Hybrid Cone-Beam Tomographic Reconstruction: Incorporation of Prior Anatomical Models to Compensate for Missing Data

We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects informa...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on medical imaging Vol. 30; no. 1; pp. 69 - 83
Main Authors Sadowsky, Ofri, Junghoon Lee, Sutter, E Grant, Wall, Simon J, Prince, Jerry L, Taylor, Russell H
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2011
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90 ° by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
AbstractList We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90[Formula Omitted] by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90 [compfn] by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90° by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90° by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90° by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed “hybrid reconstruction” method injects information from a prior anatomical model, derived from a subject-specific CT or from a statistical database (atlas), where the C-arm x-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the x-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the x-ray images, and fusion of the DRR and x-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a “ground truth” CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90° by complementing the observed projections with DRRs of two prior models, namely an atlas and a pre-operative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete information due to image truncation, limited scan length, or other limitations. Our proposed "hybrid reconstruction" method injects information from a prior anatomical model, derived from a subject-specific computed tomography (CT) or from a statistical database (atlas), where the C-arm X-ray data is missing. This significantly reduces reconstruction artifacts with little loss of true information from the X-ray projections. The methods consist of constructing anatomical models, fast rendering of digitally reconstructed radiograph (DRR) projections of the models, rigid or deformable registration of the model and the X-ray images, and fusion of the DRR and X-ray projections, all prior to a conventional filtered back-projection algorithm. Our experiments, conducted with a mobile image intensifier C-arm, demonstrate visually and quantitatively the contribution of data fusion to image quality, which we assess through comparison to a "ground truth" CT. Importantly, we show that a significantly improved reconstruction can be obtained from a C-arm scan as short as 90 ° by complementing the observed projections with DRRs of two prior models, namely an atlas and a preoperative same-patient CT. The hybrid reconstruction principles are applicable to other types of C-arms as well.
Author Prince, Jerry L
Sutter, E Grant
Taylor, Russell H
Junghoon Lee
Wall, Simon J
Sadowsky, Ofri
Author_xml – sequence: 1
  givenname: Ofri
  surname: Sadowsky
  fullname: Sadowsky, Ofri
  organization: Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 2
  surname: Junghoon Lee
  fullname: Junghoon Lee
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 3
  givenname: E Grant
  surname: Sutter
  fullname: Sutter, E Grant
  organization: Dept. of Orthopaedic Surg., Johns Hopkins at Bayview Med. Center, Baltimore, MD, USA
– sequence: 4
  givenname: Simon J
  surname: Wall
  fullname: Wall, Simon J
  organization: Dept. of Orthopaedic Surg., Johns Hopkins at Bayview Med. Center, Baltimore, MD, USA
– sequence: 5
  givenname: Jerry L
  surname: Prince
  fullname: Prince, Jerry L
  organization: Dept. of Electr. & Comput. Eng., Johns Hopkins Univ., Baltimore, MD, USA
– sequence: 6
  givenname: Russell H
  surname: Taylor
  fullname: Taylor, Russell H
  organization: Dept. of Comput. Sci., Johns Hopkins Univ., Baltimore, MD, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20667807$$D View this record in MEDLINE/PubMed
BookMark eNqFkttrFDEUxoNU7Lb6LggSfPFpaq5z8aFQ10sXuiiygm8hkzmzTZlJxiQr9L83426L9kGfwuH8vo-Tc74TdOS8A4SeU3JGKWnebNarM0ZyxUhJREMfoQWVsi6YFN-P0IKwqi4IKdkxOonxhhAqJGmeoOOMl1VNqgVKl7dtsB1eZuPiHegRb_zot0FP19bgr2C8iynsTLLevcUrZ3yYfNBziX2PvwTrA75wOvnRGj3gte9giDj57DhO4KJOgPvMrG2M1m3xe530U_S410OEZ4f3FH37-GGzvCyuPn9aLS-uCiMFSYXmujZSdk3TQWnAtITznkqhRdPyruO9llVPZCM5hxp6WhpRNqRluW6b3OGn6HzvO-3aEToDLgU9qCnYUYdb5bVVf3ecvVZb_1NxQbMJywavDwbB_9hBTGq00cAwaAd-F1Vd5nEqxpr_k4zxUgg-D_XqAXnjd8HlPaia1xWVtaAZevnn5Pcj3x0uA-UeMMHHGKBXxqbfZ8kfsYOiRM0JUTkhak6IOiQkC8kD4Z33PyQv9hILAPe4lIzPq_8FiwvHIQ
CODEN ITMID4
CitedBy_id crossref_primary_10_1088_0031_9155_59_2_271
crossref_primary_10_1016_j_compbiomed_2014_11_001
crossref_primary_10_1097_MPA_0000000000000035
crossref_primary_10_1109_TMI_2011_2163074
crossref_primary_10_1007_s11548_022_02720_1
crossref_primary_10_1109_TNS_2013_2275919
crossref_primary_10_1109_TMI_2011_2176555
crossref_primary_10_1016_j_media_2013_02_009
crossref_primary_10_1088_0031_9155_57_8_2287
crossref_primary_10_1088_1361_6560_ab186d
crossref_primary_10_1109_TMI_2011_2171498
crossref_primary_10_3390_s130100137
crossref_primary_10_1088_1361_6560_aa4f6d
crossref_primary_10_1088_0031_9155_57_15_4969
crossref_primary_10_1587_transinf_E96_D_784
crossref_primary_10_1016_j_cmpb_2016_02_017
Cites_doi 10.1109/TMI.2008.2004429
10.1088/0031-9155/49/17/006
10.1007/978-3-540-75759-7_63
10.1109/TVCG.2006.77
10.1109/CVPR.1994.323842
10.1006/cviu.1999.0816
10.1088/0266-5611/22/3/019
10.1088/0031-9155/53/9/001
10.1118/1.2836423
10.1109/42.563664
10.1145/1542362.1542383
10.1118/1.2907563
10.1016/S0031-3203(98)00091-0
10.1118/1.2721656
10.1093/comjnl/7.4.308
10.1109/CVPR.2001.991032
10.1364/JOSAA.4.000629
10.1088/0031-9155/47/14/311
10.1088/0031-9155/50/1/002
10.1364/JOSAA.1.000612
10.1109/42.870250
10.1118/1.598013
10.1016/j.cmpb.2009.08.006
10.1088/0031-9155/53/17/021
10.1118/1.1776673
10.1118/1.594519
10.1118/1.1739298
10.1109/ISBI.2006.1625150
10.1117/12.595450
10.1016/S1361-8415(01)80004-9
10.1016/j.media.2005.03.009
10.1109/TIP.2003.819861
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011
Copyright (c) 2010 IEEE. 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jan 2011
– notice: Copyright (c) 2010 IEEE. 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
DOI 10.1109/TMI.2010.2060491
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
Engineering Research Database
MEDLINE
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 83
ExternalDocumentID PMC3415332
2236761231
20667807
10_1109_TMI_2010_2060491
5523953
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R21 EB003616
– fundername: NIBIB NIH HHS
  grantid: R21 EB007747
– fundername: NIBIB NIH HHS
  grantid: 5R21EB007747-02
– fundername: NIBIB NIH HHS
  grantid: R21-EB003616
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
PKN
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
5PM
ID FETCH-LOGICAL-c540t-a3a8c55d99de6cecb033f154a49b3dd3fa57f059533e8ef16c4690b2533b97f03
IEDL.DBID RIE
ISSN 0278-0062
1558-254X
IngestDate Thu Aug 21 14:13:55 EDT 2025
Thu Jul 10 18:52:28 EDT 2025
Fri Jul 11 03:22:11 EDT 2025
Sun Jun 29 16:48:01 EDT 2025
Wed Feb 19 01:57:17 EST 2025
Tue Jul 01 03:15:49 EDT 2025
Thu Apr 24 23:11:10 EDT 2025
Tue Aug 26 17:17:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-a3a8c55d99de6cecb033f154a49b3dd3fa57f059533e8ef16c4690b2533b97f03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/3415332
PMID 20667807
PQID 838715841
PQPubID 85460
PageCount 15
ParticipantIDs crossref_primary_10_1109_TMI_2010_2060491
proquest_journals_838715841
crossref_citationtrail_10_1109_TMI_2010_2060491
proquest_miscellaneous_861547229
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3415332
pubmed_primary_20667807
ieee_primary_5523953
proquest_miscellaneous_822364430
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-01-01
PublicationDateYYYYMMDD 2011-01-01
PublicationDate_xml – month: 01
  year: 2011
  text: 2011-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2011
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ramamurthi (ref17) 2006
ref12
ref37
ref15
ref36
ref14
cootes (ref30) 2004
ref33
ref11
ref32
ref10
ref2
sidky (ref7) 2006; 14
ref1
ref39
ref38
ref16
ref18
ellingsen (ref29) 2006; 6144
zamyatin (ref6) 2007; 34
yao (ref27) 2002
chintalapani (ref31) 2009
mohamed (ref28) 2004
ref24
ref26
ref25
ref20
ref42
ref41
ref21
ref43
(ref34) 0
ref8
ref9
ref4
ref3
navab (ref19) 1999
ref5
ref40
sadowsky (ref22) 2008
ritter (ref23) 2003
18044608 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):519-26
15470913 - Phys Med Biol. 2004 Sep 7;49(17):3903-23
19116196 - IEEE Trans Med Imaging. 2009 Jan;28(1):137-50
16805256 - IEEE Trans Vis Comput Graph. 2006 Jul-Aug;12(4):461-73
16111913 - Med Image Anal. 2006 Jun;10(3):432-9
9873920 - Med Image Anal. 1996 Mar;1(1):35-51
21874099 - Proc SPIE Int Soc Opt Eng. 2005 Feb;5747(3):2110-2117
11021683 - IEEE Trans Med Imaging. 2000 May;19(5):391-403
492075 - Med Phys. 1979 Sep-Oct;6(5):412-7
18561688 - Med Phys. 2008 May;35(5):2124-36
15715419 - Phys Med Biol. 2005 Jan 7;50(1):13-27
15259639 - Med Phys. 2004 Jun;31(6):1357-62
15487717 - Med Phys. 2004 Sep;31(9):2385-91
15376593 - IEEE Trans Image Process. 2004 Apr;13(4):600-12
18401067 - Phys Med Biol. 2008 May 7;53(9):2207-31
9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98
18383687 - Med Phys. 2008 Feb;35(2):660-3
12171338 - Phys Med Biol. 2002 Jul 21;47(14):2525-46
17555241 - Med Phys. 2007 May;34(5):1593-604
18701771 - Phys Med Biol. 2008 Sep 7;53(17):4777-807
9243472 - Med Phys. 1997 Jul;24(7):1097-106
References_xml – year: 2004
  ident: ref30
  publication-title: Statistical models of appearance for computer vision
– ident: ref41
  doi: 10.1109/TMI.2008.2004429
– ident: ref12
  doi: 10.1088/0031-9155/49/17/006
– ident: ref38
  doi: 10.1007/978-3-540-75759-7_63
– ident: ref32
  doi: 10.1109/TVCG.2006.77
– ident: ref42
  doi: 10.1109/CVPR.1994.323842
– ident: ref40
  doi: 10.1006/cviu.1999.0816
– ident: ref14
  doi: 10.1088/0266-5611/22/3/019
– ident: ref15
  doi: 10.1088/0031-9155/53/9/001
– ident: ref9
  doi: 10.1118/1.2836423
– ident: ref35
  doi: 10.1109/42.563664
– ident: ref10
  doi: 10.1145/1542362.1542383
– ident: ref21
  doi: 10.1118/1.2907563
– ident: ref37
  doi: 10.1016/S0031-3203(98)00091-0
– year: 0
  ident: ref34
  publication-title: The VXL Software Package Open Source Libraries
– volume: 34
  start-page: 1593
  year: 2007
  ident: ref6
  article-title: extension of the reconstruction field of view and truncation correction using sinogram decomposition
  publication-title: Med Phys
  doi: 10.1118/1.2721656
– ident: ref33
  doi: 10.1093/comjnl/7.4.308
– ident: ref36
  doi: 10.1109/CVPR.2001.991032
– ident: ref24
  doi: 10.1364/JOSAA.4.000629
– start-page: 200
  year: 2003
  ident: ref23
  publication-title: Computer Assisted Radiology and Surgery (CARS) 2003
– ident: ref11
  doi: 10.1088/0031-9155/47/14/311
– ident: ref13
  doi: 10.1088/0031-9155/50/1/002
– ident: ref1
  doi: 10.1364/JOSAA.1.000612
– ident: ref20
  doi: 10.1109/42.870250
– ident: ref18
  doi: 10.1118/1.598013
– ident: ref43
  doi: 10.1016/j.cmpb.2009.08.006
– start-page: 688
  year: 1999
  ident: ref19
  article-title: Camera-augmented mobile C-arm (CAMC) application: 3D reconstruction using a low-cost mobile C-arm
  publication-title: Proc MICCAI 99
– ident: ref8
  doi: 10.1088/0031-9155/53/17/021
– ident: ref4
  doi: 10.1118/1.1776673
– year: 2002
  ident: ref27
  publication-title: A Statistical Bone Density Atlas and Deformable Medical Image Registration
– start-page: 151
  year: 2009
  ident: ref31
  article-title: integrating statistical models of bone density into shape based 2d-3d registration framework
  publication-title: MICCAI 2009 Workshop Probablistic Models for Medical Image Analysis
– ident: ref3
  doi: 10.1118/1.594519
– volume: 14
  start-page: 119
  year: 2006
  ident: ref7
  article-title: accurate image reconstruction from few-views and limited-angle data in divergent-beam ct
  publication-title: J X-Ray Sci Technol
– ident: ref16
  doi: 10.1118/1.1739298
– year: 2006
  ident: ref17
  publication-title: Cone-beam tomography using C-arm X-ray projections Complete trajectories and integration of prior CT information
– year: 2008
  ident: ref22
  publication-title: Image registration and hybrid volume reconstruction of bone anatomy using a statistical shape atlas
– ident: ref2
  doi: 10.1109/ISBI.2006.1625150
– ident: ref5
  doi: 10.1117/12.595450
– start-page: 420
  year: 2004
  ident: ref28
  article-title: an approach to 3d finite element mesh generation from segmented medical images
  publication-title: IEEE Int Symp Biomed Imag (ISBI)
– volume: 6144
  start-page: 329
  year: 2006
  ident: ref29
  article-title: mjolnir: deformable image registration using feature diffusion
  publication-title: Proc SPIE Med Imag
– ident: ref25
  doi: 10.1016/S1361-8415(01)80004-9
– ident: ref39
  doi: 10.1016/j.media.2005.03.009
– ident: ref26
  doi: 10.1109/TIP.2003.819861
– reference: 492075 - Med Phys. 1979 Sep-Oct;6(5):412-7
– reference: 21874099 - Proc SPIE Int Soc Opt Eng. 2005 Feb;5747(3):2110-2117
– reference: 16111913 - Med Image Anal. 2006 Jun;10(3):432-9
– reference: 18044608 - Med Image Comput Comput Assist Interv. 2007;10(Pt 2):519-26
– reference: 15259639 - Med Phys. 2004 Jun;31(6):1357-62
– reference: 9101328 - IEEE Trans Med Imaging. 1997 Apr;16(2):187-98
– reference: 18701771 - Phys Med Biol. 2008 Sep 7;53(17):4777-807
– reference: 11021683 - IEEE Trans Med Imaging. 2000 May;19(5):391-403
– reference: 12171338 - Phys Med Biol. 2002 Jul 21;47(14):2525-46
– reference: 17555241 - Med Phys. 2007 May;34(5):1593-604
– reference: 18383687 - Med Phys. 2008 Feb;35(2):660-3
– reference: 16805256 - IEEE Trans Vis Comput Graph. 2006 Jul-Aug;12(4):461-73
– reference: 15487717 - Med Phys. 2004 Sep;31(9):2385-91
– reference: 9243472 - Med Phys. 1997 Jul;24(7):1097-106
– reference: 18561688 - Med Phys. 2008 May;35(5):2124-36
– reference: 15715419 - Phys Med Biol. 2005 Jan 7;50(1):13-27
– reference: 19116196 - IEEE Trans Med Imaging. 2009 Jan;28(1):137-50
– reference: 18401067 - Phys Med Biol. 2008 May 7;53(9):2207-31
– reference: 15470913 - Phys Med Biol. 2004 Sep 7;49(17):3903-23
– reference: 9873920 - Med Image Anal. 1996 Mar;1(1):35-51
– reference: 15376593 - IEEE Trans Image Process. 2004 Apr;13(4):600-12
SSID ssj0014509
Score 2.1302342
Snippet We propose a method for improving the quality of cone-beam tomographic reconstruction done with a C-arm. C-arm scans frequently suffer from incomplete...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 69
SubjectTerms Algorithms
Anatomical atlas
Animals
C-arm
Chimera
Computed tomography
computed tomography (CT)
cone-beam reconstruction
Deformable models
Digital filters
Humans
hybrid reconstruction
Image databases
Image intensifiers
Image Processing, Computer-Assisted - methods
Image quality
Image reconstruction
Imaging, Three-Dimensional - methods
Models, Anatomic
Models, Statistical
Phantoms, Imaging
Radiographic Image Enhancement
Radiography
Rendering (computer graphics)
Tomography, X-Ray Computed - methods
X-ray imaging
Title Hybrid Cone-Beam Tomographic Reconstruction: Incorporation of Prior Anatomical Models to Compensate for Missing Data
URI https://ieeexplore.ieee.org/document/5523953
https://www.ncbi.nlm.nih.gov/pubmed/20667807
https://www.proquest.com/docview/838715841
https://www.proquest.com/docview/822364430
https://www.proquest.com/docview/861547229
https://pubmed.ncbi.nlm.nih.gov/PMC3415332
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PSA48Gh5hALygQsS2TWx8zC3Uqi2SEEctlJvke3Y6oo2qdrsAX49M3EStlVVIeWQyGMlzozjbzLjbwDee5t4XnseF5lOYpnid1AbyhGTxlteOzQr2pxc_sgWJ_L7aXq6BR-nvTDOuT75zM3otI_l161d06-yeYpek0rFNmyj4xb2ak0RA5mGdI6EGGN5lowhSa7my_I45HAlxBSjqDgMkZjnBdWQ3ViN-vIqdyHN2wmTGyvQ0RMox2cPiSe_ZuvOzOyfW7SO_zu4p_B4gKLsINjOM9hyzS482iAo3IUH5RB634Nu8Zs2d7HDtnHxF6cv2LK9CHzXK8vIi_3HRfuZHRM95uVgXqz17OfVqr1iBw36-D1BAaMibOfXrGsZfZLQmUbQyxBBsxJNAW_OvupOP4eTo2_Lw0U8lGyILUK_LtZCFzZNa6Vql1lnDRfCI0rTUhlR18LrNPeI6BBkusL5T5kl99wkeG0UtogXsNPgOF4B4w7RZC6zQmeFLGqtjcJVNud9X5HJCOaj6io78JlTWY3zqvdruKpQ7xXpvRr0HsGHqcdl4PK4R3aPVDTJDdqJYH-0jmqY7NdVIdDrRCCHndjUirOUQi-6ce0aRRIi6peC3yOC2JKYO1UEL4O1TTcfrTWC_IYdTgLEEX6zpVmd9VzhCFLwfSWv7x7OPjwM_8jpeAM7aCbuLYKszrzrZ9dfIDIiaw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIvE48Gh5hPLwgQsS2XVj52FupVDtQlNx2Eq9RY5jixVtUrXZA_x6ZuIkbKuqQsohkcdKnBnH32TG3wC8dyZyvHI8zBIdhTLG76AuKUdMls7wyqJZ0ebk_CiZHctvJ_HJBnwc98JYa7vkMzuh0y6WXzVmRb_KpjF6TSoWd-Aurvvxrt-tNcYMZOwTOiLijOVJNAQluZou8rnP4oqIK0ZReRiiMU8zqiK7th51BVZuwprXUybX1qCDx5APT-9TT35NVm05MX-uETv-7_CewKMejLI9bz1PYcPWW_BwjaJwC-7lffB9G9rZb9rexfab2oafrT5ji-bMM14vDSM_9h8b7Sc2J4LM897AWOPYj4tlc8H2avTyO4oCRmXYTi9Z2zD6KKE7jbCXIYZmORoD3px90a1-BscHXxf7s7Av2hAaBH9tqIXOTBxXSlU2MdaUXAiHOE1LVYqqEk7HqUNMhzDTZtbtJoYc9DLC61Jhi3gOmzWO4yUwbhFPpjLJdJLJrNK6VLjOprzrKxIZwHRQXWF6RnMqrHFadJ4NVwXqvSC9F73eA_gw9jj3bB63yG6Tika5XjsB7AzWUfTT_bLIBPqdCOWwExtbcZ5S8EXXtlmhSERU_VLwW0QQXRJ3pwrghbe28eaDtQaQXrHDUYBYwq-21MufHVs4whR8X9Grm4fzDu7PFvlhcTg_-r4DD_wfczpewyaajH2DkKst33Yz7S9fkSW0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+Cone-Beam+Tomographic+Reconstruction%3A+Incorporation+of+Prior+Anatomical+Models+to+Compensate+for+Missing+Data&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Sadowsky%2C+Ofri&rft.au=Lee%2C+Junghoon&rft.au=Sutter%2C+EGrant&rft.au=Wall%2C+Simon+J&rft.date=2011-01-01&rft.issn=0278-0062&rft.eissn=1558-254X&rft.volume=30&rft.issue=1&rft.spage=69&rft.epage=83&rft_id=info:doi/10.1109%2FTMI.2010.2060491&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon