Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity
Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 1188 - 7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.03.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.
Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed. |
---|---|
AbstractList | Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.
Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed. Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications. Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed. Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed. Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 - 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 - 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications. |
ArticleNumber | 1188 |
Author | Lee, Daehun Kramer, Jack Lu, Ruochen Jahanbani, Shahin Lai, Keji |
Author_xml | – sequence: 1 givenname: Daehun orcidid: 0000-0002-4297-0393 surname: Lee fullname: Lee, Daehun organization: Department of Physics, University of Texas at Austin – sequence: 2 givenname: Shahin orcidid: 0000-0003-1924-9909 surname: Jahanbani fullname: Jahanbani, Shahin organization: Department of Physics, University of Texas at Austin – sequence: 3 givenname: Jack orcidid: 0000-0002-8078-8138 surname: Kramer fullname: Kramer, Jack organization: Department of Electrical and Computer Engineering, University of Texas at Austin – sequence: 4 givenname: Ruochen orcidid: 0000-0003-0025-3924 surname: Lu fullname: Lu, Ruochen email: ruochen@utexas.edu organization: Department of Electrical and Computer Engineering, University of Texas at Austin – sequence: 5 givenname: Keji orcidid: 0000-0002-4218-0201 surname: Lai fullname: Lai, Keji email: kejilai@physics.utexas.edu organization: Department of Physics, University of Texas at Austin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36864039$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVAR_aB_gAOKxIVLwPY4TnJBQhXQShVc4Gw5zjjrVWIvtrdo_z1O00LbQ32xx_Pe05uP0-LIeYdF8YaSD5RA-zFyykVTEQYViA5E1b0oThjhtKINg6MH7-PiPMYtyQc62nL-qjgG0Qqew5Ni_K6cj1pNWNpZjdaNpTdl3O8wVBs7bioT8PcenT6Us9XB44Q6BT-j3ihnM68MGL1TyYdY_rFpUxqcU84nDGVEF22yNzYdXhcvjZoint_dZ8Wvr19-XlxW1z--XV18vq50zUmqFLRAUQ9Nz3hNCGtoLk30A4oOFaUIPR04IBsYgKrBkFoJVILzFo02ysBZcbXqDl5t5S7kosJBemXl7YcPo1QhWT2hFLyhvNftoJXhwKFHVnPMMRLTIV20Pq1au30_46DRpaCmR6KPM85u5OhvZNe1tBFNFnh_JxB8bmJMcrZR4zQph34fJWta4J0AChn67gl06_fB5VYtKMqpYJRm1NuHjv5ZuZ9nBrQrII8qxoBGaptUsn4xaCdJiVy2R67bI_P2yNvtkQuVPaHeqz9LgpUUM9iNGP7bfob1F4dF2ik |
CitedBy_id | crossref_primary_10_1088_2631_8695_ad3c13 crossref_primary_10_1021_acs_nanolett_3c02747 crossref_primary_10_1063_5_0170215 crossref_primary_10_1016_j_device_2024_100474 crossref_primary_10_1016_j_ymssp_2025_112574 |
Cites_doi | 10.1063/1.3521263 10.1103/PhysRev.32.97 10.7567/JJAP.53.07KD03 10.1109/JMEMS.2018.2864177 10.1088/0034-4885/73/1/016102 10.1103/PhysRevApplied.17.044024 10.1007/s11071-021-06273-x 10.1109/MMM.2020.3008240 10.1038/s41467-020-15472-w 10.1088/0960-1317/22/1/013001 10.1063/1.2840183 10.1063/1.1385340 10.1038/s41586-018-0717-7 10.1063/1.107016 10.1109/TMTT.2019.2949808 10.1109/JMEMS.2014.2367418 10.1038/s41467-022-28223-w 10.1063/1.5086156 10.1038/s41467-019-10085-4 10.1063/1.3554438 10.1073/pnas.1818255116 10.1109/TUFFC.2019.2943355 10.1063/1.121701 10.1063/1.1338954 10.1364/OL.25.000613 10.1109/JSEN.2020.3039052 10.1007/s11071-021-06405-3 10.1109/JMEMS.2020.2982775 10.1103/PhysRev.32.110 10.1109/TUFFC.2020.2989623 10.1364/OL.40.002157 10.1038/299044a0 10.1038/s41928-022-00732-y 10.1103/PhysRevApplied.9.061002 10.1063/1.4995008 10.1063/1.2209029 10.1126/science.aaw8415 10.1063/5.0073530 10.1109/IUS46767.2020.9251719 10.1109/MEMSYS.2018.8346664 10.1109/MWSYM.2005.1516616 10.1109/IUS46767.2020.9251654 10.1007/978-3-319-28688-4 10.1109/IUS46767.2020.9251334 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36936-9 |
DatabaseName | Springer Open Access Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_64714bc8dcaf4343be254ec8de0f9e1f PMC9981767 36864039 10_1038_s41467_023_36936_9 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Welch Foundation grantid: F-1814; F-1814; F-1814 funderid: https://doi.org/10.13039/100000928 – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: N-ZERO Project; COFFEE Project; N-ZERO Project; COFFEE Project funderid: https://doi.org/10.13039/100000185 – fundername: National Science Foundation (NSF) grantid: DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536 funderid: https://doi.org/10.13039/100000001 – fundername: Welch Foundation grantid: F-1814 – fundername: National Science Foundation (NSF) grantid: ECCS-2221822 – fundername: National Science Foundation (NSF) grantid: DMR-1720595 – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: COFFEE Project – fundername: National Science Foundation (NSF) grantid: DMR-2004536 – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: N-ZERO Project – fundername: ; grantid: F-1814; F-1814; F-1814 – fundername: ; grantid: N-ZERO Project; COFFEE Project; N-ZERO Project; COFFEE Project – fundername: ; grantid: DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-a3831ecd7b245002719366bde69ea11e3b1d43e2d233a53f05a6ea6448efcfaf3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:56 EDT 2025 Thu Aug 21 18:38:24 EDT 2025 Fri Jul 11 15:48:16 EDT 2025 Wed Aug 13 11:11:35 EDT 2025 Wed Feb 19 02:24:54 EST 2025 Thu Apr 24 23:07:58 EDT 2025 Tue Jul 01 00:58:42 EDT 2025 Fri Feb 21 02:38:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-a3831ecd7b245002719366bde69ea11e3b1d43e2d233a53f05a6ea6448efcfaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1924-9909 0000-0002-4297-0393 0000-0003-0025-3924 0000-0002-8078-8138 0000-0002-4218-0201 |
OpenAccessLink | https://www.nature.com/articles/s41467-023-36936-9 |
PMID | 36864039 |
PQID | 2781416211 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_64714bc8dcaf4343be254ec8de0f9e1f pubmedcentral_primary_oai_pubmedcentral_nih_gov_9981767 proquest_miscellaneous_2783496313 proquest_journals_2781416211 pubmed_primary_36864039 crossref_citationtrail_10_1038_s41467_023_36936_9 crossref_primary_10_1038_s41467_023_36936_9 springer_journals_10_1038_s41467_023_36936_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-02 |
PublicationDateYYYYMMDD | 2023-03-02 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Kourani, Lu, Gong (CR10) 2020; 67 Zolotoyabko, Shilo, Sauer, Pernot, Baruchel (CR15) 1998; 73 Hesjedal (CR12) 2009; 73 Zhang, Pang, Yu, Kim (CR8) 2006; 99 Whatmore, Goddard, Tanner, Clark (CR14) 1982; 299 Xie (CR23) 2019; 10 Lu, Yang, Link, Gong (CR31) 2020; 29 Roshchupkin, Fournier, Brunel, Plotitsyna, Sorokin (CR11) 1992; 60 CR37 Kadota, Kuratani, Kimura, Esashi, Tanaka (CR33) 2014; 53 Kokkonen, Meltaus, Pensala, Kaivola (CR20) 2010; 97 Lu (CR9) 2018; 27 Nyquist (CR42) 1928; 32 Zhang (CR34) 2022; 5 Chu (CR4) 2018; 563 Ruzziconi, Jaber, Kosuru, Bellaredj, Younis (CR38) 2021; 103 Kundhikanjana, Lai, Kelly, Shen (CR43) 2011; 82 Mezil (CR22) 2015; 40 Lu, Yang, Li, Manzaneque, Gong (CR32) 2020; 67 Van Beek, Puers (CR2) 2012; 22 Hellemann, Muller, Msall, Santos, Ludwig (CR13) 2022; 17 Kokkonen, Kaivola (CR19) 2008; 92 Shoshani, Shaw (CR39) 2021; 104 CR3 Lu, Yang, Li, Gong (CR30) 2020; 68 CR7 Zheng, Wu, Wu, Lai (CR25) 2018; 9 CR29 Shao (CR24) 2022; 13 CR28 Bienfait (CR5) 2019; 364 Gokhale (CR6) 2020; 11 Fattinger, Tikka (CR18) 2001; 79 Segovia-Fernandez, Cremonesi, Cassella, Frangi, Piazza (CR35) 2015; 24 Knuuttila, Tikka, Salomaa (CR16) 2000; 25 CR45 Allen (CR44) 2019; 116 Graebner, Barber, Gammel, Greywall (CR17) 2001; 78 Lee, Meyer, Gong, Lu, Lai (CR27) 2021; 119 Pillai, Li (CR1) 2021; 21 Lozzi, De Pastina, Yen, Villanueva (CR36) 2019; 114 CR40 Johnson (CR41) 1928; 32 Shen, Han, Zou, Tang (CR21) 2017; 88 Zheng, Shao, Loncar, Lai (CR26) 2020; 21 36936_CR40 W Kundhikanjana (36936_CR43) 2011; 82 G Pillai (36936_CR1) 2021; 21 36936_CR45 K Kokkonen (36936_CR20) 2010; 97 H Nyquist (36936_CR42) 1928; 32 36936_CR28 Y Chu (36936_CR4) 2018; 563 JE Graebner (36936_CR17) 2001; 78 A Kourani (36936_CR10) 2020; 67 JTM Van Beek (36936_CR2) 2012; 22 36936_CR29 J Johnson (36936_CR41) 1928; 32 K Kokkonen (36936_CR19) 2008; 92 R Lu (36936_CR9) 2018; 27 D Roshchupkin (36936_CR11) 1992; 60 J Hellemann (36936_CR13) 2022; 17 L Ruzziconi (36936_CR38) 2021; 103 36936_CR7 Q Zhang (36936_CR34) 2022; 5 M Allen (36936_CR44) 2019; 116 O Shoshani (36936_CR39) 2021; 104 L Zheng (36936_CR25) 2018; 9 E Zolotoyabko (36936_CR15) 1998; 73 R Lu (36936_CR31) 2020; 29 R Lu (36936_CR30) 2020; 68 Z Shen (36936_CR21) 2017; 88 S Mezil (36936_CR22) 2015; 40 36936_CR37 L Zheng (36936_CR26) 2020; 21 D Lee (36936_CR27) 2021; 119 VJ Gokhale (36936_CR6) 2020; 11 A Lozzi (36936_CR36) 2019; 114 H Zhang (36936_CR8) 2006; 99 Q Xie (36936_CR23) 2019; 10 GG Fattinger (36936_CR18) 2001; 79 36936_CR3 JV Knuuttila (36936_CR16) 2000; 25 L Shao (36936_CR24) 2022; 13 T Hesjedal (36936_CR12) 2009; 73 M Kadota (36936_CR33) 2014; 53 A Bienfait (36936_CR5) 2019; 364 J Segovia-Fernandez (36936_CR35) 2015; 24 R Whatmore (36936_CR14) 1982; 299 R Lu (36936_CR32) 2020; 67 |
References_xml | – ident: CR45 – volume: 97 start-page: 233507 year: 2010 ident: CR20 article-title: Characterization of energy trapping in a bulk acoustic wave resonator publication-title: Appl. Phys. Lett. doi: 10.1063/1.3521263 – volume: 32 start-page: 97 year: 1928 ident: CR41 article-title: Thermal agitation of electricity in conductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.32.97 – volume: 53 start-page: 07KD03 year: 2014 ident: CR33 article-title: Ultrawideband and high frequency resonators using shear horizontal type plate wave in LiNbO thin plate publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.07KD03 – volume: 27 start-page: 931 year: 2018 ident: CR9 article-title: RF filters with periodic passbands for sparse Fourier transform-based spectrum sensing publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2864177 – volume: 73 start-page: 016102 year: 2009 ident: CR12 article-title: Surface acoustic wave-assisted scanning probe microscopy-a summary publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/1/016102 – volume: 17 start-page: 044024 year: 2022 ident: CR13 article-title: Determining amplitudes of standing surface acoustic waves via atomic force microscopy publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.044024 – ident: CR37 – volume: 103 start-page: 2197 year: 2021 ident: CR38 article-title: Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06273-x – volume: 21 start-page: 60 year: 2020 ident: CR26 article-title: Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2020.3008240 – volume: 11 start-page: 2314 year: 2020 ident: CR6 article-title: Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics publication-title: Nat. Commun. doi: 10.1038/s41467-020-15472-w – volume: 22 start-page: 013001 year: 2012 ident: CR2 article-title: A review of MEMS oscillators for frequency reference and timing applications publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/1/013001 – volume: 92 start-page: 063502 year: 2008 ident: CR19 article-title: Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations publication-title: Appl. Phys. Lett. doi: 10.1063/1.2840183 – ident: CR29 – volume: 79 start-page: 290 year: 2001 ident: CR18 article-title: Modified Mach–Zender laser interferometer for probing bulk acoustic waves publication-title: Appl. Phys. Lett. doi: 10.1063/1.1385340 – volume: 563 start-page: 666 year: 2018 ident: CR4 article-title: Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator publication-title: Nature doi: 10.1038/s41586-018-0717-7 – volume: 60 start-page: 2330 year: 1992 ident: CR11 article-title: Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.107016 – volume: 68 start-page: 573 year: 2020 ident: CR30 article-title: 5-GHz antisymmetric mode acoustic delay lines in lithium niobate thin film publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2019.2949808 – volume: 24 start-page: 265 year: 2015 ident: CR35 article-title: Anchor losses in AlN contour mode resonators publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2367418 – ident: CR40 – volume: 13 start-page: 694 year: 2022 ident: CR24 article-title: Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators publication-title: Nat. Comm. doi: 10.1038/s41467-022-28223-w – volume: 114 start-page: 103502 year: 2019 ident: CR36 article-title: Engineered acoustic mismatch for anchor loss control in contour mode resonators publication-title: Appl. Phys. Lett. doi: 10.1063/1.5086156 – volume: 10 start-page: 2228 year: 2019 ident: CR23 article-title: Imaging gigahertz zero-group-velocity Lamb waves publication-title: Nat. Comm. doi: 10.1038/s41467-019-10085-4 – volume: 82 start-page: 033705 year: 2011 ident: CR43 article-title: Cryogenic microwave imaging of metal–insulator transition in doped silicon publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3554438 – volume: 116 start-page: 14511 year: 2019 ident: CR44 article-title: Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1818255116 – volume: 67 start-page: 402 year: 2020 ident: CR32 article-title: GHz Broadband SH0 Mode Lithium Niobate Acoustic Delay Lines publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2943355 – volume: 73 start-page: 2278 year: 1998 ident: CR15 article-title: Visualization of 10 um surface acoustic waves by stroboscopic x-ray topography publication-title: Appl. Phys. Lett. doi: 10.1063/1.121701 – volume: 78 start-page: 159 year: 2001 ident: CR17 article-title: Dynamic visualization of subangstrom high-frequency surface vibrations publication-title: Appl. Phys. Lett. doi: 10.1063/1.1338954 – ident: CR3 – volume: 25 start-page: 613 year: 2000 ident: CR16 article-title: Scanning Michelson interferometer for imaging surface acoustic wave fields publication-title: Opt. Lett. doi: 10.1364/OL.25.000613 – volume: 21 start-page: 12589 year: 2021 ident: CR1 article-title: Piezoelectric MEMS resonators: a review publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3039052 – volume: 104 start-page: 1801 year: 2021 ident: CR39 article-title: Resonant modal interactions in micro/nano-mechanical structures publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06405-3 – volume: 29 start-page: 313 year: 2020 ident: CR31 article-title: A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4% publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.2982775 – volume: 32 start-page: 110 year: 1928 ident: CR42 article-title: Thermal agitation of electric charge in conductors publication-title: Phys. Rev. doi: 10.1103/PhysRev.32.110 – volume: 67 start-page: 1854 year: 2020 ident: CR10 article-title: A wideband oscillator exploiting multiple resonances in lithium niobate MEMS resonator publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2989623 – volume: 40 start-page: 2157 year: 2015 ident: CR22 article-title: Imaging arbitrary acoustic whispering-gallery modes in the gigahertz range with ultrashort light pulses publication-title: Opt. Lett. doi: 10.1364/OL.40.002157 – volume: 299 start-page: 44 year: 1982 ident: CR14 article-title: Direct imaging of travelling Rayleigh waves by stroboscopic X-ray topography publication-title: Nature doi: 10.1038/299044a0 – volume: 5 start-page: 157 year: 2022 ident: CR34 article-title: Gigahertz topological valley Hall effect in nanoelectromechanical phononic crystals publication-title: Nat. Electron. doi: 10.1038/s41928-022-00732-y – volume: 9 start-page: 061002 year: 2018 ident: CR25 article-title: Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.061002 – ident: CR7 – volume: 88 start-page: 123709 year: 2017 ident: CR21 article-title: Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4995008 – ident: CR28 – volume: 99 start-page: 124911 year: 2006 ident: CR8 article-title: High-tone bulk acoustic resonators on sapphire, crystal quartz, fused silica, and silicon substrates publication-title: J. Appl. Phys. doi: 10.1063/1.2209029 – volume: 364 start-page: 368 year: 2019 ident: CR5 article-title: Phonon-mediated quantum state transfer and remote qubit entanglement publication-title: Science doi: 10.1126/science.aaw8415 – volume: 119 start-page: 214101 year: 2021 ident: CR27 article-title: Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices publication-title: Appl. Phys. Lett. doi: 10.1063/5.0073530 – ident: 36936_CR37 doi: 10.1109/IUS46767.2020.9251719 – volume: 97 start-page: 233507 year: 2010 ident: 36936_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3521263 – volume: 116 start-page: 14511 year: 2019 ident: 36936_CR44 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1818255116 – volume: 364 start-page: 368 year: 2019 ident: 36936_CR5 publication-title: Science doi: 10.1126/science.aaw8415 – volume: 67 start-page: 1854 year: 2020 ident: 36936_CR10 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2020.2989623 – volume: 5 start-page: 157 year: 2022 ident: 36936_CR34 publication-title: Nat. Electron. doi: 10.1038/s41928-022-00732-y – ident: 36936_CR28 doi: 10.1109/MEMSYS.2018.8346664 – volume: 13 start-page: 694 year: 2022 ident: 36936_CR24 publication-title: Nat. Comm. doi: 10.1038/s41467-022-28223-w – volume: 22 start-page: 013001 year: 2012 ident: 36936_CR2 publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/1/013001 – volume: 119 start-page: 214101 year: 2021 ident: 36936_CR27 publication-title: Appl. Phys. Lett. doi: 10.1063/5.0073530 – volume: 24 start-page: 265 year: 2015 ident: 36936_CR35 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2014.2367418 – volume: 104 start-page: 1801 year: 2021 ident: 36936_CR39 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06405-3 – ident: 36936_CR7 doi: 10.1109/MWSYM.2005.1516616 – volume: 78 start-page: 159 year: 2001 ident: 36936_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1338954 – volume: 21 start-page: 60 year: 2020 ident: 36936_CR26 publication-title: IEEE Microw. Mag. doi: 10.1109/MMM.2020.3008240 – volume: 40 start-page: 2157 year: 2015 ident: 36936_CR22 publication-title: Opt. Lett. doi: 10.1364/OL.40.002157 – ident: 36936_CR45 doi: 10.1109/IUS46767.2020.9251654 – volume: 563 start-page: 666 year: 2018 ident: 36936_CR4 publication-title: Nature doi: 10.1038/s41586-018-0717-7 – volume: 299 start-page: 44 year: 1982 ident: 36936_CR14 publication-title: Nature doi: 10.1038/299044a0 – ident: 36936_CR3 doi: 10.1007/978-3-319-28688-4 – volume: 68 start-page: 573 year: 2020 ident: 36936_CR30 publication-title: IEEE Trans. Microw. Theory Tech. doi: 10.1109/TMTT.2019.2949808 – volume: 114 start-page: 103502 year: 2019 ident: 36936_CR36 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5086156 – volume: 60 start-page: 2330 year: 1992 ident: 36936_CR11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.107016 – volume: 73 start-page: 2278 year: 1998 ident: 36936_CR15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.121701 – volume: 32 start-page: 110 year: 1928 ident: 36936_CR42 publication-title: Phys. Rev. doi: 10.1103/PhysRev.32.110 – volume: 9 start-page: 061002 year: 2018 ident: 36936_CR25 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.061002 – volume: 67 start-page: 402 year: 2020 ident: 36936_CR32 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control doi: 10.1109/TUFFC.2019.2943355 – ident: 36936_CR40 – volume: 79 start-page: 290 year: 2001 ident: 36936_CR18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1385340 – volume: 88 start-page: 123709 year: 2017 ident: 36936_CR21 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4995008 – volume: 73 start-page: 016102 year: 2009 ident: 36936_CR12 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/73/1/016102 – volume: 11 start-page: 2314 year: 2020 ident: 36936_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15472-w – volume: 103 start-page: 2197 year: 2021 ident: 36936_CR38 publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-06273-x – volume: 21 start-page: 12589 year: 2021 ident: 36936_CR1 publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.3039052 – volume: 82 start-page: 033705 year: 2011 ident: 36936_CR43 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3554438 – volume: 99 start-page: 124911 year: 2006 ident: 36936_CR8 publication-title: J. Appl. Phys. doi: 10.1063/1.2209029 – volume: 17 start-page: 044024 year: 2022 ident: 36936_CR13 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.17.044024 – volume: 25 start-page: 613 year: 2000 ident: 36936_CR16 publication-title: Opt. Lett. doi: 10.1364/OL.25.000613 – volume: 32 start-page: 97 year: 1928 ident: 36936_CR41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.32.97 – volume: 92 start-page: 063502 year: 2008 ident: 36936_CR19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2840183 – volume: 29 start-page: 313 year: 2020 ident: 36936_CR31 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2020.2982775 – volume: 27 start-page: 931 year: 2018 ident: 36936_CR9 publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2018.2864177 – ident: 36936_CR29 doi: 10.1109/IUS46767.2020.9251334 – volume: 53 start-page: 07KD03 year: 2014 ident: 36936_CR33 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.53.07KD03 – volume: 10 start-page: 2228 year: 2019 ident: 36936_CR23 publication-title: Nat. Comm. doi: 10.1038/s41467-019-10085-4 |
SSID | ssj0000391844 |
Score | 2.450295 |
Snippet | Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels,... Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1188 |
SubjectTerms | 639/166/987 639/766/1130/2798 Acoustics Bulk acoustic wave devices Defects Displacement Energy dissipation Finite element method Humanities and Social Sciences Mathematical models Microelectromechanical systems multidisciplinary Quantum phenomena Resonators Room temperature Science Science (multidisciplinary) Sensitivity Spatial discrimination Spatial resolution |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNH26SYsKvbUi1sOydUxCQyi0pwZyE7Y0agNdO6x3D_n3nZG922yflx5tySBmRqP5rJlvGHsj6zKGUDtRJaeEUcGITpdJRAWJqCsba6ka-eMne3FpPlxVV3dafVFO2EQPPAnu2KL3NF1oYmgTVUF2gJAG8BnK5EAm8r545t0BU9kHa4fQxcxVMqVujkeTfQIeUUJbp61wOydRJuz_XZT5a7LkTzem-SA6f8gezBEkP5lWfsDuQf-I7U89JW8fsy_oL4cRJQ_8epFbEPEh8XF9A0tB3MQiLafs6Vu-oGS8uQ_OAqgEmDTGEYDTL_VhOXL6S8sTLFY4jgrgI6W7T_0mnrDL8_efzy7E3E1BBIzKVqJFLCohxLpTpiI0iqEbKiKCddBKCbqT0WhQUWndVjqVVWuhJfgGKaQ26adsrx96eM54VFaFJjgMtawJUbcd1TA0tetiXXXaFExuJOvDTDVOHS---XzlrRs_acOjNnzWhncFe7v95mYi2vjr7FNS2HYmkWTnF2g6fjYd_y_TKdjRRt1-3rmjV8QBJi3i4oK93g7jnqOLlLaHYZ3nEM--lrpgzybr2K5E28YaNL-C1Tt2s7PU3ZH--mvm9UbkK2tbF-zdxsJ-LOvPonjxP0RxyO4r2hqUXKeO2N5quYaXGG2tuld5Y30HrFIouA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKs-GFmQkbmB1_YidnBAgqgoJTlTam5X4USqxyZLsHvrvmXG8qZZHj4kdyfE3tmfGM98Q8oabhXfO1KyMtWBKOMVauYjMixCRurLSGrORv37T5xfqy7JcZofbmMMqd3ti2qh979BHfiqQm4lrsFfer38xrBqFt6u5hMZdcg-pyzCkyyzN7GNB9vNKqZwrs5DV6ajSzgAHFZO6lprVe-dRou3_l675d8jkH_em6Tg6OyQPsx5JP0zAPyJ3QveY3J8qS14_IZewa_YjzH-gV6tUiIj2kY7bdRgYMhSzOEwx1Nd0hSF5uRrOKmAiMOJGwQxHx3o_jBR9tTSG1QbaAQY6YtD7VHXiKbk4-_z90znLNRWYA91swxqwSHlw3rRClWiTggIHcPig69BwHmTLvZJBeCFlU8q4KBsdGjTiQnSxifIZOej6LhwR6oUWrnI1KFxaOS-bFjMZKlO33pStVAXhu5m1LhOOY92LnzZdfMvKTmhYQMMmNGxdkLfzN-uJbuPW3h8RsLknUmWnF_1wafPKsxqOX9W6yrsmYhptG8AmDvAcFrEOPBbkZAe3zet3tDfSVpDXczOsPLxOabrQb1MfZNuXXBbk-SQd80ikrrQC8SuI2ZObvaHut3RXPxK7N9i_3GhTkHc7CbsZ1v-n4sXtf3FMHggUegyeEyfkYDNsw0vQpjbtq7RkfgNUYR7r priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC7WFcGL-Da6SgvetHX6kU76IKLisgjryYG9haQf68JOsiYz4Px7qzqZkdFR8Jh0B5r-qrrqS9cD4IUoZt65wvI8Wsm1dJo3aha5lyFS6crSGMpGPv1iTub681l-dgCbdkfTBg57qR31k5r3l69_fF-_Q4V_O6aMl28GndQdrQ9XxirD7TW4jpapIEU9ndz9dDIri4RGT7kz-z_dsU-pjP8-3_PPEMrf7lGTeTq-Dbcmv5K9HwXhDhyE9i7cGDtNru_BOZ6i3YB4BHaxSI2JWBfZsLoKPaeKxTz2Y0z1mi0oRG_qjrMIlBhMODKk5fSjvesHRv9uWQyLJY4jLGygIPixC8V9mB9_-vrxhE89FrhDX23Ja2SoIjhfNFLnxFHRoUN4fDA21EIE1QivVZBeKlXnKs7y2oSaSF2ILtZRPYDDtmvDI2BeGulKZ9EBM9p5VTeU2VAWtvFF3iidgdjsbOWmAuTUB-OyShfhqqxGNCpEo0poVDaDl9tvrsbyG_-c_YEA286k0tnpRdefV5MmVgbNsW5c6V0dKa22CciRAz6HWbRBxAyONnBXG3GsJFUGEwbZcgbPt8OoiXS9UrehW6U5VH1fCZXBw1E6titRpjQaxS-DYkdudpa6O9JefEvVvpEPi8IUGbzaSNivZf19Kx7_3_QncFOSElBwnTyCw2W_Ck_R21o2z5IK_QT41iZ5 priority: 102 providerName: Scholars Portal |
Title | Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity |
URI | https://link.springer.com/article/10.1038/s41467-023-36936-9 https://www.ncbi.nlm.nih.gov/pubmed/36864039 https://www.proquest.com/docview/2781416211 https://www.proquest.com/docview/2783496313 https://pubmed.ncbi.nlm.nih.gov/PMC9981767 https://doaj.org/article/64714bc8dcaf4343be254ec8de0f9e1f |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBf9YLCXse9l7Y4M9raZXWzHcR6vR2_loGVsK9xbSBy7LeySktw99L-v5HyM27rBXhIS22AsyZZk6SeAD1EyLY1JUha7lDPJjWSFmDpWcusIulIrRdnI5xfq7FIuV_FqD_iQC-OD9j2kpd-mh-iwz630Io0nDBMqFYql-3BI0O3E1XM1H_0qhHiupezzY6ZCPzB05wzyUP0P6Zd_hkn-dlfqj6DFU3jS647hrJvtM9iz1XN41FWTvHsBV7hT1i2uuQ1v1r74UFi7sN3e2oYRKjFzTRc3fReuKQyvr4CztpT8S7QK0fQmZ3rdtCH5Z0Nn1xtsx6UPWwp07ypNvITLxemP-Rnr6ygwg_rYhuVohUbWlEnBZUx2KCptSILSqtTmUWRFEZVSWF5yIfJYuGmcK5uT4WadcbkTr-Cgqiv7BsKSK260SVHJUtKUIi8oe0EnaVEmcSFkANGwspnpQcap1sXPzF92C5111MiQGpmnRpYG8HEcc9tBbPyz9wkRbOxJ8Nj-R91cZT27ZAqPXFkYXZrcUepsYdEOtvhtpy61kQvgeCB31stsm3FC_4oUWsQBvB-bUdroCiWvbL31fQhhX0QigNcdd4wzEUoriewXQLLDNztT3W2pbq49ojfavFGikgA-DRz2a1p_X4q3_9f9CB5zEgIKoOPHcLBptvYdalSbYgL7ySrBp158mcDhbLb8vsT3yenF128TL14T76vA57nU9wigI50 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJTmA1sR0nOSDEq9rSx6mVeguJH6USu1k2u0L7p_iNzDjJVsujtx439ma9nrc98w3AyySLrTFZwVNfCK6EUbyWsedWOE_QlbnWVI18eKRHJ-rLaXq6Ab-GWhhKqxx0YlDUtjF0Rr4jCJsp0RivvJv-4NQ1im5XhxYaHVvsu-VPDNnat3ufkL6vhNj9fPxxxPuuAtygdzLnFcZkiTM2q4VKKSpDFwYXZJ0uXJUkTtaJVdIJK6SsUunjtNKuojDGeeMrL_G91-A6Gt6YJCo7zVZnOoS2nivV1-bEMt9pVdBEaBi51Pg7vFizf6FNwL98279TNP-4pw3mb_cO3O79Vva-Y7S7sOEm9-BG18lyeR_OUEs3LdLbsfNxaHzEGs_axdTNOCEicz_rcraXbEwpgH33nbGjwmPiE4ZhPx3kN7OW0dkw8248x3EkO2spyb7rcvEATq5ktx_C5qSZuEfArNDC5KZAB08rY2VVU-VEnhW1zdJaqgiSYWdL0wOcU5-N72W4aJd52VGjRGqUgRplEcHr1XemHbzHpbM_EMFWMwmaOzxoZmdlL-mlRnOvapNbU3kq260dxuAOP7vYFy7xEWwP5C57fdGWF9wdwYvVMEo6Xd9UE9cswhxC95eJjGCr447VSqTOtUL2iyBb45u1pa6PTM6_BTRxjLeTTGcRvBk47GJZ_9-Kx5f_i-dwc3R8eFAe7B3tP4FbggSAEvfENmzOZwv3FD25ef0siA-Dr1ctr78BUnlcGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYgL4s1CASPBCazEj7V3DwgBJWopVByolNuy60ep1GTTbCKUv8avY8a7myo8eusxa2fjeL6xZ-yZ-Qh5wc3QWWtyloZcMCWsYpUcBuaED1i6MtMas5G_HOq9I_VpnI63yK8-FwbDKvs1MS7UrrZ4Rj4QWJuJa_BXBqELi_i6O3o7O2PIIIU3rT2dRguRA7_6Ce5b82Z_F2T9UojRx28f9ljHMMAsWCoLVoJ_xr11phIqRQ8NzBkYnPM69yXnXlbcKemFE1KWqQzDtNS-RJfGBxvKIOG9V8hVI1OOOmbGZn2-g5XXM6W6PJ2hzAaNiqsSbJJMavgdlm_shZEy4F927t_hmn_c2catcHSL3OxsWPquBd1tsuWnd8i1ltVydZccw4pdNyB7T08mkQSJ1oE2y5mfM6yOzMK8jd9e0QmGA3ZMPBOPSciIGTr36CAgDxDFc2Ia_GQB7QAB2mDAfct4cY8cXcps3yfb03rqHxLqhBY2szkYe1pZJ8sKsygyk1fOpJVUCeH9zBa2K3aOnBunRbx0l1nRSqMAaRRRGkWekFfr78zaUh8X9n6PAlv3xDLd8UE9Py46rS80bP2qspmzZcAU3sqDP-7hsx-G3POQkJ1e3EW3djTFOdIT8nzdDFqPVznl1NfL2Acr_UsuE_KgRcd6JFJnWgH8EmI2cLMx1M2W6cmPWFkcfG9utEnI6x5h58P6_1Q8uvhfPCPXQVOLz_uHB4_JDYH4xxg-sUO2F_OlfwJG3aJ6GrWHku-Xra6_AX5RYE4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+imaging+of+super-high-frequency+microelectromechanical+resonators+with+femtometer+sensitivity&rft.jtitle=Nature+communications&rft.au=Lee%2C+Daehun&rft.au=Jahanbani%2C+Shahin&rft.au=Kramer%2C+Jack&rft.au=Lu%2C+Ruochen&rft.date=2023-03-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36936-9&rft.externalDocID=10_1038_s41467_023_36936_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |