Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62
Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which...
Saved in:
Published in | Molecular cell Vol. 63; no. 1; pp. 34 - 48 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
07.07.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response.
[Display omitted]
•Loss of autophagy leads to a deficiency of chromatin ubiquitination•Autophagy substrate p62 inhibits DNA-damage-induced histone ubiquitination•p62 directly inhibits RNF168 E3 ligase activity
Wang et al. describe a role of selective autophagy in regulating chromatin ubiquitination during the repair of DNA double-strand breaks (DSBs). They found that the autophagy receptor and substrate p62/SQSTM1 inhibits DSB-induced histone and chromatin ubiquitination, which has a critical role in attracting key repair factors to the break sites. |
---|---|
AbstractList | Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response.
[Display omitted]
•Loss of autophagy leads to a deficiency of chromatin ubiquitination•Autophagy substrate p62 inhibits DNA-damage-induced histone ubiquitination•p62 directly inhibits RNF168 E3 ligase activity
Wang et al. describe a role of selective autophagy in regulating chromatin ubiquitination during the repair of DNA double-strand breaks (DSBs). They found that the autophagy receptor and substrate p62/SQSTM1 inhibits DSB-induced histone and chromatin ubiquitination, which has a critical role in attracting key repair factors to the break sites. Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response. Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased genome instability. Here, we report that loss of autophagy is coupled to reduced histone H2A ubiquitination after DNA damage. p62/SQSTM1, which accumulates in autophagy-defective cells, directly binds to and inhibits nuclear RNF168, an E3 ligase essential for histone H2A ubiquitination and DNA damage responses. As a result, DNA repair proteins such as BRCA1, RAP80, and Rad51 cannot be recruited to the sites of DNA double-strand breaks (DSBs), which impairs DSB repair. Moreover, nuclear-localized p62 increased the sensitivity of tumor cells to radiation both in vitro and in vivo, and this required its interaction with RNF168. Our findings indicate that autophagy-deficiency-induced p62 accumulation results in inhibition of histone ubiquitination and highlight the complex relationship between autophagy and the DNA damage response. |
Author | Gu, Wei Wang, Lina Zhang, Nan Li, Ran Wang, Yanan Ma, Ke Li, Xue Fu, Wan Zhang, Hongquan Zhang, Luyao Zhu, Wei-Guo Wang, Jiadong Zhao, Ying |
Author_xml | – sequence: 1 givenname: Yanan surname: Wang fullname: Wang, Yanan organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 2 givenname: Nan surname: Zhang fullname: Zhang, Nan organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 3 givenname: Luyao surname: Zhang fullname: Zhang, Luyao organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 4 givenname: Ran surname: Li fullname: Li, Ran organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 5 givenname: Wan surname: Fu fullname: Fu, Wan organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 6 givenname: Ke surname: Ma fullname: Ma, Ke organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 7 givenname: Xue surname: Li fullname: Li, Xue organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 8 givenname: Lina surname: Wang fullname: Wang, Lina organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 9 givenname: Jiadong surname: Wang fullname: Wang, Jiadong organization: Institute of Systems Biomedicine and Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing 100191, China – sequence: 10 givenname: Hongquan surname: Zhang fullname: Zhang, Hongquan organization: Department of Anatomy, Histology and Embryology, Peking University Health Science Center, Beijing 100191, China – sequence: 11 givenname: Wei surname: Gu fullname: Gu, Wei organization: Institute for Cancer Genetics and Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA – sequence: 12 givenname: Wei-Guo surname: Zhu fullname: Zhu, Wei-Guo email: zhuweiguo@szu.edu.cn organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China – sequence: 13 givenname: Ying surname: Zhao fullname: Zhao, Ying email: zhaoying0812@bjmu.edu.cn organization: Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27345151$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URB_wDxDKks2kfiYxC6TRtECltgjari3HvpnxKIlT20Hqv8dlZjZdAKv70HfO4pxTdDT6ERB6T3BJMKnOt-XgewN9SfNVYlFiWr9CJwTLesFJxY_2O60rcYxOY9xiTLho5Bt0TGvGBRHkBMFyTn7a6PVT8RPWc68TxGK1CX7QyY3FQ-seZ5e3fPmxyJ-L22VxoQe9hiyIkx8jFCnz83pTXPZuOKC-K-5-3N3fkPOpom_R6073Ed7t5xl6-HJ5v_q2uP7-9Wq1vF4YwXFaaMmtFbhljOmuNtJy0dHKQCMoN10HhApL24ZxzAnT0DJpSVdpzDW2VEjBztDHne8U_OMMManBxZxRr0fwc1SkoYLTupHyP1AiCauapsnohz06twNYNQU36PCkDilm4NMOMMHHGKBTxqU_MaSgXa8IVs-Vqa3aVaaeK1NYqFxZFvMX4oP_P2SfdzLIef5yEFQ0DkYD1gUwSVnv_m7wGx0bsUo |
CitedBy_id | crossref_primary_10_1093_mutage_gey004 crossref_primary_10_3390_ijms18112351 crossref_primary_10_3390_nu12051351 crossref_primary_10_31857_S0041377123030100 crossref_primary_10_1080_15548627_2017_1317427 crossref_primary_10_1038_cddis_2017_498 crossref_primary_10_1073_pnas_1721160115 crossref_primary_10_1158_0008_5472_CAN_16_2458 crossref_primary_10_1073_pnas_2409447121 crossref_primary_10_3389_fcell_2019_00308 crossref_primary_10_1038_s41420_024_02139_4 crossref_primary_10_1038_s41388_019_0980_6 crossref_primary_10_3390_ijms19051405 crossref_primary_10_1038_nn_4604 crossref_primary_10_3390_cells8010040 crossref_primary_10_1016_j_dnarep_2019_102669 crossref_primary_10_3892_etm_2023_12321 crossref_primary_10_3390_ijms18102036 crossref_primary_10_4252_wjsc_v13_i6_542 crossref_primary_10_1016_j_cell_2018_09_048 crossref_primary_10_2174_1568009618666181016164920 crossref_primary_10_1038_s41419_024_07278_1 crossref_primary_10_1038_s41388_022_02247_4 crossref_primary_10_3389_fcell_2020_599048 crossref_primary_10_1080_26895293_2022_2078894 crossref_primary_10_1016_j_isci_2020_101668 crossref_primary_10_3389_fphar_2024_1413853 crossref_primary_10_1371_journal_pgen_1008084 crossref_primary_10_1016_j_neulet_2021_136177 crossref_primary_10_1038_s41418_019_0403_9 crossref_primary_10_3390_ijms24031869 crossref_primary_10_1128_JVI_01258_19 crossref_primary_10_1080_19490976_2020_1774311 crossref_primary_10_1080_23723556_2016_1214772 crossref_primary_10_1111_febs_15672 crossref_primary_10_3389_fnagi_2022_786420 crossref_primary_10_3389_fphar_2020_580343 crossref_primary_10_1007_s42764_020_00016_9 crossref_primary_10_1016_j_bbcan_2021_188565 crossref_primary_10_1177_10738584251324459 crossref_primary_10_1016_j_canlet_2017_01_026 crossref_primary_10_2139_ssrn_4102754 crossref_primary_10_1016_j_ecoenv_2024_116650 crossref_primary_10_1093_nar_gkz1103 crossref_primary_10_1016_j_mrfmmm_2017_04_003 crossref_primary_10_1038_s41418_020_00706_7 crossref_primary_10_1093_toxres_tfae165 crossref_primary_10_3389_fphar_2024_1419806 crossref_primary_10_1038_s41419_018_1245_y crossref_primary_10_1016_j_arr_2021_101468 crossref_primary_10_1186_s40104_023_00986_2 crossref_primary_10_1016_j_cellsig_2018_04_003 crossref_primary_10_3390_cancers12071793 crossref_primary_10_1159_000503133 crossref_primary_10_11648_j_bmb_20240904_11 crossref_primary_10_1016_j_celrep_2022_111116 crossref_primary_10_1093_nar_gkae156 crossref_primary_10_1083_jcb_201909033 crossref_primary_10_1007_s42764_024_00139_3 crossref_primary_10_2174_0929867324666170921101947 crossref_primary_10_1371_journal_ppat_1007541 crossref_primary_10_1007_s13402_023_00834_5 crossref_primary_10_1080_15548627_2021_1894059 crossref_primary_10_3389_fnmol_2024_1417961 crossref_primary_10_1155_2021_8189485 crossref_primary_10_1073_pnas_2113454119 crossref_primary_10_1016_j_tcb_2016_11_011 crossref_primary_10_12688_f1000research_10568_2 crossref_primary_10_1038_s41388_020_01602_7 crossref_primary_10_3390_cancers13215451 crossref_primary_10_1038_s41420_024_02154_5 crossref_primary_10_1053_j_gastro_2019_12_026 crossref_primary_10_1016_j_trsl_2018_10_002 crossref_primary_10_3748_wjg_v30_i15_2155 crossref_primary_10_1016_j_dnarep_2021_103206 crossref_primary_10_1016_j_ejmech_2022_114565 crossref_primary_10_1038_s41388_021_01890_7 crossref_primary_10_1016_j_dnarep_2023_103608 crossref_primary_10_3390_cells9092140 crossref_primary_10_1007_s00018_021_03872_0 crossref_primary_10_1080_15548627_2018_1496877 crossref_primary_10_3390_cancers13143482 crossref_primary_10_1038_s41467_021_24556_0 crossref_primary_10_1038_s42003_022_03210_5 crossref_primary_10_1080_15384101_2019_1692483 crossref_primary_10_1016_j_bbrc_2019_02_084 crossref_primary_10_1016_j_celrep_2018_05_006 crossref_primary_10_1038_aps_2017_192 crossref_primary_10_1038_s41419_020_03100_w crossref_primary_10_1038_s43018_023_00546_7 crossref_primary_10_1080_15548627_2017_1377377 crossref_primary_10_1080_15548627_2019_1671643 crossref_primary_10_1152_ajpcell_00294_2019 crossref_primary_10_3390_ijms18091920 crossref_primary_10_1016_j_canlet_2017_09_049 crossref_primary_10_3390_cells13110928 crossref_primary_10_18632_aging_203044 crossref_primary_10_1007_s00018_022_04204_6 crossref_primary_10_2139_ssrn_3950748 crossref_primary_10_1016_j_semcancer_2017_11_007 crossref_primary_10_1038_s41571_021_00579_w crossref_primary_10_1080_19491034_2017_1412027 crossref_primary_10_1128_mBio_01097_21 crossref_primary_10_1038_s41467_021_23327_1 crossref_primary_10_1007_s10495_018_1445_z crossref_primary_10_1016_j_dnarep_2024_103699 crossref_primary_10_3233_JHD_170235 crossref_primary_10_1007_s00253_019_10148_y crossref_primary_10_1007_s10555_018_9727_z crossref_primary_10_1016_j_ibmb_2017_08_006 crossref_primary_10_1016_j_biomaterials_2021_121287 crossref_primary_10_1016_j_yjmcc_2016_10_017 crossref_primary_10_1016_j_semcancer_2018_08_010 crossref_primary_10_1093_brain_awy076 crossref_primary_10_1093_neuonc_noz159 crossref_primary_10_1016_j_bbcan_2021_188642 crossref_primary_10_1155_2019_5692958 crossref_primary_10_1002_jnr_24592 crossref_primary_10_3762_bjnano_16_24 crossref_primary_10_1016_j_scr_2019_101504 crossref_primary_10_1021_acs_jmedchem_2c00432 crossref_primary_10_1080_15548627_2023_2252301 crossref_primary_10_1128_JVI_01170_17 crossref_primary_10_1002_cjp2_129 crossref_primary_10_1634_theoncologist_2018_0621 crossref_primary_10_5607_en_2019_28_6_643 crossref_primary_10_1007_s42764_019_00004_8 crossref_primary_10_1080_15548627_2016_1272742 crossref_primary_10_1093_carcin_bgz104 crossref_primary_10_1134_S1990519X23050139 crossref_primary_10_1371_journal_pone_0201621 crossref_primary_10_1111_odi_13355 crossref_primary_10_1073_pnas_2320804121 crossref_primary_10_1038_s41418_022_01049_1 crossref_primary_10_3389_fonc_2021_555614 crossref_primary_10_1186_s12885_017_3438_7 crossref_primary_10_1016_j_prp_2022_153964 crossref_primary_10_3892_ol_2021_12893 crossref_primary_10_1016_j_matbio_2021_02_004 crossref_primary_10_1016_j_semcancer_2017_03_004 crossref_primary_10_1038_cddis_2017_387 crossref_primary_10_1038_s41556_018_0042_2 crossref_primary_10_1016_j_phymed_2023_155089 crossref_primary_10_1038_s41598_017_10506_8 crossref_primary_10_1186_s12943_018_0843_8 crossref_primary_10_3389_fonc_2018_00210 crossref_primary_10_1038_s41467_024_53559_w crossref_primary_10_1016_j_cellsig_2019_109344 crossref_primary_10_1016_j_celrep_2017_08_028 crossref_primary_10_1038_s41419_021_04301_7 crossref_primary_10_3389_fonc_2021_667920 crossref_primary_10_1002_1873_3468_12301 crossref_primary_10_1016_j_aquatox_2024_106958 crossref_primary_10_1016_j_devcel_2021_08_019 crossref_primary_10_1158_1055_9965_EPI_19_0359 |
Cites_doi | 10.1083/jcb.201402054 10.1038/nature15401 10.1016/j.molcel.2012.05.045 10.4161/auto.6.3.11226 10.1084/jem.20101145 10.1016/j.cell.2012.08.005 10.1016/j.cell.2008.12.042 10.1126/science.1150034 10.1128/MCB.01044-14 10.1038/nsmb.2211 10.1074/jbc.M109.039925 10.1038/nsmb.3142 10.1074/jbc.M702824200 10.1016/B978-0-12-801430-1.00010-X 10.4161/cc.11.1.18564 10.1038/ncomms4291 10.1126/science.1139476 10.1073/pnas.1409563112 10.1016/j.dnarep.2006.05.022 10.1038/nature09297 10.1074/jbc.M110.118976 10.1038/ncb2021 10.1101/sqb.2011.76.011023 10.1097/00001756-200107200-00009 10.1073/pnas.0708408104 10.1016/j.cell.2007.09.040 10.1016/j.cell.2007.09.041 10.1016/j.molcel.2009.01.020 10.1126/science.1139621 10.1101/gad.1545107 10.1016/j.cell.2014.02.049 10.1038/nrm2245 10.1016/j.cell.2008.12.041 10.1083/jcb.200507002 10.1074/jbc.M802182200 10.4161/auto.6.5.12189 10.1128/MCB.00248-10 10.1016/j.cell.2009.03.048 10.1073/pnas.0710061104 10.1083/jcb.200711108 10.1083/jcb.201009067 10.1146/annurev.biochem.73.011303.073723 10.1038/ncb2979 10.1126/science.1139516 10.1016/j.cell.2011.10.026 10.1016/S0002-9440(10)64369-6 10.1016/j.cell.2007.10.035 10.1128/MCB.25.10.4010-4022.2005 10.1101/gad.1565707 10.1053/jhep.2002.32674 10.1038/nature06639 10.1016/j.molcel.2010.04.007 10.1038/nrc2254 |
ContentType | Journal Article |
Copyright | 2016 Elsevier Inc. Copyright © 2016 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright © 2016 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 |
DOI | 10.1016/j.molcel.2016.05.027 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nucleic Acids Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Nucleic Acids Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1097-4164 |
EndPage | 48 |
ExternalDocumentID | 27345151 10_1016_j_molcel_2016_05_027 S1097276516301903 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -DZ -~X 0R~ 123 1~5 2WC 4.4 457 4G. 5RE 62- 6I. 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AAKUH AALRI AAUCE AAVLU AAXJY AAXUO ABJNI ABMAC ABMWF ABVKL ACGFO ACGFS ACNCT ADBBV ADEZE ADJPV AEFWE AENEX AEXQZ AFFNX AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IH2 IHE IXB J1W JIG KQ8 L7B M3Z M41 N9A NCXOZ O-L O9- OK1 P2P RCE RIG ROL RPZ SDG SES SSZ TR2 WQ6 ZA5 .55 .GJ 29M 3O- 53G 5VS AAEDT AAHBH AAIKJ AAMRU AAQFI AAQXK AAYWO AAYXX ABDGV ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFPUW AGCQF AGHFR AGQPQ AIGII AKAPO AKBMS AKRWK AKYEP APXCP CITATION FGOYB HZ~ OZT R2- UHS X7M ZGI ZXP 0SF CGR CUY CVF ECM EIF NPM 7TM 7S9 L.6 |
ID | FETCH-LOGICAL-c540t-a94dd50b333af7c9d45f26ce8524cffe125d2b8340413aeb39d1f6a04a0d25953 |
IEDL.DBID | IXB |
ISSN | 1097-2765 |
IngestDate | Fri Jul 11 06:52:38 EDT 2025 Fri Jul 11 10:36:55 EDT 2025 Fri Jan 03 00:55:00 EST 2025 Thu Apr 24 22:59:52 EDT 2025 Tue Jul 01 03:40:47 EDT 2025 Fri Feb 23 02:30:36 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | histone ubiquitination autophagy p62 DNA damage |
Language | English |
License | This article is made available under the Elsevier license. Copyright © 2016 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-a94dd50b333af7c9d45f26ce8524cffe125d2b8340413aeb39d1f6a04a0d25953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1097276516301903 |
PMID | 27345151 |
PQID | 1819136888 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_1825427899 proquest_miscellaneous_1819136888 pubmed_primary_27345151 crossref_citationtrail_10_1016_j_molcel_2016_05_027 crossref_primary_10_1016_j_molcel_2016_05_027 elsevier_sciencedirect_doi_10_1016_j_molcel_2016_05_027 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-07-07 |
PublicationDateYYYYMMDD | 2016-07-07 |
PublicationDate_xml | – month: 07 year: 2016 text: 2016-07-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular cell |
PublicationTitleAlternate | Mol Cell |
PublicationYear | 2016 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Ichimura, Kumanomidou, Sou, Mizushima, Ezaki, Ueno, Kominami, Yamane, Tanaka, Komatsu (bib11) 2008; 283 Sobhian, Shao, Lilli, Culhane, Moreau, Xia, Livingston, Greenberg (bib43) 2007; 316 Doil, Mailand, Bekker-Jensen, Menard, Larsen, Pepperkok, Ellenberg, Panier, Durocher, Bartek (bib4) 2009; 136 Clausen, Lamark, Isakson, Finley, Larsen, Brech, Øvervatn, Stenmark, Bjørkøy, Simonsen, Johansen (bib3) 2010; 6 Jain, Lamark, Sjøttem, Larsen, Awuh, Øvervatn, McMahon, Hayes, Johansen (bib13) 2010; 285 Liu, Xu, O’Prey, Lao, Joshi, Long, O’Prey, Croft, Beaumatin, Baudot (bib23) 2015; 112 Mailand, Bekker-Jensen, Faustrup, Melander, Bartek, Lukas, Lukas (bib24) 2007; 131 Karantza-Wadsworth, Patel, Kravchuk, Chen, Mathew, Jin, White (bib14) 2007; 21 Kuusisto, Salminen, Alafuzoff (bib21) 2001; 12 Klionsky (bib17) 2007; 8 Nezis, Simonsen, Sagona, Finley, Gaumer, Contamine, Rusten, Stenmark, Brech (bib36) 2008; 180 Stumptner, Fuchsbichler, Heid, Zatloukal, Denk (bib48) 2002; 35 Mathew, Karantza-Wadsworth, White (bib25) 2007; 7 Sonoda, Hochegger, Saberi, Taniguchi, Takeda (bib44) 2006; 5 Nakada, Tai, Panier, Al-Hakim, Iemura, Juang, O’Donnell, Kumakubo, Munro, Sicheri (bib35) 2010; 466 Zatloukal, Stumptner, Fuchsbichler, Heid, Schnoelzer, Kenner, Kleinert, Prinz, Aguzzi, Denk (bib53) 2002; 160 Sancar, Lindsey-Boltz, Unsal-Kaçmaz, Linn (bib42) 2004; 73 Mizushima (bib31) 2011; 76 Mattiroli, Uckelmann, Sahtoe, van Dijk, Sixma (bib29) 2014; 5 Middleton, Budhidarmo, Day (bib30) 2014; 545 Fan, Tang, Chen, Moughon, Ding, Chen, Zhu, Zhong (bib5) 2010; 6 Pankiv, Lamark, Bruun, Øvervatn, Bjørkøy, Johansen (bib40) 2010; 285 Mizushima, Levine, Cuervo, Klionsky (bib33) 2008; 451 Kim, Chen, Yu (bib15) 2007; 316 Kolas, Chapman, Nakada, Ylanko, Chahwan, Sweeney, Panier, Mendez, Wildenhain, Thomson (bib18) 2007; 318 Stolz, Ernst, Dikic (bib47) 2014; 16 Chen, Wang, Sun, Wang, Chen, Huang, Yang, Gao, Yang, Chang (bib2) 2015; 35 Mathew, Kongara, Beaudoin, Karp, Bray, Degenhardt, Chen, Jin, White (bib26) 2007; 21 Mathew, Karp, Beaudoin, Vuong, Chen, Chen, Bray, Reddy, Bhanot, Gelinas (bib27) 2009; 137 Panier, Ichijima, Fradet-Turcotte, Leung, Kaustov, Arrowsmith, Durocher (bib38) 2012; 47 Komatsu, Waguri, Koike, Sou, Ueno, Hara, Mizushima, Iwata, Ezaki, Murata (bib19) 2007; 131 Green, Levine (bib9) 2014; 157 Thorslund, Ripplinger, Hoffmann, Wild, Uckelmann, Villumsen, Narita, Sixma, Choudhary, Bekker-Jensen, Mailand (bib49) 2015; 527 Huen, Grant, Manke, Minn, Yu, Yaffe, Chen (bib10) 2007; 131 Mizushima, Komatsu (bib32) 2011; 147 Bjørkøy, Lamark, Brech, Outzen, Perander, Overvatn, Stenmark, Johansen (bib1) 2005; 171 Mortensen, Soilleux, Djordjevic, Tripp, Lutteropp, Sadighi-Akha, Stranks, Glanville, Knight, Jacobsen (bib34) 2011; 208 Wright, Mace, Day (bib52) 2016; 23 Kirkin, Lamark, Sou, Bjørkøy, Nunn, Bruun, Shvets, McEwan, Clausen, Wild (bib16) 2009; 33 Pankiv, Clausen, Lamark, Brech, Bruun, Outzen, Øvervatn, Bjørkøy, Johansen (bib39) 2007; 282 Wang, Elledge (bib50) 2007; 104 Itakura, Mizushima (bib12) 2011; 192 Mattiroli, Vissers, van Dijk, Ikpa, Citterio, Vermeulen, Marteijn, Sixma (bib28) 2012; 150 Komatsu, Kurokawa, Waguri, Taguchi, Kobayashi, Ichimura, Sou, Ueno, Sakamoto, Tong (bib20) 2010; 12 Lau, Wang, Zhao, Villeneuve, Wu, Jiang, Sun, White, Zhang (bib22) 2010; 30 Feng, Chen (bib6) 2012; 19 Stewart, Panier, Townsend, Al-Hakim, Kolas, Miller, Nakada, Ylanko, Olivarius, Mendez (bib46) 2009; 136 Filimonenko, Isakson, Finley, Anderson, Jeong, Melia, Bartlett, Myers, Birkeland, Lamark (bib8) 2010; 38 Feng, Longmore (bib7) 2005; 25 Wang, Matsuoka, Ballif, Zhang, Smogorzewska, Gygi, Elledge (bib51) 2007; 316 Okamoto (bib37) 2014; 205 Rello-Varona, Lissa, Shen, Niso-Santano, Senovilla, Mariño, Vitale, Jemaá, Harper, Pierron (bib41) 2012; 11 Stewart, Stankovic, Byrd, Wechsler, Miller, Huissoon, Drayson, West, Elledge, Taylor (bib45) 2007; 104 Mattiroli (10.1016/j.molcel.2016.05.027_bib29) 2014; 5 Fan (10.1016/j.molcel.2016.05.027_bib5) 2010; 6 Green (10.1016/j.molcel.2016.05.027_bib9) 2014; 157 Jain (10.1016/j.molcel.2016.05.027_bib13) 2010; 285 Doil (10.1016/j.molcel.2016.05.027_bib4) 2009; 136 Middleton (10.1016/j.molcel.2016.05.027_bib30) 2014; 545 Bjørkøy (10.1016/j.molcel.2016.05.027_bib1) 2005; 171 Feng (10.1016/j.molcel.2016.05.027_bib6) 2012; 19 Mathew (10.1016/j.molcel.2016.05.027_bib25) 2007; 7 Clausen (10.1016/j.molcel.2016.05.027_bib3) 2010; 6 Rello-Varona (10.1016/j.molcel.2016.05.027_bib41) 2012; 11 Mizushima (10.1016/j.molcel.2016.05.027_bib31) 2011; 76 Mortensen (10.1016/j.molcel.2016.05.027_bib34) 2011; 208 Lau (10.1016/j.molcel.2016.05.027_bib22) 2010; 30 Ichimura (10.1016/j.molcel.2016.05.027_bib11) 2008; 283 Mailand (10.1016/j.molcel.2016.05.027_bib24) 2007; 131 Wang (10.1016/j.molcel.2016.05.027_bib51) 2007; 316 Wright (10.1016/j.molcel.2016.05.027_bib52) 2016; 23 Mattiroli (10.1016/j.molcel.2016.05.027_bib28) 2012; 150 Karantza-Wadsworth (10.1016/j.molcel.2016.05.027_bib14) 2007; 21 Huen (10.1016/j.molcel.2016.05.027_bib10) 2007; 131 Kirkin (10.1016/j.molcel.2016.05.027_bib16) 2009; 33 Pankiv (10.1016/j.molcel.2016.05.027_bib40) 2010; 285 Komatsu (10.1016/j.molcel.2016.05.027_bib20) 2010; 12 Thorslund (10.1016/j.molcel.2016.05.027_bib49) 2015; 527 Kolas (10.1016/j.molcel.2016.05.027_bib18) 2007; 318 Nezis (10.1016/j.molcel.2016.05.027_bib36) 2008; 180 Stewart (10.1016/j.molcel.2016.05.027_bib46) 2009; 136 Komatsu (10.1016/j.molcel.2016.05.027_bib19) 2007; 131 Filimonenko (10.1016/j.molcel.2016.05.027_bib8) 2010; 38 Mathew (10.1016/j.molcel.2016.05.027_bib27) 2009; 137 Zatloukal (10.1016/j.molcel.2016.05.027_bib53) 2002; 160 Pankiv (10.1016/j.molcel.2016.05.027_bib39) 2007; 282 Mizushima (10.1016/j.molcel.2016.05.027_bib32) 2011; 147 Kuusisto (10.1016/j.molcel.2016.05.027_bib21) 2001; 12 Sobhian (10.1016/j.molcel.2016.05.027_bib43) 2007; 316 Sonoda (10.1016/j.molcel.2016.05.027_bib44) 2006; 5 Mathew (10.1016/j.molcel.2016.05.027_bib26) 2007; 21 Panier (10.1016/j.molcel.2016.05.027_bib38) 2012; 47 Klionsky (10.1016/j.molcel.2016.05.027_bib17) 2007; 8 Kim (10.1016/j.molcel.2016.05.027_bib15) 2007; 316 Chen (10.1016/j.molcel.2016.05.027_bib2) 2015; 35 Stewart (10.1016/j.molcel.2016.05.027_bib45) 2007; 104 Stumptner (10.1016/j.molcel.2016.05.027_bib48) 2002; 35 Itakura (10.1016/j.molcel.2016.05.027_bib12) 2011; 192 Nakada (10.1016/j.molcel.2016.05.027_bib35) 2010; 466 Wang (10.1016/j.molcel.2016.05.027_bib50) 2007; 104 Feng (10.1016/j.molcel.2016.05.027_bib7) 2005; 25 Stolz (10.1016/j.molcel.2016.05.027_bib47) 2014; 16 Mizushima (10.1016/j.molcel.2016.05.027_bib33) 2008; 451 Sancar (10.1016/j.molcel.2016.05.027_bib42) 2004; 73 Liu (10.1016/j.molcel.2016.05.027_bib23) 2015; 112 Okamoto (10.1016/j.molcel.2016.05.027_bib37) 2014; 205 |
References_xml | – volume: 33 start-page: 505 year: 2009 end-page: 516 ident: bib16 article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates publication-title: Mol. Cell – volume: 6 start-page: 614 year: 2010 end-page: 621 ident: bib5 article-title: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy publication-title: Autophagy – volume: 35 start-page: 1053 year: 2002 end-page: 1062 ident: bib48 article-title: Mallory body--a disease-associated type of sequestosome publication-title: Hepatology – volume: 12 start-page: 213 year: 2010 end-page: 223 ident: bib20 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. – volume: 283 start-page: 22847 year: 2008 end-page: 22857 ident: bib11 article-title: Structural basis for sorting mechanism of p62 in selective autophagy publication-title: J. Biol. Chem. – volume: 208 start-page: 455 year: 2011 end-page: 467 ident: bib34 article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance publication-title: J. Exp. Med. – volume: 282 start-page: 24131 year: 2007 end-page: 24145 ident: bib39 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. – volume: 180 start-page: 1065 year: 2008 end-page: 1071 ident: bib36 article-title: Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain publication-title: J. Cell Biol. – volume: 6 start-page: 330 year: 2010 end-page: 344 ident: bib3 article-title: p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy publication-title: Autophagy – volume: 316 start-page: 1198 year: 2007 end-page: 1202 ident: bib43 article-title: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites publication-title: Science – volume: 131 start-page: 901 year: 2007 end-page: 914 ident: bib10 article-title: RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly publication-title: Cell – volume: 545 start-page: 243 year: 2014 end-page: 263 ident: bib30 article-title: Use of E2∼ubiquitin conjugates for the characterization of ubiquitin transfer by RING E3 ligases such as the inhibitor of apoptosis proteins publication-title: Methods Enzymol. – volume: 11 start-page: 170 year: 2012 end-page: 176 ident: bib41 article-title: Autophagic removal of micronuclei publication-title: Cell Cycle – volume: 136 start-page: 420 year: 2009 end-page: 434 ident: bib46 article-title: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage publication-title: Cell – volume: 157 start-page: 65 year: 2014 end-page: 75 ident: bib9 article-title: To be or not to be? How selective autophagy and cell death govern cell fate publication-title: Cell – volume: 16 start-page: 495 year: 2014 end-page: 501 ident: bib47 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat. Cell Biol. – volume: 12 start-page: 2085 year: 2001 end-page: 2090 ident: bib21 article-title: Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies publication-title: Neuroreport – volume: 131 start-page: 887 year: 2007 end-page: 900 ident: bib24 article-title: RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins publication-title: Cell – volume: 76 start-page: 397 year: 2011 end-page: 402 ident: bib31 article-title: Autophagy in protein and organelle turnover publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 7 start-page: 961 year: 2007 end-page: 967 ident: bib25 article-title: Role of autophagy in cancer publication-title: Nat. Rev. Cancer – volume: 25 start-page: 4010 year: 2005 end-page: 4022 ident: bib7 article-title: The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex publication-title: Mol. Cell. Biol. – volume: 30 start-page: 3275 year: 2010 end-page: 3285 ident: bib22 article-title: A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62 publication-title: Mol. Cell. Biol. – volume: 316 start-page: 1202 year: 2007 end-page: 1205 ident: bib15 article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response publication-title: Science – volume: 5 start-page: 3291 year: 2014 ident: bib29 article-title: The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A publication-title: Nat. Commun. – volume: 73 start-page: 39 year: 2004 end-page: 85 ident: bib42 article-title: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints publication-title: Annu. Rev. Biochem. – volume: 35 start-page: 406 year: 2015 end-page: 416 ident: bib2 article-title: RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1 publication-title: Mol. Cell. Biol. – volume: 21 start-page: 1621 year: 2007 end-page: 1635 ident: bib14 article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis publication-title: Genes Dev. – volume: 21 start-page: 1367 year: 2007 end-page: 1381 ident: bib26 article-title: Autophagy suppresses tumor progression by limiting chromosomal instability publication-title: Genes Dev. – volume: 112 start-page: 773 year: 2015 end-page: 778 ident: bib23 article-title: Loss of autophagy causes a synthetic lethal deficiency in DNA repair publication-title: Proc. Natl. Acad. Sci. USA – volume: 136 start-page: 435 year: 2009 end-page: 446 ident: bib4 article-title: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins publication-title: Cell – volume: 318 start-page: 1637 year: 2007 end-page: 1640 ident: bib18 article-title: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase publication-title: Science – volume: 8 start-page: 931 year: 2007 end-page: 937 ident: bib17 article-title: Autophagy: from phenomenology to molecular understanding in less than a decade publication-title: Nat. Rev. Mol. Cell Biol. – volume: 527 start-page: 389 year: 2015 end-page: 393 ident: bib49 article-title: Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage publication-title: Nature – volume: 205 start-page: 435 year: 2014 end-page: 445 ident: bib37 article-title: Organellophagy: eliminating cellular building blocks via selective autophagy publication-title: J. Cell Biol. – volume: 451 start-page: 1069 year: 2008 end-page: 1075 ident: bib33 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature – volume: 137 start-page: 1062 year: 2009 end-page: 1075 ident: bib27 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell – volume: 131 start-page: 1149 year: 2007 end-page: 1163 ident: bib19 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice publication-title: Cell – volume: 23 start-page: 45 year: 2016 end-page: 52 ident: bib52 article-title: Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity publication-title: Nat. Struct. Mol. Biol. – volume: 285 start-page: 22576 year: 2010 end-page: 22591 ident: bib13 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. – volume: 147 start-page: 728 year: 2011 end-page: 741 ident: bib32 article-title: Autophagy: renovation of cells and tissues publication-title: Cell – volume: 316 start-page: 1194 year: 2007 end-page: 1198 ident: bib51 article-title: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response publication-title: Science – volume: 19 start-page: 201 year: 2012 end-page: 206 ident: bib6 article-title: The E3 ligase RNF8 regulates KU80 removal and NHEJ repair publication-title: Nat. Struct. Mol. Biol. – volume: 150 start-page: 1182 year: 2012 end-page: 1195 ident: bib28 article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling publication-title: Cell – volume: 104 start-page: 16910 year: 2007 end-page: 16915 ident: bib45 article-title: RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling publication-title: Proc. Natl. Acad. Sci. USA – volume: 466 start-page: 941 year: 2010 end-page: 946 ident: bib35 article-title: Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 publication-title: Nature – volume: 160 start-page: 255 year: 2002 end-page: 263 ident: bib53 article-title: p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases publication-title: Am. J. Pathol. – volume: 285 start-page: 5941 year: 2010 end-page: 5953 ident: bib40 article-title: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies publication-title: J. Biol. Chem. – volume: 171 start-page: 603 year: 2005 end-page: 614 ident: bib1 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. – volume: 38 start-page: 265 year: 2010 end-page: 279 ident: bib8 article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy publication-title: Mol. Cell – volume: 5 start-page: 1021 year: 2006 end-page: 1029 ident: bib44 article-title: Differential usage of non-homologous end-joining and homologous recombination in double strand break repair publication-title: DNA Repair (Amst.) – volume: 104 start-page: 20759 year: 2007 end-page: 20763 ident: bib50 article-title: Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage publication-title: Proc. Natl. Acad. Sci. USA – volume: 47 start-page: 383 year: 2012 end-page: 395 ident: bib38 article-title: Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks publication-title: Mol. Cell – volume: 192 start-page: 17 year: 2011 end-page: 27 ident: bib12 article-title: p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding publication-title: J. Cell Biol. – volume: 205 start-page: 435 year: 2014 ident: 10.1016/j.molcel.2016.05.027_bib37 article-title: Organellophagy: eliminating cellular building blocks via selective autophagy publication-title: J. Cell Biol. doi: 10.1083/jcb.201402054 – volume: 527 start-page: 389 year: 2015 ident: 10.1016/j.molcel.2016.05.027_bib49 article-title: Histone H1 couples initiation and amplification of ubiquitin signalling after DNA damage publication-title: Nature doi: 10.1038/nature15401 – volume: 47 start-page: 383 year: 2012 ident: 10.1016/j.molcel.2016.05.027_bib38 article-title: Tandem protein interaction modules organize the ubiquitin-dependent response to DNA double-strand breaks publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.05.045 – volume: 6 start-page: 330 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib3 article-title: p62/SQSTM1 and ALFY interact to facilitate the formation of p62 bodies/ALIS and their degradation by autophagy publication-title: Autophagy doi: 10.4161/auto.6.3.11226 – volume: 208 start-page: 455 year: 2011 ident: 10.1016/j.molcel.2016.05.027_bib34 article-title: The autophagy protein Atg7 is essential for hematopoietic stem cell maintenance publication-title: J. Exp. Med. doi: 10.1084/jem.20101145 – volume: 150 start-page: 1182 year: 2012 ident: 10.1016/j.molcel.2016.05.027_bib28 article-title: RNF168 ubiquitinates K13-15 on H2A/H2AX to drive DNA damage signaling publication-title: Cell doi: 10.1016/j.cell.2012.08.005 – volume: 136 start-page: 420 year: 2009 ident: 10.1016/j.molcel.2016.05.027_bib46 article-title: The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage publication-title: Cell doi: 10.1016/j.cell.2008.12.042 – volume: 318 start-page: 1637 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib18 article-title: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase publication-title: Science doi: 10.1126/science.1150034 – volume: 35 start-page: 406 year: 2015 ident: 10.1016/j.molcel.2016.05.027_bib2 article-title: RAD6 promotes homologous recombination repair by activating the autophagy-mediated degradation of heterochromatin protein HP1 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.01044-14 – volume: 19 start-page: 201 year: 2012 ident: 10.1016/j.molcel.2016.05.027_bib6 article-title: The E3 ligase RNF8 regulates KU80 removal and NHEJ repair publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.2211 – volume: 285 start-page: 5941 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib40 article-title: Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.039925 – volume: 23 start-page: 45 year: 2016 ident: 10.1016/j.molcel.2016.05.027_bib52 article-title: Secondary ubiquitin-RING docking enhances Arkadia and Ark2C E3 ligase activity publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3142 – volume: 282 start-page: 24131 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib39 article-title: p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M702824200 – volume: 545 start-page: 243 year: 2014 ident: 10.1016/j.molcel.2016.05.027_bib30 article-title: Use of E2∼ubiquitin conjugates for the characterization of ubiquitin transfer by RING E3 ligases such as the inhibitor of apoptosis proteins publication-title: Methods Enzymol. doi: 10.1016/B978-0-12-801430-1.00010-X – volume: 11 start-page: 170 year: 2012 ident: 10.1016/j.molcel.2016.05.027_bib41 article-title: Autophagic removal of micronuclei publication-title: Cell Cycle doi: 10.4161/cc.11.1.18564 – volume: 5 start-page: 3291 year: 2014 ident: 10.1016/j.molcel.2016.05.027_bib29 article-title: The nucleosome acidic patch plays a critical role in RNF168-dependent ubiquitination of histone H2A publication-title: Nat. Commun. doi: 10.1038/ncomms4291 – volume: 316 start-page: 1194 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib51 article-title: Abraxas and RAP80 form a BRCA1 protein complex required for the DNA damage response publication-title: Science doi: 10.1126/science.1139476 – volume: 112 start-page: 773 year: 2015 ident: 10.1016/j.molcel.2016.05.027_bib23 article-title: Loss of autophagy causes a synthetic lethal deficiency in DNA repair publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1409563112 – volume: 5 start-page: 1021 year: 2006 ident: 10.1016/j.molcel.2016.05.027_bib44 article-title: Differential usage of non-homologous end-joining and homologous recombination in double strand break repair publication-title: DNA Repair (Amst.) doi: 10.1016/j.dnarep.2006.05.022 – volume: 466 start-page: 941 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib35 article-title: Non-canonical inhibition of DNA damage-dependent ubiquitination by OTUB1 publication-title: Nature doi: 10.1038/nature09297 – volume: 285 start-page: 22576 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib13 article-title: p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.118976 – volume: 12 start-page: 213 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib20 article-title: The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1 publication-title: Nat. Cell Biol. doi: 10.1038/ncb2021 – volume: 76 start-page: 397 year: 2011 ident: 10.1016/j.molcel.2016.05.027_bib31 article-title: Autophagy in protein and organelle turnover publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/sqb.2011.76.011023 – volume: 12 start-page: 2085 year: 2001 ident: 10.1016/j.molcel.2016.05.027_bib21 article-title: Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies publication-title: Neuroreport doi: 10.1097/00001756-200107200-00009 – volume: 104 start-page: 16910 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib45 article-title: RIDDLE immunodeficiency syndrome is linked to defects in 53BP1-mediated DNA damage signaling publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0708408104 – volume: 131 start-page: 887 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib24 article-title: RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins publication-title: Cell doi: 10.1016/j.cell.2007.09.040 – volume: 131 start-page: 901 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib10 article-title: RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly publication-title: Cell doi: 10.1016/j.cell.2007.09.041 – volume: 33 start-page: 505 year: 2009 ident: 10.1016/j.molcel.2016.05.027_bib16 article-title: A role for NBR1 in autophagosomal degradation of ubiquitinated substrates publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.01.020 – volume: 316 start-page: 1202 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib15 article-title: Ubiquitin-binding protein RAP80 mediates BRCA1-dependent DNA damage response publication-title: Science doi: 10.1126/science.1139621 – volume: 21 start-page: 1367 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib26 article-title: Autophagy suppresses tumor progression by limiting chromosomal instability publication-title: Genes Dev. doi: 10.1101/gad.1545107 – volume: 157 start-page: 65 year: 2014 ident: 10.1016/j.molcel.2016.05.027_bib9 article-title: To be or not to be? How selective autophagy and cell death govern cell fate publication-title: Cell doi: 10.1016/j.cell.2014.02.049 – volume: 8 start-page: 931 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib17 article-title: Autophagy: from phenomenology to molecular understanding in less than a decade publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2245 – volume: 136 start-page: 435 year: 2009 ident: 10.1016/j.molcel.2016.05.027_bib4 article-title: RNF168 binds and amplifies ubiquitin conjugates on damaged chromosomes to allow accumulation of repair proteins publication-title: Cell doi: 10.1016/j.cell.2008.12.041 – volume: 171 start-page: 603 year: 2005 ident: 10.1016/j.molcel.2016.05.027_bib1 article-title: p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death publication-title: J. Cell Biol. doi: 10.1083/jcb.200507002 – volume: 283 start-page: 22847 year: 2008 ident: 10.1016/j.molcel.2016.05.027_bib11 article-title: Structural basis for sorting mechanism of p62 in selective autophagy publication-title: J. Biol. Chem. doi: 10.1074/jbc.M802182200 – volume: 6 start-page: 614 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib5 article-title: Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy publication-title: Autophagy doi: 10.4161/auto.6.5.12189 – volume: 30 start-page: 3275 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib22 article-title: A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62 publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.00248-10 – volume: 137 start-page: 1062 year: 2009 ident: 10.1016/j.molcel.2016.05.027_bib27 article-title: Autophagy suppresses tumorigenesis through elimination of p62 publication-title: Cell doi: 10.1016/j.cell.2009.03.048 – volume: 104 start-page: 20759 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib50 article-title: Ubc13/Rnf8 ubiquitin ligases control foci formation of the Rap80/Abraxas/Brca1/Brcc36 complex in response to DNA damage publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0710061104 – volume: 180 start-page: 1065 year: 2008 ident: 10.1016/j.molcel.2016.05.027_bib36 article-title: Ref(2)P, the Drosophila melanogaster homologue of mammalian p62, is required for the formation of protein aggregates in adult brain publication-title: J. Cell Biol. doi: 10.1083/jcb.200711108 – volume: 192 start-page: 17 year: 2011 ident: 10.1016/j.molcel.2016.05.027_bib12 article-title: p62 Targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding publication-title: J. Cell Biol. doi: 10.1083/jcb.201009067 – volume: 73 start-page: 39 year: 2004 ident: 10.1016/j.molcel.2016.05.027_bib42 article-title: Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.73.011303.073723 – volume: 16 start-page: 495 year: 2014 ident: 10.1016/j.molcel.2016.05.027_bib47 article-title: Cargo recognition and trafficking in selective autophagy publication-title: Nat. Cell Biol. doi: 10.1038/ncb2979 – volume: 316 start-page: 1198 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib43 article-title: RAP80 targets BRCA1 to specific ubiquitin structures at DNA damage sites publication-title: Science doi: 10.1126/science.1139516 – volume: 147 start-page: 728 year: 2011 ident: 10.1016/j.molcel.2016.05.027_bib32 article-title: Autophagy: renovation of cells and tissues publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – volume: 160 start-page: 255 year: 2002 ident: 10.1016/j.molcel.2016.05.027_bib53 article-title: p62 Is a common component of cytoplasmic inclusions in protein aggregation diseases publication-title: Am. J. Pathol. doi: 10.1016/S0002-9440(10)64369-6 – volume: 131 start-page: 1149 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib19 article-title: Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice publication-title: Cell doi: 10.1016/j.cell.2007.10.035 – volume: 25 start-page: 4010 year: 2005 ident: 10.1016/j.molcel.2016.05.027_bib7 article-title: The LIM protein Ajuba influences interleukin-1-induced NF-kappaB activation by affecting the assembly and activity of the protein kinase Czeta/p62/TRAF6 signaling complex publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.25.10.4010-4022.2005 – volume: 21 start-page: 1621 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib14 article-title: Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis publication-title: Genes Dev. doi: 10.1101/gad.1565707 – volume: 35 start-page: 1053 year: 2002 ident: 10.1016/j.molcel.2016.05.027_bib48 article-title: Mallory body--a disease-associated type of sequestosome publication-title: Hepatology doi: 10.1053/jhep.2002.32674 – volume: 451 start-page: 1069 year: 2008 ident: 10.1016/j.molcel.2016.05.027_bib33 article-title: Autophagy fights disease through cellular self-digestion publication-title: Nature doi: 10.1038/nature06639 – volume: 38 start-page: 265 year: 2010 ident: 10.1016/j.molcel.2016.05.027_bib8 article-title: The selective macroautophagic degradation of aggregated proteins requires the PI3P-binding protein Alfy publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.04.007 – volume: 7 start-page: 961 year: 2007 ident: 10.1016/j.molcel.2016.05.027_bib25 article-title: Role of autophagy in cancer publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2254 |
SSID | ssj0014589 |
Score | 2.5764132 |
Snippet | Autophagy is an intracellular degradation system that delivers cytoplasmic constituents to the lysosome, and loss of autophagy has been linked to increased... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 34 |
SubjectTerms | autophagy Autophagy - radiation effects Autophagy-Related Proteins - genetics Autophagy-Related Proteins - metabolism chromatin Chromatin - metabolism Chromatin Assembly and Disassembly - radiation effects Colorectal Neoplasms - genetics Colorectal Neoplasms - metabolism Colorectal Neoplasms - pathology Colorectal Neoplasms - radiotherapy DNA Breaks, Double-Stranded DNA damage DNA repair DNA Repair - radiation effects genome HCT116 Cells histone ubiquitination histones Histones - metabolism Humans lysosomes neoplasm cells p62 Radiation Tolerance RNA Interference Sequestosome-1 Protein - genetics Sequestosome-1 Protein - metabolism Signal Transduction Transfection tumor suppressor proteins Ubiquitin-Conjugating Enzymes - genetics Ubiquitin-Conjugating Enzymes - metabolism ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism ubiquitination Ubiquitination - radiation effects |
Title | Autophagy Regulates Chromatin Ubiquitination in DNA Damage Response through Elimination of SQSTM1/p62 |
URI | https://dx.doi.org/10.1016/j.molcel.2016.05.027 https://www.ncbi.nlm.nih.gov/pubmed/27345151 https://www.proquest.com/docview/1819136888 https://www.proquest.com/docview/1825427899 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpcfSNn0kbYMCvYqVrYel4zYPQkMCyWbp3oRkyWXLxrttdg_5952R7YVC20BuRoxAHsmjGc_M9xHyufDJVz4qVvqomdSxYF5zy5SxjQl1CLrB_5CXV_p8Kr_O1GyHHA-9MFhW2dv-zqZna92PjHptjlbz-WiCudOy0go8CmyIRsRPIU1u4pt92WYSpMo0eCjMUHpon8s1XnfLRZ0wAVHojN-J3DJ_v57-5X7ma-jsJXnR-4903C3xFdlJ7WvyvGOUfNgjabxBpAD__YHedCzz6Z4iAC46pi2dhvnPzRye8n5QGDm5GtMTfwdWBSbkctlEe-4eerrIlF9ZdNnQyfXk9rIYrXT5hkzPTm-Pz1nPpMBq8MjWzFsZo-JBCOGbqrZRqqbUyFhayrppEng5sQxGSA53mof42sai0Z5LzyPER0q8Jbvtsk3vCS0L6SGqMZ77CrECTWhCZW2wXAYvtN0nYlCgq3uYcWS7WLihnuyH69TuUO2OKwdq3ydsO2vVwWw8Il8Ne-P-OC4OboJHZh4NW-ngS8L0iG_TcnPvCoxdhTbG_E8GAmpsHob3fNedg-16ESgIvMPi4Mlr-4B_DTjv6ik_kt31r036BD7POhySZ-OLm28Xh_lw_wYRcQAc |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaWRQguiDfL00hcrSbxI_Gx7ENd2FaCtlJvlh3bq6JuWtj2sP-eGSephASsxC1yxpIztme-icfzEfIxt8GW1ktWWK-YUD5nVmWayUrHytXOqYj_IccTNZqLzwu5OCDH_V0YTKvsbH9r05O17loGnTYHm-VyMMWz06JUEhAFXojmd8hdQAMl7s7zxaf9UYKQiQcPpRmK9_fnUpLX1XpVBzyByFUq4InkMn_2T3_Dn8kPnT0iDzsASYftGB-Tg9A8IfdaSsmbpyQMd1gqwF7e0G8tzXy4plgBF5FpQ-du-WO3hKc0IRRaTiZDemKvwKxAh5QvG2hH3kNPV4nzK4muI51-nc7G-WCjimdkfnY6Ox6xjkqB1QDJtsxq4b3MHOfcxrLWXshYKKQsLUQdYwCY4wtXcZGBU7MQYGufR2UzYTMPAZLkz8lhs27CS0KLXFgIayqb2RKLBVYuulJrpzPhLFf6iPBegabu6owj3cXK9All302rdoNqN5k0oPYjwva9Nm2djVvky35uzG_rxYAruKXnh34qDWwlPB-xTVjvrk2OwStXVVX9SwYiarw9DN_5ol0H-_FipSCAh_mr_x7be3J_NBtfmIvzyZfX5AG-SanB5RtyuP25C28BAG3du7TAfwHoTgGq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autophagy+Regulates+Chromatin+Ubiquitination+in+DNA+Damage+Response+through+Elimination+of+SQSTM1%2Fp62&rft.jtitle=Molecular+cell&rft.au=Wang%2C+Yanan&rft.au=Zhang%2C+Nan&rft.au=Zhang%2C+Luyao&rft.au=Li%2C+Ran&rft.date=2016-07-07&rft.issn=1097-2765&rft.volume=63&rft.issue=1+p.34-48&rft.spage=34&rft.epage=48&rft_id=info:doi/10.1016%2Fj.molcel.2016.05.027&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon |