Pharmacological modulation of fish-induced depth selection in D. magna: the role of cholinergic and GABAergic signalling
Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopm...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 19407 - 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.09.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean
Daphnia magna
have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic
D. magna
clone (P
1
32,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate
D. magna
phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABA
A
receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the
D. magna
behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA. |
---|---|
AbstractList | Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P132,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABAA receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA. Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P132,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABAA receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA.Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P132,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABAA receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA. Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P 1 32,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABA A receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA. Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P 32,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABA receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA. Abstract Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system regulates many aspects of animal behaviour responses. Therefore, behavioural responses can be especially sensitive to compounds with a neurodevelopmental or neurofunctional mode of action. Phototactic behavioural changes against fish in the freshwater crustacean Daphnia magna have been the subject of many ecological investigations. The aim of this study was to identify which neurotransmitter systems modulate phototactic behaviour to fish kairomones. We used a positive phototactic D. magna clone (P132,85) that shows marked negative phototactism after exposure to fish kairomones. Treatments included up to 16 known agonists and antagonists of the serotonergic, cholinergic, dopaminergic, histaminergic, glutamatergic and GABAergic systems. It was hypothesized that many neurological signalling pathways may modulate D. magna phototactic behaviour to fish kairomones. A new custom-designed device with vertically oriented chambers was used, and changes in the preferred areas (bottom, middle, and upper areas) were analysed using groups of animals after 24 h of exposure to the selected substance(s). The results indicated that agonists of the muscarinic acetylcholine and GABAA receptors and their equi-effective mixture ameliorated the negative phototactic response to fish kairomones, whereas antagonists and their mixtures increased the negative phototactism to fish kairomones. Interestingly, inhibition of the muscarinic acetylcholine receptor abolished positive phototaxis, thus inducing the phototactic response to fish kairomones. Analysis of the profile of neurotransmitters and their related metabolites showed that the D. magna behavioural responses induced by fish depend on changes in the levels of acetylcholine, dopamine and GABA. |
ArticleNumber | 19407 |
Author | Raldua, Demetrio Barata, Carlos Bedrossiantz, Juliette Fuertes, Inmaculada |
Author_xml | – sequence: 1 givenname: Juliette orcidid: 0000-0001-6318-6453 surname: Bedrossiantz fullname: Bedrossiantz, Juliette organization: Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, CSIC – sequence: 2 givenname: Inmaculada surname: Fuertes fullname: Fuertes, Inmaculada organization: Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, CSIC – sequence: 3 givenname: Demetrio surname: Raldua fullname: Raldua, Demetrio organization: Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, CSIC – sequence: 4 givenname: Carlos surname: Barata fullname: Barata, Carlos email: cbmqam@cid.csic.es organization: Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, CSIC |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34593892$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLUv_AAcUiQuXFMdOYpsD0lKgVKoEBzhbjj1JvHLsxU4o_Hu8SSltD_XFH_Pem_HMe54dOe8gy16W6KxEhL2NVVlzViBcFpwx1hTXT7ITjKq6wATjozvn4-w0xh1Kq8a8Kvmz7JhUNSeM45Ps97dBhlEqb31vlLT56PVs5WS8y32XdyYOhXF6VqBzDftpyCNYUEvcuPzjWT7K3sl3-TRAHryFA0sN3hoHISnm0un8Yvthu96iSWCbgv2L7GknbYTTm32T_fj86fv5l-Lq68Xl-faqUHWFpkJWWDUIAbSka0nd8ZI1iLYEGJeII6YIRZIyBW3Nsa4YbxWjhGKllC6V6sgmu1x1tZc7sQ9mlOGP8NKI5cGHXsgwGWVBaNJWrANJOo0rXFMOXU1pmyrQZU1Ym7Ter1r7uR1BK3BTkPae6P2IM4Po_S_BKlaR1PJN9uZGIPifM8RJjCYqsFY68HMUKSmjtGmaA_T1A-jOzyE1b0FRnqZf04R6dbei21L-DTgB8ApQwccYoLuFlEgcjCRWI4lkJLEYSVwnEntAUmZaPJF-ZezjVLJSY8rjegj_y36E9RcYft7L |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_155934 crossref_primary_10_1007_s11356_022_21571_6 crossref_primary_10_1016_j_chemosphere_2024_143612 crossref_primary_10_1016_j_envres_2023_116775 crossref_primary_10_1016_j_scitotenv_2022_154684 crossref_primary_10_1016_j_envpol_2024_123355 crossref_primary_10_1016_j_envpol_2024_123685 crossref_primary_10_2139_ssrn_4157310 crossref_primary_10_1016_j_scitotenv_2022_159042 crossref_primary_10_1111_nyas_15001 crossref_primary_10_1186_s12302_024_01004_6 crossref_primary_10_1016_j_jhazmat_2024_135690 crossref_primary_10_1016_j_cbpc_2024_110116 crossref_primary_10_1016_j_scitotenv_2022_161268 crossref_primary_10_1007_s11356_024_31914_0 crossref_primary_10_1016_j_scitotenv_2022_158649 crossref_primary_10_3389_fevo_2022_804521 |
Cites_doi | 10.1016/j.aquatox.2015.07.019 10.1007/BF00028400 10.1007/s00216-019-01968-y 10.1002/etc.378 10.1021/acs.est.6b04768 10.1016/j.aquatox.2013.01.008 10.1016/j.ecoenv.2018.08.042 10.1007/s004420100712 10.1242/jeb.054486 10.1016/j.pbb.2015.08.010 10.2307/1940075 10.1093/plankt/15.9.1087 10.1186/s12915-016-0341-7 10.1016/j.envpol.2017.10.043 10.1023/A:1003119827390 10.1038/378483a0 10.1111/mec.15230 10.1111/j.1476-5381.1986.tb14596.x 10.1086/339389 10.1002/etc.5620200522 10.1038/s41598-018-36956-2 10.1017/S0006323199005381 10.1039/C9EM00463G 10.1016/j.bbr.2011.01.055 10.1139/Z10-029 10.1086/286164 10.1542/peds.114.2.S2.555 10.1016/j.aquatox.2013.12.010 10.4319/lo.1999.44.2.0393 10.1016/j.scitotenv.2018.04.157 10.1073/pnas.1010930108 10.1038/s41598-018-19778-0 10.1007/BF00014332 10.1038/363449a0 10.1126/science.1197761 10.1073/pnas.111606798 10.2307/2389671 10.1371/journal.pone.0036879 10.1186/1471-213X-10-45 10.3389/fnbeh.2018.00330 10.1371/journal.pone.0121324 10.1016/j.scitotenv.2020.140045 10.1016/j.aquatox.2007.07.004 10.1016/j.chemosphere.2020.127814 10.1016/j.scitotenv.2019.01.187 10.1021/acs.est.6b00826 10.1098/rspb.2013.3250 10.1126/science.150.3704.1706.a 10.1098/rspb.2015.1440 10.1146/annurev-ento-112408-085442 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-98886-w |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_d3b48fea3fd242579ef577b42cd1538b PMC8484359 34593892 10_1038_s41598_021_98886_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-a42c600eeb3fb35f918607b3e89a0908c370a78ceb592d489bc87372cccd1ccf3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:18:05 EDT 2025 Thu Aug 21 17:42:40 EDT 2025 Thu Jul 10 23:23:25 EDT 2025 Wed Aug 13 08:04:52 EDT 2025 Thu Jan 02 22:55:34 EST 2025 Tue Jul 01 03:49:24 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Fri Feb 21 02:39:30 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-a42c600eeb3fb35f918607b3e89a0908c370a78ceb592d489bc87372cccd1ccf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6318-6453 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-98886-w |
PMID | 34593892 |
PQID | 2577915957 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d3b48fea3fd242579ef577b42cd1538b pubmedcentral_primary_oai_pubmedcentral_nih_gov_8484359 proquest_miscellaneous_2578776669 proquest_journals_2577915957 pubmed_primary_34593892 crossref_primary_10_1038_s41598_021_98886_w crossref_citationtrail_10_1038_s41598_021_98886_w springer_journals_10_1038_s41598_021_98886_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-30 |
PublicationDateYYYYMMDD | 2021-09-30 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | De Meester (CR28) 1991; 225 Sumpter, Donnachie, Johnson (CR30) 2014; 151 Jeong, Yoon, Kim, Kim, Kim (CR46) 2018; 233 Oda, Kato, Watanabe, Tatarazako, Iguchi (CR32) 2011; 30 CR38 Albert, Lingle, Marder, O’Neil (CR37) 1986; 87 Barata, Baird, Soares (CR18) 2002; 129 CR34 CR33 De Meester, Dumont (CR10) 1988; 162 Brooks, Dodson (CR19) 1965; 150 Boersma, Spaak, De Meester (CR6) 1998; 152 Colbourne (CR44) 2011; 331 De Coninck, De Schamphelaere, Jansen, De Meester, Janssen (CR50) 2013; 130–131 CR2 Bauknecht, Jékely (CR43) 2017; 15 Boersma, De Meester, Spaak (CR17) 1999; 44 Rivetti, Campos, Barata (CR15) 2015; 170 CR49 CR48 Jordaõ (CR39) 2016; 50 Rivetti, Climent, Gómez-Canela, Barata (CR25) 2019; 411 Ferrari, Wisenden, Chivers (CR1) 2010; 88 Barry (CR21) 2002; 75 Robinson, Platt, Riedel (CR42) 2011; 221 Campos, Rivetti, Tauler, Piña, Barata (CR41) 2019; 9 De Meester, Cousyn (CR8) 1997; 360 Cousyn (CR4) 2001; 98 Riemensperger (CR45) 2011; 108 Ffrench-Constant, Rocheleau, Steichen, Chalmers (CR36) 1993; 363 Ågerstrand (CR31) 2020; 22 Hanazato, Dodson (CR23) 1993; 15 Gust (CR35) 2019; 28 CR11 McCoole, Baer, Christie (CR12) 2011; 214 Lampert (CR3) 1989; 3 CR53 CR51 Barrozo, Fowler, Beckman (CR13) 2015; 137 Ringelberg (CR40) 1999; 74 Rivetti (CR16) 2018; 8 CR29 CR27 CR26 CR24 CR22 Falkner (CR47) 2004; 114 Nhan, Michels, De Meester (CR9) 2001; 20 Bownik, Sokołowska, Ślaska (CR14) 2018; 635 CR20 De Meester (CR5) 1993; 74 De Meester, Weider, Tollrian (CR7) 1995; 378 Gómez-Canela (CR52) 2018; 164 MCO Ferrari (98886_CR1) 2010; 88 98886_CR20 98886_CR22 KA Gust (98886_CR35) 2019; 28 98886_CR24 A Bownik (98886_CR14) 2018; 635 98886_CR26 C Gómez-Canela (98886_CR52) 2018; 164 98886_CR2 DK Nhan (98886_CR9) 2001; 20 98886_CR27 T Hanazato (98886_CR23) 1993; 15 L De Meester (98886_CR28) 1991; 225 T Riemensperger (98886_CR45) 2011; 108 98886_CR29 S Oda (98886_CR32) 2011; 30 J Ringelberg (98886_CR40) 1999; 74 RH Ffrench-Constant (98886_CR36) 1993; 363 JP Sumpter (98886_CR30) 2014; 151 DIM De Coninck (98886_CR50) 2013; 130–131 98886_CR51 98886_CR53 R Jordaõ (98886_CR39) 2016; 50 98886_CR11 C Rivetti (98886_CR16) 2018; 8 M Boersma (98886_CR17) 1999; 44 JL Brooks (98886_CR19) 1965; 150 M Ågerstrand (98886_CR31) 2020; 22 B Campos (98886_CR41) 2019; 9 C Rivetti (98886_CR25) 2019; 411 TY Jeong (98886_CR46) 2018; 233 98886_CR48 W Lampert (98886_CR3) 1989; 3 98886_CR49 ER Barrozo (98886_CR13) 2015; 137 MJ Barry (98886_CR21) 2002; 75 L De Meester (98886_CR10) 1988; 162 C Rivetti (98886_CR15) 2015; 170 98886_CR33 J Albert (98886_CR37) 1986; 87 JK Colbourne (98886_CR44) 2011; 331 98886_CR34 L De Meester (98886_CR7) 1995; 378 98886_CR38 L De Meester (98886_CR5) 1993; 74 B Falkner (98886_CR47) 2004; 114 C Cousyn (98886_CR4) 2001; 98 MD McCoole (98886_CR12) 2011; 214 M Boersma (98886_CR6) 1998; 152 C Barata (98886_CR18) 2002; 129 L De Meester (98886_CR8) 1997; 360 P Bauknecht (98886_CR43) 2017; 15 L Robinson (98886_CR42) 2011; 221 |
References_xml | – ident: CR22 – ident: CR49 – volume: 170 start-page: 289 year: 2015 end-page: 296 ident: CR15 article-title: Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.07.019 – volume: 225 start-page: 217 year: 1991 end-page: 227 ident: CR28 article-title: An analysis of the phototactic behaviour of a clones and their sexual descendants publication-title: Hydrobiologia doi: 10.1007/BF00028400 – ident: CR51 – volume: 411 start-page: 5867 year: 2019 end-page: 5876 ident: CR25 article-title: Characterization of neurotransmitter profiles in juveniles exposed to environmental concentrations of antidepressants and anxiolytic and antihypertensive drugs using liquid chromatography–tandem mass spectrometry publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-01968-y – volume: 30 start-page: 232 year: 2011 end-page: 238 ident: CR32 article-title: Morphological changes in induced by a crustacean terpenoid hormone and its analog publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.378 – volume: 50 start-page: 13565 year: 2016 end-page: 13573 ident: CR39 article-title: Mechanisms of action of compounds that enhance storage lipid accumulation in publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04768 – ident: CR29 – volume: 130–131 start-page: 149 year: 2013 end-page: 159 ident: CR50 article-title: Interactive effects of a bacterial parasite and the insecticide carbaryl to life-history and physiology of two clones differing in carbaryl sensitivity publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2013.01.008 – volume: 164 start-page: 388 year: 2018 end-page: 397 ident: CR52 article-title: Metabolomic changes induced by nicotine in adult zebrafish skeletal muscle publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.08.042 – volume: 129 start-page: 220 year: 2002 end-page: 227 ident: CR18 article-title: Phenotypic plasticity in Straus: variable maturation instar as an adaptive response to predation pressure publication-title: Oecologia doi: 10.1007/s004420100712 – volume: 214 start-page: 1773 year: 2011 end-page: 1782 ident: CR12 article-title: Histaminergic signaling in the central nervous system of and a role for it in the control of phototactic behavior publication-title: J. Exp. Biol. doi: 10.1242/jeb.054486 – volume: 137 start-page: 101 year: 2015 end-page: 109 ident: CR13 article-title: Exposure to D2-like dopamine receptor agonists inhibits swimming in publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2015.08.010 – volume: 74 start-page: 1467 year: 1993 end-page: 1474 ident: CR5 article-title: Genotype, fish-mediated chemicals, and phototactic behavior in publication-title: Ecology doi: 10.2307/1940075 – volume: 15 start-page: 1087 year: 1993 end-page: 1095 ident: CR23 article-title: Morphological responses of four species of cyclomorphic to a short-term exposure to the insecticide carbaryl publication-title: J. Plankton Res. doi: 10.1093/plankt/15.9.1087 – volume: 15 start-page: 6 year: 2017 ident: CR43 article-title: Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians publication-title: BMC Biol. doi: 10.1186/s12915-016-0341-7 – volume: 233 start-page: 99 year: 2018 end-page: 108 ident: CR46 article-title: Mode of action characterization for adverse effect of propranolol in based on behavior and physiology monitoring and metabolite profiling publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.043 – volume: 360 start-page: 169 year: 1997 end-page: 175 ident: CR8 article-title: The change in phototactic behaviour of a clone in the presence of fish kairomones: The effect of exposure time publication-title: Hydrobiologia doi: 10.1023/A:1003119827390 – volume: 378 start-page: 483 year: 1995 end-page: 485 ident: CR7 article-title: Alternative antipredator defences and genetic polymorphism in a pelagic predator–prey systems publication-title: Nature doi: 10.1038/378483a0 – ident: CR11 – volume: 28 start-page: 4422 year: 2019 end-page: 4438 ident: CR35 article-title: Different as night and day: Behavioural and life history responses to varied photoperiods in Daphnia magna publication-title: Mol. Ecol. doi: 10.1111/mec.15230 – volume: 87 start-page: 771 year: 1986 end-page: 779 ident: CR37 article-title: A GABA-activated chloride-conductance not blocked by picrotoxin on spiny lobster neuromuscular preparations publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1986.tb14596.x – ident: CR26 – volume: 75 start-page: 179 year: 2002 end-page: 186 ident: CR21 article-title: Progress toward understanding the neurophysiological basis of predator-induced morphology in publication-title: Physiol. Biochem. Zool. doi: 10.1086/339389 – volume: 20 start-page: 1098 year: 2001 end-page: 1103 ident: CR9 article-title: Phototactic behavior of and the continuous monitoring of water quality: Interference of fish kairomones and food quality publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620200522 – volume: 9 start-page: 9 year: 2019 ident: CR41 article-title: Tryptophan hydroxylase (TRH) loss of function mutations in deregulated growth, energetic, serotoninergic and arachidonic acid metabolic signalling pathways publication-title: Sci. Rep. doi: 10.1038/s41598-018-36956-2 – volume: 74 start-page: 397 year: 1999 end-page: 423 ident: CR40 article-title: The photobehaviour of spp. as a model to explain diel vertical migration in zooplankton publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1017/S0006323199005381 – volume: 22 start-page: 49 year: 2020 end-page: 65 ident: CR31 article-title: Emerging investigator series: Use of behavioural endpoints in the regulation of chemicals publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C9EM00463G – volume: 221 start-page: 443 year: 2011 end-page: 465 ident: CR42 article-title: Involvement of the cholinergic system in conditioning and perceptual memory publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2011.01.055 – volume: 88 start-page: 698 year: 2010 end-page: 724 ident: CR1 article-title: Chemical ecology of predator–prey interactions in aquatic ecosystems: A review and prospectus publication-title: Can. J. Zool. doi: 10.1139/Z10-029 – ident: CR2 – volume: 152 start-page: 237 year: 1998 end-page: 248 ident: CR6 article-title: Predator-mediated plasticity in morphology, life history, and behavior of : The uncoupling of responses publication-title: Am. Nat. doi: 10.1086/286164 – volume: 114 start-page: 555 year: 2004 end-page: 576 ident: CR47 article-title: The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents publication-title: Pediatrics doi: 10.1542/peds.114.2.S2.555 – ident: CR53 – volume: 151 start-page: 57 year: 2014 end-page: 60 ident: CR30 article-title: The apparently very variable potency of the anti-depressant fluoxetine publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2013.12.010 – ident: CR33 – volume: 44 start-page: 393 year: 1999 end-page: 402 ident: CR17 article-title: Environmental stress and local adaptation in publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1999.44.2.0393 – volume: 635 start-page: 249 year: 2018 end-page: 258 ident: CR14 article-title: Effects of apomorphine, a dopamine agonist, on : Imaging of swimming track density as a novel tool in the assessment of swimming activity publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.157 – ident: CR27 – volume: 108 start-page: 834 year: 2011 end-page: 839 ident: CR45 article-title: Behavioral consequences of dopamine deficiency in the central nervous system publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1010930108 – volume: 8 start-page: 11 year: 2018 ident: CR16 article-title: Tryptophan hydroxylase (TRH) loss of function mutations induce growth and behavioral defects in publication-title: Sci. Rep. doi: 10.1038/s41598-018-19778-0 – volume: 162 start-page: 47 year: 1988 end-page: 55 ident: CR10 article-title: The genetics of phototaxis in : Existence of three phenotypes for vertical migration among parthenogenetic females publication-title: Hydrobiologia doi: 10.1007/BF00014332 – ident: CR48 – volume: 363 start-page: 449 year: 1993 end-page: 451 ident: CR36 article-title: A point mutation in a GABA receptor confers insecticide resistance publication-title: Nature doi: 10.1038/363449a0 – ident: CR38 – volume: 150 start-page: 25 year: 1965 end-page: 28 ident: CR19 article-title: Predation, body size and composition of plankton publication-title: Science (80-. ) – volume: 331 start-page: 555 year: 2011 end-page: 561 ident: CR44 article-title: The ecoresponsive genome of publication-title: Science (80-. ) doi: 10.1126/science.1197761 – volume: 98 start-page: 6256 year: 2001 end-page: 6260 ident: CR4 article-title: Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.111606798 – ident: CR34 – volume: 3 start-page: 21 year: 1989 end-page: 27 ident: CR3 article-title: The adaptive significance of diel vertical migration of zooplankton publication-title: Funct. Ecol. doi: 10.2307/2389671 – ident: CR24 – ident: CR20 – volume: 44 start-page: 393 year: 1999 ident: 98886_CR17 publication-title: Limnol. Oceanogr. doi: 10.4319/lo.1999.44.2.0393 – volume: 22 start-page: 49 year: 2020 ident: 98886_CR31 publication-title: Environ. Sci. Process. Impacts doi: 10.1039/C9EM00463G – ident: 98886_CR11 doi: 10.1371/journal.pone.0036879 – volume: 20 start-page: 1098 year: 2001 ident: 98886_CR9 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.5620200522 – ident: 98886_CR49 – ident: 98886_CR33 doi: 10.1186/1471-213X-10-45 – volume: 162 start-page: 47 year: 1988 ident: 98886_CR10 publication-title: Hydrobiologia doi: 10.1007/BF00014332 – volume: 411 start-page: 5867 year: 2019 ident: 98886_CR25 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-019-01968-y – volume: 15 start-page: 1087 year: 1993 ident: 98886_CR23 publication-title: J. Plankton Res. doi: 10.1093/plankt/15.9.1087 – volume: 233 start-page: 99 year: 2018 ident: 98886_CR46 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.10.043 – volume: 3 start-page: 21 year: 1989 ident: 98886_CR3 publication-title: Funct. Ecol. doi: 10.2307/2389671 – volume: 152 start-page: 237 year: 1998 ident: 98886_CR6 publication-title: Am. Nat. doi: 10.1086/286164 – volume: 363 start-page: 449 year: 1993 ident: 98886_CR36 publication-title: Nature doi: 10.1038/363449a0 – volume: 151 start-page: 57 year: 2014 ident: 98886_CR30 publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2013.12.010 – volume: 98 start-page: 6256 year: 2001 ident: 98886_CR4 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.111606798 – volume: 108 start-page: 834 year: 2011 ident: 98886_CR45 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1010930108 – volume: 137 start-page: 101 year: 2015 ident: 98886_CR13 publication-title: Pharmacol. Biochem. Behav. doi: 10.1016/j.pbb.2015.08.010 – volume: 28 start-page: 4422 year: 2019 ident: 98886_CR35 publication-title: Mol. Ecol. doi: 10.1111/mec.15230 – volume: 88 start-page: 698 year: 2010 ident: 98886_CR1 publication-title: Can. J. Zool. doi: 10.1139/Z10-029 – ident: 98886_CR2 doi: 10.3389/fnbeh.2018.00330 – volume: 8 start-page: 11 year: 2018 ident: 98886_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-018-19778-0 – volume: 129 start-page: 220 year: 2002 ident: 98886_CR18 publication-title: Oecologia doi: 10.1007/s004420100712 – ident: 98886_CR20 doi: 10.1371/journal.pone.0121324 – ident: 98886_CR34 doi: 10.1016/j.scitotenv.2020.140045 – volume: 214 start-page: 1773 year: 2011 ident: 98886_CR12 publication-title: J. Exp. Biol. doi: 10.1242/jeb.054486 – ident: 98886_CR51 doi: 10.1016/j.aquatox.2007.07.004 – volume: 74 start-page: 1467 year: 1993 ident: 98886_CR5 publication-title: Ecology doi: 10.2307/1940075 – volume: 221 start-page: 443 year: 2011 ident: 98886_CR42 publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2011.01.055 – volume: 164 start-page: 388 year: 2018 ident: 98886_CR52 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.08.042 – ident: 98886_CR26 doi: 10.1016/j.chemosphere.2020.127814 – volume: 75 start-page: 179 year: 2002 ident: 98886_CR21 publication-title: Physiol. Biochem. Zool. doi: 10.1086/339389 – ident: 98886_CR27 doi: 10.1016/j.scitotenv.2019.01.187 – volume: 635 start-page: 249 year: 2018 ident: 98886_CR14 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.04.157 – ident: 98886_CR24 doi: 10.1021/acs.est.6b00826 – volume: 225 start-page: 217 year: 1991 ident: 98886_CR28 publication-title: Hydrobiologia doi: 10.1007/BF00028400 – ident: 98886_CR53 – ident: 98886_CR29 doi: 10.1098/rspb.2013.3250 – volume: 87 start-page: 771 year: 1986 ident: 98886_CR37 publication-title: Br. J. Pharmacol. doi: 10.1111/j.1476-5381.1986.tb14596.x – volume: 130–131 start-page: 149 year: 2013 ident: 98886_CR50 publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2013.01.008 – volume: 360 start-page: 169 year: 1997 ident: 98886_CR8 publication-title: Hydrobiologia doi: 10.1023/A:1003119827390 – volume: 50 start-page: 13565 year: 2016 ident: 98886_CR39 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04768 – volume: 150 start-page: 25 year: 1965 ident: 98886_CR19 publication-title: Science (80-. ) doi: 10.1126/science.150.3704.1706.a – volume: 74 start-page: 397 year: 1999 ident: 98886_CR40 publication-title: Biol. Rev. Camb. Philos. Soc. doi: 10.1017/S0006323199005381 – volume: 114 start-page: 555 year: 2004 ident: 98886_CR47 publication-title: Pediatrics doi: 10.1542/peds.114.2.S2.555 – ident: 98886_CR22 doi: 10.1098/rspb.2015.1440 – volume: 30 start-page: 232 year: 2011 ident: 98886_CR32 publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.378 – ident: 98886_CR48 – volume: 170 start-page: 289 year: 2015 ident: 98886_CR15 publication-title: Aquat. Toxicol. doi: 10.1016/j.aquatox.2015.07.019 – ident: 98886_CR38 doi: 10.1146/annurev-ento-112408-085442 – volume: 9 start-page: 9 year: 2019 ident: 98886_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36956-2 – volume: 15 start-page: 6 year: 2017 ident: 98886_CR43 publication-title: BMC Biol. doi: 10.1186/s12915-016-0341-7 – volume: 331 start-page: 555 year: 2011 ident: 98886_CR44 publication-title: Science (80-. ) doi: 10.1126/science.1197761 – volume: 378 start-page: 483 year: 1995 ident: 98886_CR7 publication-title: Nature doi: 10.1038/378483a0 |
SSID | ssj0000529419 |
Score | 2.4428964 |
Snippet | Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous system... Abstract Animal behaviour is closely related to individual fitness, which allows animals to choose suitable mates or avoid predation. The central nervous... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19407 |
SubjectTerms | 631/158/856 631/443/376 Acetylcholine receptors (muscarinic) Agonists Animal behavior Animals Antagonists Behavior, Animal - drug effects Central nervous system Chemotaxis - drug effects Cholinergic Agents - pharmacology Crustaceans Daphnia - metabolism Dopamine receptors Freshwater crustaceans Freshwater fish GABA Agents - pharmacology Glutamatergic transmission Humanities and Social Sciences Kairomones Metabolites Mode of action multidisciplinary Neurotransmitters Pheromones - metabolism Phototaxis Phototaxis - drug effects Predation Science Science (multidisciplinary) Signal transduction γ-Aminobutyric acid A receptors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQpUpcEG8CpTISNwhNYju2uW0LpeKAOFCpN8tPdqU2W7FbFf49M3Z22y2vC8fEdmLNw_5GHn9DyMueuzboPtWyT6Lmyja160WsvXJOBgWDfGb7_NQfHfOPJ-LkWqkvzAkr9MBFcHuBOa5StCyFjI51TEJKxzsf0Fkdrr6w510Lpgqrd6d5q8dbMg1TewvYqfA2GWYkQNTX15cbO1Em7P8dyvw1WfLGiWneiA7vkjsjgqSTMvN75FYc7pPtUlPyxwPy_fMVGTUqgJ7Nw1iii84TTbPFtIY4HDQaaIjnyyld5FI42D4b6Ls39Mx-HexbCsiQYu4hjsI1Mt8SnHlqh0A_TPYn5QnzP2zm9X5Ijg_ffzk4qsfyCrUHmLasLcgQ4E6EcDo5JpJuVd9Ix6LSttGN8kw2ViofndBd4Eo7r7CoDagvtN4n9ohsDfMhPiE09K51oZMdRzq9JKyDsKUFpTHrlW9ZRdqVqI0fucexBMapyWfgTJmiHgPqMVk95rIir9Zjzgvzxl9776MG1z2RNTu_AFsyoy2Zf9lSRXZW-jejKy8M9JMafidkRV6sm8EJ8WTFDnF-kfsoKSES1BV5XMxlPRPGhQZU2FVEbhjSxlQ3W4bZNBN9K64AzcI3X69M7mpafxbF0_8himfkdoe-kjNjdsjW8ttFfA7wa-l2s6f9BF24La4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDcwmsRPbXFAXWFYcEAdW6i3yc1uJTcqmq4V_z4yTpiqPPba2K9ffjD3jGX9DyMta2MLrOjJZx4oJZXJm6yowp6yVXsEgl9g-v9THJ-LzvJqPF279mFa52RPTRu07h3fkByBaUsPZW8l3qx8Mq0ZhdHUsoXGd3EDqMkzpknM53bFgFEsUenwrk3N10MN5hW_KMC8BfL-aXe6cR4m2_1-25t8pk3_ETdNxdHSH3B7tSDobgL9LroX2Hrk5VJb8dZ_8_LqlpEYY6Fnnx0JdtIs0LvsFA28ccPXUh9V6QftUEAfbly398IaemdPWvKVgH1LMQMRRuFOmt4JLR03r6afZ4Wz4hFkgJrF7PyAnRx-_vT9mY5EF5sBYWzMjSgdGTwCnOlpeRV2oOpeWB6VNrnPluMyNVC7YSpdeKG2dwtI2AKIvnIv8IdlruzY8JtTXtrC-lKVAUr1YGQvOSxEM58YpV_CMFJulbtzIQI6FML43KRLOVTPA0wA8TYKnuczIq2nMauDfuLL3ISI49UTu7PRFd37ajKrYeG6FijCt6JO_pUME2bKwDh63f5uR_Q3-zajQfbMVv4y8mJpBFTG-YtrQXaQ-SkrwB3VGHg3iMs2Ei0qDbVhmRO4I0s5Ud1va5SLRfSuhwKaF33y9EbnttP6_FE-u_hdPya0StSBlvuyTvfX5RXgG5tXaPk869BsGRSTF priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIiQuqOUZaJGRuEEgiZ3Y7m27UCoOiAOVerP87K5Ek6q7VeHfM3Ye1UJB4rjxTHbkGdsz8cw3AK8bZkonm5DzJtQ5E7rITVP73ApjuBPIZBPa55fm-IR9Pq1Pt6Aaa2FS0n6CtEzb9Jgd9n6FB00sBosJBRi0Nfn1HbgbodujVc-b-fRdJd5csVIO9TEFFbewbpxBCar_Nv_yzzTJ3-5K0xF0tAMPBt-RzHppd2HLtw_hXt9N8ucj-PH1BoY6Tj0579zQnIt0gYTlapFjBI66dMT5i_WCrFITnDi-bMmHd-Rcn7X6gKBPSGLWYeSKu2OqD1xaoltHPs0OZ_2vmPmhE6L3Yzg5-vhtfpwPjRVyiw7aOtessujoeAykg6F1kKVoCm6oF1IXshCW8kJzYb2pZeWYkMaK2M4GFedKawN9Attt1_pnQFxjSuMqXrEIpBdqbTBgKb2mVFthS5pBOU61sgPqeGx-8V2l228qVK8ehepRST3qOoM3E89Fj7nxT-rDqMGJMuJlpwfd5Zka7Ec5apgIKFZwKcaSPtScG5wHF7d8k8HeqH81LOKVQjou8e9qnsGraRiXX7xT0a3vrhKN4BxjQJnB095cJkkoqyX6g1UGfMOQNkTdHGmXiwTxLZhAPxbf-XY0uRux_j4Vz_-P_AXcr-KqSNkve7C9vrzy--hirc3LtKZ-AU7tIx8 priority: 102 providerName: Springer Nature |
Title | Pharmacological modulation of fish-induced depth selection in D. magna: the role of cholinergic and GABAergic signalling |
URI | https://link.springer.com/article/10.1038/s41598-021-98886-w https://www.ncbi.nlm.nih.gov/pubmed/34593892 https://www.proquest.com/docview/2577915957 https://www.proquest.com/docview/2578776669 https://pubmed.ncbi.nlm.nih.gov/PMC8484359 https://doaj.org/article/d3b48fea3fd242579ef577b42cd1538b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxNBFD70guCLeO9qDSP4pluz15kRRDaxtQQsRQ3kbZlrE2h3a5LS9t97ZnY3JRoFn0J2ZjbDuXC-kznzHYA3eSojzXMb0txmYcpEP5R5ZkLFpKSa4SLl2T5P8uNxOppkky3o2h21AlxsTO1cP6nx_Pzg5uftJ3T4j82VcfZ-gUHIXRRzxQaY0OXh9TbsYmSizlG_tnC_4fqOeep7fTgS9hDBRNzeo9n8mrVY5Sn9N-HQP8spfztT9aHq6CE8aDEmKRqjeARbpnoM95quk7dP4Ob0jq7aqYhc1Lpt4kVqS-xsMQ0xU0eda6LN5XJKFr5ZjhufVeTzAbkQZ5X4QBA7Eled6FY5Qfp7hDNFRKXJl2JQNN9chYjwzN9PYXx0-GN4HLYNGEKFQG4ZijRWCIgMJtxWJpnlEcv7VCaGcdHnfaYS2heUKSMzHuuUcamYa3uDCtaRUjZ5BjtVXZk9IDqXkdQxjVNHuGczITGxiYxIEqGYipIAok7UpWrZyV2TjPPSn5InrGzUU6J6Sq-e8jqAt6s1lw03xz9nD5wGVzMdr7Z_UM_PytZNS53IlFncltU-F-PGZpRKlIN2oUEGsN_pv-xstcR5lOPPZTSA16thdFN39iIqU1_5OYxSzBV5AM8bc1ntJEkzjrgxDoCuGdLaVtdHqtnUU4GzlCHexXe-60zublt_F8WL_xLcS7gfO6fwRTL7sLOcX5lXiMSWsgfbdEJ7sFsUo-8j_Bwcnpx-w6fDfNjz_270vAP-AlrpM_4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJwQviG8CA4wETxCWxElsIyHUso2OjWpCm7Q346-slVhS1k5l_xR_I2fnoyofe9tjazu6-H7nu8ud7xB6macqNjwvQpoXWZgyGYUqz2yomVLUMFikfbXPUT48Sj8fZ8dr6Fd7F8alVbZnoj-oTaXdN_JNgBbloHsz-mH6I3Rdo1x0tW2hUcNiz14swGWbvd_dAv6-SpKd7cOPw7DpKhBqsE7moUwTDVreghdZKJIVPGZ5RBWxjMuIR0wTGknKtFUZT0zKuNLM9XIBqk2sdUHgudfQekrAlemh9cH26OBr91XHxc3SmDe3cyLCNmegId0tNpcJAd5mHi5WNKBvFPAv6_bvJM0_IrVeAe7cRrcayxX3a6jdQWu2vIuu170sL-6hnwfLItiO8fi0Mk1rMFwVuJjMxiH4_4Akg42dzsd45lvwuPFJibfe4lN5Usp3GCxS7HIe3Sp3NvvbiRONZWnwp_6gX_9yeSfS1xO_j46uhAEPUK-sSvsIYZOrWJmEJqkr41dkUoG7FFtJiNRMxyRAcbvVQjc1z13rje_Cx94JEzV7BLBHePaIRYBed2umdcWPS2cPHAe7ma5at_-jOjsRjfALQ1TKCiCrMN7D47YANCvYB-MUjgrQRst_0RwhM7EEfIBedMMg_C6iI0tbnfs5jFLwQHmAHtZw6SghacbBGk0CRFeAtELq6kg5GfsC4yxlYEXDM9-0kFuS9f-teHz5WzxHN4aHX_bF_u5o7wm6mTiJ8Hk3G6g3Pzu3T8G4m6tnjURh9O2qhfg3j_djkA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3AACPBE4QlcRLbSAh1lLIxNO2BSX0zvq6RWFLWTmV_jV_HsZO0Kpe97bG1HTk-37nlHJ-D0IsyV6nhpYtp6Yo4ZzKJVVnYWDOlqGGwSIdqnwfl7lH-eVyMN9Cv_i6MT6vsZWIQ1KbR_hv5NkCLctC94MC7Li3icDh6P_0R-w5SPtLat9NoIbJvzxfgvs3e7Q2B1i-zbPTx64fduOswEGuwVOaxzDMNGt-CR-kUKRxPWZlQRSzjMuEJ04QmkjJtVcEzkzOuNPN9XeANTKq1I_DcK-gqJUXqeYyO6fL7jo-g5Snv7ukkhG3PQFf6-2w-JwL8zjJerOnC0DLgX3bu3-maf8Rsgyoc3UI3OxsWD1rQ3UYbtr6DrrVdLc_vop-Hq3LYHgL4pDFdkzDcOOyq2SSuagOYMtjY6XyCZ6EZjx-vajx8g0_kcS3fYrBNsc9-9Ku8lA73FCuNZW3wp8HOoP3lM1BkqCx-Dx1dyvHfR5t1U9uHCJtSpcpkNMt9QT9XSAWOU2olIVIznZIIpf1RC91VP_dNOL6LEIUnTLTkEUAeEcgjFhF6tVwzbWt_XDh7x1NwOdPX7Q5_NKfHohMDwhCVMwfbcib4etw6wLWCczBe9agIbfX0F50wmYkV9CP0fDkMYsDHdmRtm7Mwh1EKviiP0IMWLsudkLzgYJdmEaJrQFrb6vpIXU1CqXGWM7Cn4Zmve8ittvX_o3h08Vs8Q9eBdcWXvYP9x-hG5hkiJOBsoc356Zl9AlbeXD0N7ITRt8vm398TG2Zg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pharmacological+modulation+of+fish-induced+depth+selection+in+D.+magna%3A+the+role+of+cholinergic+and+GABAergic+signalling&rft.jtitle=Scientific+reports&rft.au=Bedrossiantz%2C+Juliette&rft.au=Fuertes%2C+Inmaculada&rft.au=Raldua%2C+Demetrio&rft.au=Barata%2C+Carlos&rft.date=2021-09-30&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-98886-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_98886_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |