Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62

Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 63; no. 1; pp. 34 - 48
Main Authors Wang, Yanan, Zhang, Nan, Zhang, Luyao, Li, Ran, Fu, Wan, Ma, Ke, Li, Xue, Wang, Lina, Wang, Jiadong, Zhang, Hongquan, Gu, Wei, Zhu, Wei-Guo, Zhao, Ying
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 07.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response. [Display omitted] •Loss of autophagy leads to a deficiency of chromatin ubiquitination•Autophagy substrate p62 inhibits DNA-damage-induced histone ubiquitination•p62 directly inhibits RNF168 E3 ligase activity Wang et al. describe a role of selective autophagy in regulating chromatin ubiquitination during the repair of DNA double-strand breaks (DSBs). They found that the autophagy receptor and substrate p62/SQSTM1 inhibits DSB-induced histone and chromatin ubiquitination, which has a critical role in attracting key repair factors to the break sites.
AbstractList Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response. [Display omitted] •Loss of autophagy leads to a deficiency of chromatin ubiquitination•Autophagy substrate p62 inhibits DNA-damage-induced histone ubiquitination•p62 directly inhibits RNF168 E3 ligase activity Wang et al. describe a role of selective autophagy in regulating chromatin ubiquitination during the repair of DNA double-strand breaks (DSBs). They found that the autophagy receptor and substrate p62/SQSTM1 inhibits DSB-induced histone and chromatin ubiquitination, which has a critical role in attracting key repair factors to the break sites.
Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response.
Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response.
Author Gu, Wei
Wang, Lina
Zhang, Nan
Li, Ran
Wang, Yanan
Ma, Ke
Li, Xue
Fu, Wan
Zhang, Hongquan
Zhang, Luyao
Zhu, Wei-Guo
Wang, Jiadong
Zhao, Ying
Author_xml – sequence: 1
  givenname: Yanan
  surname: Wang
  fullname: Wang, Yanan
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 2
  givenname: Nan
  surname: Zhang
  fullname: Zhang, Nan
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 3
  givenname: Luyao
  surname: Zhang
  fullname: Zhang, Luyao
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 4
  givenname: Ran
  surname: Li
  fullname: Li, Ran
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 5
  givenname: Wan
  surname: Fu
  fullname: Fu, Wan
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 6
  givenname: Ke
  surname: Ma
  fullname: Ma, Ke
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 7
  givenname: Xue
  surname: Li
  fullname: Li, Xue
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 8
  givenname: Lina
  surname: Wang
  fullname: Wang, Lina
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 9
  givenname: Jiadong
  surname: Wang
  fullname: Wang, Jiadong
  organization: Institute of Systems Biomedicine and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China
– sequence: 10
  givenname: Hongquan
  surname: Zhang
  fullname: Zhang, Hongquan
  organization: Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China
– sequence: 11
  givenname: Wei
  surname: Gu
  fullname: Gu, Wei
  organization: Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
– sequence: 12
  givenname: Wei-Guo
  surname: Zhu
  fullname: Zhu, Wei-Guo
  email: zhuweiguo@szu.edu.cn
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
– sequence: 13
  givenname: Ying
  surname: Zhao
  fullname: Zhao, Ying
  email: zhaoying0812@bjmu.edu.cn
  organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27345151$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URB_wDxDKks2kfiYxC6TRtECltgjari3HvpnxKIlT20Hqv8dlZjZdAKv70HfO4pxTdDT6ERB6T3BJMKnOt-XgewN9SfNVYlFiWr9CJwTLesFJxY_2O60rcYxOY9xiTLho5Bt0TGvGBRHkBMFyTn7a6PVT8RPWc68TxGK1CX7QyY3FQ-seZ5e3fPmxyJ-L22VxoQe9hiyIkx8jFCnz83pTXPZuOKC-K-5-3N3fkPOpom_R6073Ed7t5xl6-HJ5v_q2uP7-9Wq1vF4YwXFaaMmtFbhljOmuNtJy0dHKQCMoN10HhApL24ZxzAnT0DJpSVdpzDW2VEjBztDHne8U_OMMManBxZxRr0fwc1SkoYLTupHyP1AiCauapsnohz06twNYNQU36PCkDilm4NMOMMHHGKBTxqU_MaSgXa8IVs-Vqa3aVaaeK1NYqFxZFvMX4oP_P2SfdzLIef5yEFQ0DkYD1gUwSVnv_m7wGx0bsUo
CitedBy_id crossref_primary_10_1093_mutage_gey004
crossref_primary_10_3390_ijms18112351
crossref_primary_10_3390_nu12051351
crossref_primary_10_31857_S0041377123030100
crossref_primary_10_1080_15548627_2017_1317427
crossref_primary_10_1038_cddis_2017_498
crossref_primary_10_1073_pnas_1721160115
crossref_primary_10_1158_0008_5472_CAN_16_2458
crossref_primary_10_1073_pnas_2409447121
crossref_primary_10_3389_fcell_2019_00308
crossref_primary_10_1038_s41420_024_02139_4
crossref_primary_10_1038_s41388_019_0980_6
crossref_primary_10_3390_ijms19051405
crossref_primary_10_1038_nn_4604
crossref_primary_10_3390_cells8010040
crossref_primary_10_1016_j_dnarep_2019_102669
crossref_primary_10_3892_etm_2023_12321
crossref_primary_10_3390_ijms18102036
crossref_primary_10_4252_wjsc_v13_i6_542
crossref_primary_10_1016_j_cell_2018_09_048
crossref_primary_10_2174_1568009618666181016164920
crossref_primary_10_1038_s41419_024_07278_1
crossref_primary_10_1038_s41388_022_02247_4
crossref_primary_10_3389_fcell_2020_599048
crossref_primary_10_1080_26895293_2022_2078894
crossref_primary_10_1016_j_isci_2020_101668
crossref_primary_10_3389_fphar_2024_1413853
crossref_primary_10_1371_journal_pgen_1008084
crossref_primary_10_1016_j_neulet_2021_136177
crossref_primary_10_1038_s41418_019_0403_9
crossref_primary_10_3390_ijms24031869
crossref_primary_10_1128_JVI_01258_19
crossref_primary_10_1080_19490976_2020_1774311
crossref_primary_10_1080_23723556_2016_1214772
crossref_primary_10_1111_febs_15672
crossref_primary_10_3389_fnagi_2022_786420
crossref_primary_10_3389_fphar_2020_580343
crossref_primary_10_1007_s42764_020_00016_9
crossref_primary_10_1016_j_bbcan_2021_188565
crossref_primary_10_1177_10738584251324459
crossref_primary_10_1016_j_canlet_2017_01_026
crossref_primary_10_2139_ssrn_4102754
crossref_primary_10_1016_j_ecoenv_2024_116650
crossref_primary_10_1093_nar_gkz1103
crossref_primary_10_1016_j_mrfmmm_2017_04_003
crossref_primary_10_1038_s41418_020_00706_7
crossref_primary_10_1093_toxres_tfae165
crossref_primary_10_3389_fphar_2024_1419806
crossref_primary_10_1038_s41419_018_1245_y
crossref_primary_10_1016_j_arr_2021_101468
crossref_primary_10_1186_s40104_023_00986_2
crossref_primary_10_1016_j_cellsig_2018_04_003
crossref_primary_10_3390_cancers12071793
crossref_primary_10_1159_000503133
crossref_primary_10_11648_j_bmb_20240904_11
crossref_primary_10_1016_j_celrep_2022_111116
crossref_primary_10_1093_nar_gkae156
crossref_primary_10_1083_jcb_201909033
crossref_primary_10_1007_s42764_024_00139_3
crossref_primary_10_2174_0929867324666170921101947
crossref_primary_10_1371_journal_ppat_1007541
crossref_primary_10_1007_s13402_023_00834_5
crossref_primary_10_1080_15548627_2021_1894059
crossref_primary_10_3389_fnmol_2024_1417961
crossref_primary_10_1155_2021_8189485
crossref_primary_10_1073_pnas_2113454119
crossref_primary_10_1016_j_tcb_2016_11_011
crossref_primary_10_12688_f1000research_10568_2
crossref_primary_10_1038_s41388_020_01602_7
crossref_primary_10_3390_cancers13215451
crossref_primary_10_1038_s41420_024_02154_5
crossref_primary_10_1053_j_gastro_2019_12_026
crossref_primary_10_1016_j_trsl_2018_10_002
crossref_primary_10_3748_wjg_v30_i15_2155
crossref_primary_10_1016_j_dnarep_2021_103206
crossref_primary_10_1016_j_ejmech_2022_114565
crossref_primary_10_1038_s41388_021_01890_7
crossref_primary_10_1016_j_dnarep_2023_103608
crossref_primary_10_3390_cells9092140
crossref_primary_10_1007_s00018_021_03872_0
crossref_primary_10_1080_15548627_2018_1496877
crossref_primary_10_3390_cancers13143482
crossref_primary_10_1038_s41467_021_24556_0
crossref_primary_10_1038_s42003_022_03210_5
crossref_primary_10_1080_15384101_2019_1692483
crossref_primary_10_1016_j_bbrc_2019_02_084
crossref_primary_10_1016_j_celrep_2018_05_006
crossref_primary_10_1038_aps_2017_192
crossref_primary_10_1038_s41419_020_03100_w
crossref_primary_10_1038_s43018_023_00546_7
crossref_primary_10_1080_15548627_2017_1377377
crossref_primary_10_1080_15548627_2019_1671643
crossref_primary_10_1152_ajpcell_00294_2019
crossref_primary_10_3390_ijms18091920
crossref_primary_10_1016_j_canlet_2017_09_049
crossref_primary_10_3390_cells13110928
crossref_primary_10_18632_aging_203044
crossref_primary_10_1007_s00018_022_04204_6
crossref_primary_10_2139_ssrn_3950748
crossref_primary_10_1016_j_semcancer_2017_11_007
crossref_primary_10_1038_s41571_021_00579_w
crossref_primary_10_1080_19491034_2017_1412027
crossref_primary_10_1128_mBio_01097_21
crossref_primary_10_1038_s41467_021_23327_1
crossref_primary_10_1007_s10495_018_1445_z
crossref_primary_10_1016_j_dnarep_2024_103699
crossref_primary_10_3233_JHD_170235
crossref_primary_10_1007_s00253_019_10148_y
crossref_primary_10_1007_s10555_018_9727_z
crossref_primary_10_1016_j_ibmb_2017_08_006
crossref_primary_10_1016_j_biomaterials_2021_121287
crossref_primary_10_1016_j_yjmcc_2016_10_017
crossref_primary_10_1016_j_semcancer_2018_08_010
crossref_primary_10_1093_brain_awy076
crossref_primary_10_1093_neuonc_noz159
crossref_primary_10_1016_j_bbcan_2021_188642
crossref_primary_10_1155_2019_5692958
crossref_primary_10_1002_jnr_24592
crossref_primary_10_3762_bjnano_16_24
crossref_primary_10_1016_j_scr_2019_101504
crossref_primary_10_1021_acs_jmedchem_2c00432
crossref_primary_10_1080_15548627_2023_2252301
crossref_primary_10_1128_JVI_01170_17
crossref_primary_10_1002_cjp2_129
crossref_primary_10_1634_theoncologist_2018_0621
crossref_primary_10_5607_en_2019_28_6_643
crossref_primary_10_1007_s42764_019_00004_8
crossref_primary_10_1080_15548627_2016_1272742
crossref_primary_10_1093_carcin_bgz104
crossref_primary_10_1134_S1990519X23050139
crossref_primary_10_1371_journal_pone_0201621
crossref_primary_10_1111_odi_13355
crossref_primary_10_1073_pnas_2320804121
crossref_primary_10_1038_s41418_022_01049_1
crossref_primary_10_3389_fonc_2021_555614
crossref_primary_10_1186_s12885_017_3438_7
crossref_primary_10_1016_j_prp_2022_153964
crossref_primary_10_3892_ol_2021_12893
crossref_primary_10_1016_j_matbio_2021_02_004
crossref_primary_10_1016_j_semcancer_2017_03_004
crossref_primary_10_1038_cddis_2017_387
crossref_primary_10_1038_s41556_018_0042_2
crossref_primary_10_1016_j_phymed_2023_155089
crossref_primary_10_1038_s41598_017_10506_8
crossref_primary_10_1186_s12943_018_0843_8
crossref_primary_10_3389_fonc_2018_00210
crossref_primary_10_1038_s41467_024_53559_w
crossref_primary_10_1016_j_cellsig_2019_109344
crossref_primary_10_1016_j_celrep_2017_08_028
crossref_primary_10_1038_s41419_021_04301_7
crossref_primary_10_3389_fonc_2021_667920
crossref_primary_10_1002_1873_3468_12301
crossref_primary_10_1016_j_aquatox_2024_106958
crossref_primary_10_1016_j_devcel_2021_08_019
crossref_primary_10_1158_1055_9965_EPI_19_0359
Cites_doi 10.1083/jcb.201402054
10.1038/nature15401
10.1016/j.molcel.2012.05.045
10.4161/auto.6.3.11226
10.1084/jem.20101145
10.1016/j.cell.2012.08.005
10.1016/j.cell.2008.12.042
10.1126/science.1150034
10.1128/MCB.01044-14
10.1038/nsmb.2211
10.1074/jbc.M109.039925
10.1038/nsmb.3142
10.1074/jbc.M702824200
10.1016/B978-0-12-801430-1.00010-X
10.4161/cc.11.1.18564
10.1038/ncomms4291
10.1126/science.1139476
10.1073/pnas.1409563112
10.1016/j.dnarep.2006.05.022
10.1038/nature09297
10.1074/jbc.M110.118976
10.1038/ncb2021
10.1101/sqb.2011.76.011023
10.1097/00001756-200107200-00009
10.1073/pnas.0708408104
10.1016/j.cell.2007.09.040
10.1016/j.cell.2007.09.041
10.1016/j.molcel.2009.01.020
10.1126/science.1139621
10.1101/gad.1545107
10.1016/j.cell.2014.02.049
10.1038/nrm2245
10.1016/j.cell.2008.12.041
10.1083/jcb.200507002
10.1074/jbc.M802182200
10.4161/auto.6.5.12189
10.1128/MCB.00248-10
10.1016/j.cell.2009.03.048
10.1073/pnas.0710061104
10.1083/jcb.200711108
10.1083/jcb.201009067
10.1146/annurev.biochem.73.011303.073723
10.1038/ncb2979
10.1126/science.1139516
10.1016/j.cell.2011.10.026
10.1016/S0002-9440(10)64369-6
10.1016/j.cell.2007.10.035
10.1128/MCB.25.10.4010-4022.2005
10.1101/gad.1565707
10.1053/jhep.2002.32674
10.1038/nature06639
10.1016/j.molcel.2010.04.007
10.1038/nrc2254
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright © 2016 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright © 2016 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7S9
L.6
DOI 10.1016/j.molcel.2016.05.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nucleic Acids Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Nucleic Acids Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 48
ExternalDocumentID 27345151
10_1016_j_molcel_2016_05_027
S1097276516301903
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
62-
6I.
7-5
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
.55
.GJ
29M
3O-
53G
5VS
AAEDT
AAHBH
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
0SF
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7S9
L.6
ID FETCH-LOGICAL-c540t-a94dd50b333af7c9d45f26ce8524cffe125d2b8340413aeb39d1f6a04a0d25953
IEDL.DBID IXB
ISSN 1097-2765
IngestDate Fri Jul 11 06:52:38 EDT 2025
Fri Jul 11 10:36:55 EDT 2025
Fri Jan 03 00:55:00 EST 2025
Thu Apr 24 22:59:52 EDT 2025
Tue Jul 01 03:40:47 EDT 2025
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords histone ubiquitination
autophagy
p62
DNA damage
Language English
License This article is made available under the Elsevier license.
Copyright © 2016 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-a94dd50b333af7c9d45f26ce8524cffe125d2b8340413aeb39d1f6a04a0d25953
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276516301903
PMID 27345151
PQID 1819136888
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_1825427899
proquest_miscellaneous_1819136888
pubmed_primary_27345151
crossref_citationtrail_10_1016_j_molcel_2016_05_027
crossref_primary_10_1016_j_molcel_2016_05_027
elsevier_sciencedirect_doi_10_1016_j_molcel_2016_05_027
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-07-07
PublicationDateYYYYMMDD 2016-07-07
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07-07
  day: 07
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Ichimura, Kumanomidou, Sou, Mizushima, Ezaki, Ueno, Kominami, Yamane, Tanaka, Komatsu (bib11) 2008; 283
Sobhian, Shao, Lilli, Culhane, Moreau, Xia, Livingston, Greenberg (bib43) 2007; 316
Doil, Mailand, Bekker-Jensen, Menard, Larsen, Pepperkok, Ellenberg, Panier, Durocher, Bartek (bib4) 2009; 136
Clausen, Lamark, Isakson, Finley, Larsen, Brech, Øvervatn, Stenmark, Bjørkøy, Simonsen, Johansen (bib3) 2010; 6
Jain, Lamark, Sjøttem, Larsen, Awuh, Øvervatn, McMahon, Hayes, Johansen (bib13) 2010; 285
Liu, Xu, O’Prey, Lao, Joshi, Long, O’Prey, Croft, Beaumatin, Baudot (bib23) 2015; 112
Mailand, Bekker-Jensen, Faustrup, Melander, Bartek, Lukas, Lukas (bib24) 2007; 131
Karantza-Wadsworth, Patel, Kravchuk, Chen, Mathew, Jin, White (bib14) 2007; 21
Kuusisto, Salminen, Alafuzoff (bib21) 2001; 12
Klionsky (bib17) 2007; 8
Nezis, Simonsen, Sagona, Finley, Gaumer, Contamine, Rusten, Stenmark, Brech (bib36) 2008; 180
Stumptner, Fuchsbichler, Heid, Zatloukal, Denk (bib48) 2002; 35
Mathew, Karantza-Wadsworth, White (bib25) 2007; 7
Sonoda, Hochegger, Saberi, Taniguchi, Takeda (bib44) 2006; 5
Nakada, Tai, Panier, Al-Hakim, Iemura, Juang, O’Donnell, Kumakubo, Munro, Sicheri (bib35) 2010; 466
Zatloukal, Stumptner, Fuchsbichler, Heid, Schnoelzer, Kenner, Kleinert, Prinz, Aguzzi, Denk (bib53) 2002; 160
Sancar, Lindsey-Boltz, Unsal-Kaçmaz, Linn (bib42) 2004; 73
Mizushima (bib31) 2011; 76
Mattiroli, Uckelmann, Sahtoe, van Dijk, Sixma (bib29) 2014; 5
Middleton, Budhidarmo, Day (bib30) 2014; 545
Fan, Tang, Chen, Moughon, Ding, Chen, Zhu, Zhong (bib5) 2010; 6
Pankiv, Lamark, Bruun, Øvervatn, Bjørkøy, Johansen (bib40) 2010; 285
Mizushima, Levine, Cuervo, Klionsky (bib33) 2008; 451
Kim, Chen, Yu (bib15) 2007; 316
Kolas, Chapman, Nakada, Ylanko, Chahwan, Sweeney, Panier, Mendez, Wildenhain, Thomson (bib18) 2007; 318
Stolz, Ernst, Dikic (bib47) 2014; 16
Chen, Wang, Sun, Wang, Chen, Huang, Yang, Gao, Yang, Chang (bib2) 2015; 35
Mathew, Kongara, Beaudoin, Karp, Bray, Degenhardt, Chen, Jin, White (bib26) 2007; 21
Mathew, Karp, Beaudoin, Vuong, Chen, Chen, Bray, Reddy, Bhanot, Gelinas (bib27) 2009; 137
Panier, Ichijima, Fradet-Turcotte, Leung, Kaustov, Arrowsmith, Durocher (bib38) 2012; 47
Komatsu, Waguri, Koike, Sou, Ueno, Hara, Mizushima, Iwata, Ezaki, Murata (bib19) 2007; 131
Green, Levine (bib9) 2014; 157
Thorslund, Ripplinger, Hoffmann, Wild, Uckelmann, Villumsen, Narita, Sixma, Choudhary, Bekker-Jensen, Mailand (bib49) 2015; 527
Huen, Grant, Manke, Minn, Yu, Yaffe, Chen (bib10) 2007; 131
Mizushima, Komatsu (bib32) 2011; 147
Bjørkøy, Lamark, Brech, Outzen, Perander, Overvatn, Stenmark, Johansen (bib1) 2005; 171
Mortensen, Soilleux, Djordjevic, Tripp, Lutteropp, Sadighi-Akha, Stranks, Glanville, Knight, Jacobsen (bib34) 2011; 208
Wright, Mace, Day (bib52) 2016; 23
Kirkin, Lamark, Sou, Bjørkøy, Nunn, Bruun, Shvets, McEwan, Clausen, Wild (bib16) 2009; 33
Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib39) 2007; 282
Wang, Elledge (bib50) 2007; 104
Itakura, Mizushima (bib12) 2011; 192
Mattiroli, Vissers, van Dijk, Ikpa, Citterio, Vermeulen, Marteijn, Sixma (bib28) 2012; 150
Komatsu, Kurokawa, Waguri, Taguchi, Kobayashi, Ichimura, Sou, Ueno, Sakamoto, Tong (bib20) 2010; 12
Lau, Wang, Zhao, Villeneuve, Wu, Jiang, Sun, White, Zhang (bib22) 2010; 30
Feng, Chen (bib6) 2012; 19
Stewart, Panier, Townsend, Al-Hakim, Kolas, Miller, Nakada, Ylanko, Olivarius, Mendez (bib46) 2009; 136
Filimonenko, Isakson, Finley, Anderson, Jeong, Melia, Bartlett, Myers, Birkeland, Lamark (bib8) 2010; 38
Feng, Longmore (bib7) 2005; 25
Wang, Matsuoka, Ballif, Zhang, Smogorzewska, Gygi, Elledge (bib51) 2007; 316
Okamoto (bib37) 2014; 205
Rello-Varona, Lissa, Shen, Niso-Santano, Senovilla, Mariño, Vitale, Jemaá, Harper, Pierron (bib41) 2012; 11
Stewart, Stankovic, Byrd, Wechsler, Miller, Huissoon, Drayson, West, Elledge, Taylor (bib45) 2007; 104
Mattiroli (10.1016/j.molcel.2016.05.027_bib29) 2014; 5
Fan (10.1016/j.molcel.2016.05.027_bib5) 2010; 6
Green (10.1016/j.molcel.2016.05.027_bib9) 2014; 157
Jain (10.1016/j.molcel.2016.05.027_bib13) 2010; 285
Doil (10.1016/j.molcel.2016.05.027_bib4) 2009; 136
Middleton (10.1016/j.molcel.2016.05.027_bib30) 2014; 545
Bjørkøy (10.1016/j.molcel.2016.05.027_bib1) 2005; 171
Feng (10.1016/j.molcel.2016.05.027_bib6) 2012; 19
Mathew (10.1016/j.molcel.2016.05.027_bib25) 2007; 7
Clausen (10.1016/j.molcel.2016.05.027_bib3) 2010; 6
Rello-Varona (10.1016/j.molcel.2016.05.027_bib41) 2012; 11
Mizushima (10.1016/j.molcel.2016.05.027_bib31) 2011; 76
Mortensen (10.1016/j.molcel.2016.05.027_bib34) 2011; 208
Lau (10.1016/j.molcel.2016.05.027_bib22) 2010; 30
Ichimura (10.1016/j.molcel.2016.05.027_bib11) 2008; 283
Mailand (10.1016/j.molcel.2016.05.027_bib24) 2007; 131
Wang (10.1016/j.molcel.2016.05.027_bib51) 2007; 316
Wright (10.1016/j.molcel.2016.05.027_bib52) 2016; 23
Mattiroli (10.1016/j.molcel.2016.05.027_bib28) 2012; 150
Karantza-Wadsworth (10.1016/j.molcel.2016.05.027_bib14) 2007; 21
Huen (10.1016/j.molcel.2016.05.027_bib10) 2007; 131
Kirkin (10.1016/j.molcel.2016.05.027_bib16) 2009; 33
Pankiv (10.1016/j.molcel.2016.05.027_bib40) 2010; 285
Komatsu (10.1016/j.molcel.2016.05.027_bib20) 2010; 12
Thorslund (10.1016/j.molcel.2016.05.027_bib49) 2015; 527
Kolas (10.1016/j.molcel.2016.05.027_bib18) 2007; 318
Nezis (10.1016/j.molcel.2016.05.027_bib36) 2008; 180
Stewart (10.1016/j.molcel.2016.05.027_bib46) 2009; 136
Komatsu (10.1016/j.molcel.2016.05.027_bib19) 2007; 131
Filimonenko (10.1016/j.molcel.2016.05.027_bib8) 2010; 38
Mathew (10.1016/j.molcel.2016.05.027_bib27) 2009; 137
Zatloukal (10.1016/j.molcel.2016.05.027_bib53) 2002; 160
Pankiv (10.1016/j.molcel.2016.05.027_bib39) 2007; 282
Mizushima (10.1016/j.molcel.2016.05.027_bib32) 2011; 147
Kuusisto (10.1016/j.molcel.2016.05.027_bib21) 2001; 12
Sobhian (10.1016/j.molcel.2016.05.027_bib43) 2007; 316
Sonoda (10.1016/j.molcel.2016.05.027_bib44) 2006; 5
Mathew (10.1016/j.molcel.2016.05.027_bib26) 2007; 21
Panier (10.1016/j.molcel.2016.05.027_bib38) 2012; 47
Klionsky (10.1016/j.molcel.2016.05.027_bib17) 2007; 8
Kim (10.1016/j.molcel.2016.05.027_bib15) 2007; 316
Chen (10.1016/j.molcel.2016.05.027_bib2) 2015; 35
Stewart (10.1016/j.molcel.2016.05.027_bib45) 2007; 104
Stumptner (10.1016/j.molcel.2016.05.027_bib48) 2002; 35
Itakura (10.1016/j.molcel.2016.05.027_bib12) 2011; 192
Nakada (10.1016/j.molcel.2016.05.027_bib35) 2010; 466
Wang (10.1016/j.molcel.2016.05.027_bib50) 2007; 104
Feng (10.1016/j.molcel.2016.05.027_bib7) 2005; 25
Stolz (10.1016/j.molcel.2016.05.027_bib47) 2014; 16
Mizushima (10.1016/j.molcel.2016.05.027_bib33) 2008; 451
Sancar (10.1016/j.molcel.2016.05.027_bib42) 2004; 73
Liu (10.1016/j.molcel.2016.05.027_bib23) 2015; 112
Okamoto (10.1016/j.molcel.2016.05.027_bib37) 2014; 205
References_xml – volume: 33
  start-page: 505
  year: 2009
  end-page: 516
  ident: bib16
  article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
  publication-title: Mol. Cell
– volume: 6
  start-page: 614
  year: 2010
  end-page: 621
  ident: bib5
  article-title: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy
  publication-title: Autophagy
– volume: 35
  start-page: 1053
  year: 2002
  end-page: 1062
  ident: bib48
  article-title: Mallory body--a disease-associated type of sequestosome
  publication-title: Hepatology
– volume: 12
  start-page: 213
  year: 2010
  end-page: 223
  ident: bib20
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
– volume: 283
  start-page: 22847
  year: 2008
  end-page: 22857
  ident: bib11
  article-title: Structural basis for sorting mechanism of p62 in selective autophagy
  publication-title: J. Biol. Chem.
– volume: 208
  start-page: 455
  year: 2011
  end-page: 467
  ident: bib34
  article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
  publication-title: J. Exp. Med.
– volume: 282
  start-page: 24131
  year: 2007
  end-page: 24145
  ident: bib39
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
– volume: 180
  start-page: 1065
  year: 2008
  end-page: 1071
  ident: bib36
  article-title: Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain
  publication-title: J. Cell Biol.
– volume: 6
  start-page: 330
  year: 2010
  end-page: 344
  ident: bib3
  article-title: p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy
  publication-title: Autophagy
– volume: 316
  start-page: 1198
  year: 2007
  end-page: 1202
  ident: bib43
  article-title: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
  publication-title: Science
– volume: 131
  start-page: 901
  year: 2007
  end-page: 914
  ident: bib10
  article-title: RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly
  publication-title: Cell
– volume: 545
  start-page: 243
  year: 2014
  end-page: 263
  ident: bib30
  article-title: Use of E2∼ubiquitin conjugates for the characterization of ubiquitin transfer by RING E3 ligases such as the inhibitor of apoptosis proteins
  publication-title: Methods Enzymol.
– volume: 11
  start-page: 170
  year: 2012
  end-page: 176
  ident: bib41
  article-title: Autophagic removal of micronuclei
  publication-title: Cell Cycle
– volume: 136
  start-page: 420
  year: 2009
  end-page: 434
  ident: bib46
  article-title: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage
  publication-title: Cell
– volume: 157
  start-page: 65
  year: 2014
  end-page: 75
  ident: bib9
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
– volume: 16
  start-page: 495
  year: 2014
  end-page: 501
  ident: bib47
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat. Cell Biol.
– volume: 12
  start-page: 2085
  year: 2001
  end-page: 2090
  ident: bib21
  article-title: Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies
  publication-title: Neuroreport
– volume: 131
  start-page: 887
  year: 2007
  end-page: 900
  ident: bib24
  article-title: RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins
  publication-title: Cell
– volume: 76
  start-page: 397
  year: 2011
  end-page: 402
  ident: bib31
  article-title: Autophagy in protein and organelle turnover
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
– volume: 7
  start-page: 961
  year: 2007
  end-page: 967
  ident: bib25
  article-title: Role of autophagy in cancer
  publication-title: Nat. Rev. Cancer
– volume: 25
  start-page: 4010
  year: 2005
  end-page: 4022
  ident: bib7
  article-title: The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex
  publication-title: Mol. Cell. Biol.
– volume: 30
  start-page: 3275
  year: 2010
  end-page: 3285
  ident: bib22
  article-title: A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62
  publication-title: Mol. Cell. Biol.
– volume: 316
  start-page: 1202
  year: 2007
  end-page: 1205
  ident: bib15
  article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response
  publication-title: Science
– volume: 5
  start-page: 3291
  year: 2014
  ident: bib29
  article-title: The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A
  publication-title: Nat. Commun.
– volume: 73
  start-page: 39
  year: 2004
  end-page: 85
  ident: bib42
  article-title: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
  publication-title: Annu. Rev. Biochem.
– volume: 35
  start-page: 406
  year: 2015
  end-page: 416
  ident: bib2
  article-title: RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1
  publication-title: Mol. Cell. Biol.
– volume: 21
  start-page: 1621
  year: 2007
  end-page: 1635
  ident: bib14
  article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
  publication-title: Genes Dev.
– volume: 21
  start-page: 1367
  year: 2007
  end-page: 1381
  ident: bib26
  article-title: Autophagy suppresses tumor progression by limiting chromosomal instability
  publication-title: Genes Dev.
– volume: 112
  start-page: 773
  year: 2015
  end-page: 778
  ident: bib23
  article-title: Loss of autophagy causes a synthetic lethal deficiency in DNA repair
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 136
  start-page: 435
  year: 2009
  end-page: 446
  ident: bib4
  article-title: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins
  publication-title: Cell
– volume: 318
  start-page: 1637
  year: 2007
  end-page: 1640
  ident: bib18
  article-title: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase
  publication-title: Science
– volume: 8
  start-page: 931
  year: 2007
  end-page: 937
  ident: bib17
  article-title: Autophagy: from phenomenology to molecular understanding in less than a decade
  publication-title: Nat. Rev. Mol. Cell Biol.
– volume: 527
  start-page: 389
  year: 2015
  end-page: 393
  ident: bib49
  article-title: Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage
  publication-title: Nature
– volume: 205
  start-page: 435
  year: 2014
  end-page: 445
  ident: bib37
  article-title: Organellophagy: eliminating cellular building blocks via selective autophagy
  publication-title: J. Cell Biol.
– volume: 451
  start-page: 1069
  year: 2008
  end-page: 1075
  ident: bib33
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
– volume: 137
  start-page: 1062
  year: 2009
  end-page: 1075
  ident: bib27
  article-title: Autophagy suppresses tumorigenesis through elimination of p62
  publication-title: Cell
– volume: 131
  start-page: 1149
  year: 2007
  end-page: 1163
  ident: bib19
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
  publication-title: Cell
– volume: 23
  start-page: 45
  year: 2016
  end-page: 52
  ident: bib52
  article-title: Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity
  publication-title: Nat. Struct. Mol. Biol.
– volume: 285
  start-page: 22576
  year: 2010
  end-page: 22591
  ident: bib13
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
– volume: 147
  start-page: 728
  year: 2011
  end-page: 741
  ident: bib32
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
– volume: 316
  start-page: 1194
  year: 2007
  end-page: 1198
  ident: bib51
  article-title: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response
  publication-title: Science
– volume: 19
  start-page: 201
  year: 2012
  end-page: 206
  ident: bib6
  article-title: The E3 ligase RNF8 regulates KU80 removal and NHEJ repair
  publication-title: Nat. Struct. Mol. Biol.
– volume: 150
  start-page: 1182
  year: 2012
  end-page: 1195
  ident: bib28
  article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling
  publication-title: Cell
– volume: 104
  start-page: 16910
  year: 2007
  end-page: 16915
  ident: bib45
  article-title: RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 466
  start-page: 941
  year: 2010
  end-page: 946
  ident: bib35
  article-title: Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1
  publication-title: Nature
– volume: 160
  start-page: 255
  year: 2002
  end-page: 263
  ident: bib53
  article-title: p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases
  publication-title: Am. J. Pathol.
– volume: 285
  start-page: 5941
  year: 2010
  end-page: 5953
  ident: bib40
  article-title: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies
  publication-title: J. Biol. Chem.
– volume: 171
  start-page: 603
  year: 2005
  end-page: 614
  ident: bib1
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
– volume: 38
  start-page: 265
  year: 2010
  end-page: 279
  ident: bib8
  article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
  publication-title: Mol. Cell
– volume: 5
  start-page: 1021
  year: 2006
  end-page: 1029
  ident: bib44
  article-title: Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
  publication-title: DNA Repair (Amst.)
– volume: 104
  start-page: 20759
  year: 2007
  end-page: 20763
  ident: bib50
  article-title: Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 47
  start-page: 383
  year: 2012
  end-page: 395
  ident: bib38
  article-title: Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks
  publication-title: Mol. Cell
– volume: 192
  start-page: 17
  year: 2011
  end-page: 27
  ident: bib12
  article-title: p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
  publication-title: J. Cell Biol.
– volume: 205
  start-page: 435
  year: 2014
  ident: 10.1016/j.molcel.2016.05.027_bib37
  article-title: Organellophagy: eliminating cellular building blocks via selective autophagy
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201402054
– volume: 527
  start-page: 389
  year: 2015
  ident: 10.1016/j.molcel.2016.05.027_bib49
  article-title: Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage
  publication-title: Nature
  doi: 10.1038/nature15401
– volume: 47
  start-page: 383
  year: 2012
  ident: 10.1016/j.molcel.2016.05.027_bib38
  article-title: Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.05.045
– volume: 6
  start-page: 330
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib3
  article-title: p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.6.3.11226
– volume: 208
  start-page: 455
  year: 2011
  ident: 10.1016/j.molcel.2016.05.027_bib34
  article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101145
– volume: 150
  start-page: 1182
  year: 2012
  ident: 10.1016/j.molcel.2016.05.027_bib28
  article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.005
– volume: 136
  start-page: 420
  year: 2009
  ident: 10.1016/j.molcel.2016.05.027_bib46
  article-title: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.042
– volume: 318
  start-page: 1637
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib18
  article-title: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase
  publication-title: Science
  doi: 10.1126/science.1150034
– volume: 35
  start-page: 406
  year: 2015
  ident: 10.1016/j.molcel.2016.05.027_bib2
  article-title: RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01044-14
– volume: 19
  start-page: 201
  year: 2012
  ident: 10.1016/j.molcel.2016.05.027_bib6
  article-title: The E3 ligase RNF8 regulates KU80 removal and NHEJ repair
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2211
– volume: 285
  start-page: 5941
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib40
  article-title: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.039925
– volume: 23
  start-page: 45
  year: 2016
  ident: 10.1016/j.molcel.2016.05.027_bib52
  article-title: Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3142
– volume: 282
  start-page: 24131
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib39
  article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M702824200
– volume: 545
  start-page: 243
  year: 2014
  ident: 10.1016/j.molcel.2016.05.027_bib30
  article-title: Use of E2∼ubiquitin conjugates for the characterization of ubiquitin transfer by RING E3 ligases such as the inhibitor of apoptosis proteins
  publication-title: Methods Enzymol.
  doi: 10.1016/B978-0-12-801430-1.00010-X
– volume: 11
  start-page: 170
  year: 2012
  ident: 10.1016/j.molcel.2016.05.027_bib41
  article-title: Autophagic removal of micronuclei
  publication-title: Cell Cycle
  doi: 10.4161/cc.11.1.18564
– volume: 5
  start-page: 3291
  year: 2014
  ident: 10.1016/j.molcel.2016.05.027_bib29
  article-title: The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4291
– volume: 316
  start-page: 1194
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib51
  article-title: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response
  publication-title: Science
  doi: 10.1126/science.1139476
– volume: 112
  start-page: 773
  year: 2015
  ident: 10.1016/j.molcel.2016.05.027_bib23
  article-title: Loss of autophagy causes a synthetic lethal deficiency in DNA repair
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1409563112
– volume: 5
  start-page: 1021
  year: 2006
  ident: 10.1016/j.molcel.2016.05.027_bib44
  article-title: Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
  publication-title: DNA Repair (Amst.)
  doi: 10.1016/j.dnarep.2006.05.022
– volume: 466
  start-page: 941
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib35
  article-title: Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1
  publication-title: Nature
  doi: 10.1038/nature09297
– volume: 285
  start-page: 22576
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib13
  article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.118976
– volume: 12
  start-page: 213
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib20
  article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2021
– volume: 76
  start-page: 397
  year: 2011
  ident: 10.1016/j.molcel.2016.05.027_bib31
  article-title: Autophagy in protein and organelle turnover
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/sqb.2011.76.011023
– volume: 12
  start-page: 2085
  year: 2001
  ident: 10.1016/j.molcel.2016.05.027_bib21
  article-title: Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies
  publication-title: Neuroreport
  doi: 10.1097/00001756-200107200-00009
– volume: 104
  start-page: 16910
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib45
  article-title: RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0708408104
– volume: 131
  start-page: 887
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib24
  article-title: RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2007.09.040
– volume: 131
  start-page: 901
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib10
  article-title: RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly
  publication-title: Cell
  doi: 10.1016/j.cell.2007.09.041
– volume: 33
  start-page: 505
  year: 2009
  ident: 10.1016/j.molcel.2016.05.027_bib16
  article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.01.020
– volume: 316
  start-page: 1202
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib15
  article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response
  publication-title: Science
  doi: 10.1126/science.1139621
– volume: 21
  start-page: 1367
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib26
  article-title: Autophagy suppresses tumor progression by limiting chromosomal instability
  publication-title: Genes Dev.
  doi: 10.1101/gad.1545107
– volume: 157
  start-page: 65
  year: 2014
  ident: 10.1016/j.molcel.2016.05.027_bib9
  article-title: To be or not to be? How selective autophagy and cell death govern cell fate
  publication-title: Cell
  doi: 10.1016/j.cell.2014.02.049
– volume: 8
  start-page: 931
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib17
  article-title: Autophagy: from phenomenology to molecular understanding in less than a decade
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2245
– volume: 136
  start-page: 435
  year: 2009
  ident: 10.1016/j.molcel.2016.05.027_bib4
  article-title: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.041
– volume: 171
  start-page: 603
  year: 2005
  ident: 10.1016/j.molcel.2016.05.027_bib1
  article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200507002
– volume: 283
  start-page: 22847
  year: 2008
  ident: 10.1016/j.molcel.2016.05.027_bib11
  article-title: Structural basis for sorting mechanism of p62 in selective autophagy
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M802182200
– volume: 6
  start-page: 614
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib5
  article-title: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy
  publication-title: Autophagy
  doi: 10.4161/auto.6.5.12189
– volume: 30
  start-page: 3275
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib22
  article-title: A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00248-10
– volume: 137
  start-page: 1062
  year: 2009
  ident: 10.1016/j.molcel.2016.05.027_bib27
  article-title: Autophagy suppresses tumorigenesis through elimination of p62
  publication-title: Cell
  doi: 10.1016/j.cell.2009.03.048
– volume: 104
  start-page: 20759
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib50
  article-title: Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0710061104
– volume: 180
  start-page: 1065
  year: 2008
  ident: 10.1016/j.molcel.2016.05.027_bib36
  article-title: Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.200711108
– volume: 192
  start-page: 17
  year: 2011
  ident: 10.1016/j.molcel.2016.05.027_bib12
  article-title: p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201009067
– volume: 73
  start-page: 39
  year: 2004
  ident: 10.1016/j.molcel.2016.05.027_bib42
  article-title: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.73.011303.073723
– volume: 16
  start-page: 495
  year: 2014
  ident: 10.1016/j.molcel.2016.05.027_bib47
  article-title: Cargo recognition and trafficking in selective autophagy
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2979
– volume: 316
  start-page: 1198
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib43
  article-title: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites
  publication-title: Science
  doi: 10.1126/science.1139516
– volume: 147
  start-page: 728
  year: 2011
  ident: 10.1016/j.molcel.2016.05.027_bib32
  article-title: Autophagy: renovation of cells and tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– volume: 160
  start-page: 255
  year: 2002
  ident: 10.1016/j.molcel.2016.05.027_bib53
  article-title: p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases
  publication-title: Am. J. Pathol.
  doi: 10.1016/S0002-9440(10)64369-6
– volume: 131
  start-page: 1149
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib19
  article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
  publication-title: Cell
  doi: 10.1016/j.cell.2007.10.035
– volume: 25
  start-page: 4010
  year: 2005
  ident: 10.1016/j.molcel.2016.05.027_bib7
  article-title: The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.25.10.4010-4022.2005
– volume: 21
  start-page: 1621
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib14
  article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1565707
– volume: 35
  start-page: 1053
  year: 2002
  ident: 10.1016/j.molcel.2016.05.027_bib48
  article-title: Mallory body--a disease-associated type of sequestosome
  publication-title: Hepatology
  doi: 10.1053/jhep.2002.32674
– volume: 451
  start-page: 1069
  year: 2008
  ident: 10.1016/j.molcel.2016.05.027_bib33
  article-title: Autophagy fights disease through cellular self-digestion
  publication-title: Nature
  doi: 10.1038/nature06639
– volume: 38
  start-page: 265
  year: 2010
  ident: 10.1016/j.molcel.2016.05.027_bib8
  article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.04.007
– volume: 7
  start-page: 961
  year: 2007
  ident: 10.1016/j.molcel.2016.05.027_bib25
  article-title: Role of autophagy in cancer
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2254
SSID ssj0014589
Score 2.5764132
Snippet Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 34
SubjectTerms autophagy
Autophagy - radiation effects
Autophagy-Related Proteins - genetics
Autophagy-Related Proteins - metabolism
chromatin
Chromatin - metabolism
Chromatin Assembly and Disassembly - radiation effects
Colorectal Neoplasms - genetics
Colorectal Neoplasms - metabolism
Colorectal Neoplasms - pathology
Colorectal Neoplasms - radiotherapy
DNA Breaks, Double-Stranded
DNA damage
DNA repair
DNA Repair - radiation effects
genome
HCT116 Cells
histone ubiquitination
histones
Histones - metabolism
Humans
lysosomes
neoplasm cells
p62
Radiation Tolerance
RNA Interference
Sequestosome-1 Protein - genetics
Sequestosome-1 Protein - metabolism
Signal Transduction
Transfection
tumor suppressor proteins
Ubiquitin-Conjugating Enzymes - genetics
Ubiquitin-Conjugating Enzymes - metabolism
ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
ubiquitination
Ubiquitination - radiation effects
Title Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62
URI https://dx.doi.org/10.1016/j.molcel.2016.05.027
https://www.ncbi.nlm.nih.gov/pubmed/27345151
https://www.proquest.com/docview/1819136888
https://www.proquest.com/docview/1825427899
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpcfSNn0kbYMCvYqVrYel4zYPQkMCyWbp3oRkyWXLxrttdg_5952R7YVC20BuRoxAHsmjGc_M9xHyufDJVz4qVvqomdSxYF5zy5SxjQl1CLrB_5CXV_p8Kr_O1GyHHA-9MFhW2dv-zqZna92PjHptjlbz-WiCudOy0go8CmyIRsRPIU1u4pt92WYSpMo0eCjMUHpon8s1XnfLRZ0wAVHojN-J3DJ_v57-5X7ma-jsJXnR-4903C3xFdlJ7WvyvGOUfNgjabxBpAD__YHedCzz6Z4iAC46pi2dhvnPzRye8n5QGDm5GtMTfwdWBSbkctlEe-4eerrIlF9ZdNnQyfXk9rIYrXT5hkzPTm-Pz1nPpMBq8MjWzFsZo-JBCOGbqrZRqqbUyFhayrppEng5sQxGSA53mof42sai0Z5LzyPER0q8Jbvtsk3vCS0L6SGqMZ77CrECTWhCZW2wXAYvtN0nYlCgq3uYcWS7WLihnuyH69TuUO2OKwdq3ydsO2vVwWw8Il8Ne-P-OC4OboJHZh4NW-ngS8L0iG_TcnPvCoxdhTbG_E8GAmpsHob3fNedg-16ESgIvMPi4Mlr-4B_DTjv6ik_kt31r036BD7POhySZ-OLm28Xh_lw_wYRcQAc
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDfL00hcrSbxI_Gx7ENd2FaCtlJvlh3bq6JuWtj2sP-eGSephASsxC1yxpIztme-icfzEfIxt8GW1ktWWK-YUD5nVmWayUrHytXOqYj_IccTNZqLzwu5OCDH_V0YTKvsbH9r05O17loGnTYHm-VyMMWz06JUEhAFXojmd8hdQAMl7s7zxaf9UYKQiQcPpRmK9_fnUpLX1XpVBzyByFUq4InkMn_2T3_Dn8kPnT0iDzsASYftGB-Tg9A8IfdaSsmbpyQMd1gqwF7e0G8tzXy4plgBF5FpQ-du-WO3hKc0IRRaTiZDemKvwKxAh5QvG2hH3kNPV4nzK4muI51-nc7G-WCjimdkfnY6Ox6xjkqB1QDJtsxq4b3MHOfcxrLWXshYKKQsLUQdYwCY4wtXcZGBU7MQYGufR2UzYTMPAZLkz8lhs27CS0KLXFgIayqb2RKLBVYuulJrpzPhLFf6iPBegabu6owj3cXK9All302rdoNqN5k0oPYjwva9Nm2djVvky35uzG_rxYAruKXnh34qDWwlPB-xTVjvrk2OwStXVVX9SwYiarw9DN_5ol0H-_FipSCAh_mr_x7be3J_NBtfmIvzyZfX5AG-SanB5RtyuP25C28BAG3du7TAfwHoTgGq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+Regulates+Chromatin+Ubiquitination+in+DNA+Damage+Response+through+Elimination+of+SQSTM1%2Fp62&rft.jtitle=Molecular+cell&rft.au=Wang%2C+Yanan&rft.au=Zhang%2C+Nan&rft.au=Zhang%2C+Luyao&rft.au=Li%2C+Ran&rft.date=2016-07-07&rft.issn=1097-2765&rft.volume=63&rft.issue=1+p.34-48&rft.spage=34&rft.epage=48&rft_id=info:doi/10.1016%2Fj.molcel.2016.05.027&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon