Innate immunity: the first line of defense against SARS-CoV-2
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage,...
Saved in:
Published in | Nature immunology Vol. 23; no. 2; pp. 165 - 176 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.02.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes.
Kanneganti and Diamond review the key role played by innate immunity in the control and immunopathology of COVID-19. |
---|---|
AbstractList | The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes.The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes. The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes.Kanneganti and Diamond review the key role played by innate immunity in the control and immunopathology of COVID-19. The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss the innate immune processes involved in virus recognition and the resultant inflammation, and how this insight has enabled the development of therapeutic interventions against COVID-19. An improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes. The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes. Kanneganti and Diamond review the key role played by innate immunity in the control and immunopathology of COVID-19. The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial morbidity and mortality. While most infections are mild, some patients experience severe and potentially fatal systemic inflammation, tissue damage, cytokine storm and acute respiratory distress syndrome. The innate immune system acts as the first line of defense, sensing the virus through pattern recognition receptors and activating inflammatory pathways that promote viral clearance. Here, we discuss innate immune processes involved in SARS-CoV-2 recognition and the resultant inflammation. Improved understanding of how the innate immune system detects and responds to SARS-CoV-2 will help identify targeted therapeutic modalities that mitigate severe disease and improve patient outcomes. |
Author | Diamond, Michael S. Kanneganti, Thirumala-Devi |
AuthorAffiliation | 2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA 1 Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA 4 The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA 5 Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA 3 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA |
AuthorAffiliation_xml | – name: 3 Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA – name: 4 The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA – name: 1 Department of Medicine, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA – name: 2 Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, St. Louis, MO 63110, USA – name: 5 Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA |
Author_xml | – sequence: 1 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. organization: Department of Medicine, Washington University School of Medicine, St. Louis, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis – sequence: 2 givenname: Thirumala-Devi orcidid: 0000-0002-6395-6443 surname: Kanneganti fullname: Kanneganti, Thirumala-Devi email: thirumala-devi.kanneganti@stjude.org organization: Department of Immunology, St. Jude Children’s Research Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35105981$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1rHSEUhqUkNB_tH-iiDHTTzbTHUWe00EK49CMQCCRtt6KO3hhmNFWnkH9fb25622SRjYo-7znv8T1CeyEGi9ArDO8wEP4-U8wEtNDhFjCIuj5Dh5h1ou0E7vd2Z-AH6CjnawBMh54-RweEYWCC40P08TQEVWzj53kJvtx-aMqVbZxPuTSTD7aJrhmtsyHbRq2VD_X-8uTisl3Fn233Au07NWX78n4_Rj--fP6--taenX89XZ2ctYZRKK3qRz0QA0Qb0mnRCxCDcspoMWAL4CjQkYJgo3Nac0xG4L3WA1hloCcDJ8fo07buzaJnOxobSlKTvEl-VulWRuXlw5fgr-Q6_pZckDon1AJv7wuk-GuxucjZZ2OnSQUblyy7vqOCAWGsom8eoddxSaGOd0dx4FSQSr3-39HOyt-frUC3BUyKOSfrdggGuYlPbuOTNT55F5_c2OSPRMYXVXzcTOWnp6VkK821T1jb9M_2E6o_b-Cs4w |
CitedBy_id | crossref_primary_10_3389_fmed_2022_935255 crossref_primary_10_47360_1995_4484_2023_47_61 crossref_primary_10_2174_0126667975315612240425074611 crossref_primary_10_3390_diseases12040074 crossref_primary_10_1002_eji_202250090 crossref_primary_10_1038_s41556_024_01388_w crossref_primary_10_1038_s41598_024_61541_1 crossref_primary_10_3389_fimmu_2022_848582 crossref_primary_10_12677_is_2024_62002 crossref_primary_10_3390_cells11172743 crossref_primary_10_1038_s41577_022_00734_z crossref_primary_10_3390_biomedicines12040766 crossref_primary_10_1186_s12917_023_03839_2 crossref_primary_10_1146_annurev_virology_111821_111145 crossref_primary_10_1016_j_virusres_2023_199091 crossref_primary_10_1128_jvi_00795_24 crossref_primary_10_3390_v17010035 crossref_primary_10_1126_scisignal_abq5389 crossref_primary_10_1186_s12964_024_01925_y crossref_primary_10_1016_j_gpb_2023_06_002 crossref_primary_10_3389_fcimb_2022_988604 crossref_primary_10_3390_math11173711 crossref_primary_10_1016_j_smim_2024_101884 crossref_primary_10_1016_j_tifs_2024_104864 crossref_primary_10_1007_s00296_022_05149_6 crossref_primary_10_3390_v15071451 crossref_primary_10_1002_adhm_202402337 crossref_primary_10_3390_cells11142198 crossref_primary_10_1016_j_jmgm_2023_108487 crossref_primary_10_3390_ijms24108746 crossref_primary_10_29413_ABS_2023_8_2_3 crossref_primary_10_52711_0974_360X_2023_00795 crossref_primary_10_1016_j_immuni_2022_04_013 crossref_primary_10_1016_j_coi_2022_102268 crossref_primary_10_1080_21645515_2024_2324549 crossref_primary_10_1016_j_jim_2023_113437 crossref_primary_10_1016_j_jim_2023_113558 crossref_primary_10_1016_j_celrep_2024_115115 crossref_primary_10_1513_AnnalsATS_202406_651ST crossref_primary_10_1186_s13223_024_00932_5 crossref_primary_10_3389_fimmu_2024_1359993 crossref_primary_10_3389_fcimb_2023_1166839 crossref_primary_10_3390_cells12091282 crossref_primary_10_1016_j_cyto_2023_156497 crossref_primary_10_3389_fimmu_2023_1185748 crossref_primary_10_3390_ijms232113260 crossref_primary_10_3390_v14051082 crossref_primary_10_3389_fimmu_2023_1157179 crossref_primary_10_1016_j_fsi_2024_109581 crossref_primary_10_3390_ijms232012231 crossref_primary_10_3390_cells12050684 crossref_primary_10_3390_ani13101686 crossref_primary_10_3390_ijerph191610189 crossref_primary_10_1021_acsnano_4c00925 crossref_primary_10_1038_s41423_023_01087_w crossref_primary_10_52420_2071_5943_2024_23_1_129_140 crossref_primary_10_3389_fimmu_2022_973070 crossref_primary_10_3390_bios12090728 crossref_primary_10_3390_v16030370 crossref_primary_10_3389_fimmu_2023_1242551 crossref_primary_10_1016_j_cyto_2024_156829 crossref_primary_10_1128_jvi_01204_23 crossref_primary_10_1111_iwj_14324 crossref_primary_10_5812_archcid_133714 crossref_primary_10_1007_s40121_022_00674_0 crossref_primary_10_1016_j_ijid_2023_11_032 crossref_primary_10_3389_fphys_2023_1089637 crossref_primary_10_1016_j_cytogfr_2024_10_001 crossref_primary_10_3390_nu14204258 crossref_primary_10_3390_cells12010012 crossref_primary_10_1038_s41586_022_05542_y crossref_primary_10_1073_pnas_2406773121 crossref_primary_10_3390_ijms241210056 crossref_primary_10_3389_fmicb_2023_1251705 crossref_primary_10_1016_j_isci_2024_111444 crossref_primary_10_1186_s12967_024_05378_2 crossref_primary_10_1016_j_resinv_2022_06_007 crossref_primary_10_1038_s41598_024_66473_4 crossref_primary_10_1007_s44307_025_00057_9 crossref_primary_10_3389_fimmu_2023_1159326 crossref_primary_10_37349_ei_2023_00087 crossref_primary_10_1089_scd_2022_0255 crossref_primary_10_1371_journal_ppat_1010630 crossref_primary_10_1016_j_intimp_2024_113503 crossref_primary_10_3390_ijms241713259 crossref_primary_10_1016_j_cyto_2023_156172 crossref_primary_10_3390_biology12040499 crossref_primary_10_3390_ijtm4010004 crossref_primary_10_1016_j_gtc_2022_12_001 crossref_primary_10_1016_j_intimp_2023_110055 crossref_primary_10_1016_j_ijheh_2022_114022 crossref_primary_10_1021_acs_jmedchem_4c00384 crossref_primary_10_3390_pathogens12010109 crossref_primary_10_1165_rcmb_2022_0089WS crossref_primary_10_1016_j_psj_2024_104080 crossref_primary_10_3389_ebm_2025_10308 crossref_primary_10_1039_D3AN00802A crossref_primary_10_3390_idr14060091 crossref_primary_10_1073_pnas_2303509120 crossref_primary_10_1016_j_addr_2023_114829 crossref_primary_10_3390_app15020876 crossref_primary_10_1016_j_intimp_2024_113572 crossref_primary_10_1183_13993003_01306_2022 crossref_primary_10_1016_j_jaci_2023_02_003 crossref_primary_10_3390_ijms24033001 crossref_primary_10_3390_ijms24119589 crossref_primary_10_1002_ame2_12415 crossref_primary_10_7554_eLife_86014 crossref_primary_10_1016_j_carbpol_2024_122605 crossref_primary_10_1038_s42003_024_06130_8 crossref_primary_10_3390_ijms23158606 crossref_primary_10_1051_bioconf_202515403008 crossref_primary_10_1016_j_addr_2023_114831 crossref_primary_10_3389_fcimb_2023_1173505 crossref_primary_10_1038_s41598_022_26457_8 crossref_primary_10_1016_j_envres_2024_118812 crossref_primary_10_1016_j_xcrm_2023_101361 crossref_primary_10_3390_vaccines10101762 crossref_primary_10_3390_v16091433 crossref_primary_10_1128_mbio_03129_23 crossref_primary_10_1016_j_jmb_2022_167800 crossref_primary_10_1002_jmv_28122 crossref_primary_10_1016_j_celrep_2024_115070 crossref_primary_10_1002_jmv_29459 crossref_primary_10_1186_s13053_023_00248_2 crossref_primary_10_1002_cia2_12281 crossref_primary_10_3389_fimmu_2023_1254310 crossref_primary_10_3390_nu16213629 crossref_primary_10_1016_j_immuni_2022_02_010 crossref_primary_10_3389_fimmu_2023_1117760 crossref_primary_10_3390_ijms25105239 crossref_primary_10_3390_microorganisms10122321 crossref_primary_10_1016_j_ijbiomac_2024_135201 crossref_primary_10_1146_annurev_immunol_083122_043545 crossref_primary_10_3389_fimmu_2023_1166725 crossref_primary_10_1038_s41467_023_42440_x crossref_primary_10_1021_jacs_4c01929 crossref_primary_10_3390_tropicalmed9010013 crossref_primary_10_28996_2618_9801_2024_4_445_458 crossref_primary_10_4274_jtgga_galenos_2023_2023_3_12 crossref_primary_10_3389_fcimb_2024_1407261 crossref_primary_10_3390_cells13050369 crossref_primary_10_7326_M22_0924 crossref_primary_10_1002_rmv_2464 crossref_primary_10_3390_pathogens13121117 crossref_primary_10_1016_j_ebiom_2023_104812 crossref_primary_10_12688_openresafrica_14406_2 crossref_primary_10_1016_j_cbpa_2024_102521 crossref_primary_10_12688_openresafrica_14406_1 crossref_primary_10_3390_cancers15245737 crossref_primary_10_1016_j_jaci_2024_11_012 crossref_primary_10_1089_vim_2023_0012 crossref_primary_10_1016_j_jinf_2023_10_009 crossref_primary_10_1099_jgv_0_001949 crossref_primary_10_3390_v15081647 crossref_primary_10_1016_j_celrep_2024_114933 crossref_primary_10_1007_s11010_024_05137_3 crossref_primary_10_1186_s12929_022_00811_4 crossref_primary_10_55905_cuadv16n6_116 crossref_primary_10_1186_s12967_022_03767_z crossref_primary_10_1080_15548627_2024_2426114 crossref_primary_10_1111_bph_16155 crossref_primary_10_1186_s43042_022_00327_4 crossref_primary_10_3390_ijms251910530 crossref_primary_10_3390_life12040478 crossref_primary_10_1016_j_ijid_2023_06_001 crossref_primary_10_3934_nhm_2024029 crossref_primary_10_3390_vaccines10040614 crossref_primary_10_1080_13102818_2022_2158133 crossref_primary_10_3390_ijms26062600 crossref_primary_10_3390_v14050933 crossref_primary_10_1186_s12985_023_02025_y crossref_primary_10_1016_j_xcrm_2023_101267 crossref_primary_10_1038_s41598_023_27810_1 crossref_primary_10_1038_s41392_022_01287_2 crossref_primary_10_1093_cvr_cvad084 crossref_primary_10_1016_j_ebiom_2023_104950 crossref_primary_10_3390_pathogens12040596 crossref_primary_10_1016_j_afres_2023_100291 crossref_primary_10_1080_21505594_2024_2316438 crossref_primary_10_3389_fimmu_2022_912336 crossref_primary_10_1016_j_coi_2023_102348 crossref_primary_10_1093_ofid_ofad608 crossref_primary_10_1016_j_ijbiomac_2024_137836 crossref_primary_10_1016_j_mam_2024_101306 crossref_primary_10_3390_v15091784 crossref_primary_10_1073_pnas_2308355120 crossref_primary_10_1016_j_celrep_2024_113945 crossref_primary_10_1128_mbio_00611_23 crossref_primary_10_3390_cells12071092 crossref_primary_10_1161_CIRCRESAHA_122_321749 crossref_primary_10_1002_jmv_29268 crossref_primary_10_3390_ijms23094545 crossref_primary_10_1093_infdis_jiad590 crossref_primary_10_1007_s00705_022_05513_8 crossref_primary_10_1021_acsomega_4c02631 crossref_primary_10_1093_ckj_sfac174 crossref_primary_10_1016_j_celrep_2024_114608 crossref_primary_10_1084_jem_20241413 crossref_primary_10_1080_15321819_2024_2429538 crossref_primary_10_1016_j_plrev_2022_10_001 crossref_primary_10_1016_j_envpol_2022_119469 crossref_primary_10_54097_by2qwb75 crossref_primary_10_1126_sciadv_adh7969 crossref_primary_10_3390_v15051064 crossref_primary_10_1080_13880209_2023_2241518 crossref_primary_10_1002_cbin_11903 crossref_primary_10_1111_1346_8138_17251 crossref_primary_10_3390_vaccines12020209 crossref_primary_10_1186_s13613_022_01095_5 crossref_primary_10_15252_msb_202211256 crossref_primary_10_3390_v16081261 crossref_primary_10_3390_v16050757 crossref_primary_10_1002_jmv_28751 crossref_primary_10_1038_s41467_023_39815_5 crossref_primary_10_3390_ijms252413360 crossref_primary_10_1002_adfm_202416336 crossref_primary_10_4049_jimmunol_2200844 crossref_primary_10_1371_journal_pone_0299577 crossref_primary_10_3390_ijms24076142 crossref_primary_10_1016_j_ecoenv_2022_113651 crossref_primary_10_3390_math11163485 crossref_primary_10_1186_s43042_022_00299_5 crossref_primary_10_1016_j_apsb_2024_05_012 crossref_primary_10_7759_cureus_57008 crossref_primary_10_1016_j_prp_2022_154280 crossref_primary_10_1038_s41467_024_46673_2 crossref_primary_10_1038_s41514_024_00158_0 crossref_primary_10_1007_s12519_023_00790_y crossref_primary_10_3390_vaccines11030615 crossref_primary_10_1016_j_celrep_2024_113852 crossref_primary_10_1016_j_celrep_2023_113212 crossref_primary_10_18502_wkmj_v66i4_17770 crossref_primary_10_1186_s12879_024_09280_6 crossref_primary_10_1038_s41598_023_48581_9 crossref_primary_10_4049_immunohorizons_2200003 crossref_primary_10_1016_j_ijheh_2024_114382 crossref_primary_10_1080_1744666X_2023_2263646 crossref_primary_10_1371_journal_pone_0297490 crossref_primary_10_1080_07391102_2023_2173297 crossref_primary_10_1007_s11426_023_1825_7 crossref_primary_10_1016_j_lfs_2023_121907 crossref_primary_10_3389_fimmu_2023_1292486 crossref_primary_10_1016_j_ebiom_2025_105596 crossref_primary_10_1093_infdis_jiac061 crossref_primary_10_3389_fimmu_2022_879792 crossref_primary_10_3390_v16040611 crossref_primary_10_11948_20230365 crossref_primary_10_1371_journal_ppat_1012167 crossref_primary_10_1016_j_it_2023_01_001 crossref_primary_10_1128_mbio_01229_24 crossref_primary_10_1016_j_medcle_2022_12_015 crossref_primary_10_1016_j_heliyon_2023_e22896 crossref_primary_10_52361_fsbh_2024_4_e12 crossref_primary_10_1186_s12877_024_05402_6 crossref_primary_10_1016_j_arabjc_2023_104753 crossref_primary_10_1007_s00406_024_01911_y crossref_primary_10_1016_j_jbc_2023_104955 crossref_primary_10_1016_j_medcli_2022_12_018 crossref_primary_10_3390_cells11192955 crossref_primary_10_3390_vaccines10122012 crossref_primary_10_1016_j_humimm_2024_111149 crossref_primary_10_1016_j_ijantimicag_2024_107369 crossref_primary_10_3201_eid2907_230198 crossref_primary_10_3390_jcm12175501 crossref_primary_10_3389_fimmu_2023_1219097 crossref_primary_10_1016_j_rmed_2024_107744 crossref_primary_10_1016_j_chom_2023_08_014 crossref_primary_10_3390_ijms25052508 crossref_primary_10_1038_s44298_024_00076_8 crossref_primary_10_3390_hearts5040048 crossref_primary_10_1073_pnas_2212577120 crossref_primary_10_1080_14787210_2022_2078307 crossref_primary_10_3988_jcn_2022_18_6_692 crossref_primary_10_1080_17460441_2023_2175812 crossref_primary_10_1016_j_molcel_2022_09_029 crossref_primary_10_3390_cells11233884 crossref_primary_10_3390_pathogens13020113 crossref_primary_10_3390_v15020428 crossref_primary_10_1002_mco2_247 crossref_primary_10_3390_vaccines11010047 crossref_primary_10_1016_S2213_2600_22_00259_4 crossref_primary_10_1186_s12951_024_02743_7 crossref_primary_10_1002_jmv_28561 crossref_primary_10_1002_jmv_28680 crossref_primary_10_1016_j_yexmp_2024_104897 crossref_primary_10_3390_cells11192969 crossref_primary_10_1146_annurev_med_042420_104753 crossref_primary_10_1016_j_lfs_2023_121940 crossref_primary_10_1002_adma_202301562 crossref_primary_10_3390_ijms25105318 crossref_primary_10_1016_j_lfs_2024_122895 crossref_primary_10_1038_s41579_022_00839_1 crossref_primary_10_3389_fphar_2022_833174 crossref_primary_10_17826_cumj_1415977 crossref_primary_10_37349_ei_2022_00084 crossref_primary_10_1080_10286020_2024_2403617 crossref_primary_10_1097_MD_0000000000040509 crossref_primary_10_1038_s41467_023_42982_0 crossref_primary_10_1002_2211_5463_70002 crossref_primary_10_1002_rth2_12747 crossref_primary_10_3390_fishes10010006 crossref_primary_10_3389_fimmu_2022_907125 crossref_primary_10_3390_app14041480 crossref_primary_10_1016_j_vacun_2024_10_002 crossref_primary_10_1016_j_envres_2024_120663 crossref_primary_10_3390_ijms242316907 crossref_primary_10_1016_j_isci_2023_105995 crossref_primary_10_2139_ssrn_4063315 crossref_primary_10_3389_fimmu_2022_911738 crossref_primary_10_3390_biomedicines12050969 crossref_primary_10_1016_j_isci_2023_106604 crossref_primary_10_1016_j_chaos_2023_114151 crossref_primary_10_56294_hl2024_461 crossref_primary_10_1016_j_biotechadv_2022_108012 crossref_primary_10_1021_acs_nanolett_3c02941 crossref_primary_10_54097_hset_v14i_1833 crossref_primary_10_3390_v15051129 crossref_primary_10_1111_jcmm_18452 crossref_primary_10_3390_v15061287 crossref_primary_10_1016_j_emc_2024_02_002 crossref_primary_10_1038_s41423_023_01104_y crossref_primary_10_1186_s12964_024_01867_5 crossref_primary_10_3390_ijms23105664 crossref_primary_10_3390_vaccines11010127 crossref_primary_10_1016_j_heliyon_2023_e13045 crossref_primary_10_3389_fimmu_2024_1431633 crossref_primary_10_1007_s10787_022_01047_2 crossref_primary_10_1038_s41420_023_01512_z crossref_primary_10_1055_a_1873_2150 crossref_primary_10_1016_j_ijantimicag_2024_107187 crossref_primary_10_3389_fimmu_2024_1380697 crossref_primary_10_1016_j_gde_2024_102213 crossref_primary_10_3390_v14092032 crossref_primary_10_3390_ijms25010556 crossref_primary_10_1007_s10534_024_00590_5 crossref_primary_10_1038_s41573_023_00672_y crossref_primary_10_1038_s44321_024_00188_x crossref_primary_10_4049_immunohorizons_2200093 crossref_primary_10_1093_ofid_ofad190 crossref_primary_10_3390_vaccines13030252 crossref_primary_10_1016_j_isci_2024_111145 crossref_primary_10_3389_fimmu_2025_1460089 crossref_primary_10_1016_j_cytogfr_2024_12_003 crossref_primary_10_7717_peerj_15794 crossref_primary_10_3390_diagnostics13152597 crossref_primary_10_3390_v15122304 crossref_primary_10_1002_mco2_549 crossref_primary_10_3389_fimmu_2022_1016108 crossref_primary_10_1371_journal_pone_0317033 crossref_primary_10_3390_cells11223551 crossref_primary_10_1007_s10787_024_01525_9 crossref_primary_10_1371_journal_pbio_3001728 crossref_primary_10_1016_j_mib_2024_102466 crossref_primary_10_3389_fimmu_2022_997434 crossref_primary_10_1007_s11033_023_09141_6 crossref_primary_10_37349_ei_2024_00126 crossref_primary_10_1186_s13020_022_00637_0 crossref_primary_10_1038_s41593_025_01871_z crossref_primary_10_1111_imm_13846 crossref_primary_10_3390_ijms232314518 crossref_primary_10_3390_antib13010013 crossref_primary_10_3390_genes14020307 crossref_primary_10_1186_s13148_024_01724_9 crossref_primary_10_3389_fimmu_2024_1394925 crossref_primary_10_3389_fmicb_2023_1162470 crossref_primary_10_1016_j_virusres_2023_199086 crossref_primary_10_1093_cei_uxae062 crossref_primary_10_3390_v15061366 crossref_primary_10_1007_s11239_025_03072_8 crossref_primary_10_1002_iid3_634 crossref_primary_10_1002_jmv_28962 crossref_primary_10_2174_0118715230269593230928095153 crossref_primary_10_1016_j_isci_2022_105352 crossref_primary_10_3390_covid4080080 crossref_primary_10_1038_s41573_024_01041_z crossref_primary_10_1016_S2666_5247_23_00111_8 crossref_primary_10_4103_ijot_ijot_94_23 crossref_primary_10_1007_s44345_024_00006_4 crossref_primary_10_3390_v15030639 crossref_primary_10_1128_mbio_01194_23 crossref_primary_10_1016_j_jconrel_2024_12_046 crossref_primary_10_3389_fmicb_2024_1356926 crossref_primary_10_1016_j_azn_2025_03_002 crossref_primary_10_1016_j_cyto_2024_156756 |
Cites_doi | 10.1016/j.celrep.2020.108185 10.1038/s41591-020-1038-6 10.1016/j.virol.2015.08.010 10.1016/j.cell.2021.02.029 10.3389/fimmu.2020.01061 10.1002/jmv.26993 10.1111/imr.12912 10.1084/jem.20191644 10.1016/j.it.2021.06.001 10.1038/s41392-021-00515-5 10.3389/fcimb.2020.00237 10.1056/NEJMoa2002032 10.1093/cid/ciaa248 10.1016/j.immuni.2012.03.013 10.1093/jmcb/mjaa067 10.3389/fimmu.2020.584241 10.1136/annrheumdis-2020-217871 10.1186/s13073-021-00881-3 10.1038/ni.3212 10.1038/s41590-021-00942-0 10.1016/j.celrep.2020.108628 10.1084/jem.20171922 10.1038/s41590-020-0778-2 10.4049/jimmunol.1001512 10.1056/NEJMoa2100433 10.1038/s41586-021-03875-8 10.1177/095632020601700505 10.1038/nri1391 10.1126/science.abc3545 10.3389/fimmu.2018.00754 10.1016/j.it.2020.10.005 10.1128/JVI.00490-21 10.1111/j.1365-2141.2005.05753.x 10.1056/NEJMc2036236 10.1038/s41564-020-0769-y 10.1073/pnas.1601636113 10.7883/yoken.JJID.2020.884 10.1016/S2213-2600(20)30556-7 10.1016/j.healthpol.2021.03.013 10.1016/j.jaci.2021.01.024 10.1261/rna.078923.121 10.1016/j.it.2021.11.004 10.1038/s41590-021-00937-x 10.1038/s41598-020-75491-x 10.1111/j.1365-2567.2007.02651.x 10.1126/science.abc8665 10.1016/j.celrep.2020.107863 10.1038/s41556-021-00710-0 10.1371/journal.pone.0247461 10.4049/jimmunol.1302839 10.1084/jem.20201993 10.1126/science.abb8923 10.1016/j.molmet.2018.06.003 10.4049/immunohorizons.2100059 10.1073/pnas.2008410117 10.1038/s41586-020-2708-8 10.1038/nrmicro.2016.81 10.1038/s41577-020-0285-6 10.1016/j.cell.2020.10.052 10.1038/s41420-019-0181-7 10.1038/nature12862 10.1126/sciadv.abe3024 10.1016/j.cell.2020.04.011 10.1016/j.imbio.2009.03.002 10.1038/s41586-021-03218-7 10.1099/vir.0.19424-0 10.1038/s41420-021-00428-w 10.1056/NEJMoa2030340 10.1016/j.immuni.2021.01.017 10.1172/jci.insight.136720 10.1038/s41577-020-0367-5 10.1016/S2213-2600(20)30404-5 10.1038/s41467-021-22177-1 10.1038/s41586-020-2012-7 10.1016/j.cell.2020.11.025 10.4049/immunohorizons.2000097 10.1152/physiol.00022.2019 10.1001/jama.2021.9508 10.1016/j.coi.2019.11.007 10.1016/j.chom.2020.07.005 10.1126/sciimmunol.abi9002 10.1038/s41586-020-2588-y 10.1016/j.celrep.2021.109858 10.7554/eLife.66125 10.1056/NEJMoa2031994 10.1056/NEJMoa2015432 10.1007/s00134-021-06507-x 10.1126/science.abc6027 10.1016/j.mam.2021.101008 10.1074/jbc.RA120.013752 10.1016/S2352-3026(21)00105-8 10.1073/pnas.1716937115 10.1038/s41422-021-00495-9 10.1038/s41564-021-00884-1 10.1111/all.14345 10.1084/jem.20201707 10.1007/s42399-020-00521-8 10.1016/j.cell.2020.03.040 10.1016/j.celrep.2021.108761 10.1177/08850666211032175 10.1016/S2213-2600(21)00099-0 10.1038/s41586-021-03925-1 10.1016/j.virusres.2020.198074 10.1002/jmv.27050 10.1038/nature13788 10.1016/j.chest.2021.06.016 10.1126/science.abd2985 10.15252/embj.2021107826 10.1016/j.isci.2021.102295 10.1016/S2213-2600(20)30566-X 10.3390/v13010047 10.1074/jbc.RA120.013679 10.1371/journal.pbio.0060226 10.15252/embj.2021108249 10.1002/jmv.25987 10.1073/pnas.1110133108 10.1016/j.cell.2020.08.025 10.1073/pnas.1503831112 10.1172/JCI145157 10.1038/nri3581 10.1016/S0140-6736(20)31042-4 10.1101/cshperspect.a016295 10.1016/j.cell.2020.08.051 10.1096/fj.201802418R 10.1084/jem.20211818 10.1016/j.cell.2020.04.026 10.1056/NEJMoa2028700 10.1128/JVI.01358-06 10.1038/s41467-021-25015-6 10.1126/sciimmunol.abd1554 10.1056/NEJMoa2021436 10.1001/jama.2020.13719 10.1016/j.celrep.2020.108234 10.1016/S0140-6736(20)30183-5 10.1016/j.imbio.2008.12.003 10.1074/jbc.RA120.015036 10.1128/JVI.01410-12 10.1074/jbc.RA120.015924 10.1038/s41598-017-03932-1 10.1128/mBio.00638-15 10.1152/ajpcell.00224.2020 10.1038/s41467-020-15562-9 10.1074/mcp.M800132-MCP200 10.1007/s40121-021-00543-2 10.3389/fimmu.2021.662989 10.1016/j.molcel.2021.04.008 10.1016/j.immuni.2011.05.003 10.1007/978-1-4939-2438-7_1 10.1126/science.1232458 10.1074/jbc.AC120.013788 10.1126/sciimmunol.abi9007 10.1016/j.cell.2020.02.052 10.1016/j.cell.2020.12.003 10.1016/j.ijid.2020.12.073 10.1128/JVI.02415-20 10.1016/j.jbc.2021.100306 10.1161/CIRCULATIONAHA.120.048360 10.1089/jir.2020.0187 10.1101/2021.01.14.21249839 10.1101/2021.03.06.21252796 10.1084/jem.20211211 10.1136/annrheumdis-2020-218100 10.1002/eji.202149311 10.1126/sciadv.abe5735 10.1172/JCI152475 10.1101/2020.10.27.357731 10.1126/sciimmunol.aag2045 10.1073/pnas.2101161118 10.1186/s40779-021-00340-5 10.4049/jimmunol.149.5.1666 10.15252/emmm.202114150 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2022 2022. Springer Nature America, Inc. Springer Nature America, Inc. 2022. |
Copyright_xml | – notice: Springer Nature America, Inc. 2022 – notice: 2022. Springer Nature America, Inc. – notice: Springer Nature America, Inc. 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7T5 7TK 7TM 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7N M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41590-021-01091-0 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1529-2916 |
EndPage | 176 |
ExternalDocumentID | PMC8935980 35105981 10_1038_s41590_021_01091_0 |
Genre | Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: AI101935; AI124346; AI160179; AR056296; CA253095; AI157155 funderid: https://doi.org/10.13039/100000002 – fundername: American Lebanese Syrian Associated Charities (ALSAC) grantid: N/A funderid: https://doi.org/10.13039/100012524 – fundername: NIAID Centers of Excellence for Influenza Research and Response (CEIRR) contracts 75N93021C00014 – fundername: NIAID NIH HHS grantid: R01 AI101935 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: AI160179 – fundername: NIAID NIH HHS grantid: 75N93021C00014 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: AI157155 – fundername: NIAID NIH HHS grantid: R01 AI124346 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: AI101935 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: CA253095 – fundername: NIAID NIH HHS grantid: R01 AI160179 – fundername: NCI NIH HHS grantid: R35 CA253095 – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH) grantid: AR056296 |
GroupedDBID | --- .55 0R~ 123 29M 2FS 36B 39C 3V. 4.4 53G 5BI 5RE 70F 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AAHBH AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABNNU ABOCM ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFRAH AFSHS AGAYW AGGDT AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EAS EBS EE. EJD EMB EMK EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IHR INH INR ISR ITC L-9 LK8 M1P M7P N9A NNMJJ O9- ODYON P2P PQQKQ PROAC PSQYO Q2X RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WH7 X7M Y6R ZXP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT AGQPQ CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QP 7QR 7T5 7TK 7TM 7U9 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ H94 K9. M7N P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c540t-a6db73c03bc32b969097afacb971e00f404d4095dffbb813d086bb70eac063783 |
IEDL.DBID | 7X7 |
ISSN | 1529-2908 1529-2916 |
IngestDate | Thu Aug 21 18:38:28 EDT 2025 Fri Jul 11 12:43:16 EDT 2025 Sat Aug 23 12:53:24 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Tue Jul 01 01:02:33 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2022. Springer Nature America, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-a6db73c03bc32b969097afacb971e00f404d4095dffbb813d086bb70eac063783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-6395-6443 0000-0002-8791-3165 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8935980 |
PMID | 35105981 |
PQID | 2624808493 |
PQPubID | 45782 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8935980 proquest_miscellaneous_2624950355 proquest_journals_2624808493 pubmed_primary_35105981 crossref_primary_10_1038_s41590_021_01091_0 crossref_citationtrail_10_1038_s41590_021_01091_0 springer_journals_10_1038_s41590_021_01091_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220200 2022-02-01 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 2 year: 2022 text: 20220200 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Nature immunology |
PublicationTitleAbbrev | Nat Immunol |
PublicationTitleAlternate | Nat Immunol |
PublicationYear | 2022 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Ou (CR17) 2020; 11 (CR167) 2021; 9 Konno (CR10) 2020; 32 Gordon (CR136) 2020; 295 Kyriazopoulou (CR168) 2021; 10 CR36 Sun, Wu, Du, Chen, Chen (CR83) 2013; 339 CR35 Thiel (CR23) 2003; 84 Zhao (CR32) 2021; 86 Campbell, To, Hanna, Spector (CR70) 2021; 24 Lee (CR109) 2021; 597 CR31 Ivashkiv, Donlin (CR60) 2014; 14 Ma (CR81) 2015; 112 Salama (CR163) 2021; 384 Rowley (CR114) 2020; 20 Barnard (CR33) 2006; 17 Zheng (CR66) 2020; 295 Liu, Zhao (CR27) 2007; 122 Thoms (CR131) 2020; 369 Kim (CR15) 2020; 181 Esmon (CR115) 2005; 131 Hadjadj (CR89) 2020; 369 Lescure (CR161) 2021; 9 Malireddi (CR103) 2020; 217 Malireddi (CR106) 2018; 215 Shahbazi (CR146) 2021; 41 Gordon (CR164) 2021; 384 Horner, Liu, Park, Briley, Gale (CR51) 2011; 108 Kanneganti (CR9) 2020; 297 Hung (CR142) 2020; 395 Feld (CR152) 2021; 9 CR47 CR45 Karki (CR92) 2021; 184 CR42 Humphries (CR87) 2021; 6 Lee (CR124) 2020; 5 Sun (CR79) 2017; 7 Chen (CR127) 2020; 13 Zhou (CR2) 2020; 579 Blanco-Melo (CR12) 2020; 181 Choudhury, Mukherjee (CR37) 2020; 92 Ferreira (CR72) 2021; 7 Stark, Darnell (CR52) 2012; 36 Kayagaki (CR63) 2021; 591 Malireddi (CR104) 2020; 4 Gursel, Gursel (CR175) 2020; 75 Lukens (CR101) 2014; 516 Schoggins (CR80) 2014; 505 Kaneko (CR118) 2020; 183 Hensel (CR177) 2020; 10 Doherty (CR110) 1992; 149 Belhadjer (CR113) 2020; 142 Zohar (CR120) 2020; 183 Kesavardhana (CR96) 2020; 295 CR59 CR58 CR57 CR56 CR137 CR135 Jagannathan (CR151) 2021; 12 Pfaender (CR54) 2020; 5 Rebendenne (CR48) 2021; 95 Banoth (CR97) 2020; 295 Lamkanfi (CR107) 2008; 7 CR132 Sawicki, Sawicki, Siddell (CR22) 2007; 81 Petruk (CR39) 2020; 12 Thorne (CR49) 2021; 40 de Wit, van Doremalen, Falzarano, Munster (CR25) 2016; 14 Malireddi (CR93) 2021; 5 Giamarellos-Bourboulis (CR173) 2020; 183 van der Made (CR44) 2020; 324 Briard, Place, Kanneganti (CR82) 2020; 35 Kumar (CR180) 2021; 80 Karki, Kanneganti (CR4) 2021; 42 Wu (CR128) 2021; 34 Ritter (CR155) 2021; 36 Forman, Shah, Jeurissen, Jit, Mossialos (CR7) 2021; 125 Martin-Sancho (CR55) 2021; 81 Singh, Chaubey, Chen, Suravajhala (CR84) 2020; 319 Loo, Gale (CR50) 2011; 34 Potapov, Kanneganti, Del Sol (CR30) 2022; 43 Han (CR129) 2021; 93 Escobar, Molina-Cruz, Barillas-Mury (CR174) 2020; 117 Zhang (CR111) 2021; 13 Döring (CR41) 2010; 215 Knoops (CR24) 2008; 6 Rodrigues (CR71) 2021; 218 Stanifer (CR149) 2020; 32 Leentjens, van Haaps, Wessels, Schutgens, Middeldorp (CR117) 2021; 8 Huang (CR1) 2020; 395 Horby (CR153) 2021; 384 Pan (CR74) 2021; 12 Netea (CR172) 2020; 20 CR77 CR76 CR73 Fajgenbaum, June (CR121) 2021; 384 Zhao (CR38) 2021; 31 Kalil (CR171) 2020; 384 Hoffmann (CR16) 2020; 181 Malireddi, Ippagunta, Lamkanfi, Kanneganti (CR102) 2010; 185 Bayati, Kumar, Francis, McPherson (CR21) 2021; 296 Karki (CR94) 2021; 37 CR3 Zheng (CR29) 2021; 22 Yamada (CR61) 2021; 22 Rui (CR85) 2021; 6 CR8 Sproston, Ashworth (CR157) 2018; 9 Zheng, Karki, Vogel, Kanneganti (CR105) 2020; 181 Bhattacharjee, Banerjee (CR119) 2020; 2 Yin (CR46) 2021; 34 Sui (CR130) 2021; 12 Siu (CR67) 2019; 33 Gianfrancesco (CR170) 2020; 79 Fehr, Perlman (CR14) 2015; 1282 Shi, Nabar, Huang, Kehrl (CR68) 2019; 5 Obata, Maeda, Rizk, Kuno (CR154) 2021; 74 Cantuti-Castelvetri (CR18) 2020; 370 Franz, Neidermyer, Tan, Whelan, Kagan (CR78) 2018; 115 Hurst (CR40) 2009; 214 Nieto-Torres (CR69) 2015; 485 Borghi (CR43) 2020; 11 Akira, Takeda (CR28) 2004; 4 Wack, Terczyńska-Dyla, Hartmann (CR53) 2015; 16 Liu (CR126) 2021; 6 Bailey, Diamond (CR19) 2021; 184 Burke (CR91) 2018; 14 Winkler (CR125) 2020; 21 Li (CR86) 2021; 6 Dinnon (CR150) 2020; 586 Booth (CR5) 2021; 16 CR181 Burke, St Clair, Perera, Parker (CR13) 2021; 27 Sancho-López (CR162) 2021; 10 Graham (CR6) 2020; 368 Schultze, Aschenbrenner (CR88) 2021; 184 Gurung, Burton, Kanneganti (CR100) 2016; 113 Gurung (CR108) 2014; 192 CR179 Yosuke (CR147) 2021; 93 CR95 CR178 Lee, Channappanavar, Kanneganti (CR26) 2020; 41 Ackermann (CR112) 2020; 383 Guan (CR156) 2020; 382 Christgen, Kanneganti (CR62) 2020; 62 Totura (CR34) 2015; 6 Xia (CR133) 2020; 33 Mao (CR144) 2021; 219 Rivas (CR176) 2021; 131 Christgen (CR98) 2020; 10 Mudd (CR123) 2020; 6 Felgenhauer (CR148) 2020; 295 Pontali (CR169) 2021; 147 Wang (CR134) 2021; 23 Broggi (CR145) 2020; 369 Qin (CR64) 2020; 71 Leisman (CR122) 2020; 8 Lucas (CR90) 2020; 584 Caricchio (CR166) 2021; 326 Lempp (CR20) 2021; 598 Karki (CR99) 2020; 5 Tanaka, Narazaki, Kishimoto (CR158) 2014; 6 Li (CR11) 2020; 286 Schäfer (CR138) 2021; 218 Wang (CR140) 2020; 28 Rosas (CR159) 2021; 384 Laing (CR65) 2020; 26 Poor (CR116) 2021; 160 Zhou (CR139) 2020; 11 Generali (CR165) 2021; 104 Hoagland (CR141) 2021; 54 Ma (CR75) 2021; 40 Liu (CR143) 2021; 95 Rosas (CR160) 2021; 47 S Pfaender (1091_CR54) 2020; 5 DL Barnard (1091_CR33) 2006; 17 Y Zhao (1091_CR38) 2021; 31 C Huang (1091_CR1) 2020; 395 Z Belhadjer (1091_CR113) 2020; 142 TD Kanneganti (1091_CR9) 2020; 297 G Petruk (1091_CR39) 2020; 12 LB Ivashkiv (1091_CR60) 2014; 14 L Cantuti-Castelvetri (1091_CR18) 2020; 370 M Li (1091_CR86) 2021; 6 X Ou (1091_CR17) 2020; 11 P Pan (1091_CR74) 2021; 12 A Rebendenne (1091_CR48) 2021; 95 DA Hoagland (1091_CR141) 2021; 54 F Yosuke (1091_CR147) 2021; 93 S Lee (1091_CR26) 2020; 41 G Liu (1091_CR126) 2021; 6 R Forman (1091_CR7) 2021; 125 1091_CR95 KH Dinnon 3rd (1091_CR150) 2020; 586 R Karki (1091_CR92) 2021; 184 J Zhao (1091_CR32) 2021; 86 NR Sproston (1091_CR157) 2018; 9 A Choudhury (1091_CR37) 2020; 92 RK Malireddi (1091_CR102) 2010; 185 S Christgen (1091_CR62) 2020; 62 R Obata (1091_CR154) 2021; 74 JS Lee (1091_CR124) 2020; 5 L Martin-Sancho (1091_CR55) 2021; 81 AC Gordon (1091_CR164) 2021; 384 1091_CR178 R Caricchio (1091_CR166) 2021; 326 1091_CR179 U Felgenhauer (1091_CR148) 2020; 295 BS Graham (1091_CR6) 2020; 368 JL Nieto-Torres (1091_CR69) 2015; 485 B Sun (1091_CR79) 2017; 7 GM Doherty (1091_CR110) 1992; 149 A Booth (1091_CR5) 2021; 16 RKS Malireddi (1091_CR93) 2021; 5 A Bayati (1091_CR21) 2021; 296 FX Lescure (1091_CR161) 2021; 9 K Knoops (1091_CR24) 2008; 6 M Ackermann (1091_CR112) 2020; 383 J Hensel (1091_CR177) 2020; 10 Y Döring (1091_CR41) 2010; 215 Q Zhou (1091_CR139) 2020; 11 Y Rui (1091_CR85) 2021; 6 J Leentjens (1091_CR117) 2021; 8 T Zohar (1091_CR120) 2020; 183 M Shahbazi (1091_CR146) 2021; 41 1091_CR35 1091_CR36 IO Rosas (1091_CR160) 2021; 47 CS Shi (1091_CR68) 2019; 5 1091_CR31 JJ Feld (1091_CR152) 2021; 9 1091_CR181 P Gurung (1091_CR100) 2016; 113 AL Bailey (1091_CR19) 2021; 184 IO Rosas (1091_CR159) 2021; 384 AR Fehr (1091_CR14) 2015; 1282 JR Lukens (1091_CR101) 2014; 516 T Mao (1091_CR144) 2021; 219 EJ Giamarellos-Bourboulis (1091_CR173) 2020; 183 C Salama (1091_CR163) 2021; 384 YM Loo (1091_CR50) 2011; 34 P Zhou (1091_CR2) 2020; 579 T Yamada (1091_CR61) 2021; 22 M Gursel (1091_CR175) 2020; 75 N Kayagaki (1091_CR63) 2021; 591 ML Stanifer (1091_CR149) 2020; 32 LA Ritter (1091_CR155) 2021; 36 RKS Malireddi (1091_CR104) 2020; 4 D Blanco-Melo (1091_CR12) 2020; 181 FA Lempp (1091_CR20) 2021; 598 P Gurung (1091_CR108) 2014; 192 MG Netea (1091_CR172) 2020; 20 G Liu (1091_CR27) 2007; 122 JW Schoggins (1091_CR80) 2014; 505 R Karki (1091_CR99) 2020; 5 1091_CR45 I Potapov (1091_CR30) 2022; 43 1091_CR47 A Sancho-López (1091_CR162) 2021; 10 M Zheng (1091_CR29) 2021; 22 AC Ferreira (1091_CR72) 2021; 7 1091_CR42 CI van der Made (1091_CR44) 2020; 324 X Yin (1091_CR46) 2021; 34 LG Thorne (1091_CR49) 2021; 40 P Jagannathan (1091_CR151) 2021; 12 J Ma (1091_CR75) 2021; 40 JL Schultze (1091_CR88) 2021; 184 A Schäfer (1091_CR138) 2021; 218 1091_CR8 S Akira (1091_CR28) 2004; 4 W Liu (1091_CR143) 2021; 95 CJ Gordon (1091_CR136) 2020; 295 IF Hung (1091_CR142) 2020; 395 J Hurst (1091_CR40) 2009; 214 MO Borghi (1091_CR43) 2020; 11 Z Ma (1091_CR81) 2015; 112 M Lamkanfi (1091_CR107) 2008; 7 1091_CR56 1091_CR57 T Tanaka (1091_CR158) 2014; 6 1091_CR58 1091_CR59 C Qin (1091_CR64) 2020; 71 SJ Burke (1091_CR91) 2018; 14 D Generali (1091_CR165) 2021; 104 RKS Malireddi (1091_CR103) 2020; 217 J Wu (1091_CR128) 2021; 34 KM Franz (1091_CR78) 2018; 115 JY Li (1091_CR11) 2020; 286 B Banoth (1091_CR97) 2020; 295 ES Winkler (1091_CR125) 2020; 21 S Christgen (1091_CR98) 2020; 10 SG Sawicki (1091_CR22) 2007; 81 R Karki (1091_CR4) 2021; 42 CT Esmon (1091_CR115) 2005; 131 1091_CR132 1091_CR137 1091_CR135 CORIMUNO-19 Collaborative group. (1091_CR167) 2021; 9 E Kyriazopoulou (1091_CR168) 2021; 10 LE Escobar (1091_CR174) 2020; 117 1091_CR3 Y Konno (1091_CR10) 2020; 32 PA Mudd (1091_CR123) 2020; 6 AL Totura (1091_CR34) 2015; 6 GR Stark (1091_CR52) 2012; 36 R Karki (1091_CR94) 2021; 37 S Kesavardhana (1091_CR96) 2020; 295 F Humphries (1091_CR87) 2021; 6 S Bhattacharjee (1091_CR119) 2020; 2 AC Kalil (1091_CR171) 2020; 384 DC Fajgenbaum (1091_CR121) 2021; 384 M Zheng (1091_CR105) 2020; 181 L Sui (1091_CR130) 2021; 12 TS Rodrigues (1091_CR71) 2021; 218 JM Burke (1091_CR13) 2021; 27 J Hadjadj (1091_CR89) 2020; 369 KL Siu (1091_CR67) 2019; 33 M Thoms (1091_CR131) 2020; 369 M Hoffmann (1091_CR16) 2020; 181 GR Campbell (1091_CR70) 2021; 24 S Lee (1091_CR109) 2021; 597 V Thiel (1091_CR23) 2003; 84 M Zheng (1091_CR66) 2020; 295 KK Singh (1091_CR84) 2020; 319 A Broggi (1091_CR145) 2020; 369 1091_CR76 1091_CR77 K Chen (1091_CR127) 2020; 13 SM Horner (1091_CR51) 2011; 108 M Gianfrancesco (1091_CR170) 2020; 79 HD Poor (1091_CR116) 2021; 160 D Kim (1091_CR15) 2020; 181 1091_CR73 L Han (1091_CR129) 2021; 93 H Xia (1091_CR133) 2020; 33 N Wang (1091_CR140) 2020; 28 E de Wit (1091_CR25) 2016; 14 E Pontali (1091_CR169) 2021; 147 A Kumar (1091_CR180) 2021; 80 AG Laing (1091_CR65) 2020; 26 MN Rivas (1091_CR176) 2021; 131 C Lucas (1091_CR90) 2020; 584 F Zhang (1091_CR111) 2021; 13 WJ Guan (1091_CR156) 2020; 382 A Wack (1091_CR53) 2015; 16 DE Leisman (1091_CR122) 2020; 8 L Sun (1091_CR83) 2013; 339 AH Rowley (1091_CR114) 2020; 20 N Kaneko (1091_CR118) 2020; 183 P Horby (1091_CR153) 2021; 384 B Briard (1091_CR82) 2020; 35 S Wang (1091_CR134) 2021; 23 RKS Malireddi (1091_CR106) 2018; 215 |
References_xml | – volume: 32 start-page: 108185 year: 2020 ident: CR10 article-title: SARS-CoV-2 ORF3b is a potent interferon antagonist whose activity is increased by a naturally occurring elongation variant publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108185 – ident: CR45 – volume: 26 start-page: 1623 year: 2020 end-page: 1635 ident: CR65 article-title: A dynamic COVID-19 immune signature includes associations with poor prognosis publication-title: Nat. Med. doi: 10.1038/s41591-020-1038-6 – volume: 485 start-page: 330 year: 2015 end-page: 339 ident: CR69 article-title: Severe acute respiratory syndrome coronavirus E protein transports calcium ions and activates the NLRP3 inflammasome publication-title: Virology doi: 10.1016/j.virol.2015.08.010 – volume: 184 start-page: 1671 year: 2021 end-page: 1692 ident: CR88 article-title: COVID-19 and the human innate immune system publication-title: Cell doi: 10.1016/j.cell.2021.02.029 – volume: 11 start-page: 1061 year: 2020 ident: CR139 article-title: Interferon-α2b treatment for COVID-19 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01061 – volume: 93 start-page: 4559 year: 2021 end-page: 4563 ident: CR147 article-title: Downregulation of type III interferons in patients with severe COVID-19 publication-title: J. Med. Virol. doi: 10.1002/jmv.26993 – volume: 297 start-page: 5 year: 2020 end-page: 12 ident: CR9 article-title: Intracellular innate immune receptors: life inside the cell publication-title: Immunol. Rev. doi: 10.1111/imr.12912 – volume: 217 start-page: e20191644 year: 2020 ident: CR103 article-title: Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease publication-title: J. Exp. Med. doi: 10.1084/jem.20191644 – volume: 42 start-page: 681 year: 2021 end-page: 705 ident: CR4 article-title: The ‘cytokine storm’: molecular mechanisms and therapeutic prospects publication-title: Trends Immunol. doi: 10.1016/j.it.2021.06.001 – volume: 6 start-page: 123 year: 2021 ident: CR85 article-title: Unique and complementary suppression of cGAS–STING and RNA sensing—triggered innate immune responses by SARS-CoV-2 proteins publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00515-5 – volume: 10 start-page: 237 year: 2020 ident: CR98 article-title: Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2020.00237 – volume: 382 start-page: 1708 year: 2020 end-page: 1720 ident: CR156 article-title: Clinical characteristics of coronavirus disease 2019 in China publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2002032 – volume: 71 start-page: 762 year: 2020 end-page: 768 ident: CR64 article-title: Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa248 – ident: CR135 – volume: 36 start-page: 503 year: 2012 end-page: 514 ident: CR52 article-title: The JAK–STAT pathway at twenty publication-title: Immunity doi: 10.1016/j.immuni.2012.03.013 – volume: 12 start-page: 916 year: 2020 end-page: 932 ident: CR39 article-title: SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjaa067 – volume: 11 start-page: 584241 year: 2020 ident: CR43 article-title: Anti-phospholipid antibodies in COVID-19 are different from those detectable in the anti-phospholipid syndrome publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.584241 – volume: 79 start-page: 859 year: 2020 end-page: 866 ident: CR170 article-title: Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2020-217871 – ident: CR77 – volume: 13 year: 2021 ident: CR111 article-title: IFN-γ and TNF-α drive a CXCL10 CCL2 macrophage phenotype expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation publication-title: Genome Med. doi: 10.1186/s13073-021-00881-3 – ident: CR8 – volume: 16 start-page: 802 year: 2015 end-page: 809 ident: CR53 article-title: Guarding the frontiers: the biology of type III interferons publication-title: Nat. Immunol. doi: 10.1038/ni.3212 – ident: CR42 – volume: 22 start-page: 820 year: 2021 end-page: 828 ident: CR61 article-title: RIG-I triggers a signaling-abortive anti-SARS-CoV-2 defense in human lung cells publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00942-0 – volume: 34 start-page: 108628 year: 2021 ident: CR46 article-title: MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108628 – volume: 215 start-page: 1023 year: 2018 end-page: 1034 ident: CR106 article-title: TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation publication-title: J. Exp. Med. doi: 10.1084/jem.20171922 – volume: 21 start-page: 1327 year: 2020 end-page: 1335 ident: CR125 article-title: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0778-2 – volume: 185 start-page: 3127 year: 2010 end-page: 3130 ident: CR102 article-title: Cutting edge: proteolytic inactivation of poly(ADP-ribose) polymerase 1 by the Nlrp3 and Nlrc4 inflammasomes publication-title: J. Immunol. doi: 10.4049/jimmunol.1001512 – volume: 384 start-page: 1491 year: 2021 end-page: 1502 ident: CR164 article-title: Interleukin-6 receptor antagonists in critically ill patients with COVID-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2100433 – volume: 597 start-page: 415 year: 2021 end-page: 419 ident: CR109 article-title: AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence publication-title: Nature doi: 10.1038/s41586-021-03875-8 – volume: 17 start-page: 275 year: 2006 end-page: 284 ident: CR33 article-title: Evaluation of immunomodulators, interferons and known in vitro SARS-CoV inhibitors for inhibition of SARS-CoV replication in BALB/c mice publication-title: Antivir. Chem. Chemother. doi: 10.1177/095632020601700505 – volume: 4 start-page: 499 year: 2004 end-page: 511 ident: CR28 article-title: Toll-like receptor signalling publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1391 – ident: CR132 – volume: 369 start-page: 706 year: 2020 end-page: 712 ident: CR145 article-title: Type III interferons disrupt the lung epithelial barrier upon viral recognition publication-title: Science doi: 10.1126/science.abc3545 – ident: CR178 – volume: 9 start-page: 754 year: 2018 ident: CR157 article-title: Role of C-reactive protein at sites of inflammation and infection publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00754 – volume: 41 start-page: 1083 year: 2020 end-page: 1099 ident: CR26 article-title: Coronaviruses: innate immunity, inflammasome activation, inflammatory cell death, and cytokines publication-title: Trends Immunol. doi: 10.1016/j.it.2020.10.005 – ident: CR57 – volume: 149 start-page: 1666 year: 1992 end-page: 1670 ident: CR110 article-title: Evidence for IFN-γ as a mediator of the lethality of endotoxin and tumor necrosis factor-α publication-title: J. Immunol. – ident: CR36 – volume: 95 start-page: e00490 year: 2021 end-page: 21 ident: CR143 article-title: Activation of STING signaling pathway effectively blocks human coronavirus infection publication-title: J. Virol. doi: 10.1128/JVI.00490-21 – volume: 131 start-page: 417 year: 2005 end-page: 430 ident: CR115 article-title: The interactions between inflammation and coagulation publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2005.05753.x – volume: 384 start-page: e59 year: 2021 ident: CR121 article-title: Cytokine storm. Reply publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2036236 – volume: 5 start-page: 1330 year: 2020 end-page: 1339 ident: CR54 article-title: LY6E impairs coronavirus fusion and confers immune control of viral disease publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0769-y – volume: 113 start-page: 4452 year: 2016 end-page: 4457 ident: CR100 article-title: NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1601636113 – volume: 74 start-page: 307 year: 2021 end-page: 315 ident: CR154 article-title: Increased secondary infection in COVID-19 patients treated with steroids in New York City publication-title: Jpn J. Infect. Dis. doi: 10.7883/yoken.JJID.2020.884 – volume: 9 start-page: 295 year: 2021 end-page: 304 ident: CR167 article-title: Effect of anakinra versus usual care in adults in hospital with COVID-19 and mild-to-moderate pneumonia (CORIMUNO-ANA-1): a randomised controlled trial publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30556-7 – volume: 125 start-page: 553 year: 2021 end-page: 567 ident: CR7 article-title: COVID-19 vaccine challenges: what have we learned so far and what remains to be done? publication-title: Health Policy doi: 10.1016/j.healthpol.2021.03.013 – volume: 147 start-page: 1217 year: 2021 end-page: 1225 ident: CR169 article-title: Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2021.01.024 – volume: 27 start-page: 1318 year: 2021 end-page: 1329 ident: CR13 article-title: SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block publication-title: RNA doi: 10.1261/rna.078923.121 – volume: 43 start-page: 4 year: 2022 end-page: 7 ident: CR30 article-title: Fostering experimental and computational synergy to modulate hyperinflammation publication-title: Trends Immunol. doi: 10.1016/j.it.2021.11.004 – volume: 22 start-page: 829 year: 2021 end-page: 838 ident: CR29 article-title: TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00937-x – ident: CR47 – volume: 10 year: 2020 ident: CR177 article-title: Protection against SARS-CoV-2 by BCG vaccination is not supported by epidemiological analyses publication-title: Sci. Rep. doi: 10.1038/s41598-020-75491-x – volume: 122 start-page: 149 year: 2007 end-page: 156 ident: CR27 article-title: Toll-like receptors and immune regulation: their direct and indirect modulation on regulatory CD4 CD25 T cells publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02651.x – volume: 369 start-page: 1249 year: 2020 end-page: 1255 ident: CR131 article-title: Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2 publication-title: Science doi: 10.1126/science.abc8665 – volume: 32 start-page: 107863 year: 2020 ident: CR149 article-title: Critical role of type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107863 – ident: CR179 – volume: 23 start-page: 718 year: 2021 end-page: 732 ident: CR134 article-title: Targeting liquid–liquid phase separation of SARS-CoV-2 nucleocapsid protein promotes innate antiviral immunity by elevating MAVS activity publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00710-0 – volume: 16 start-page: e0247461 year: 2021 ident: CR5 article-title: Population risk factors for severe disease and mortality in COVID-19: a global systematic review and meta-analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0247461 – volume: 192 start-page: 1835 year: 2014 end-page: 1846 ident: CR108 article-title: FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes publication-title: J. Immunol. doi: 10.4049/jimmunol.1302839 – volume: 218 start-page: e20201993 year: 2021 ident: CR138 article-title: Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2infection in vivo publication-title: J. Exp. Med. doi: 10.1084/jem.20201993 – volume: 368 start-page: 945 year: 2020 end-page: 946 ident: CR6 article-title: Rapid COVID-19 vaccine development publication-title: Science doi: 10.1126/science.abb8923 – ident: CR137 – volume: 14 start-page: 95 year: 2018 end-page: 107 ident: CR91 article-title: Pancreatic deletion of the interleukin-1 receptor disrupts whole body glucose homeostasis and promotes islet beta-cell de-differentiation publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.06.003 – volume: 5 start-page: 568 year: 2021 end-page: 580 ident: CR93 article-title: Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth publication-title: Immunohorizons doi: 10.4049/immunohorizons.2100059 – volume: 117 start-page: 17720 year: 2020 end-page: 17726 ident: CR174 article-title: BCG vaccine protection from severe coronavirus disease 2019 (COVID-19) publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008410117 – volume: 586 start-page: 560 year: 2020 end-page: 566 ident: CR150 article-title: A mouse-adapted model of SARS-CoV-2 to test COVID-19 countermeasures publication-title: Nature doi: 10.1038/s41586-020-2708-8 – volume: 14 start-page: 523 year: 2016 end-page: 534 ident: CR25 article-title: SARS and MERS: recent insights into emerging coronaviruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.81 – volume: 20 start-page: 375 year: 2020 end-page: 388 ident: CR172 article-title: Defining trained immunity and its role in health and disease publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0285-6 – volume: 183 start-page: 1508 year: 2020 end-page: 1519 ident: CR120 article-title: Compromised humoral functional evolution tracks with SARS-CoV-2 mortality publication-title: Cell doi: 10.1016/j.cell.2020.10.052 – volume: 5 start-page: 101 year: 2019 ident: CR68 article-title: SARS-coronavirus open reading frame-8b triggers intracellular stress pathways and activates NLRP3 inflammasomes publication-title: Cell Death Discov. doi: 10.1038/s41420-019-0181-7 – volume: 505 start-page: 691 year: 2014 end-page: 695 ident: CR80 article-title: Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity publication-title: Nature doi: 10.1038/nature12862 – volume: 6 start-page: eabe3024 year: 2020 ident: CR123 article-title: Distinct inflammatory profiles distinguish COVID-19 from influenza with limited contributions fromcytokine storm publication-title: Sci. Adv. doi: 10.1126/sciadv.abe3024 – volume: 181 start-page: 914 year: 2020 end-page: 921 ident: CR15 article-title: The architecture of SARS-CoV-2 transcriptome publication-title: Cell doi: 10.1016/j.cell.2020.04.011 – volume: 215 start-page: 230 year: 2010 end-page: 241 ident: CR41 article-title: Human antiphospholipid antibodies induce TNFα in monocytes via Toll-like receptor 8 publication-title: Immunobiology doi: 10.1016/j.imbio.2009.03.002 – volume: 591 start-page: 131 year: 2021 end-page: 136 ident: CR63 article-title: NINJ1 mediates plasma membrane rupture during lytic cell death publication-title: Nature doi: 10.1038/s41586-021-03218-7 – volume: 84 start-page: 2305 year: 2003 end-page: 2315 ident: CR23 article-title: Mechanisms and enzymes involved in SARS coronavirus genome expression publication-title: J. Gen. Virol. doi: 10.1099/vir.0.19424-0 – ident: CR3 – volume: 7 start-page: 43 year: 2021 ident: CR72 article-title: SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00428-w – volume: 384 start-page: 20 year: 2021 end-page: 30 ident: CR163 article-title: Tocilizumab in patients hospitalized with COVID-19 pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2030340 – volume: 54 start-page: 557 year: 2021 end-page: 570 ident: CR141 article-title: Leveraging the antiviral type I interferon system as a first line of defense against SARS-CoV-2 pathogenicity publication-title: Immunity doi: 10.1016/j.immuni.2021.01.017 – volume: 5 start-page: e136720 year: 2020 ident: CR99 article-title: Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer publication-title: JCI Insight doi: 10.1172/jci.insight.136720 – volume: 20 start-page: 453 year: 2020 end-page: 454 ident: CR114 article-title: Understanding SARS-CoV-2-related multisystem inflammatory syndrome in children publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0367-5 – volume: 8 start-page: 1233 year: 2020 end-page: 1244 ident: CR122 article-title: Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30404-5 – volume: 12 year: 2021 ident: CR151 article-title: Peginterferon Lambda-1a for treatment of outpatients with uncomplicated COVID-19: a randomized placebo-controlled trial publication-title: Nat. Commun. doi: 10.1038/s41467-021-22177-1 – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: CR2 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 184 start-page: 149 year: 2021 end-page: 168 ident: CR92 article-title: Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes publication-title: Cell doi: 10.1016/j.cell.2020.11.025 – volume: 4 start-page: 789 year: 2020 end-page: 796 ident: CR104 article-title: RIPK1 distinctly regulates -induced inflammatory cell death, PANoptosis publication-title: Immunohorizons doi: 10.4049/immunohorizons.2000097 – volume: 35 start-page: 112 year: 2020 end-page: 124 ident: CR82 article-title: DNA sensing in the innate immune response publication-title: Physiology doi: 10.1152/physiol.00022.2019 – volume: 326 start-page: 230 year: 2021 end-page: 239 ident: CR166 article-title: Effect of canakinumab vs placebo on survival without invasive mechanical ventilation in patients hospitalized with severe COVID-19: a randomized clinical trial publication-title: JAMA doi: 10.1001/jama.2021.9508 – volume: 62 start-page: 39 year: 2020 end-page: 44 ident: CR62 article-title: Inflammasomes and the fine line between defense and disease publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2019.11.007 – volume: 28 start-page: 455 year: 2020 end-page: 464 ident: CR140 article-title: Retrospective multicenter cohort study shows early interferon therapy is associated with favorable clinical responses in COVID-19 patients publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.07.005 – volume: 6 start-page: eabi9002 year: 2021 ident: CR87 article-title: A diamidobenzimidazole STING agonist protects against SARS-CoV-2 infection publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abi9002 – volume: 584 start-page: 463 year: 2020 end-page: 469 ident: CR90 article-title: Longitudinal analyses reveal immunological misfiring in severe COVID-19 publication-title: Nature doi: 10.1038/s41586-020-2588-y – volume: 37 start-page: 109858 year: 2021 ident: CR94 article-title: ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109858 – volume: 10 start-page: e66125 year: 2021 ident: CR168 article-title: An open label trial of anakinra to prevent respiratory failure in COVID-19 publication-title: eLife doi: 10.7554/eLife.66125 – volume: 384 start-page: 795 year: 2020 end-page: 807 ident: CR171 article-title: Baricitinib plus remdesivir for hospitalized adults with COVID-19 publication-title: N. Eng. J. Med. doi: 10.1056/NEJMoa2031994 – volume: 383 start-page: 120 year: 2020 end-page: 128 ident: CR112 article-title: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in COVID-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2015432 – volume: 47 start-page: 1258 year: 2021 end-page: 1270 ident: CR160 article-title: Tocilizumab and remdesivir in hospitalized patients with severe COVID-19 pneumonia: a randomized clinical trial publication-title: Intensive Care Med. doi: 10.1007/s00134-021-06507-x – volume: 369 start-page: 718 year: 2020 end-page: 724 ident: CR89 article-title: Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients publication-title: Science doi: 10.1126/science.abc6027 – volume: 80 start-page: 101008 year: 2021 ident: CR180 article-title: Innate lymphoid cells (ILC) in SARS-CoV-2 infection publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2021.101008 – volume: 295 start-page: 8325 year: 2020 end-page: 8330 ident: CR96 article-title: The Zα2 domain of ZBP1 is a molecular switch regulating influenza-induced PANoptosis and perinatal lethality during development publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.013752 – volume: 8 start-page: e524 year: 2021 end-page: e533 ident: CR117 article-title: COVID-19-associated coagulopathy and antithrombotic agents—lessons after 1 year publication-title: Lancet Haematol. doi: 10.1016/S2352-3026(21)00105-8 – volume: 115 start-page: E2058 year: 2018 end-page: E2067 ident: CR78 article-title: STING-dependent translation inhibition restricts RNA virus replication publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1716937115 – volume: 31 start-page: 818 year: 2021 end-page: 820 ident: CR38 article-title: SARS-CoV-2 spike protein interacts with and activates TLR41 publication-title: Cell Res. doi: 10.1038/s41422-021-00495-9 – volume: 6 start-page: 467 year: 2021 end-page: 478 ident: CR126 article-title: ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00884-1 – volume: 75 start-page: 1815 year: 2020 end-page: 1819 ident: CR175 article-title: Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? publication-title: Allergy doi: 10.1111/all.14345 – ident: CR35 – volume: 218 start-page: e20201707 year: 2021 ident: CR71 article-title: Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients publication-title: J. Exp. Med. doi: 10.1084/jem.20201707 – ident: CR58 – volume: 2 start-page: 2048 year: 2020 end-page: 2058 ident: CR119 article-title: Immune thrombocytopenia secondary to COVID-19: a systematic review publication-title: SN Compr. Clin. Med. doi: 10.1007/s42399-020-00521-8 – volume: 181 start-page: 674 year: 2020 end-page: 687 ident: CR105 article-title: Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense publication-title: Cell doi: 10.1016/j.cell.2020.03.040 – volume: 34 start-page: 108761 year: 2021 ident: CR128 article-title: SARS-CoV-2 ORF9b inhibits RIG-I–MAVS antiviral signaling by interrupting K63-linked ubiquitination of NEMO publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108761 – volume: 36 start-page: 1201 year: 2021 end-page: 1208 ident: CR155 article-title: The impact of corticosteroids on secondary infection and mortality in critically ill COVID-19 patients publication-title: J. Intensive Care Med. doi: 10.1177/08850666211032175 – volume: 9 start-page: 522 year: 2021 end-page: 532 ident: CR161 article-title: Sarilumab in patients admitted to hospital with severe or critical COVID-19: a randomised, double-blind, placebo-controlled, phase 3 trial publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(21)00099-0 – volume: 598 start-page: 342 year: 2021 end-page: 347 ident: CR20 article-title: Lectins enhance SARS-CoV-2 infection and influence neutralizing antibodies publication-title: Nature doi: 10.1038/s41586-021-03925-1 – volume: 286 start-page: 198074 year: 2020 ident: CR11 article-title: The ORF6, ORF8 and nucleocapsid proteins of SARS-CoV-2 inhibit type I interferon signaling pathway publication-title: Virus Res. doi: 10.1016/j.virusres.2020.198074 – volume: 93 start-page: 5376 year: 2021 end-page: 5389 ident: CR129 article-title: SARS-CoV-2 ORF9b antagonizes type I and III interferons by targeting multiple components of the RIG-I/MDA-5–MAVS, TLR3–TRIF, and cGAS–STING signaling pathways publication-title: J. Med. Virol. doi: 10.1002/jmv.27050 – volume: 516 start-page: 246 year: 2014 end-page: 249 ident: CR101 article-title: Dietary modulation of the microbiome affects autoinflammatory disease publication-title: Nature doi: 10.1038/nature13788 – volume: 160 start-page: 1471 year: 2021 end-page: 1480 ident: CR116 article-title: Pulmonary thrombosis and thromboembolism in COVID-19 publication-title: Chest doi: 10.1016/j.chest.2021.06.016 – volume: 370 start-page: 856 year: 2020 end-page: 860 ident: CR18 article-title: Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity publication-title: Science doi: 10.1126/science.abd2985 – volume: 40 start-page: e107826 year: 2021 ident: CR49 article-title: SARS-CoV-2 sensing by RIG-I and MDA5 links epithelial infection to macrophage inflammation publication-title: EMBO J. doi: 10.15252/embj.2021107826 – volume: 24 start-page: 102295 year: 2021 ident: CR70 article-title: SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway publication-title: iScience doi: 10.1016/j.isci.2021.102295 – volume: 9 start-page: 498 year: 2021 end-page: 510 ident: CR152 article-title: Peginterferon lambda for the treatment of outpatients with COVID-19: a phase 2, placebo-controlled randomised trial publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30566-X – volume: 13 start-page: 47 year: 2020 ident: CR127 article-title: SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production publication-title: Viruses doi: 10.3390/v13010047 – volume: 295 start-page: 6785 year: 2020 end-page: 6797 ident: CR136 article-title: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.013679 – volume: 6 start-page: e226 year: 2008 ident: CR24 article-title: SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060226 – volume: 40 start-page: e108249 year: 2021 ident: CR75 article-title: SARS-CoV-2 nucleocapsid suppresses host pyroptosis by blocking gasdermin D cleavage publication-title: EMBO J. doi: 10.15252/embj.2021108249 – volume: 92 start-page: 2105 year: 2020 end-page: 2113 ident: CR37 article-title: In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs publication-title: J. Med. Virol. doi: 10.1002/jmv.25987 – volume: 108 start-page: 14590 year: 2011 end-page: 14595 ident: CR51 article-title: Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1110133108 – volume: 183 start-page: 143 year: 2020 end-page: 157 ident: CR118 article-title: Loss of Bcl-6-expressing T follicular helper cells and germinal centers in COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.08.025 – volume: 112 start-page: E4306 year: 2015 end-page: E4315 ident: CR81 article-title: Modulation of the cGAS–STING DNA sensing pathway by gammaherpesviruses publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1503831112 – volume: 131 start-page: e145157 year: 2021 ident: CR176 article-title: BCG vaccination history associates with decreased SARS-CoV-2 seroprevalence across a diverse cohort of health care workers publication-title: J. Clin. Invest doi: 10.1172/JCI145157 – volume: 14 start-page: 36 year: 2014 end-page: 49 ident: CR60 article-title: Regulation of type I interferon responses publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – ident: CR181 – volume: 395 start-page: 1695 year: 2020 end-page: 1704 ident: CR142 article-title: Triple combination of interferon β-1b, lopinavir–ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(20)31042-4 – volume: 6 start-page: a016295 year: 2014 ident: CR158 article-title: IL-6 in inflammation, immunity, and disease publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016295 – volume: 183 start-page: 315 year: 2020 end-page: 323 ident: CR173 article-title: Activate: randomized clinical trial of BCG vaccination against infection in the elderly publication-title: Cell doi: 10.1016/j.cell.2020.08.051 – volume: 33 start-page: 8865 year: 2019 end-page: –8877 ident: CR67 article-title: Severe acute respiratory syndrome coronavirus ORF3a protein activates the NLRP3 inflammasome by promoting TRAF3-dependent ubiquitination of ASC publication-title: FASEB J. doi: 10.1096/fj.201802418R – ident: CR95 – volume: 219 start-page: e20211818 year: 2021 ident: CR144 article-title: A stem-loop RNA RIG-I agonist protects against acute and chronic SARS-CoV-2 infection in mice publication-title: J. Exp. Med. doi: 10.1084/jem.20211818 – volume: 181 start-page: 1036 year: 2020 end-page: 1045 ident: CR12 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 384 start-page: 1503 year: 2021 end-page: 1516 ident: CR159 article-title: Tocilizumab in hospitalized patients with severe COVID-19 pneumonia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2028700 – volume: 81 start-page: 20 year: 2007 end-page: 29 ident: CR22 article-title: A contemporary view of coronavirus transcription publication-title: J. Virol. doi: 10.1128/JVI.01358-06 – volume: 12 year: 2021 ident: CR74 article-title: SARS-CoV-2 N protein promotes NLRP3 inflammasome activation to induce hyperinflammation publication-title: Nat. Commun. doi: 10.1038/s41467-021-25015-6 – volume: 5 start-page: eabd1554 year: 2020 ident: CR124 article-title: Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abd1554 – volume: 384 start-page: 693 year: 2021 end-page: 704 ident: CR153 article-title: Dexamethasone in hospitalized patients with COVID-19 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2021436 – volume: 324 start-page: 663 year: 2020 end-page: 673 ident: CR44 article-title: Presence of genetic variants among young men with severe COVID-19 publication-title: JAMA doi: 10.1001/jama.2020.13719 – volume: 33 start-page: 108234 year: 2020 ident: CR133 article-title: Evasion of type I interferon by SARS-CoV-2 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108234 – volume: 395 start-page: 497 year: 2020 end-page: 506 ident: CR1 article-title: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 214 start-page: 683 year: 2009 end-page: 691 ident: CR40 article-title: TLR7 and TLR8 ligands and antiphospholipid antibodies show synergistic effects on the induction of IL-1β and caspase-1 in monocytes and dendritic cells publication-title: Immunobiology doi: 10.1016/j.imbio.2008.12.003 – volume: 295 start-page: 14040 year: 2020 end-page: 14052 ident: CR66 article-title: Impaired NLRP3 inflammasome activation/pyroptosis leads to robust inflammatory cell death via caspase-8/RIPK3 during coronavirus infection publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.015036 – volume: 86 start-page: 11416 year: 2021 end-page: 11424 ident: CR32 article-title: Intranasal treatment with poly(I:C) protects aged mice from lethal respiratory virus infections publication-title: J. Virol doi: 10.1128/JVI.01410-12 – volume: 295 start-page: 18276 year: 2020 end-page: 18283 ident: CR97 article-title: ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis) publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.015924 – volume: 7 year: 2017 ident: CR79 article-title: Dengue virus activates cGAS through the release of mitochondrial DNA publication-title: Sci. Rep. doi: 10.1038/s41598-017-03932-1 – volume: 6 start-page: e00638-15 year: 2015 ident: CR34 article-title: Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection publication-title: mBio doi: 10.1128/mBio.00638-15 – ident: CR56 – volume: 319 start-page: C258 year: 2020 end-page: C267 ident: CR84 article-title: Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00224.2020 – volume: 11 year: 2020 ident: CR17 article-title: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 7 start-page: 2350 year: 2008 end-page: 2363 ident: CR107 article-title: Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M800132-MCP200 – volume: 10 start-page: 2735 year: 2021 end-page: 2748 ident: CR162 article-title: Efficacy and safety of sarilumab in patients with COVID19 pneumonia: a randomized, phase III clinical trial (SARTRE study) publication-title: Infect. Dis. Ther. doi: 10.1007/s40121-021-00543-2 – ident: CR73 – volume: 12 start-page: 662989 year: 2021 ident: CR130 article-title: SARS-CoV-2 membrane protein inhibits type I interferon production through ubiquitin-mediated degradation of TBK1 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.662989 – volume: 81 start-page: 2656 year: 2021 end-page: 2668 ident: CR55 article-title: Functional landscape of SARS-CoV-2 cellular restriction publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.04.008 – ident: CR31 – volume: 34 start-page: 680 year: 2011 end-page: 692 ident: CR50 article-title: Immune signaling by RIG-I-like receptors publication-title: Immunity doi: 10.1016/j.immuni.2011.05.003 – volume: 1282 start-page: 1 year: 2015 end-page: 23 ident: CR14 article-title: Coronaviruses: an overview of their replication and pathogenesis publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2438-7_1 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR83 article-title: Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 295 start-page: 13958 year: 2020 end-page: 13964 ident: CR148 article-title: Inhibition of SARS-CoV-2 by type I and type III interferons publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC120.013788 – volume: 6 start-page: eabi9007 year: 2021 ident: CR86 article-title: Pharmacological activation of STING blocks SARS-CoV-2 infection publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abi9007 – volume: 181 start-page: 271 year: 2020 end-page: 280 ident: CR16 article-title: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 184 start-page: 15 year: 2021 end-page: 17 ident: CR19 article-title: A crisp(r) new perspective on SARS-CoV-2 biology publication-title: Cell doi: 10.1016/j.cell.2020.12.003 – ident: CR59 – ident: CR76 – volume: 104 start-page: 433 year: 2021 end-page: 440 ident: CR165 article-title: Canakinumab as treatment for COVID-19-related pneumonia: a prospective case–control study publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.12.073 – volume: 95 start-page: e02415 year: 2021 end-page: 20 ident: CR48 article-title: SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells publication-title: J. Virol doi: 10.1128/JVI.02415-20 – volume: 296 start-page: 100306 year: 2021 ident: CR21 article-title: SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100306 – volume: 142 start-page: 429 year: 2020 end-page: 436 ident: CR113 article-title: Acute heart failure in multisystem inflammatory syndrome in children (MIS-C) in the context of global SARS-CoV-2 pandemic publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.048360 – volume: 41 start-page: 149 year: 2021 end-page: 152 ident: CR146 article-title: Linkage of λ interferons in protection against severe COVID-19 publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2020.0187 – volume: 9 start-page: 498 year: 2021 ident: 1091_CR152 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30566-X – volume: 22 start-page: 820 year: 2021 ident: 1091_CR61 publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00942-0 – volume: 319 start-page: C258 year: 2020 ident: 1091_CR84 publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00224.2020 – volume: 395 start-page: 1695 year: 2020 ident: 1091_CR142 publication-title: Lancet doi: 10.1016/S0140-6736(20)31042-4 – volume: 54 start-page: 557 year: 2021 ident: 1091_CR141 publication-title: Immunity doi: 10.1016/j.immuni.2021.01.017 – volume: 12 year: 2021 ident: 1091_CR74 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25015-6 – volume: 395 start-page: 497 year: 2020 ident: 1091_CR1 publication-title: Lancet doi: 10.1016/S0140-6736(20)30183-5 – volume: 295 start-page: 14040 year: 2020 ident: 1091_CR66 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.015036 – volume: 181 start-page: 674 year: 2020 ident: 1091_CR105 publication-title: Cell doi: 10.1016/j.cell.2020.03.040 – volume: 12 start-page: 662989 year: 2021 ident: 1091_CR130 publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.662989 – volume: 122 start-page: 149 year: 2007 ident: 1091_CR27 publication-title: Immunology doi: 10.1111/j.1365-2567.2007.02651.x – volume: 11 start-page: 584241 year: 2020 ident: 1091_CR43 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.584241 – volume: 31 start-page: 818 year: 2021 ident: 1091_CR38 publication-title: Cell Res. doi: 10.1038/s41422-021-00495-9 – volume: 24 start-page: 102295 year: 2021 ident: 1091_CR70 publication-title: iScience doi: 10.1016/j.isci.2021.102295 – volume: 218 start-page: e20201707 year: 2021 ident: 1091_CR71 publication-title: J. Exp. Med. doi: 10.1084/jem.20201707 – volume: 33 start-page: 8865 year: 2019 ident: 1091_CR67 publication-title: FASEB J. doi: 10.1096/fj.201802418R – ident: 1091_CR178 doi: 10.1101/2021.01.14.21249839 – volume: 181 start-page: 914 year: 2020 ident: 1091_CR15 publication-title: Cell doi: 10.1016/j.cell.2020.04.011 – ident: 1091_CR77 doi: 10.1101/2021.03.06.21252796 – volume: 28 start-page: 455 year: 2020 ident: 1091_CR140 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.07.005 – volume: 183 start-page: 1508 year: 2020 ident: 1091_CR120 publication-title: Cell doi: 10.1016/j.cell.2020.10.052 – ident: 1091_CR56 doi: 10.1084/jem.20211211 – ident: 1091_CR57 – volume: 295 start-page: 13958 year: 2020 ident: 1091_CR148 publication-title: J. Biol. Chem. doi: 10.1074/jbc.AC120.013788 – volume: 17 start-page: 275 year: 2006 ident: 1091_CR33 publication-title: Antivir. Chem. Chemother. doi: 10.1177/095632020601700505 – volume: 95 start-page: e02415 year: 2021 ident: 1091_CR48 publication-title: J. Virol doi: 10.1128/JVI.02415-20 – volume: 131 start-page: 417 year: 2005 ident: 1091_CR115 publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2005.05753.x – volume: 14 start-page: 523 year: 2016 ident: 1091_CR25 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.81 – volume: 115 start-page: E2058 year: 2018 ident: 1091_CR78 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1716937115 – volume: 117 start-page: 17720 year: 2020 ident: 1091_CR174 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2008410117 – volume: 579 start-page: 270 year: 2020 ident: 1091_CR2 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 181 start-page: 271 year: 2020 ident: 1091_CR16 publication-title: Cell doi: 10.1016/j.cell.2020.02.052 – volume: 6 start-page: e00638-15 year: 2015 ident: 1091_CR34 publication-title: mBio doi: 10.1128/mBio.00638-15 – volume: 5 start-page: 568 year: 2021 ident: 1091_CR93 publication-title: Immunohorizons doi: 10.4049/immunohorizons.2100059 – ident: 1091_CR42 doi: 10.1136/annrheumdis-2020-218100 – volume: 40 start-page: e108249 year: 2021 ident: 1091_CR75 publication-title: EMBO J. doi: 10.15252/embj.2021108249 – volume: 384 start-page: 1491 year: 2021 ident: 1091_CR164 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2100433 – volume: 5 start-page: 1330 year: 2020 ident: 1091_CR54 publication-title: Nat. Microbiol. doi: 10.1038/s41564-020-0769-y – volume: 112 start-page: E4306 year: 2015 ident: 1091_CR81 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1503831112 – volume: 7 year: 2017 ident: 1091_CR79 publication-title: Sci. Rep. doi: 10.1038/s41598-017-03932-1 – volume: 13 year: 2021 ident: 1091_CR111 publication-title: Genome Med. doi: 10.1186/s13073-021-00881-3 – volume: 591 start-page: 131 year: 2021 ident: 1091_CR63 publication-title: Nature doi: 10.1038/s41586-021-03218-7 – volume: 23 start-page: 718 year: 2021 ident: 1091_CR134 publication-title: Nat. Cell Biol. doi: 10.1038/s41556-021-00710-0 – volume: 11 year: 2020 ident: 1091_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – volume: 34 start-page: 108628 year: 2021 ident: 1091_CR46 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108628 – volume: 6 start-page: eabi9002 year: 2021 ident: 1091_CR87 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abi9002 – volume: 384 start-page: 20 year: 2021 ident: 1091_CR163 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2030340 – volume: 384 start-page: e59 year: 2021 ident: 1091_CR121 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2036236 – volume: 62 start-page: 39 year: 2020 ident: 1091_CR62 publication-title: Curr. Opin. Immunol. doi: 10.1016/j.coi.2019.11.007 – volume: 92 start-page: 2105 year: 2020 ident: 1091_CR37 publication-title: J. Med. Virol. doi: 10.1002/jmv.25987 – volume: 369 start-page: 706 year: 2020 ident: 1091_CR145 publication-title: Science doi: 10.1126/science.abc3545 – volume: 113 start-page: 4452 year: 2016 ident: 1091_CR100 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1601636113 – volume: 184 start-page: 149 year: 2021 ident: 1091_CR92 publication-title: Cell doi: 10.1016/j.cell.2020.11.025 – volume: 93 start-page: 4559 year: 2021 ident: 1091_CR147 publication-title: J. Med. Virol. doi: 10.1002/jmv.26993 – volume: 80 start-page: 101008 year: 2021 ident: 1091_CR180 publication-title: Mol. Asp. Med. doi: 10.1016/j.mam.2021.101008 – volume: 6 start-page: 123 year: 2021 ident: 1091_CR85 publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-021-00515-5 – volume: 485 start-page: 330 year: 2015 ident: 1091_CR69 publication-title: Virology doi: 10.1016/j.virol.2015.08.010 – volume: 295 start-page: 6785 year: 2020 ident: 1091_CR136 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.013679 – volume: 6 start-page: e226 year: 2008 ident: 1091_CR24 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060226 – volume: 5 start-page: e136720 year: 2020 ident: 1091_CR99 publication-title: JCI Insight doi: 10.1172/jci.insight.136720 – volume: 125 start-page: 553 year: 2021 ident: 1091_CR7 publication-title: Health Policy doi: 10.1016/j.healthpol.2021.03.013 – volume: 7 start-page: 2350 year: 2008 ident: 1091_CR107 publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M800132-MCP200 – volume: 20 start-page: 453 year: 2020 ident: 1091_CR114 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0367-5 – volume: 184 start-page: 1671 year: 2021 ident: 1091_CR88 publication-title: Cell doi: 10.1016/j.cell.2021.02.029 – volume: 516 start-page: 246 year: 2014 ident: 1091_CR101 publication-title: Nature doi: 10.1038/nature13788 – volume: 183 start-page: 315 year: 2020 ident: 1091_CR173 publication-title: Cell doi: 10.1016/j.cell.2020.08.051 – volume: 295 start-page: 8325 year: 2020 ident: 1091_CR96 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.013752 – volume: 9 start-page: 754 year: 2018 ident: 1091_CR157 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.00754 – volume: 32 start-page: 108185 year: 2020 ident: 1091_CR10 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108185 – volume: 10 start-page: 2735 year: 2021 ident: 1091_CR162 publication-title: Infect. Dis. Ther. doi: 10.1007/s40121-021-00543-2 – volume: 34 start-page: 108761 year: 2021 ident: 1091_CR128 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.108761 – ident: 1091_CR179 doi: 10.1002/eji.202149311 – volume: 74 start-page: 307 year: 2021 ident: 1091_CR154 publication-title: Jpn J. Infect. Dis. doi: 10.7883/yoken.JJID.2020.884 – volume: 7 start-page: 43 year: 2021 ident: 1091_CR72 publication-title: Cell Death Discov. doi: 10.1038/s41420-021-00428-w – volume: 142 start-page: 429 year: 2020 ident: 1091_CR113 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.120.048360 – volume: 27 start-page: 1318 year: 2021 ident: 1091_CR13 publication-title: RNA doi: 10.1261/rna.078923.121 – volume: 215 start-page: 230 year: 2010 ident: 1091_CR41 publication-title: Immunobiology doi: 10.1016/j.imbio.2009.03.002 – volume: 183 start-page: 143 year: 2020 ident: 1091_CR118 publication-title: Cell doi: 10.1016/j.cell.2020.08.025 – volume: 6 start-page: eabi9007 year: 2021 ident: 1091_CR86 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abi9007 – volume: 383 start-page: 120 year: 2020 ident: 1091_CR112 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2015432 – volume: 22 start-page: 829 year: 2021 ident: 1091_CR29 publication-title: Nat. Immunol. doi: 10.1038/s41590-021-00937-x – volume: 384 start-page: 1503 year: 2021 ident: 1091_CR159 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2028700 – volume: 20 start-page: 375 year: 2020 ident: 1091_CR172 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0285-6 – volume: 192 start-page: 1835 year: 2014 ident: 1091_CR108 publication-title: J. Immunol. doi: 10.4049/jimmunol.1302839 – volume: 40 start-page: e107826 year: 2021 ident: 1091_CR49 publication-title: EMBO J. doi: 10.15252/embj.2021107826 – volume: 12 year: 2021 ident: 1091_CR151 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22177-1 – volume: 79 start-page: 859 year: 2020 ident: 1091_CR170 publication-title: Ann. Rheum. Dis. doi: 10.1136/annrheumdis-2020-217871 – volume: 12 start-page: 916 year: 2020 ident: 1091_CR39 publication-title: J. Mol. Cell Biol. doi: 10.1093/jmcb/mjaa067 – volume: 6 start-page: 467 year: 2021 ident: 1091_CR126 publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00884-1 – volume: 586 start-page: 560 year: 2020 ident: 1091_CR150 publication-title: Nature doi: 10.1038/s41586-020-2708-8 – ident: 1091_CR35 – volume: 131 start-page: e145157 year: 2021 ident: 1091_CR176 publication-title: J. Clin. Invest doi: 10.1172/JCI145157 – volume: 21 start-page: 1327 year: 2020 ident: 1091_CR125 publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0778-2 – volume: 36 start-page: 1201 year: 2021 ident: 1091_CR155 publication-title: J. Intensive Care Med. doi: 10.1177/08850666211032175 – volume: 597 start-page: 415 year: 2021 ident: 1091_CR109 publication-title: Nature doi: 10.1038/s41586-021-03875-8 – volume: 13 start-page: 47 year: 2020 ident: 1091_CR127 publication-title: Viruses doi: 10.3390/v13010047 – volume: 598 start-page: 342 year: 2021 ident: 1091_CR20 publication-title: Nature doi: 10.1038/s41586-021-03925-1 – volume: 41 start-page: 1083 year: 2020 ident: 1091_CR26 publication-title: Trends Immunol. doi: 10.1016/j.it.2020.10.005 – volume: 71 start-page: 762 year: 2020 ident: 1091_CR64 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa248 – volume: 9 start-page: 295 year: 2021 ident: 1091_CR167 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30556-7 – ident: 1091_CR58 – volume: 81 start-page: 20 year: 2007 ident: 1091_CR22 publication-title: J. Virol. doi: 10.1128/JVI.01358-06 – ident: 1091_CR31 doi: 10.1126/sciadv.abe5735 – volume: 147 start-page: 1217 year: 2021 ident: 1091_CR169 publication-title: J. Allergy Clin. Immunol. doi: 10.1016/j.jaci.2021.01.024 – volume: 5 start-page: eabd1554 year: 2020 ident: 1091_CR124 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.abd1554 – volume: 93 start-page: 5376 year: 2021 ident: 1091_CR129 publication-title: J. Med. Virol. doi: 10.1002/jmv.27050 – volume: 324 start-page: 663 year: 2020 ident: 1091_CR44 publication-title: JAMA doi: 10.1001/jama.2020.13719 – volume: 295 start-page: 18276 year: 2020 ident: 1091_CR97 publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA120.015924 – volume: 296 start-page: 100306 year: 2021 ident: 1091_CR21 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100306 – ident: 1091_CR36 doi: 10.1172/JCI152475 – volume: 75 start-page: 1815 year: 2020 ident: 1091_CR175 publication-title: Allergy doi: 10.1111/all.14345 – ident: 1091_CR8 – volume: 297 start-page: 5 year: 2020 ident: 1091_CR9 publication-title: Immunol. Rev. doi: 10.1111/imr.12912 – volume: 4 start-page: 499 year: 2004 ident: 1091_CR28 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri1391 – volume: 215 start-page: 1023 year: 2018 ident: 1091_CR106 publication-title: J. Exp. Med. doi: 10.1084/jem.20171922 – volume: 217 start-page: e20191644 year: 2020 ident: 1091_CR103 publication-title: J. Exp. Med. doi: 10.1084/jem.20191644 – volume: 10 year: 2020 ident: 1091_CR177 publication-title: Sci. Rep. doi: 10.1038/s41598-020-75491-x – volume: 5 start-page: 101 year: 2019 ident: 1091_CR68 publication-title: Cell Death Discov. doi: 10.1038/s41420-019-0181-7 – volume: 382 start-page: 1708 year: 2020 ident: 1091_CR156 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2002032 – volume: 95 start-page: e00490 year: 2021 ident: 1091_CR143 publication-title: J. Virol. doi: 10.1128/JVI.00490-21 – volume: 326 start-page: 230 year: 2021 ident: 1091_CR166 publication-title: JAMA doi: 10.1001/jama.2021.9508 – volume: 1282 start-page: 1 year: 2015 ident: 1091_CR14 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2438-7_1 – ident: 1091_CR73 doi: 10.1101/2020.10.27.357731 – volume: 584 start-page: 463 year: 2020 ident: 1091_CR90 publication-title: Nature doi: 10.1038/s41586-020-2588-y – ident: 1091_CR95 doi: 10.1126/sciimmunol.aag2045 – volume: 41 start-page: 149 year: 2021 ident: 1091_CR146 publication-title: J. Interferon Cytokine Res. doi: 10.1089/jir.2020.0187 – ident: 1091_CR181 – volume: 36 start-page: 503 year: 2012 ident: 1091_CR52 publication-title: Immunity doi: 10.1016/j.immuni.2012.03.013 – volume: 6 start-page: a016295 year: 2014 ident: 1091_CR158 publication-title: Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a016295 – volume: 26 start-page: 1623 year: 2020 ident: 1091_CR65 publication-title: Nat. Med. doi: 10.1038/s41591-020-1038-6 – volume: 10 start-page: 237 year: 2020 ident: 1091_CR98 publication-title: Front. Cell Infect. Microbiol. doi: 10.3389/fcimb.2020.00237 – volume: 32 start-page: 107863 year: 2020 ident: 1091_CR149 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107863 – volume: 16 start-page: 802 year: 2015 ident: 1091_CR53 publication-title: Nat. Immunol. doi: 10.1038/ni.3212 – volume: 218 start-page: e20201993 year: 2021 ident: 1091_CR138 publication-title: J. Exp. Med. doi: 10.1084/jem.20201993 – volume: 2 start-page: 2048 year: 2020 ident: 1091_CR119 publication-title: SN Compr. Clin. Med. doi: 10.1007/s42399-020-00521-8 – volume: 14 start-page: 95 year: 2018 ident: 1091_CR91 publication-title: Mol. Metab. doi: 10.1016/j.molmet.2018.06.003 – ident: 1091_CR132 doi: 10.1073/pnas.2101161118 – volume: 37 start-page: 109858 year: 2021 ident: 1091_CR94 publication-title: Cell Rep. doi: 10.1016/j.celrep.2021.109858 – volume: 9 start-page: 522 year: 2021 ident: 1091_CR161 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(21)00099-0 – ident: 1091_CR137 – volume: 43 start-page: 4 year: 2022 ident: 1091_CR30 publication-title: Trends Immunol. doi: 10.1016/j.it.2021.11.004 – volume: 108 start-page: 14590 year: 2011 ident: 1091_CR51 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1110133108 – volume: 6 start-page: eabe3024 year: 2020 ident: 1091_CR123 publication-title: Sci. Adv. doi: 10.1126/sciadv.abe3024 – volume: 369 start-page: 1249 year: 2020 ident: 1091_CR131 publication-title: Science doi: 10.1126/science.abc8665 – volume: 286 start-page: 198074 year: 2020 ident: 1091_CR11 publication-title: Virus Res. doi: 10.1016/j.virusres.2020.198074 – volume: 8 start-page: e524 year: 2021 ident: 1091_CR117 publication-title: Lancet Haematol. doi: 10.1016/S2352-3026(21)00105-8 – volume: 104 start-page: 433 year: 2021 ident: 1091_CR165 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.12.073 – volume: 10 start-page: e66125 year: 2021 ident: 1091_CR168 publication-title: eLife doi: 10.7554/eLife.66125 – volume: 84 start-page: 2305 year: 2003 ident: 1091_CR23 publication-title: J. Gen. Virol. doi: 10.1099/vir.0.19424-0 – volume: 33 start-page: 108234 year: 2020 ident: 1091_CR133 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.108234 – volume: 219 start-page: e20211818 year: 2021 ident: 1091_CR144 publication-title: J. Exp. Med. doi: 10.1084/jem.20211818 – volume: 81 start-page: 2656 year: 2021 ident: 1091_CR55 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.04.008 – volume: 42 start-page: 681 year: 2021 ident: 1091_CR4 publication-title: Trends Immunol. doi: 10.1016/j.it.2021.06.001 – volume: 185 start-page: 3127 year: 2010 ident: 1091_CR102 publication-title: J. Immunol. doi: 10.4049/jimmunol.1001512 – volume: 4 start-page: 789 year: 2020 ident: 1091_CR104 publication-title: Immunohorizons doi: 10.4049/immunohorizons.2000097 – volume: 181 start-page: 1036 year: 2020 ident: 1091_CR12 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 35 start-page: 112 year: 2020 ident: 1091_CR82 publication-title: Physiology doi: 10.1152/physiol.00022.2019 – ident: 1091_CR3 – volume: 16 start-page: e0247461 year: 2021 ident: 1091_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0247461 – volume: 370 start-page: 856 year: 2020 ident: 1091_CR18 publication-title: Science doi: 10.1126/science.abd2985 – ident: 1091_CR47 doi: 10.1186/s40779-021-00340-5 – volume: 149 start-page: 1666 year: 1992 ident: 1091_CR110 publication-title: J. Immunol. doi: 10.4049/jimmunol.149.5.1666 – volume: 384 start-page: 693 year: 2021 ident: 1091_CR153 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2021436 – ident: 1091_CR135 – ident: 1091_CR59 – volume: 339 start-page: 786 year: 2013 ident: 1091_CR83 publication-title: Science doi: 10.1126/science.1232458 – volume: 505 start-page: 691 year: 2014 ident: 1091_CR80 publication-title: Nature doi: 10.1038/nature12862 – volume: 11 start-page: 1061 year: 2020 ident: 1091_CR139 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01061 – volume: 384 start-page: 795 year: 2020 ident: 1091_CR171 publication-title: N. Eng. J. Med. doi: 10.1056/NEJMoa2031994 – volume: 86 start-page: 11416 year: 2021 ident: 1091_CR32 publication-title: J. Virol doi: 10.1128/JVI.01410-12 – volume: 8 start-page: 1233 year: 2020 ident: 1091_CR122 publication-title: Lancet Respir. Med. doi: 10.1016/S2213-2600(20)30404-5 – volume: 34 start-page: 680 year: 2011 ident: 1091_CR50 publication-title: Immunity doi: 10.1016/j.immuni.2011.05.003 – volume: 214 start-page: 683 year: 2009 ident: 1091_CR40 publication-title: Immunobiology doi: 10.1016/j.imbio.2008.12.003 – ident: 1091_CR45 – volume: 184 start-page: 15 year: 2021 ident: 1091_CR19 publication-title: Cell doi: 10.1016/j.cell.2020.12.003 – volume: 47 start-page: 1258 year: 2021 ident: 1091_CR160 publication-title: Intensive Care Med. doi: 10.1007/s00134-021-06507-x – volume: 368 start-page: 945 year: 2020 ident: 1091_CR6 publication-title: Science doi: 10.1126/science.abb8923 – volume: 369 start-page: 718 year: 2020 ident: 1091_CR89 publication-title: Science doi: 10.1126/science.abc6027 – ident: 1091_CR76 doi: 10.15252/emmm.202114150 – volume: 14 start-page: 36 year: 2014 ident: 1091_CR60 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3581 – volume: 160 start-page: 1471 year: 2021 ident: 1091_CR116 publication-title: Chest doi: 10.1016/j.chest.2021.06.016 |
SSID | ssj0014764 |
Score | 2.72332 |
SecondaryResourceType | review_article |
Snippet | The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2, continues to cause substantial... The coronavirus disease 2019 (COVID-19) pandemic, caused by SARS-CoV-2, continues to cause substantial morbidity and mortality. While most infections are mild,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 165 |
SubjectTerms | 631/250/2504 631/250/262 631/326/596/4130 Animals Biomedical and Life Sciences Biomedicine Coronaviruses COVID-19 COVID-19 - immunology COVID-19 - metabolism COVID-19 - virology Cytokine storm Cytokines Cytokines - immunology Cytokines - metabolism Humans Immune clearance Immune Evasion Immune system Immunity, Innate Immunology Infectious Diseases Inflammasomes - immunology Inflammasomes - metabolism Inflammation Innate immunity Morbidity NLR Proteins - immunology NLR Proteins - metabolism Pandemics Pattern recognition Pattern recognition receptors Receptors, Pattern Recognition - immunology Receptors, Pattern Recognition - metabolism Respiratory distress syndrome Review Article SARS-CoV-2 - immunology SARS-CoV-2 - pathogenicity Severe acute respiratory syndrome coronavirus 2 Signal Transduction Toll-Like Receptors - immunology Toll-Like Receptors - metabolism Virus Internalization |
Title | Innate immunity: the first line of defense against SARS-CoV-2 |
URI | https://link.springer.com/article/10.1038/s41590-021-01091-0 https://www.ncbi.nlm.nih.gov/pubmed/35105981 https://www.proquest.com/docview/2624808493 https://www.proquest.com/docview/2624950355 https://pubmed.ncbi.nlm.nih.gov/PMC8935980 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJhAvaIyvwJiMxBtYc-wktpHQ1FarBtIqtDHUtyh2HFZpSgbtHvbfc3bcTGViL8mDHcW-s32_830BfCh4rQxKHtpwm9PM1ZyavE6p5lxVhnOZOh87fDIrjs-zb_N8Hi_cltGtcn0mhoO67qy_Iz_gBc8UU5kWh1e_qa8a5a2rsYTGQ9j2qcv8qpbzQeFKMxnSR6GI0pRrpmLQDBPqYImCSzPqHRS8cQifm4LpDtq86zT5j-U0CKTpDjyNSJKMetY_gweu3YVHfW3Jm114fBKt5s_hy9e2RUhJFiEWZHXzmSDqI80CgR_xKJN0DaldgwqtI9WvaoGIkZyNTs_opPtJ-Qs4nx79mBzTWDaBWoRfK1oVtZHCMmGs4Eaj-qtl1VTWaCQ8Y03Gshq1urxuGmNUKmrUaoyRDI9gxCtSiZew1Xatew2k0FVuNWpIhbBZZZ0xiP5CVjhkZSNdAumaZqWNOcV9aYvLMti2hSp7OpdI5zLQuWQJfBy-ueozatzbe2_NijLurmV5uxYSeD80477wxo6qdd1130fnDOFUAq96zg2_EwFVqjQBucHToYPPub3Z0i4uQu5t5SOZFQ7r05r7t8P6_yze3D-Lt_CE-6iK4Ay-B1urP9fuHWKdldkPCxqfapLuw_ZoOh7P8D0-mn0__Qu_6fq_ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh4XBOUVKGAkOIFVx87DRqpQtVDt0m4PtEW9BdtxYCWUFHYrtH-K38jYeVRLRW-95BInsWfGnm8yL4BXGS-lQc1DK25TmriSU5OWMVWcS204z2Pnc4enB9n4OPl0kp6swZ8-F8aHVfZnYjioy8b6f-RbPOOJZDJR4v3pT-q7Rnnvat9CoxWLPbf8jSbbfHvyAfn7mvPdj0ejMe26ClCL6GRBdVaaXFgmjBXcKLQOVa4rbY3CeTFWJSwp0ehJy6oyRsaiRNBvTM7whEJ1nkuB770G1xOBW9Nnpo-GkJI4yUO5KlSJinLFZJekw4TcmqOiVIz6gAjvjMLrqiK8gG4vBmn-46kNCnD3LtzpkCvZaUXtHqy5egNutL0slxtwc9p56e_D9qSuEcKSWcg9WSzfEUSZpJoh0CQe1ZKmIqWr0IB2RH_TM0So5HDn8yEdNV8ofwDHV0LQh7BeN7V7DCRTOrUKLbJM2ERbZwyizVCFDkWnyl0EcU-zwnY1zH0rjR9F8KULWbR0LpDORaBzwSJ4Mzxz2lbwuHT0Zs-KotvN8-Jc9iJ4OdzGfeidK7p2zVk7RqUM4VsEj1rODZ8TAcXKOIJ8hafDAF_je_VOPfsean1LnzktcVpve-6fT-v_q3hy-SpewK3x0XS_2J8c7D2F29xndIRA9E1YX_w6c88QZy3M8yDcBL5e9W76C9h7M_o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiouCMorUMBIcAJrHTsPG6lC1ZZVl9IKUYp6C7Fjw0ooKexWaP8av46x86iWit56iSLFSZyZseebzAvgRcYrqVHzUMdNShNbcarTKqaKc1lqzvPY-tzhg8Ns7zh5f5KerMGfPhfGh1X2e2LYqKvG-H_kI57xRDKZKDFyXVjEx93J29Of1HeQ8p7Wvp1GKyL7dvkbzbf59nQXef2S88m7z-M92nUYoAaRyoKWWaVzYZjQRnCt0FJUeelKoxXOkTGXsKRCAyitnNNaxqJCA0DrnOFuhao9lwKfew2u5_7UZ6mPh_CSOMlD6SpUj4pyxWSXsMOEHM1RaSpGfXCEd0zhcVUpXkC6FwM2__HaBmU4uQ23OhRLdlqxuwNrtt6EG21fy-UmbBx0Hvu7sD2ta4SzZBbyUBbLNwQRJ3EzBJ3EI1zSOFJZh8a0JeW3coZolRztfDqi4-YL5ffg-EoIeh_W66a2D4FkqkyNQussEyYpjdUakWeoSIdi5HIbQdzTrDBdPXPfVuNHEfzqQhYtnQukcxHoXLAIXg33nLbVPC4dvdWzouhW9rw4l8MIng-XcU16R0tZ2-asHaNShlAuggct54bXiYBoZRxBvsLTYYCv9716pZ59D3W_pc-iljit1z33z6f1_694dPlXPIMNXEfFh-nh_mO4yX1yR4hJ34L1xa8z-wQh10I_DbJN4OtVL6a_bmw4MA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Innate+immunity%3A+the+first+line+of+defense+against+SARS-CoV-2&rft.jtitle=Nature+immunology&rft.au=Diamond%2C+Michael+S&rft.au=Kanneganti%2C+Thirumala-Devi&rft.date=2022-02-01&rft.eissn=1529-2916&rft.volume=23&rft.issue=2&rft.spage=165&rft_id=info:doi/10.1038%2Fs41590-021-01091-0&rft_id=info%3Apmid%2F35105981&rft.externalDocID=35105981 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1529-2908&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1529-2908&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1529-2908&client=summon |