Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours

Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 2609 - 10
Main Authors Liu, Yipu, Liang, Xiao, Gu, Lin, Zhang, Yu, Li, Guo-Dong, Zou, Xiaoxin, Chen, Jie-Sheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.07.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm -2 current densities. Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the authors prepare active water-splitting electrocatalysts via corrosion engineering that are stable for thousands of hours.
AbstractList Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm -2 current densities. Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the authors prepare active water-splitting electrocatalysts via corrosion engineering that are stable for thousands of hours.
Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm -2 current densities.
Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities.
Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities.Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm-2 current densities.
Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the authors prepare active water-splitting electrocatalysts via corrosion engineering that are stable for thousands of hours.
Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the oxygen evolution reaction, their catalytic lifetimes rarely exceed more than several hundred hours under operating conditions. Here we develop an energy-efficient, cost-effective, scaled-up corrosion engineering method for transforming inexpensive iron substrates (e.g., iron plate and iron foam) into highly active and ultrastable electrodes for oxygen evolution reaction. This synthetic method is achieved via a desired corrosion reaction of iron substrates with oxygen in aqueous solutions containing divalent cations (e.g., nickel) at ambient temperature. This process results in the growth on iron substrates of thin film nanosheet arrays that consist of iron-containing layered double hydroxides, instead of rust. This inexpensive and simple manufacturing technique affords iron-substrate-derived electrodes possessing excellent catalytic activities and activity retention for over 6000 hours at 1000 mA cm current densities.
ArticleNumber 2609
Author Gu, Lin
Liu, Yipu
Zhang, Yu
Liang, Xiao
Li, Guo-Dong
Zou, Xiaoxin
Chen, Jie-Sheng
Author_xml – sequence: 1
  givenname: Yipu
  surname: Liu
  fullname: Liu, Yipu
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 2
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 3
  givenname: Lin
  surname: Gu
  fullname: Gu, Lin
  organization: Institute of Physics, Chinese Academy of Sciences
– sequence: 4
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: School of Chemistry, Beihang University
– sequence: 5
  givenname: Guo-Dong
  surname: Li
  fullname: Li, Guo-Dong
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 6
  givenname: Xiaoxin
  orcidid: 0000-0003-4143-9274
  surname: Zou
  fullname: Zou, Xiaoxin
  email: xxzou@jlu.edu.cn
  organization: State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University
– sequence: 7
  givenname: Jie-Sheng
  surname: Chen
  fullname: Chen, Jie-Sheng
  organization: School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29973591$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBLLFhE_ArcbxBQiMelSqxgbV1Y19PXWXiYnumnX-PZ6aUtot6Yyv-7vHJved1czTHGZvmLaMfGRXDpyyZ7FVL2dDSjjLddi-aE04la5ni4ujB-bg5y_mK1iU0G6R81RxzrZXoNDtpNouYUswhzgTnZZgRU5iXpMQbSC4T9D7YgHMh8Xa7xApt4rQue3xCW1J0mMlNKJckFxgnJBYKTNsSLAFbwiaULfExkbjBRPrqgVzGdcpvmpcepoxnd_tp8_vb11-LH-3Fz-_niy8Xre0kLS1oYOOAg4DRWUU1cOqUBUc5Az5IrZz2nfacSYlqdL4TmnpBHRNMu1GBOG3OD7ouwpW5TmEFaWsiBLP_ENPSQKpmJzSd5hScG7wSXnLuRtpb7WzvxxFVB7ZqfT5oXa_HFTpbu5JgeiT6-GYOl2YZN6angvVDXwU-3Amk-GeNuZhVyBanCWaM62w47aVSWvRdRd8_Qa9q2-baqj3FBZV7wXcPHd1b-TfeCvADYOuMc0J_jzBqdjEyhxiZGiOzj5HZvT08KbKhwG7m9a_C9HypOJTm612MMP23_UzVX2eb3qY
CitedBy_id crossref_primary_10_1021_acssuschemeng_9b07481
crossref_primary_10_1360_TB_2024_0397
crossref_primary_10_1039_C8DT02302F
crossref_primary_10_1016_j_jiec_2022_12_030
crossref_primary_10_1002_admi_202101576
crossref_primary_10_1002_adma_202101845
crossref_primary_10_1016_j_apcatb_2021_119881
crossref_primary_10_3390_catal13030586
crossref_primary_10_1016_j_carbon_2018_12_032
crossref_primary_10_1007_s11051_018_4436_7
crossref_primary_10_1007_s12274_023_5615_0
crossref_primary_10_1149_1945_7111_ab72ee
crossref_primary_10_1002_aenm_202303001
crossref_primary_10_1016_j_cej_2020_127670
crossref_primary_10_1038_s41467_021_27664_z
crossref_primary_10_1021_acssuschemeng_0c04666
crossref_primary_10_1039_D0QI00614A
crossref_primary_10_1016_j_cej_2023_141457
crossref_primary_10_1016_j_scib_2020_06_003
crossref_primary_10_1016_j_coelec_2021_100788
crossref_primary_10_1039_D2DT00157H
crossref_primary_10_1002_anie_202215804
crossref_primary_10_1016_j_jelechem_2022_116213
crossref_primary_10_1038_s41467_023_43977_7
crossref_primary_10_1021_acsaem_2c01523
crossref_primary_10_1016_j_jechem_2020_10_010
crossref_primary_10_1002_adma_202110696
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1007_s10853_020_05026_2
crossref_primary_10_1002_adma_201905107
crossref_primary_10_1039_C9NR10437B
crossref_primary_10_1002_ange_202309293
crossref_primary_10_1039_D2MH00075J
crossref_primary_10_3390_nano12121975
crossref_primary_10_1016_j_jcis_2021_12_179
crossref_primary_10_1002_smll_202000663
crossref_primary_10_1021_acs_inorgchem_8b03063
crossref_primary_10_3390_catal13030569
crossref_primary_10_1002_adfm_202413533
crossref_primary_10_1007_s10008_019_04362_x
crossref_primary_10_1002_aenm_202303261
crossref_primary_10_1002_anie_202002240
crossref_primary_10_1002_adfm_202202068
crossref_primary_10_1016_j_esci_2024_100334
crossref_primary_10_1021_acsenergylett_1c02380
crossref_primary_10_1021_acsaem_2c01548
crossref_primary_10_1039_C9TA10059H
crossref_primary_10_3390_ma16083044
crossref_primary_10_1016_j_electacta_2019_06_088
crossref_primary_10_1021_acsanm_2c00363
crossref_primary_10_1002_aenm_201803358
crossref_primary_10_1007_s12274_022_5163_z
crossref_primary_10_1021_acsmaterialslett_0c00536
crossref_primary_10_3390_molecules27228019
crossref_primary_10_1039_D0DT01520B
crossref_primary_10_1016_j_jcis_2023_05_123
crossref_primary_10_1002_aenm_201900954
crossref_primary_10_1039_D2EE03936B
crossref_primary_10_1016_j_cej_2023_145905
crossref_primary_10_1039_D0TA02858D
crossref_primary_10_1016_j_coelec_2022_100991
crossref_primary_10_1039_D2QI00003B
crossref_primary_10_1016_j_cclet_2024_110232
crossref_primary_10_1039_D0CC07643K
crossref_primary_10_1021_acsaem_2c03514
crossref_primary_10_1002_smll_202001571
crossref_primary_10_1021_acs_cgd_0c01273
crossref_primary_10_3390_catal15030211
crossref_primary_10_1007_s11426_024_2153_4
crossref_primary_10_1002_adfm_202423537
crossref_primary_10_1002_aenm_202204403
crossref_primary_10_1016_j_jechem_2020_12_038
crossref_primary_10_1039_D1TA06370G
crossref_primary_10_1016_j_nanoen_2020_105115
crossref_primary_10_1016_j_ijhydene_2024_10_314
crossref_primary_10_1016_j_apcatb_2022_122171
crossref_primary_10_1039_C9NR06169J
crossref_primary_10_1039_C9QI01394F
crossref_primary_10_1039_D1SE01284C
crossref_primary_10_1021_acsami_1c05123
crossref_primary_10_1002_ange_202002240
crossref_primary_10_1039_D0TA09156A
crossref_primary_10_1002_smll_201905083
crossref_primary_10_1021_acsami_2c00016
crossref_primary_10_1016_j_surfin_2023_103508
crossref_primary_10_1016_j_cej_2024_157275
crossref_primary_10_1016_j_apcatb_2022_121199
crossref_primary_10_1002_smll_202104354
crossref_primary_10_1007_s41918_024_00237_6
crossref_primary_10_1021_acsnano_2c11939
crossref_primary_10_1016_j_jpowsour_2019_227375
crossref_primary_10_1016_j_jpowsour_2021_229493
crossref_primary_10_1007_s11426_022_1435_6
crossref_primary_10_1002_smll_202311763
crossref_primary_10_1021_acscatal_4c06509
crossref_primary_10_1039_D1EE02512K
crossref_primary_10_1002_smll_202300509
crossref_primary_10_1002_cctc_202101553
crossref_primary_10_1039_D3TA04805E
crossref_primary_10_1002_cctc_201901638
crossref_primary_10_1002_cctc_202401950
crossref_primary_10_1039_D1TA00072A
crossref_primary_10_3389_fchem_2022_895168
crossref_primary_10_1007_s11356_022_24203_1
crossref_primary_10_1021_acsaem_9b02055
crossref_primary_10_1016_j_jmst_2021_05_078
crossref_primary_10_1016_j_cej_2024_149890
crossref_primary_10_1016_j_asems_2023_100046
crossref_primary_10_1016_j_jechem_2019_01_017
crossref_primary_10_1039_D0NR00607F
crossref_primary_10_1039_D4YA00272E
crossref_primary_10_1016_j_ccr_2024_216190
crossref_primary_10_1021_acsami_2c16543
crossref_primary_10_2351_7_0000056
crossref_primary_10_1039_D1MA00381J
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1016_j_jallcom_2020_155298
crossref_primary_10_3390_nano11112989
crossref_primary_10_1039_D0SE00466A
crossref_primary_10_1002_aenm_202200409
crossref_primary_10_1016_j_electacta_2019_135395
crossref_primary_10_1002_adfm_202405726
crossref_primary_10_1039_D0TA05623E
crossref_primary_10_1002_asia_202000213
crossref_primary_10_1016_j_apsusc_2019_05_189
crossref_primary_10_17159_sajs_2024_16026
crossref_primary_10_1002_anie_202214794
crossref_primary_10_1002_aenm_202000184
crossref_primary_10_1002_adfm_202212479
crossref_primary_10_1016_j_apcatb_2021_119902
crossref_primary_10_1002_eom2_12254
crossref_primary_10_1021_acs_chemrev_3c00723
crossref_primary_10_1016_j_cej_2021_131398
crossref_primary_10_1002_smll_202404205
crossref_primary_10_1016_j_fuel_2022_125780
crossref_primary_10_1016_j_jcis_2024_04_180
crossref_primary_10_1021_acscatal_1c01973
crossref_primary_10_1016_j_gee_2023_02_011
crossref_primary_10_1016_j_jcis_2019_11_032
crossref_primary_10_1021_acscatal_1c01607
crossref_primary_10_1002_ange_202215804
crossref_primary_10_1002_anie_202103824
crossref_primary_10_1002_er_7457
crossref_primary_10_1021_acsnano_2c00332
crossref_primary_10_1016_j_ijhydene_2020_01_085
crossref_primary_10_1002_anie_202112775
crossref_primary_10_1016_j_apcatb_2021_120150
crossref_primary_10_1016_j_cjsc_2023_100200
crossref_primary_10_1016_j_jcis_2023_10_151
crossref_primary_10_1016_j_jcis_2023_04_036
crossref_primary_10_1002_adma_202007100
crossref_primary_10_1039_C8CC09104H
crossref_primary_10_1016_j_gee_2021_11_006
crossref_primary_10_1016_j_jece_2024_114552
crossref_primary_10_1016_j_mcat_2020_111082
crossref_primary_10_1021_jacs_5c00668
crossref_primary_10_3390_inorganics11050191
crossref_primary_10_1016_j_jece_2024_113223
crossref_primary_10_1039_D0DT04133E
crossref_primary_10_1021_acssuschemeng_2c02114
crossref_primary_10_1016_j_nanoen_2019_02_020
crossref_primary_10_1002_chem_202301469
crossref_primary_10_1021_acsaem_0c00348
crossref_primary_10_1021_acs_chemmater_0c00081
crossref_primary_10_1021_acs_jpclett_3c00988
crossref_primary_10_1016_j_apcatb_2022_122101
crossref_primary_10_1039_C9DT04295D
crossref_primary_10_1007_s10853_021_06451_7
crossref_primary_10_1002_adfm_202316150
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1016_j_jechem_2020_02_025
crossref_primary_10_1016_j_electacta_2019_03_208
crossref_primary_10_1016_j_mtsust_2023_100451
crossref_primary_10_1002_anie_202112953
crossref_primary_10_1039_D3SE00802A
crossref_primary_10_1007_s12274_021_3366_3
crossref_primary_10_1021_acscatal_3c05053
crossref_primary_10_1002_smtd_202200855
crossref_primary_10_1007_s40843_020_1536_6
crossref_primary_10_1039_D0DT04397D
crossref_primary_10_1016_j_cej_2023_144877
crossref_primary_10_1039_C9TA00489K
crossref_primary_10_1016_j_ijhydene_2024_09_075
crossref_primary_10_1002_aenm_202102074
crossref_primary_10_1021_acssuschemeng_9b02296
crossref_primary_10_1021_acs_jpcc_4c04258
crossref_primary_10_1016_j_jcat_2024_115771
crossref_primary_10_1016_j_apcatb_2022_121230
crossref_primary_10_1021_acsaem_1c00891
crossref_primary_10_1021_jacs_4c10685
crossref_primary_10_1039_C9EE02388G
crossref_primary_10_1002_smll_202104513
crossref_primary_10_1149_1945_7111_ad2597
crossref_primary_10_1021_acsami_0c15240
crossref_primary_10_1016_j_jpowsour_2021_230757
crossref_primary_10_1002_chem_202101182
crossref_primary_10_1016_j_jechem_2020_02_002
crossref_primary_10_1039_D1SE00558H
crossref_primary_10_1142_S1793292021500727
crossref_primary_10_1088_2752_5724_ada99c
crossref_primary_10_1016_j_electacta_2023_143511
crossref_primary_10_1038_s41467_020_18891_x
crossref_primary_10_1016_j_jechem_2021_11_032
crossref_primary_10_1016_j_electacta_2021_137848
crossref_primary_10_1021_acsaem_1c02604
crossref_primary_10_1039_D3QM01179H
crossref_primary_10_1039_D2TA06319K
crossref_primary_10_1016_j_cej_2021_130688
crossref_primary_10_1021_acs_inorgchem_2c00862
crossref_primary_10_1002_aenm_202102372
crossref_primary_10_1021_acssuschemeng_9b06959
crossref_primary_10_1016_j_jallcom_2023_171665
crossref_primary_10_1007_s10008_019_04444_w
crossref_primary_10_1039_C9RA04368C
crossref_primary_10_1039_D4CY00328D
crossref_primary_10_1595_205651321X16067419458185
crossref_primary_10_1039_C8EE03405B
crossref_primary_10_1088_2752_5724_aceef3
crossref_primary_10_1016_j_jcis_2022_01_132
crossref_primary_10_1021_acsenergylett_4c01568
crossref_primary_10_1002_celc_202200148
crossref_primary_10_1016_j_cej_2024_156430
crossref_primary_10_1039_D2TA02374A
crossref_primary_10_1039_C9RE00334G
crossref_primary_10_1039_D2SE01197B
crossref_primary_10_1002_adfm_201902180
crossref_primary_10_3390_nano14181533
crossref_primary_10_1002_ange_202112775
crossref_primary_10_1016_j_cclet_2020_09_030
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1002_adfm_202401095
crossref_primary_10_1021_acs_jpclett_3c03256
crossref_primary_10_1002_ange_202103824
crossref_primary_10_1039_C8TA10378J
crossref_primary_10_1002_celc_202100409
crossref_primary_10_1016_j_ijhydene_2022_06_071
crossref_primary_10_1021_acssuschemeng_0c06052
crossref_primary_10_1039_D3CC00134B
crossref_primary_10_1016_j_apcatb_2020_119707
crossref_primary_10_1016_j_jallcom_2021_161270
crossref_primary_10_1016_j_jechem_2022_02_010
crossref_primary_10_1002_ange_202214794
crossref_primary_10_1039_C9RA01802F
crossref_primary_10_1016_j_ijhydene_2023_05_207
crossref_primary_10_1002_nano_202100286
crossref_primary_10_1016_j_ijoes_2024_100826
crossref_primary_10_1016_j_jmst_2021_09_003
crossref_primary_10_1002_smll_202301255
crossref_primary_10_1039_D2EE03642H
crossref_primary_10_1002_adsu_202000136
crossref_primary_10_1002_adfm_202213976
crossref_primary_10_1039_D0RA01813A
crossref_primary_10_1039_D0NR05458E
crossref_primary_10_1016_j_jechem_2022_02_005
crossref_primary_10_1039_C8TA11223A
crossref_primary_10_1007_s40820_020_00476_4
crossref_primary_10_1021_acsami_1c12155
crossref_primary_10_1002_adfm_202101820
crossref_primary_10_1016_j_apcatb_2019_118017
crossref_primary_10_1021_acsmaterialslett_9b00414
crossref_primary_10_1016_j_ijhydene_2023_07_026
crossref_primary_10_1002_adsu_202000122
crossref_primary_10_1016_j_cej_2023_142081
crossref_primary_10_1021_acsaem_1c01679
crossref_primary_10_1002_adma_202306097
crossref_primary_10_1016_j_apsusc_2024_159505
crossref_primary_10_1016_j_jcou_2019_05_026
crossref_primary_10_1002_advs_201901833
crossref_primary_10_1016_j_jcis_2018_10_099
crossref_primary_10_1007_s11581_023_05330_2
crossref_primary_10_1016_j_ijhydene_2018_12_098
crossref_primary_10_1039_C8CS00699G
crossref_primary_10_1002_aenm_202402633
crossref_primary_10_1016_j_catcom_2020_106006
crossref_primary_10_1039_C8TA07832G
crossref_primary_10_1021_acs_chemrev_3c00229
crossref_primary_10_1007_s12274_022_5094_8
crossref_primary_10_1021_acs_jpcc_2c03807
crossref_primary_10_1021_acsami_1c03618
crossref_primary_10_1002_adma_202208209
crossref_primary_10_1039_D1TA07972G
crossref_primary_10_1039_D2TA09052J
crossref_primary_10_1016_j_mtchem_2019_100239
crossref_primary_10_1038_s44221_023_00169_3
crossref_primary_10_1002_adsu_202300275
crossref_primary_10_1016_j_ijhydene_2025_02_398
crossref_primary_10_1002_aesr_202200178
crossref_primary_10_1021_acs_chemrev_1c01003
crossref_primary_10_1002_adma_202200840
crossref_primary_10_3390_nano11030657
crossref_primary_10_1016_j_jssc_2024_124553
crossref_primary_10_1021_acscatal_1c04117
crossref_primary_10_1088_2515_7655_ab9fe2
crossref_primary_10_1021_acs_chemmater_2c00932
crossref_primary_10_1016_j_ijhydene_2024_01_292
crossref_primary_10_1016_j_foodchem_2023_138163
crossref_primary_10_1002_cey2_327
crossref_primary_10_1002_aenm_202303730
crossref_primary_10_1039_D2TA07852J
crossref_primary_10_1016_j_apcatb_2022_121762
crossref_primary_10_1039_C8EE01669K
crossref_primary_10_1016_j_ijhydene_2021_08_106
crossref_primary_10_1002_smll_202301294
crossref_primary_10_1016_j_ceramint_2019_02_137
crossref_primary_10_1039_C9TA04163J
crossref_primary_10_1002_smll_201905884
crossref_primary_10_1002_aenm_202102353
crossref_primary_10_1016_j_jallcom_2020_154465
crossref_primary_10_1016_j_cej_2022_139369
crossref_primary_10_1021_acs_jpcc_9b03418
crossref_primary_10_1016_j_jelechem_2023_117451
crossref_primary_10_1039_D0TA02125C
crossref_primary_10_1016_j_ijhydene_2021_10_127
crossref_primary_10_1002_cctc_202000004
crossref_primary_10_1007_s40843_022_2190_7
crossref_primary_10_1002_eem2_12033
crossref_primary_10_1007_s12274_022_5006_y
crossref_primary_10_1002_smll_202300194
crossref_primary_10_1002_smll_202200303
crossref_primary_10_1016_j_cej_2020_125507
crossref_primary_10_1016_j_apcatb_2020_118782
crossref_primary_10_1002_aenm_202201913
crossref_primary_10_1021_acsnano_4c04832
crossref_primary_10_1002_slct_202201266
crossref_primary_10_1016_j_ijhydene_2025_01_212
crossref_primary_10_1039_D1TA05332A
crossref_primary_10_1021_acsanm_3c02844
crossref_primary_10_1038_s41929_024_01210_8
crossref_primary_10_26599_NRE_2022_9120029
crossref_primary_10_26599_NRE_2022_9120028
crossref_primary_10_1016_j_ijhydene_2021_10_117
crossref_primary_10_54227_elab_20220013
crossref_primary_10_1021_acsaem_9b01644
crossref_primary_10_1016_j_apcatb_2021_120914
crossref_primary_10_1016_j_cej_2024_151705
crossref_primary_10_1002_smll_202304260
crossref_primary_10_1016_j_apcatb_2022_121605
crossref_primary_10_1016_j_ccr_2023_215381
crossref_primary_10_1039_D0RA10418C
crossref_primary_10_1002_smll_201902222
crossref_primary_10_1039_D1NR04965H
crossref_primary_10_1021_acs_chemmater_9b02790
crossref_primary_10_1021_acs_chemmater_3c02978
crossref_primary_10_1002_eem2_12457
crossref_primary_10_1021_acsaem_3c00010
crossref_primary_10_1016_j_ijhydene_2021_12_239
crossref_primary_10_1016_j_matlet_2020_127877
crossref_primary_10_1016_j_jechem_2022_01_025
crossref_primary_10_1016_j_jechem_2023_02_002
crossref_primary_10_1039_C9TA02451D
crossref_primary_10_1002_adfm_202422889
crossref_primary_10_1021_acsami_8b14603
crossref_primary_10_1021_acs_nanolett_3c03913
crossref_primary_10_1016_j_joule_2020_09_020
crossref_primary_10_1016_j_jpowsour_2022_231774
crossref_primary_10_1039_D1TA05411B
crossref_primary_10_1016_j_ijhydene_2020_12_061
crossref_primary_10_1002_admi_202102154
crossref_primary_10_1021_acs_nanolett_1c04940
crossref_primary_10_1038_s41467_020_19214_w
crossref_primary_10_1021_acscatal_0c04200
crossref_primary_10_1021_jacsau_2c00314
crossref_primary_10_1126_sciadv_abk0919
crossref_primary_10_1002_adma_202001136
crossref_primary_10_1021_acscatal_4c03700
crossref_primary_10_1039_D3QM00730H
crossref_primary_10_1021_acsaem_1c01030
crossref_primary_10_1016_j_jechem_2020_08_001
crossref_primary_10_1016_j_jcat_2020_06_022
crossref_primary_10_1038_s41467_021_24828_9
crossref_primary_10_1038_s41929_024_01209_1
crossref_primary_10_1021_acs_langmuir_4c04407
crossref_primary_10_1016_j_jpowsour_2021_230279
crossref_primary_10_1016_j_apcatb_2023_123297
crossref_primary_10_1002_smll_202304245
crossref_primary_10_1002_adfm_202406175
crossref_primary_10_1002_cssc_201902505
crossref_primary_10_1149_1945_7111_abab24
crossref_primary_10_1016_j_nanoen_2022_108044
crossref_primary_10_1016_j_cej_2021_128556
crossref_primary_10_1016_j_cej_2024_148887
crossref_primary_10_1038_s42004_020_00406_w
crossref_primary_10_1002_adfm_202400979
crossref_primary_10_1039_C9TA03707A
crossref_primary_10_1002_ange_202112953
crossref_primary_10_1016_j_jpowsour_2023_232700
crossref_primary_10_1039_D1CC02349G
crossref_primary_10_1002_smll_202406075
crossref_primary_10_1039_D1TA10546A
crossref_primary_10_1021_acsami_1c01424
crossref_primary_10_1016_j_jmst_2022_08_012
crossref_primary_10_1002_adfm_202009032
crossref_primary_10_1016_j_jechem_2023_10_033
crossref_primary_10_1002_aenm_202400053
crossref_primary_10_1002_anie_202309293
crossref_primary_10_1016_j_gee_2023_05_003
crossref_primary_10_3390_molecules29225298
crossref_primary_10_1002_smll_202100639
crossref_primary_10_1021_acsami_9b08194
crossref_primary_10_1002_adma_202307925
crossref_primary_10_1016_j_nanoen_2018_10_032
crossref_primary_10_1002_adma_202002435
crossref_primary_10_1016_j_jelechem_2022_116805
crossref_primary_10_1016_j_jmst_2021_08_083
crossref_primary_10_1039_D3TA06035G
crossref_primary_10_1016_j_apcatb_2019_118199
crossref_primary_10_1016_j_apsusc_2024_160342
crossref_primary_10_1016_j_ijhydene_2019_11_156
crossref_primary_10_1016_j_mset_2020_09_005
crossref_primary_10_1039_D3DT02712K
crossref_primary_10_1016_j_cej_2020_126092
crossref_primary_10_1002_smll_202203663
crossref_primary_10_1002_smll_202404808
crossref_primary_10_1021_acsami_8b22268
crossref_primary_10_1002_eem2_12441
crossref_primary_10_1039_D3TA02524A
crossref_primary_10_1021_acsaem_1c04100
crossref_primary_10_1039_D3QM00557G
crossref_primary_10_1021_acssuschemeng_2c07592
crossref_primary_10_1039_D1TA00817J
crossref_primary_10_1021_acs_accounts_0c00127
crossref_primary_10_1063_5_0161844
crossref_primary_10_1016_j_cej_2023_146253
crossref_primary_10_1016_j_jpowsour_2019_02_098
crossref_primary_10_1039_D3CC00652B
crossref_primary_10_1002_adfm_202410618
crossref_primary_10_1021_acs_nanolett_8b04466
crossref_primary_10_1021_acsnano_1c06662
crossref_primary_10_1016_j_mtphys_2020_100216
crossref_primary_10_3390_su142416359
crossref_primary_10_1021_acsenergylett_9b00333
crossref_primary_10_1016_j_apcatb_2024_124415
crossref_primary_10_1016_j_electacta_2018_09_053
crossref_primary_10_1016_j_jcis_2025_01_012
crossref_primary_10_1002_smll_202310829
crossref_primary_10_1016_j_cej_2024_156219
crossref_primary_10_1002_adma_201900528
crossref_primary_10_1016_j_apcatb_2023_123386
Cites_doi 10.1021/ja405351s
10.1126/science.aaf1525
10.1021/acsnano.7b00233
10.1038/ncomms12272
10.1002/adma.201602270
10.1002/anie.201701477
10.1126/science.1233638
10.1038/nchem.931
10.1038/ncomms5477
10.1021/ja5082553
10.1021/acs.jpcc.6b10159
10.1021/acs.chemrev.6b00398
10.1039/C4CC01625D
10.1021/ja4027715
10.1021/jacs.5b00281
10.1021/jacs.7b07117
10.1002/adma.201700017
10.1039/C8CC00701B
10.1126/science.1258307
10.1038/ncomms14586
10.1002/adma.201700404
10.1149/1.2113856
10.1126/science.aam7092
10.1038/ncomms8261
10.1021/jacs.7b03507
10.1002/adma.201501901
10.1039/C6CS00328A
10.1021/ja511559d
10.1039/C3CS60468C
10.1021/ja407174u
10.1126/science.1212858
10.1038/ncomms7616
10.1007/430_006
10.1039/c0cc00313a
10.1126/science.aad4998
10.1039/C5SC02417J
10.1021/cr200434v
10.1016/0920-5861(91)80068-K
10.1021/acs.chemmater.6b02796
10.1039/C4CS00448E
10.1038/ncomms11981
10.1021/acs.chemrev.7b00051
10.1007/b118420
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-05019-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_5920add8f73f422db06c9dc6fbbe75ac
PMC6031686
29973591
10_1038_s41467_018_05019_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Fok Ying Tong Education Foundation
  grantid: 161011
  funderid: https://doi.org/10.13039/501100004806
– fundername: National Natural Science Foundation of China, Grant No.2017YFA0207800. Jilin Province Science and Technology Development Plan, Grant No. 20170101141JC Young Elite Scientist Sponsorship Program by cst(No Grant No.Available). Program for JLU Science and Technology Innovative Research Team (JLUSTIRT)(No Grant No.Available).
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 217710079
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 217710079
– fundername: Fok Ying Tong Education Foundation
  grantid: 161011
– fundername: ;
– fundername: ;
  grantid: 161011
– fundername: ;
  grantid: 217710079
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-a9a1b8e83abdc709a20d7cad021a28497d9f59f2144e7bdf5390f30d1319db7a3
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:28 EDT 2025
Thu Aug 21 17:58:10 EDT 2025
Fri Jul 11 16:34:18 EDT 2025
Wed Aug 13 11:27:10 EDT 2025
Thu Apr 03 07:09:28 EDT 2025
Thu Apr 24 23:10:07 EDT 2025
Tue Jul 01 02:21:14 EDT 2025
Fri Feb 21 02:39:55 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-a9a1b8e83abdc709a20d7cad021a28497d9f59f2144e7bdf5390f30d1319db7a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4143-9274
OpenAccessLink https://doaj.org/article/5920add8f73f422db06c9dc6fbbe75ac
PMID 29973591
PQID 2064230486
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_5920add8f73f422db06c9dc6fbbe75ac
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6031686
proquest_miscellaneous_2064779365
proquest_journals_2064230486
pubmed_primary_29973591
crossref_primary_10_1038_s41467_018_05019_5
crossref_citationtrail_10_1038_s41467_018_05019_5
springer_journals_10_1038_s41467_018_05019_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-04
PublicationDateYYYYMMDD 2018-07-04
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR6) 2015; 6
Morales-Guio, Stern, Hu (CR28) 2014; 43
Xu, Yan, Wei (CR31) 2017; 121
Louie, Bell (CR7) 2013; 135
CR36
Lu, Zhao (CR9) 2015; 6
Guo, Li (CR10) 2018; 54
Zou (CR11) 2017; 29
Zou, Goswami, Asefa (CR17) 2013; 135
Cheng (CR22) 2011; 3
Smith (CR27) 2013; 340
Zhang (CR8) 2016; 352
Jia (CR19) 2017; 29
Stevens, Trang, Enman, Deng, Boettcher (CR38) 2017; 139
Suen (CR4) 2017; 46
Luo (CR13) 2014; 345
Tang (CR23) 2017; 139
Zhu (CR29) 2016; 7
Zhao (CR26) 2017; 8
Zhao, Yan, Chen, Chen (CR20) 2017; 117
Song, Hu (CR15) 2014; 5
Stevens (CR44) 2016; 29
Zou, Zhang (CR1) 2015; 44
Seh (CR2) 2017; 355
Li (CR37) 2015; 6
Suntivich, May, Gasteiger, Goodenough, Shao-Horn (CR25) 2011; 334
Lu (CR12) 2014; 50
Hwang (CR24) 2017; 358
Wang, O’Hare (CR34) 2012; 112
Hall (CR43) 1985; 132
Hunter, Gray, Müller (CR3) 2016; 116
Park (CR41) 2017; 11
He (CR32) 2006; 119
Burke, Kast, Trotochaud, Smith, Boettcher (CR42) 2015; 137
Gong (CR14) 2013; 135
Friebel (CR39) 2015; 137
Cavani, Trifirò, Vaccari (CR33) 1991; 11
Wang (CR16) 2017; 56
Fan (CR18) 2016; 7
Ma, Dai, Jaroniec, Qiao (CR21) 2014; 136
Tang (CR40) 2015; 27
Han, Dong, Wang (CR5) 2016; 28
Ritter (CR30) 2010
Guo, Zhang, Evans, Duan (CR35) 2010; 46
ZW Seh (5019_CR2) 2017; 355
CX Guo (5019_CR10) 2018; 54
C Tang (5019_CR40) 2015; 27
X Zou (5019_CR1) 2015; 44
J Luo (5019_CR13) 2014; 345
H Wang (5019_CR6) 2015; 6
X Zou (5019_CR11) 2017; 29
CG Morales-Guio (5019_CR28) 2014; 43
SK Ritter (5019_CR30) 2010
MS Burke (5019_CR42) 2015; 137
Z Li (5019_CR37) 2015; 6
X Lu (5019_CR9) 2015; 6
B Zhang (5019_CR8) 2016; 352
Q Zhao (5019_CR20) 2017; 117
B Zhao (5019_CR26) 2017; 8
L Han (5019_CR5) 2016; 28
RD Smith (5019_CR27) 2013; 340
X Guo (5019_CR35) 2010; 46
5019_CR36
MB Stevens (5019_CR38) 2017; 139
DE Hall (5019_CR43) 1985; 132
F Song (5019_CR15) 2014; 5
X Zou (5019_CR17) 2013; 135
J Hwang (5019_CR24) 2017; 358
MW Louie (5019_CR7) 2013; 135
MB Stevens (5019_CR44) 2016; 29
J Park (5019_CR41) 2017; 11
J Suntivich (5019_CR25) 2011; 334
L Zhu (5019_CR29) 2016; 7
TY Ma (5019_CR21) 2014; 136
M Gong (5019_CR14) 2013; 135
BM Hunter (5019_CR3) 2016; 116
NT Suen (5019_CR4) 2017; 46
K Fan (5019_CR18) 2016; 7
SM Xu (5019_CR31) 2017; 121
F Cavani (5019_CR33) 1991; 11
F Cheng (5019_CR22) 2011; 3
D Friebel (5019_CR39) 2015; 137
Q Wang (5019_CR34) 2012; 112
Y Wang (5019_CR16) 2017; 56
T Tang (5019_CR23) 2017; 139
J He (5019_CR32) 2006; 119
Z Lu (5019_CR12) 2014; 50
Y Jia (5019_CR19) 2017; 29
References_xml – volume: 135
  start-page: 12329
  year: 2013
  end-page: 12337
  ident: CR7
  article-title: An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: CR8
  article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 11
  start-page: 5500
  year: 2017
  end-page: 5509
  ident: CR41
  article-title: Iridium-based multimetallic nanoframe@nanoframe structure: an efficient and robust electrocatalyst toward oxygen evolution reaction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00233
– volume: 7
  year: 2016
  ident: CR29
  article-title: A rhodium/silicon co-electrocatalyst design concept to surpass platinum hydrogen evolution activity at high overpotentials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12272
– volume: 28
  start-page: 9266
  year: 2016
  end-page: 9291
  ident: CR5
  article-title: Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602270
– volume: 56
  start-page: 5867
  year: 2017
  end-page: 5871
  ident: CR16
  article-title: Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 340
  start-page: 60
  year: 2013
  end-page: 63
  ident: CR27
  article-title: Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis
  publication-title: Science
  doi: 10.1126/science.1233638
– volume: 3
  start-page: 79
  year: 2011
  end-page: 84
  ident: CR22
  article-title: Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.931
– volume: 5
  year: 2014
  ident: CR15
  article-title: Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 136
  start-page: 13925
  year: 2014
  end-page: 13931
  ident: CR21
  article-title: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5082553
– volume: 121
  start-page: 2683
  year: 2017
  end-page: 2695
  ident: CR31
  article-title: Band structure engineering of transition-metal-based layered double hydroxides toward photocatalytic oxygen evolution from water: a theoretical–experimental combination study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10159
– volume: 116
  start-page: 14120
  year: 2016
  end-page: 14136
  ident: CR3
  article-title: Earth-abundant heterogeneous water oxidation catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00398
– volume: 50
  start-page: 6479
  year: 2014
  end-page: 6482
  ident: CR12
  article-title: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01625D
– volume: 135
  start-page: 8452
  year: 2013
  end-page: 8455
  ident: CR14
  article-title: An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 137
  start-page: 3638
  year: 2015
  end-page: 3648
  ident: CR42
  article-title: Cobalt-iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00281
– volume: 139
  start-page: 11361
  year: 2017
  end-page: 11364
  ident: CR38
  article-title: Reactive Fe-sites in Ni/Fe (Oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07117
– volume: 29
  start-page: 1700017
  year: 2017
  ident: CR19
  article-title: A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 54
  start-page: 3262
  year: 2018
  end-page: 3265
  ident: CR10
  article-title: Room temperature-formed iron-doped nickel hydroxide on nickel foam as a 3D electrode for low polarized and high-current-density oxygen evolution
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00701B
– start-page: 26
  year: 2010
  ident: CR30
  article-title: Fuel from the sun: cobalt water-oxidation catalysts benefit from federal initiatives to harness solar power to make fuel
  publication-title: Chem. Eng. News
– volume: 345
  start-page: 1593
  year: 2014
  end-page: 1596
  ident: CR13
  article-title: Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
  publication-title: Science
  doi: 10.1126/science.1258307
– volume: 8
  year: 2017
  ident: CR26
  article-title: A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14586
– volume: 29
  start-page: 1700404
  year: 2017
  ident: CR11
  article-title: Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700404
– volume: 132
  start-page: 41C
  year: 1985
  ident: CR43
  article-title: Alkaline water electrolysis anode materials
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2113856
– volume: 358
  start-page: 751
  year: 2017
  end-page: 756
  ident: CR24
  article-title: Perovskites in catalysis and electrocatalysis
  publication-title: Science
  doi: 10.1126/science.aam7092
– volume: 6
  year: 2015
  ident: CR6
  article-title: Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8261
– volume: 139
  start-page: 8320
  year: 2017
  end-page: 8328
  ident: CR23
  article-title: Electronic and morphological dual modulation of cobalt carbonate hydroxides by Mn doping toward highly efficient and stable bifunctional electrocatalysts for overall water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03507
– volume: 27
  start-page: 4516
  year: 2015
  end-page: 4522
  ident: CR40
  article-title: Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501901
– volume: 46
  start-page: 337
  year: 2017
  end-page: 365
  ident: CR4
  article-title: Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 137
  start-page: 1305
  year: 2015
  end-page: 1313
  ident: CR39
  article-title: Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 43
  start-page: 6555
  year: 2014
  end-page: 6569
  ident: CR28
  article-title: Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60468C
– volume: 135
  start-page: 17242
  year: 2013
  end-page: 17245
  ident: CR17
  article-title: Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407174u
– volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  ident: CR25
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 6
  year: 2015
  ident: CR9
  article-title: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7616
– volume: 119
  start-page: 89
  year: 2006
  end-page: 119
  ident: CR32
  article-title: Preparation of layered double hydroxides
  publication-title: Struct. Bond
  doi: 10.1007/430_006
– volume: 46
  start-page: 5197
  year: 2010
  end-page: 5210
  ident: CR35
  article-title: Layered double hydroxide films: synthesis, properties and applications
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00313a
– volume: 355
  start-page: 146
  year: 2017
  end-page: 157
  ident: CR2
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– ident: CR36
– volume: 6
  start-page: 6624
  year: 2015
  end-page: 6631
  ident: CR37
  article-title: Fast electrosynthesis of Fe-containing layered double hydroxide arrays toward highly efficient electrocatalytic oxidation reactions
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02417J
– volume: 112
  start-page: 4124
  year: 2012
  end-page: 4155
  ident: CR34
  article-title: Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets
  publication-title: Chem. Rev.
  doi: 10.1021/cr200434v
– volume: 11
  start-page: 173
  year: 1991
  end-page: 301
  ident: CR33
  article-title: Hydrotalcite-type anionic clays: preparation, properties and applications
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(91)80068-K
– volume: 29
  start-page: 120
  year: 2016
  end-page: 140
  ident: CR44
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02796
– volume: 44
  start-page: 5148
  year: 2015
  end-page: 5180
  ident: CR1
  article-title: Noble metal-free hydrogen evolution catalysts for water splitting
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– volume: 7
  year: 2016
  ident: CR18
  article-title: Nickel-vanadium monolayer double hydroxide for efficient electrochemical water oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11981
– volume: 117
  start-page: 10121
  year: 2017
  end-page: 10211
  ident: CR20
  article-title: Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00051
– volume: 7
  year: 2016
  ident: 5019_CR18
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11981
– volume: 358
  start-page: 751
  year: 2017
  ident: 5019_CR24
  publication-title: Science
  doi: 10.1126/science.aam7092
– volume: 6
  start-page: 6624
  year: 2015
  ident: 5019_CR37
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02417J
– volume: 46
  start-page: 337
  year: 2017
  ident: 5019_CR4
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00328A
– volume: 29
  start-page: 1700404
  year: 2017
  ident: 5019_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700404
– volume: 112
  start-page: 4124
  year: 2012
  ident: 5019_CR34
  publication-title: Chem. Rev.
  doi: 10.1021/cr200434v
– volume: 135
  start-page: 8452
  year: 2013
  ident: 5019_CR14
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4027715
– volume: 137
  start-page: 1305
  year: 2015
  ident: 5019_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja511559d
– volume: 135
  start-page: 12329
  year: 2013
  ident: 5019_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja405351s
– volume: 50
  start-page: 6479
  year: 2014
  ident: 5019_CR12
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01625D
– volume: 7
  year: 2016
  ident: 5019_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12272
– volume: 334
  start-page: 1383
  year: 2011
  ident: 5019_CR25
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 135
  start-page: 17242
  year: 2013
  ident: 5019_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407174u
– volume: 54
  start-page: 3262
  year: 2018
  ident: 5019_CR10
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00701B
– volume: 139
  start-page: 8320
  year: 2017
  ident: 5019_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03507
– volume: 11
  start-page: 5500
  year: 2017
  ident: 5019_CR41
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00233
– volume: 46
  start-page: 5197
  year: 2010
  ident: 5019_CR35
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc00313a
– volume: 139
  start-page: 11361
  year: 2017
  ident: 5019_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07117
– volume: 44
  start-page: 5148
  year: 2015
  ident: 5019_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00448E
– start-page: 26
  volume-title: Chem. Eng. News
  year: 2010
  ident: 5019_CR30
– volume: 8
  year: 2017
  ident: 5019_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14586
– volume: 116
  start-page: 14120
  year: 2016
  ident: 5019_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00398
– volume: 3
  start-page: 79
  year: 2011
  ident: 5019_CR22
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.931
– volume: 345
  start-page: 1593
  year: 2014
  ident: 5019_CR13
  publication-title: Science
  doi: 10.1126/science.1258307
– volume: 6
  year: 2015
  ident: 5019_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8261
– volume: 56
  start-page: 5867
  year: 2017
  ident: 5019_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701477
– volume: 28
  start-page: 9266
  year: 2016
  ident: 5019_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602270
– volume: 352
  start-page: 333
  year: 2016
  ident: 5019_CR8
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 340
  start-page: 60
  year: 2013
  ident: 5019_CR27
  publication-title: Science
  doi: 10.1126/science.1233638
– volume: 5
  year: 2014
  ident: 5019_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5477
– volume: 355
  start-page: 146
  year: 2017
  ident: 5019_CR2
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 136
  start-page: 13925
  year: 2014
  ident: 5019_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5082553
– volume: 119
  start-page: 89
  year: 2006
  ident: 5019_CR32
  publication-title: Struct. Bond
  doi: 10.1007/430_006
– volume: 117
  start-page: 10121
  year: 2017
  ident: 5019_CR20
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00051
– volume: 43
  start-page: 6555
  year: 2014
  ident: 5019_CR28
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60468C
– volume: 132
  start-page: 41C
  year: 1985
  ident: 5019_CR43
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2113856
– volume: 6
  year: 2015
  ident: 5019_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7616
– volume: 27
  start-page: 4516
  year: 2015
  ident: 5019_CR40
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501901
– volume: 121
  start-page: 2683
  year: 2017
  ident: 5019_CR31
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10159
– volume: 29
  start-page: 120
  year: 2016
  ident: 5019_CR44
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02796
– ident: 5019_CR36
  doi: 10.1007/b118420
– volume: 137
  start-page: 3638
  year: 2015
  ident: 5019_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b00281
– volume: 29
  start-page: 1700017
  year: 2017
  ident: 5019_CR19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 11
  start-page: 173
  year: 1991
  ident: 5019_CR33
  publication-title: Catal. Today
  doi: 10.1016/0920-5861(91)80068-K
SSID ssj0000391844
Score 2.679186
Snippet Although a number of nonprecious materials can exhibit catalytic activity approaching (sometimes even outperforming) that of iridium oxide catalysts for the...
Earth-abundant water splitting materials are highly desirable for renewable fuel production, but such catalysts are rarely tested for long-term use. Here, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2609
SubjectTerms 140/146
147/135
147/143
639/301/299/886
639/638/263/915
639/638/549/884
639/925/357
Ambient temperature
Catalysis
Catalysts
Catalytic activity
Cations
Corrosion
Divalent cations
Electrodes
Energy efficiency
Evolution
Humanities and Social Sciences
Hydroxides
Iridium
Iron
Iron and steel making
multidisciplinary
Nickel
Oxygen
Oxygen evolution reactions
Science
Science (multidisciplinary)
Substrates
Thin films
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4s1CQUbiBhZOHMfxCUFFVSHBiUp7s_ykSFVSNtuK_ffMON6slkeviaOZeJ4ZT74h5LVyOorOtkx5rVijpGeQFTnmKwvhqrbaZZyCL1_bk9Pm81IuS8FtLG2VW5-YHXUYPNbI4SMdMmWBAHHvL34ynBqFp6tlhMZNcguhy7ClSy3VXGNB9POuacq_Mlx078YmewZedYxLyG6Y3ItHGbb_X7nm3y2Tf5yb5nB0fI_cLXkk_TAJ_j65EfsH5PY0WXLzkFwdDSugB5tO4w5xkK5zk-xIYwaOACJ0-LUBFaLxqqggLXNxQhwp1mgpZI_uPNJc5tkAMYp_QuDACQrpLsUGUArZDKdnwNH4iJwef_p2dMLKiAXmIVVbM6tt5brYCeuCV1zbmgflbYDIbyFwaRV0kjohrlpULiQpNE-ChwosNzhlxWNy0A99fEqo0KlqQooSF6eKOyDu4OsqOR5sEtWCVNuNNr7gj-MYjHOTz8FFZybhGBCOycIxckHezM9cTOgb167-iPKbVyJydr4wrL6bYohG6pqDT--SEqmp6-B463XwbXIuKmn9ghxupW-KOY9mp3wL8mq-DYaIpyu2j8PltEaBt2uBjyeTssycQMxXQmrYA7WnRnus7t_pf5xlsG-cAt4i3bdbhdux9f-teHb9Wzwnd-psA2AKzSE5WK8u4wtIrtbuZbag38WaI7Q
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERIXBBToQotciRsYnDiO4wNCpaKqKpVTV-rN8pNWWiVls626_56x42y1sHDimjia0Tw8n2P7G4TeCSM9a3RNhJWCVIJbAqjIEFtoKFellibxFJx9r0-m1ekFv9hCY7ujbMB-49Iu9pOazmcf734uv0DCfx6ujDef-iqlOy0aQjlAFsIfoIdQmURM1LMM99PMzCQsaKp8d2bzp2v1KdH4b8Kefx6h_G0fNZWn46foScaV-HAIhGdoy7fP0aOh0-RyB90edXOQB07A_p6BEC_Sodke-0QkAUJwd7eEkML-Nockzn1ynO9x_GeLAU2amcfpt88ShOF4MyI2oMAAf3E8EIoB3VB8CRr1L9D0-Nv50QnJLReIBei2IFrqwjS-Ydo4K6jUJXXCagdIQEMhk8LJwGWIPGteGBc4kzQw6grIZGeEZi_Rdtu1fhdhJkNRueB5HBwKakC4gdVWMNTpwIoJKkZDK5v5yGNbjJlK--KsUYNzFDhHJecoPkHvV99cD2wc_xz9NfpvNTIyaacH3fyHyompuCwpzPFNECxUZekMra10tg7GeMG1naC90ftqjE5VxmUbi2yFE3Sweg2JGXdbdOu7m2GMgNmvBj1eDcGy0gQwgGBcgg3EWhitqbr-pr26TOTfsSt4HeV-GAPuXq2_m-L1_zDFG_S4TJkCCVPtoe3F_MbvAyRbmLcpz34Byxs0ug
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfBFWq-nF4ngmwazm81m81gPliLok4W-hVytUHbL2dPi-fdOspdytAq-bibMkJnJzCaTbwDeSqsCb0xNpVOSVlI4ilmRpa4wGK5Ko2zGKfjytT47rz5fiIsdKKe3MLloP0Na5m16qg770FfZpVnRUCYwLaHiATxM0O3Jqpf1cj5XSYjnTVWN72MYb-6ZuhWDMlT_ffnln2WSv92V5hB0ugdPxtyRnAzS7sNOaJ_Co6Gb5OYZ3C67FfLDhSbhDmWQrHNhbE9CBotAJqT7uUGzIeF2NDsy9sLxoSfpXJZgxmivAslHOxtkRtLrh9RkgmCKS1LRJ8EMhpFLlKh_Duenn74tz-jYVoE6TM_W1ChT2CY03FjvJFOmZF464zHaGwxWSnoVhYoJSy1I66PgikXOfIHe6q00_AXstl0bXgHhKhaVj0Ek4lgwi8wt_lFFy7yJvFhAMS20diPmeGp9caXz3Tdv9KAcjcrRWTlaLODdPOd6QNz4J_XHpL-ZMqFl5w_d6rserUcLVTLcx5soeazK0ltWO-VdHa0NUhi3gKNJ-3p04V6X6deMJ0TCBbyZh9H50o2KaUN3M9BI3OFqlOPlYCyzJBjnJRcK10BumdGWqNsj7Y_LDPCdOn_Xie_7yeDuxPr7Uhz8H_khPC6zT6BrVEewu17dhGNMsNb2dfaoXyocIYg
  priority: 102
  providerName: Springer Nature
Title Corrosion engineering towards efficient oxygen evolution electrodes with stable catalytic activity for over 6000 hours
URI https://link.springer.com/article/10.1038/s41467-018-05019-5
https://www.ncbi.nlm.nih.gov/pubmed/29973591
https://www.proquest.com/docview/2064230486
https://www.proquest.com/docview/2064779365
https://pubmed.ncbi.nlm.nih.gov/PMC6031686
https://doaj.org/article/5920add8f73f422db06c9dc6fbbe75ac
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9swFBZbx2Avo7s2bRc02NsmKluWJT2moVkJtIxthbwJXWmhOKVOy_LveyQ7abPry14csBXO4Vx0PlnydxD6IKwKTJqaCKcEqQR3BFCRJa4wUK5Ko2zmKTg5rY_PqumMzx60-kpnwjp64M5wB1yVFHJQRsFiVZbe0top7-pobRDcuDT7Qs17sJjKczBTsHSp-q9kKJMHbZXnBFpIQjngGsI3KlEm7P8dyvz1sORPO6a5EE220fMeQeJRp_kL9Cg0L9HTrqfk8hW6Hc-vQR6YG4d7rkG8yMdjWxwyZQQIwfMfSwgeHG774MN9RxwfWpzezmLAjfYy4PyCZwnCcPoGIrWawAB0cTr6iQHHUHwOGrWv0dnk6Pv4mPTNFYgDkLYgRpnCyiCZsd4JqkxJvXDGQ803ULKU8CpyFROjWhDWR84UjYz6AnLWW2HYG7TVzJuwgzBTsah8DDwNjgW1INzCuipa6k1kxQAVK0Nr1zOPpwYYlzrvgDOpO-docI7OztF8gD6u_3PV8W78dfRh8t96ZOLMzjcgknQfSfpfkTRA-yvv6z6RW12mBRpLvIQD9H79GFIw7auYJsxvujEC5rka9HjbBctaE6j2gnEFNhAbYbSh6uaT5uI803yn_t91kvtpFXD3av3ZFLv_wxR76FmZMwUSptpHW4vrm_AOwNfCDtFjMRNwlZPPQ_RkNJp-m8Lv4dHpl69wd1yPhzkT4XpSyTvltDSD
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEaIXxN6BAkaCE1g4cRzHB4SgUE3pcmqluRmvFKlKymRamD_Fb-TZSWY0LL31OnHmOX7b5-17CL0QRnpW6ZIIKwUpBLcEUJEhNtOQrnItTeIpODgsx8fF5wmfrKFfw12YeKxyiIkpULvGxjVymKQDUmaRIO7d2XcSq0bF3dWhhEZnFnt-_gOmbO3b3Y-g35d5vvPpaHtM-qoCxAI6mREtdWYqXzFtnBVU6pw6YbWDZKchVkvhZOAyRCoxL4wLnEkaGHUZGKszQjP432voOnwJjR4lJmKxphPZ1qui6O_mUFa9aYsUiWhWEcoBTRG-kv9SmYB_Ydu_j2j-sU-b0t_ObXSrx634fWdod9Car--iG10ly_k9dLHdTEEeKBn7JcMhnqVDuS32iagChODm5xxMFvuL3uRxX4fH-RbHNWEMaNWcepyWleYgDMebF7HABQZ4jeOBUwzoieIT6FF7Hx1fyeA_QOt1U_tNhJkMWeGC57FxyKgB4QZmc8FQpwPLRigbBlrZnu88lt04VWnfnVWqU44C5aikHMVH6NXinbOO7ePS1h-i_hYtI1N3-qGZflW94ysucwo5pAqChSLPnaGllc6WwRgvuLYjtDVoX_Xho1VLYx-h54vH4PhxN0fXvjnv2giIriX042FnLIueAMYQjEsYA7FiRitdXX1SfztJ5OKx6ngZ5b4eDG7Zrf8PxaPLv-IZujk-OthX-7uHe4_RRp78Adyi2ELrs-m5fwLAbmaeJm_C6MtVu-9vMnZg-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4s1CASPBCaw6cRzHB4SgZdVSqDhQaW_GT1qpStrNtrB_jV_H2El2tTx66zXxZmY9r8_2eAahF8JIzypdEmGlIIXglgAqMsRmGsJVrqVJdQo-75c7B8XHCZ-soV_DXZiYVjn4xOSoXWPjHjks0gEps1ggbjP0aRFftsdvT05J7CAVT1qHdhqdiuz5-Q9YvrVvdrdB1i_zfPzh69YO6TsMEAtIZUa01JmpfMW0cVZQqXPqhNUOAp8Gvy2Fk4HLEMuKeWFc4EzSwKjLQHGdEZrBd6-gq4LxLNqYmIjF_k6svF4VRX9Ph7Jqsy2SV6JZRSgHZEX4SixMLQP-hXP_Ttf848w2hcLxLXSzx7D4Xad0t9Gar--ga11Xy_lddL7VTIEeCBz7ZbVDPEsJui32qWgFEMHNzzmoL_bnvfrjvieP8y2O-8MYkKs59jhtMc2BGI63MGKzCwxQG8fkUwxIiuJD4Ki9hw4uZfLvo_W6qf1DhJkMWeGC53FwyKgB4gZWdsFQpwPLRigbJlrZvvZ5bMFxrNIZPKtUJxwFwlFJOIqP0KvFb066yh8Xjn4f5bcYGat2pwfN9LvqnYDiMqcQT6ogWCjy3BlaWulsGYzxgms7QhuD9FXvSlq1VPwRer54DU4gnuzo2jdn3RgBnrYEPh50yrLgBPAG6KeEORArarTC6uqb-ugwFRqPHcjLSPf1oHBLtv4_FY8u_hfP0HUwXPVpd3_vMbqRJ3MAqyg20PpseuafAMabmafJmDD6dtnW-xueQGUx
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Corrosion+engineering+towards+efficient+oxygen+evolution+electrodes+with+stable+catalytic+activity+for+over+6000+hours&rft.jtitle=Nature+communications&rft.au=Yipu+Liu&rft.au=Xiao+Liang&rft.au=Lin+Gu&rft.au=Yu+Zhang&rft.date=2018-07-04&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-018-05019-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5920add8f73f422db06c9dc6fbbe75ac
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon