang (5019_CR40) 2015; 27 X Zou (5019_CR1) 2015; 44 J Luo (5019_CR13) 2014; 345 H Wang (5019_CR6) 2015; 6 X Zou (5019_CR11) 2017; 29 CG Morales-Guio (5019_CR28) 2014; 43 SK Ritter (5019_CR30) 2010 MS Burke (5019_CR42) 2015; 137 Z Li (5019_CR37) 2015; 6 X Lu (5019_CR9) 2015; 6 B Zhang (5019_CR8) 2016; 352 Q Zhao (5019_CR20) 2017; 117 B Zhao (5019_CR26) 2017; 8 L Han (5019_CR5) 2016; 28 RD Smith (5019_CR27) 2013; 340 X Guo (5019_CR35) 2010; 46 5019_CR36 MB Stevens (5019_CR38) 2017; 139 DE Hall (5019_CR43) 1985; 132 F Song (5019_CR15) 2014; 5 X Zou (5019_CR17) 2013; 135 J Hwang (5019_CR24) 2017; 358 MW Louie (5019_CR7) 2013; 135 MB Stevens (5019_CR44) 2016; 29 J Park (5019_CR41) 2017; 11 J Suntivich (5019_CR25) 2011; 334 L Zhu (5019_CR29) 2016; 7 TY Ma (5019_CR21) 2014; 136 M Gong (5019_CR14) 2013; 135 BM Hunter (5019_CR3) 2016; 116 NT Suen (5019_CR4) 2017; 46 K Fan (5019_CR18) 2016; 7 SM Xu (5019_CR31) 2017; 121 F Cavani (5019_CR33) 1991; 11 F Cheng (5019_CR22) 2011; 3 D Friebel (5019_CR39) 2015; 137 Q Wang (5019_CR34) 2012; 112 Y Wang (5019_CR16) 2017; 56 T Tang (5019_CR23) 2017; 139 J He (5019_CR32) 2006; 119 Z Lu (5019_CR12) 2014; 50 Y Jia (5019_CR19) 2017; 29 |
References_xml | – volume: 135 start-page: 12329 year: 2013 end-page: 12337 ident: CR7 article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: CR8 article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 11 start-page: 5500 year: 2017 end-page: 5509 ident: CR41 article-title: Iridium-based multimetallic nanoframe@nanoframe structure: an efficient and robust electrocatalyst toward oxygen evolution reaction publication-title: ACS Nano doi: 10.1021/acsnano.7b00233 – volume: 7 year: 2016 ident: CR29 article-title: A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials publication-title: Nat. Commun. doi: 10.1038/ncomms12272 – volume: 28 start-page: 9266 year: 2016 end-page: 9291 ident: CR5 article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction publication-title: Adv. Mater. doi: 10.1002/adma.201602270 – volume: 56 start-page: 5867 year: 2017 end-page: 5871 ident: CR16 article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 340 start-page: 60 year: 2013 end-page: 63 ident: CR27 article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis publication-title: Science doi: 10.1126/science.1233638 – volume: 3 start-page: 79 year: 2011 end-page: 84 ident: CR22 article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts publication-title: Nat. Chem. doi: 10.1038/nchem.931 – volume: 5 year: 2014 ident: CR15 article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 136 start-page: 13925 year: 2014 end-page: 13931 ident: CR21 article-title: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5082553 – volume: 121 start-page: 2683 year: 2017 end-page: 2695 ident: CR31 article-title: Band structure engineering of transition-metal-based layered double hydroxides toward photocatalytic oxygen evolution from water: a theoretical–experimental combination study publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10159 – volume: 116 start-page: 14120 year: 2016 end-page: 14136 ident: CR3 article-title: Earth-abundant heterogeneous water oxidation catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00398 – volume: 50 start-page: 6479 year: 2014 end-page: 6482 ident: CR12 article-title: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C4CC01625D – volume: 135 start-page: 8452 year: 2013 end-page: 8455 ident: CR14 article-title: An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 137 start-page: 3638 year: 2015 end-page: 3648 ident: CR42 article-title: Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00281 – volume: 139 start-page: 11361 year: 2017 end-page: 11364 ident: CR38 article-title: Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 29 start-page: 1700017 year: 2017 ident: CR19 article-title: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 54 start-page: 3262 year: 2018 end-page: 3265 ident: CR10 article-title: Room temperature-formed iron-doped nickel hydroxide on nickel foam as a 3D electrode for low polarized and high-current-density oxygen evolution publication-title: Chem. Commun. doi: 10.1039/C8CC00701B – start-page: 26 year: 2010 ident: CR30 article-title: Fuel from the sun: cobalt water-oxidation catalysts benefit from federal initiatives to harness solar power to make fuel publication-title: Chem. Eng. News – volume: 345 start-page: 1593 year: 2014 end-page: 1596 ident: CR13 article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts publication-title: Science doi: 10.1126/science.1258307 – volume: 8 year: 2017 ident: CR26 article-title: A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution publication-title: Nat. Commun. doi: 10.1038/ncomms14586 – volume: 29 start-page: 1700404 year: 2017 ident: CR11 article-title: Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis publication-title: Adv. Mater. doi: 10.1002/adma.201700404 – volume: 132 start-page: 41C year: 1985 ident: CR43 article-title: Alkaline water electrolysis anode materials publication-title: J. Electrochem. Soc. doi: 10.1149/1.2113856 – volume: 358 start-page: 751 year: 2017 end-page: 756 ident: CR24 article-title: Perovskites in catalysis and electrocatalysis publication-title: Science doi: 10.1126/science.aam7092 – volume: 6 year: 2015 ident: CR6 article-title: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting publication-title: Nat. Commun. doi: 10.1038/ncomms8261 – volume: 139 start-page: 8320 year: 2017 end-page: 8328 ident: CR23 article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03507 – volume: 27 start-page: 4516 year: 2015 end-page: 4522 ident: CR40 article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity publication-title: Adv. Mater. doi: 10.1002/adma.201501901 – volume: 46 start-page: 337 year: 2017 end-page: 365 ident: CR4 article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 137 start-page: 1305 year: 2015 end-page: 1313 ident: CR39 article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 43 start-page: 6555 year: 2014 end-page: 6569 ident: CR28 article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60468C – volume: 135 start-page: 17242 year: 2013 end-page: 17245 ident: CR17 article-title: Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407174u – volume: 334 start-page: 1383 year: 2011 end-page: 1385 ident: CR25 article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles publication-title: Science doi: 10.1126/science.1212858 – volume: 6 year: 2015 ident: CR9 article-title: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities publication-title: Nat. Commun. doi: 10.1038/ncomms7616 – volume: 119 start-page: 89 year: 2006 end-page: 119 ident: CR32 article-title: Preparation of layered double hydroxides publication-title: Struct. Bond doi: 10.1007/430_006 – volume: 46 start-page: 5197 year: 2010 end-page: 5210 ident: CR35 article-title: Layered double hydroxide films: synthesis, properties and applications publication-title: Chem. Commun. doi: 10.1039/c0cc00313a – volume: 355 start-page: 146 year: 2017 end-page: 157 ident: CR2 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – ident: CR36 – volume: 6 start-page: 6624 year: 2015 end-page: 6631 ident: CR37 article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions publication-title: Chem. Sci. doi: 10.1039/C5SC02417J – volume: 112 start-page: 4124 year: 2012 end-page: 4155 ident: CR34 article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets publication-title: Chem. Rev. doi: 10.1021/cr200434v – volume: 11 start-page: 173 year: 1991 end-page: 301 ident: CR33 article-title: Hydrotalcite-type anionic clays: preparation, properties and applications publication-title: Catal. Today doi: 10.1016/0920-5861(91)80068-K – volume: 29 start-page: 120 year: 2016 end-page: 140 ident: CR44 article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02796 – volume: 44 start-page: 5148 year: 2015 end-page: 5180 ident: CR1 article-title: Noble metal-free hydrogen evolution catalysts for water splitting publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – volume: 7 year: 2016 ident: CR18 article-title: Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation publication-title: Nat. Commun. doi: 10.1038/ncomms11981 – volume: 117 start-page: 10121 year: 2017 end-page: 10211 ident: CR20 article-title: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00051 – volume: 7 year: 2016 ident: 5019_CR18 publication-title: Nat. Commun. doi: 10.1038/ncomms11981 – volume: 358 start-page: 751 year: 2017 ident: 5019_CR24 publication-title: Science doi: 10.1126/science.aam7092 – volume: 6 start-page: 6624 year: 2015 ident: 5019_CR37 publication-title: Chem. Sci. doi: 10.1039/C5SC02417J – volume: 46 start-page: 337 year: 2017 ident: 5019_CR4 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00328A – volume: 29 start-page: 1700404 year: 2017 ident: 5019_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201700404 – volume: 112 start-page: 4124 year: 2012 ident: 5019_CR34 publication-title: Chem. Rev. doi: 10.1021/cr200434v – volume: 135 start-page: 8452 year: 2013 ident: 5019_CR14 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4027715 – volume: 137 start-page: 1305 year: 2015 ident: 5019_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511559d – volume: 135 start-page: 12329 year: 2013 ident: 5019_CR7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja405351s – volume: 50 start-page: 6479 year: 2014 ident: 5019_CR12 publication-title: Chem. Commun. doi: 10.1039/C4CC01625D – volume: 7 year: 2016 ident: 5019_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms12272 – volume: 334 start-page: 1383 year: 2011 ident: 5019_CR25 publication-title: Science doi: 10.1126/science.1212858 – volume: 135 start-page: 17242 year: 2013 ident: 5019_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407174u – volume: 54 start-page: 3262 year: 2018 ident: 5019_CR10 publication-title: Chem. Commun. doi: 10.1039/C8CC00701B – volume: 139 start-page: 8320 year: 2017 ident: 5019_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b03507 – volume: 11 start-page: 5500 year: 2017 ident: 5019_CR41 publication-title: ACS Nano doi: 10.1021/acsnano.7b00233 – volume: 46 start-page: 5197 year: 2010 ident: 5019_CR35 publication-title: Chem. Commun. doi: 10.1039/c0cc00313a – volume: 139 start-page: 11361 year: 2017 ident: 5019_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07117 – volume: 44 start-page: 5148 year: 2015 ident: 5019_CR1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00448E – start-page: 26 volume-title: Chem. Eng. News year: 2010 ident: 5019_CR30 – volume: 8 year: 2017 ident: 5019_CR26 publication-title: Nat. Commun. doi: 10.1038/ncomms14586 – volume: 116 start-page: 14120 year: 2016 ident: 5019_CR3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00398 – volume: 3 start-page: 79 year: 2011 ident: 5019_CR22 publication-title: Nat. Chem. doi: 10.1038/nchem.931 – volume: 345 start-page: 1593 year: 2014 ident: 5019_CR13 publication-title: Science doi: 10.1126/science.1258307 – volume: 6 year: 2015 ident: 5019_CR6 publication-title: Nat. Commun. doi: 10.1038/ncomms8261 – volume: 56 start-page: 5867 year: 2017 ident: 5019_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201701477 – volume: 28 start-page: 9266 year: 2016 ident: 5019_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.201602270 – volume: 352 start-page: 333 year: 2016 ident: 5019_CR8 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 340 start-page: 60 year: 2013 ident: 5019_CR27 publication-title: Science doi: 10.1126/science.1233638 – volume: 5 year: 2014 ident: 5019_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms5477 – volume: 355 start-page: 146 year: 2017 ident: 5019_CR2 publication-title: Science doi: 10.1126/science.aad4998 – volume: 136 start-page: 13925 year: 2014 ident: 5019_CR21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5082553 – volume: 119 start-page: 89 year: 2006 ident: 5019_CR32 publication-title: Struct. Bond doi: 10.1007/430_006 – volume: 117 start-page: 10121 year: 2017 ident: 5019_CR20 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00051 – volume: 43 start-page: 6555 year: 2014 ident: 5019_CR28 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60468C – volume: 132 start-page: 41C year: 1985 ident: 5019_CR43 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2113856 – volume: 6 year: 2015 ident: 5019_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms7616 – volume: 27 start-page: 4516 year: 2015 ident: 5019_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201501901 – volume: 121 start-page: 2683 year: 2017 ident: 5019_CR31 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10159 – volume: 29 start-page: 120 year: 2016 ident: 5019_CR44 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b02796 – ident: 5019_CR36 doi: 10.1007/b118420 – volume: 137 start-page: 3638 year: 2015 ident: 5019_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b00281 – volume: 29 start-page: 1700017 year: 2017 ident: 5019_CR19 publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 11 start-page: 173 year: 1991 ident: 5019_CR33 publication-title: Catal. Today doi: 10.1016/0920-5861(91)80068-K |
SSID | ssj0000391844 |
Score | 2.679186 |
Snippet | Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the... Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2609 |
SubjectTerms | 140/146 147/135 147/143 639/301/299/886 639/638/263/915 639/638/549/884 639/925/357 Ambient temperature Catalysis Catalysts Catalytic activity Cations Corrosion Divalent cations Electrodes Energy efficiency Evolution Humanities and Social Sciences Hydroxides Iridium Iron Iron and steel making multidisciplinary Nickel Oxygen Oxygen evolution reactions Science Science (multidisciplinary) Substrates Thin films |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s1CQUbiBhZOHMfxCUFFVSHBiUp7s_ykSFVSNtuK_ffMON6slkeviaOZeJ4ZT74h5LVyOorOtkx5rVijpGeQFTnmKwvhqrbaZZyCL1_bk9Pm81IuS8FtLG2VW5-YHXUYPNbI4SMdMmWBAHHvL34ynBqFp6tlhMZNcguhy7ClSy3VXGNB9POuacq_Mlx078YmewZedYxLyG6Y3ItHGbb_X7nm3y2Tf5yb5nB0fI_cLXkk_TAJ_j65EfsH5PY0WXLzkFwdDSugB5tO4w5xkK5zk-xIYwaOACJ0-LUBFaLxqqggLXNxQhwp1mgpZI_uPNJc5tkAMYp_QuDACQrpLsUGUArZDKdnwNH4iJwef_p2dMLKiAXmIVVbM6tt5brYCeuCV1zbmgflbYDIbyFwaRV0kjohrlpULiQpNE-ChwosNzhlxWNy0A99fEqo0KlqQooSF6eKOyDu4OsqOR5sEtWCVNuNNr7gj-MYjHOTz8FFZybhGBCOycIxckHezM9cTOgb167-iPKbVyJydr4wrL6bYohG6pqDT--SEqmp6-B463XwbXIuKmn9ghxupW-KOY9mp3wL8mq-DYaIpyu2j8PltEaBt2uBjyeTssycQMxXQmrYA7WnRnus7t_pf5xlsG-cAt4i3bdbhdux9f-teHb9Wzwnd-psA2AKzSE5WK8u4wtIrtbuZbag38WaI7Q priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXBBToQotciRsYnDiO4wNCpaKqKpVTV-rN8pNWWiVls626_56x42y1sHDimjia0Tw8n2P7G4TeCSM9a3RNhJWCVIJbAqjIEFtoKFellibxFJx9r0-m1ekFv9hCY7ujbMB-49Iu9pOazmcf734uv0DCfx6ujDef-iqlOy0aQjlAFsIfoIdQmURM1LMM99PMzCQsaKp8d2bzp2v1KdH4b8Kefx6h_G0fNZWn46foScaV-HAIhGdoy7fP0aOh0-RyB90edXOQB07A_p6BEC_Sodke-0QkAUJwd7eEkML-Nockzn1ynO9x_GeLAU2amcfpt88ShOF4MyI2oMAAf3E8EIoB3VB8CRr1L9D0-Nv50QnJLReIBei2IFrqwjS-Ydo4K6jUJXXCagdIQEMhk8LJwGWIPGteGBc4kzQw6grIZGeEZi_Rdtu1fhdhJkNRueB5HBwKakC4gdVWMNTpwIoJKkZDK5v5yGNbjJlK--KsUYNzFDhHJecoPkHvV99cD2wc_xz9NfpvNTIyaacH3fyHyompuCwpzPFNECxUZekMra10tg7GeMG1naC90ftqjE5VxmUbi2yFE3Sweg2JGXdbdOu7m2GMgNmvBj1eDcGy0gQwgGBcgg3EWhitqbr-pr26TOTfsSt4HeV-GAPuXq2_m-L1_zDFG_S4TJkCCVPtoe3F_MbvAyRbmLcpz34Byxs0ug priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfBFWq-nF4ngmwazm81m81gPliLok4W-hVytUHbL2dPi-fdOspdytAq-bibMkJnJzCaTbwDeSqsCb0xNpVOSVlI4ilmRpa4wGK5Ko2zGKfjytT47rz5fiIsdKKe3MLloP0Na5m16qg770FfZpVnRUCYwLaHiATxM0O3Jqpf1cj5XSYjnTVWN72MYb-6ZuhWDMlT_ffnln2WSv92V5hB0ugdPxtyRnAzS7sNOaJ_Co6Gb5OYZ3C67FfLDhSbhDmWQrHNhbE9CBotAJqT7uUGzIeF2NDsy9sLxoSfpXJZgxmivAslHOxtkRtLrh9RkgmCKS1LRJ8EMhpFLlKh_Duenn74tz-jYVoE6TM_W1ChT2CY03FjvJFOmZF464zHaGwxWSnoVhYoJSy1I66PgikXOfIHe6q00_AXstl0bXgHhKhaVj0Ek4lgwi8wt_lFFy7yJvFhAMS20diPmeGp9caXz3Tdv9KAcjcrRWTlaLODdPOd6QNz4J_XHpL-ZMqFl5w_d6rserUcLVTLcx5soeazK0ltWO-VdHa0NUhi3gKNJ-3p04V6X6deMJ0TCBbyZh9H50o2KaUN3M9BI3OFqlOPlYCyzJBjnJRcK10BumdGWqNsj7Y_LDPCdOn_Xie_7yeDuxPr7Uhz8H_khPC6zT6BrVEewu17dhGNMsNb2dfaoXyocIYg priority: 102 providerName: Springer Nature |
Title | Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours |
URI | https://link.springer.com/article/10.1038/s41467-018-05019-5 https://www.ncbi.nlm.nih.gov/pubmed/29973591 https://www.proquest.com/docview/2064230486 https://www.proquest.com/docview/2064779365 https://pubmed.ncbi.nlm.nih.gov/PMC6031686 https://doaj.org/article/5920add8f73f422db06c9dc6fbbe75ac |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbx2Avo7s2bRc02NsmKluWJT2moVkJtIxthbwJXWmhOKVOy_LveyQ7abPry14csBXO4Vx0PlnydxD6IKwKTJqaCKcEqQR3BFCRJa4wUK5Ko2zmKTg5rY_PqumMzx60-kpnwjp64M5wB1yVFHJQRsFiVZbe0top7-pobRDcuDT7Qs17sJjKczBTsHSp-q9kKJMHbZXnBFpIQjngGsI3KlEm7P8dyvz1sORPO6a5EE220fMeQeJRp_kL9Cg0L9HTrqfk8hW6Hc-vQR6YG4d7rkG8yMdjWxwyZQQIwfMfSwgeHG774MN9RxwfWpzezmLAjfYy4PyCZwnCcPoGIrWawAB0cTr6iQHHUHwOGrWv0dnk6Pv4mPTNFYgDkLYgRpnCyiCZsd4JqkxJvXDGQ803ULKU8CpyFROjWhDWR84UjYz6AnLWW2HYG7TVzJuwgzBTsah8DDwNjgW1INzCuipa6k1kxQAVK0Nr1zOPpwYYlzrvgDOpO-docI7OztF8gD6u_3PV8W78dfRh8t96ZOLMzjcgknQfSfpfkTRA-yvv6z6RW12mBRpLvIQD9H79GFIw7auYJsxvujEC5rka9HjbBctaE6j2gnEFNhAbYbSh6uaT5uI803yn_t91kvtpFXD3av3ZFLv_wxR76FmZMwUSptpHW4vrm_AOwNfCDtFjMRNwlZPPQ_RkNJp-m8Lv4dHpl69wd1yPhzkT4XpSyTvltDSD |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEaIXxN6BAkaCE1g4cRzHB4SgUE3pcmqluRmvFKlKymRamD_Fb-TZSWY0LL31OnHmOX7b5-17CL0QRnpW6ZIIKwUpBLcEUJEhNtOQrnItTeIpODgsx8fF5wmfrKFfw12YeKxyiIkpULvGxjVymKQDUmaRIO7d2XcSq0bF3dWhhEZnFnt-_gOmbO3b3Y-g35d5vvPpaHtM-qoCxAI6mREtdWYqXzFtnBVU6pw6YbWDZKchVkvhZOAyRCoxL4wLnEkaGHUZGKszQjP432voOnwJjR4lJmKxphPZ1qui6O_mUFa9aYsUiWhWEcoBTRG-kv9SmYB_Ydu_j2j-sU-b0t_ObXSrx634fWdod9Car--iG10ly_k9dLHdTEEeKBn7JcMhnqVDuS32iagChODm5xxMFvuL3uRxX4fH-RbHNWEMaNWcepyWleYgDMebF7HABQZ4jeOBUwzoieIT6FF7Hx1fyeA_QOt1U_tNhJkMWeGC57FxyKgB4QZmc8FQpwPLRigbBlrZnu88lt04VWnfnVWqU44C5aikHMVH6NXinbOO7ePS1h-i_hYtI1N3-qGZflW94ysucwo5pAqChSLPnaGllc6WwRgvuLYjtDVoX_Xho1VLYx-h54vH4PhxN0fXvjnv2giIriX042FnLIueAMYQjEsYA7FiRitdXX1SfztJ5OKx6ngZ5b4eDG7Zrf8PxaPLv-IZujk-OthX-7uHe4_RRp78Adyi2ELrs-m5fwLAbmaeJm_C6MtVu-9vMnZg-w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s1CASPBCaw6cRzHB4SgZdVSqDhQaW_GT1qpStrNtrB_jV_H2El2tTx66zXxZmY9r8_2eAahF8JIzypdEmGlIIXglgAqMsRmGsJVrqVJdQo-75c7B8XHCZ-soV_DXZiYVjn4xOSoXWPjHjks0gEps1ggbjP0aRFftsdvT05J7CAVT1qHdhqdiuz5-Q9YvrVvdrdB1i_zfPzh69YO6TsMEAtIZUa01JmpfMW0cVZQqXPqhNUOAp8Gvy2Fk4HLEMuKeWFc4EzSwKjLQHGdEZrBd6-gq4LxLNqYmIjF_k6svF4VRX9Ph7Jqsy2SV6JZRSgHZEX4SixMLQP-hXP_Ttf848w2hcLxLXSzx7D4Xad0t9Gar--ga11Xy_lddL7VTIEeCBz7ZbVDPEsJui32qWgFEMHNzzmoL_bnvfrjvieP8y2O-8MYkKs59jhtMc2BGI63MGKzCwxQG8fkUwxIiuJD4Ki9hw4uZfLvo_W6qf1DhJkMWeGC53FwyKgB4gZWdsFQpwPLRigbJlrZvvZ5bMFxrNIZPKtUJxwFwlFJOIqP0KvFb066yh8Xjn4f5bcYGat2pwfN9LvqnYDiMqcQT6ogWCjy3BlaWulsGYzxgms7QhuD9FXvSlq1VPwRer54DU4gnuzo2jdn3RgBnrYEPh50yrLgBPAG6KeEORArarTC6uqb-ugwFRqPHcjLSPf1oHBLtv4_FY8u_hfP0HUwXPVpd3_vMbqRJ3MAqyg20PpseuafAMabmafJmDD6dtnW-xueQGUx |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+engineering+towards+efficient+oxygen+evolution+electrodes+with+stable+catalytic+activity+for+over+6000+hours&rft.jtitle=Nature+communications&rft.au=Yipu+Liu&rft.au=Xiao+Liang&rft.au=Lin+Gu&rft.au=Yu+Zhang&rft.date=2018-07-04&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-018-05019-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5920add8f73f422db06c9dc6fbbe75ac |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |