Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity

Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 1188 - 7
Main Authors Lee, Daehun, Jahanbani, Shahin, Kramer, Jack, Lu, Ruochen, Lai, Keji
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.03.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications. Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed.
AbstractList Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications. Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed.
Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.
Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 – 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed.
Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged super-high-frequency acoustic resonators with a spatial resolution of 100 nm and a displacement sensitivity of 10 fm/√Hz. Individual overtones, spurious modes, and acoustic leakage are also visualized and analyzed.
Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 - 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels, spurious modes, and imperfections from microfabrication. Here, we report the nanoscale imaging of a freestanding super-high-frequency (3 - 30 GHz) lateral overtone bulk acoustic resonator with unprecedented spatial resolution and displacement sensitivity. Using transmission-mode microwave impedance microscopy, we have visualized mode profiles of individual overtones and analyzed higher-order transverse spurious modes and anchor loss. The integrated TMIM signals are in good agreement with the stored mechanical energy in the resonator. Quantitative analysis with finite-element modeling shows that the noise floor is equivalent to an in-plane displacement of 10 fm/√Hz at room temperatures, which can be further improved under cryogenic environments. Our work contributes to the design and characterization of MEMS resonators with better performance for telecommunication, sensing, and quantum information science applications.
ArticleNumber 1188
Author Lee, Daehun
Kramer, Jack
Lu, Ruochen
Jahanbani, Shahin
Lai, Keji
Author_xml – sequence: 1
  givenname: Daehun
  orcidid: 0000-0002-4297-0393
  surname: Lee
  fullname: Lee, Daehun
  organization: Department of Physics, University of Texas at Austin
– sequence: 2
  givenname: Shahin
  orcidid: 0000-0003-1924-9909
  surname: Jahanbani
  fullname: Jahanbani, Shahin
  organization: Department of Physics, University of Texas at Austin
– sequence: 3
  givenname: Jack
  orcidid: 0000-0002-8078-8138
  surname: Kramer
  fullname: Kramer, Jack
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin
– sequence: 4
  givenname: Ruochen
  orcidid: 0000-0003-0025-3924
  surname: Lu
  fullname: Lu, Ruochen
  email: ruochen@utexas.edu
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin
– sequence: 5
  givenname: Keji
  orcidid: 0000-0002-4218-0201
  surname: Lai
  fullname: Lai, Keji
  email: kejilai@physics.utexas.edu
  organization: Department of Physics, University of Texas at Austin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36864039$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVAR_aB_gAOKxIVLwPY4TnJBQhXQShVc4Gw5zjjrVWIvtrdo_z1O00LbQ32xx_Pe05uP0-LIeYdF8YaSD5RA-zFyykVTEQYViA5E1b0oThjhtKINg6MH7-PiPMYtyQc62nL-qjgG0Qqew5Ni_K6cj1pNWNpZjdaNpTdl3O8wVBs7bioT8PcenT6Us9XB44Q6BT-j3ihnM68MGL1TyYdY_rFpUxqcU84nDGVEF22yNzYdXhcvjZoint_dZ8Wvr19-XlxW1z--XV18vq50zUmqFLRAUQ9Nz3hNCGtoLk30A4oOFaUIPR04IBsYgKrBkFoJVILzFo02ysBZcbXqDl5t5S7kosJBemXl7YcPo1QhWT2hFLyhvNftoJXhwKFHVnPMMRLTIV20Pq1au30_46DRpaCmR6KPM85u5OhvZNe1tBFNFnh_JxB8bmJMcrZR4zQph34fJWta4J0AChn67gl06_fB5VYtKMqpYJRm1NuHjv5ZuZ9nBrQrII8qxoBGaptUsn4xaCdJiVy2R67bI_P2yNvtkQuVPaHeqz9LgpUUM9iNGP7bfob1F4dF2ik
CitedBy_id crossref_primary_10_1088_2631_8695_ad3c13
crossref_primary_10_1021_acs_nanolett_3c02747
crossref_primary_10_1063_5_0170215
crossref_primary_10_1016_j_device_2024_100474
crossref_primary_10_1016_j_ymssp_2025_112574
Cites_doi 10.1063/1.3521263
10.1103/PhysRev.32.97
10.7567/JJAP.53.07KD03
10.1109/JMEMS.2018.2864177
10.1088/0034-4885/73/1/016102
10.1103/PhysRevApplied.17.044024
10.1007/s11071-021-06273-x
10.1109/MMM.2020.3008240
10.1038/s41467-020-15472-w
10.1088/0960-1317/22/1/013001
10.1063/1.2840183
10.1063/1.1385340
10.1038/s41586-018-0717-7
10.1063/1.107016
10.1109/TMTT.2019.2949808
10.1109/JMEMS.2014.2367418
10.1038/s41467-022-28223-w
10.1063/1.5086156
10.1038/s41467-019-10085-4
10.1063/1.3554438
10.1073/pnas.1818255116
10.1109/TUFFC.2019.2943355
10.1063/1.121701
10.1063/1.1338954
10.1364/OL.25.000613
10.1109/JSEN.2020.3039052
10.1007/s11071-021-06405-3
10.1109/JMEMS.2020.2982775
10.1103/PhysRev.32.110
10.1109/TUFFC.2020.2989623
10.1364/OL.40.002157
10.1038/299044a0
10.1038/s41928-022-00732-y
10.1103/PhysRevApplied.9.061002
10.1063/1.4995008
10.1063/1.2209029
10.1126/science.aaw8415
10.1063/5.0073530
10.1109/IUS46767.2020.9251719
10.1109/MEMSYS.2018.8346664
10.1109/MWSYM.2005.1516616
10.1109/IUS46767.2020.9251654
10.1007/978-3-319-28688-4
10.1109/IUS46767.2020.9251334
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-36936-9
DatabaseName Springer Open Access Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 7
ExternalDocumentID oai_doaj_org_article_64714bc8dcaf4343be254ec8de0f9e1f
PMC9981767
36864039
10_1038_s41467_023_36936_9
Genre Journal Article
GrantInformation_xml – fundername: Welch Foundation
  grantid: F-1814; F-1814; F-1814
  funderid: https://doi.org/10.13039/100000928
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: N-ZERO Project; COFFEE Project; N-ZERO Project; COFFEE Project
  funderid: https://doi.org/10.13039/100000185
– fundername: National Science Foundation (NSF)
  grantid: DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536
  funderid: https://doi.org/10.13039/100000001
– fundername: Welch Foundation
  grantid: F-1814
– fundername: National Science Foundation (NSF)
  grantid: ECCS-2221822
– fundername: National Science Foundation (NSF)
  grantid: DMR-1720595
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: COFFEE Project
– fundername: National Science Foundation (NSF)
  grantid: DMR-2004536
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: N-ZERO Project
– fundername: ;
  grantid: F-1814; F-1814; F-1814
– fundername: ;
  grantid: N-ZERO Project; COFFEE Project; N-ZERO Project; COFFEE Project
– fundername: ;
  grantid: DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536; ECCS-2221822; DMR-1720595; DMR-2004536
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-a3831ecd7b245002719366bde69ea11e3b1d43e2d233a53f05a6ea6448efcfaf3
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:24:56 EDT 2025
Thu Aug 21 18:38:24 EDT 2025
Fri Jul 11 15:48:16 EDT 2025
Wed Aug 13 11:11:35 EDT 2025
Wed Feb 19 02:24:54 EST 2025
Thu Apr 24 23:07:58 EDT 2025
Tue Jul 01 00:58:42 EDT 2025
Fri Feb 21 02:38:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-a3831ecd7b245002719366bde69ea11e3b1d43e2d233a53f05a6ea6448efcfaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1924-9909
0000-0002-4297-0393
0000-0003-0025-3924
0000-0002-8078-8138
0000-0002-4218-0201
OpenAccessLink https://www.nature.com/articles/s41467-023-36936-9
PMID 36864039
PQID 2781416211
PQPubID 546298
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_64714bc8dcaf4343be254ec8de0f9e1f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9981767
proquest_miscellaneous_2783496313
proquest_journals_2781416211
pubmed_primary_36864039
crossref_citationtrail_10_1038_s41467_023_36936_9
crossref_primary_10_1038_s41467_023_36936_9
springer_journals_10_1038_s41467_023_36936_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-02
PublicationDateYYYYMMDD 2023-03-02
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Kourani, Lu, Gong (CR10) 2020; 67
Zolotoyabko, Shilo, Sauer, Pernot, Baruchel (CR15) 1998; 73
Hesjedal (CR12) 2009; 73
Zhang, Pang, Yu, Kim (CR8) 2006; 99
Whatmore, Goddard, Tanner, Clark (CR14) 1982; 299
Xie (CR23) 2019; 10
Lu, Yang, Link, Gong (CR31) 2020; 29
Roshchupkin, Fournier, Brunel, Plotitsyna, Sorokin (CR11) 1992; 60
CR37
Kadota, Kuratani, Kimura, Esashi, Tanaka (CR33) 2014; 53
Kokkonen, Meltaus, Pensala, Kaivola (CR20) 2010; 97
Lu (CR9) 2018; 27
Nyquist (CR42) 1928; 32
Zhang (CR34) 2022; 5
Chu (CR4) 2018; 563
Ruzziconi, Jaber, Kosuru, Bellaredj, Younis (CR38) 2021; 103
Kundhikanjana, Lai, Kelly, Shen (CR43) 2011; 82
Mezil (CR22) 2015; 40
Lu, Yang, Li, Manzaneque, Gong (CR32) 2020; 67
Van Beek, Puers (CR2) 2012; 22
Hellemann, Muller, Msall, Santos, Ludwig (CR13) 2022; 17
Kokkonen, Kaivola (CR19) 2008; 92
Shoshani, Shaw (CR39) 2021; 104
CR3
Lu, Yang, Li, Gong (CR30) 2020; 68
CR7
Zheng, Wu, Wu, Lai (CR25) 2018; 9
CR29
Shao (CR24) 2022; 13
CR28
Bienfait (CR5) 2019; 364
Gokhale (CR6) 2020; 11
Fattinger, Tikka (CR18) 2001; 79
Segovia-Fernandez, Cremonesi, Cassella, Frangi, Piazza (CR35) 2015; 24
Knuuttila, Tikka, Salomaa (CR16) 2000; 25
CR45
Allen (CR44) 2019; 116
Graebner, Barber, Gammel, Greywall (CR17) 2001; 78
Lee, Meyer, Gong, Lu, Lai (CR27) 2021; 119
Pillai, Li (CR1) 2021; 21
Lozzi, De Pastina, Yen, Villanueva (CR36) 2019; 114
CR40
Johnson (CR41) 1928; 32
Shen, Han, Zou, Tang (CR21) 2017; 88
Zheng, Shao, Loncar, Lai (CR26) 2020; 21
36936_CR40
W Kundhikanjana (36936_CR43) 2011; 82
G Pillai (36936_CR1) 2021; 21
36936_CR45
K Kokkonen (36936_CR20) 2010; 97
H Nyquist (36936_CR42) 1928; 32
36936_CR28
Y Chu (36936_CR4) 2018; 563
JE Graebner (36936_CR17) 2001; 78
A Kourani (36936_CR10) 2020; 67
JTM Van Beek (36936_CR2) 2012; 22
36936_CR29
J Johnson (36936_CR41) 1928; 32
K Kokkonen (36936_CR19) 2008; 92
R Lu (36936_CR9) 2018; 27
D Roshchupkin (36936_CR11) 1992; 60
J Hellemann (36936_CR13) 2022; 17
L Ruzziconi (36936_CR38) 2021; 103
36936_CR7
Q Zhang (36936_CR34) 2022; 5
M Allen (36936_CR44) 2019; 116
O Shoshani (36936_CR39) 2021; 104
L Zheng (36936_CR25) 2018; 9
E Zolotoyabko (36936_CR15) 1998; 73
R Lu (36936_CR31) 2020; 29
R Lu (36936_CR30) 2020; 68
Z Shen (36936_CR21) 2017; 88
S Mezil (36936_CR22) 2015; 40
36936_CR37
L Zheng (36936_CR26) 2020; 21
D Lee (36936_CR27) 2021; 119
VJ Gokhale (36936_CR6) 2020; 11
A Lozzi (36936_CR36) 2019; 114
H Zhang (36936_CR8) 2006; 99
Q Xie (36936_CR23) 2019; 10
GG Fattinger (36936_CR18) 2001; 79
36936_CR3
JV Knuuttila (36936_CR16) 2000; 25
L Shao (36936_CR24) 2022; 13
T Hesjedal (36936_CR12) 2009; 73
M Kadota (36936_CR33) 2014; 53
A Bienfait (36936_CR5) 2019; 364
J Segovia-Fernandez (36936_CR35) 2015; 24
R Whatmore (36936_CR14) 1982; 299
R Lu (36936_CR32) 2020; 67
References_xml – ident: CR45
– volume: 97
  start-page: 233507
  year: 2010
  ident: CR20
  article-title: Characterization of energy trapping in a bulk acoustic wave resonator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3521263
– volume: 32
  start-page: 97
  year: 1928
  ident: CR41
  article-title: Thermal agitation of electricity in conductors
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.32.97
– volume: 53
  start-page: 07KD03
  year: 2014
  ident: CR33
  article-title: Ultrawideband and high frequency resonators using shear horizontal type plate wave in LiNbO thin plate
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.07KD03
– volume: 27
  start-page: 931
  year: 2018
  ident: CR9
  article-title: RF filters with periodic passbands for sparse Fourier transform-based spectrum sensing
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2864177
– volume: 73
  start-page: 016102
  year: 2009
  ident: CR12
  article-title: Surface acoustic wave-assisted scanning probe microscopy-a summary
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/1/016102
– volume: 17
  start-page: 044024
  year: 2022
  ident: CR13
  article-title: Determining amplitudes of standing surface acoustic waves via atomic force microscopy
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.044024
– ident: CR37
– volume: 103
  start-page: 2197
  year: 2021
  ident: CR38
  article-title: Internal resonance in the higher-order modes of a MEMS beam: experiments and global analysis
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06273-x
– volume: 21
  start-page: 60
  year: 2020
  ident: CR26
  article-title: Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2020.3008240
– volume: 11
  start-page: 2314
  year: 2020
  ident: CR6
  article-title: Epitaxial bulk acoustic wave resonators as highly coherent multi-phonon sources for quantum acoustodynamics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15472-w
– volume: 22
  start-page: 013001
  year: 2012
  ident: CR2
  article-title: A review of MEMS oscillators for frequency reference and timing applications
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/1/013001
– volume: 92
  start-page: 063502
  year: 2008
  ident: CR19
  article-title: Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2840183
– ident: CR29
– volume: 79
  start-page: 290
  year: 2001
  ident: CR18
  article-title: Modified Mach–Zender laser interferometer for probing bulk acoustic waves
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1385340
– volume: 563
  start-page: 666
  year: 2018
  ident: CR4
  article-title: Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator
  publication-title: Nature
  doi: 10.1038/s41586-018-0717-7
– volume: 60
  start-page: 2330
  year: 1992
  ident: CR11
  article-title: Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.107016
– volume: 68
  start-page: 573
  year: 2020
  ident: CR30
  article-title: 5-GHz antisymmetric mode acoustic delay lines in lithium niobate thin film
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2019.2949808
– volume: 24
  start-page: 265
  year: 2015
  ident: CR35
  article-title: Anchor losses in AlN contour mode resonators
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2367418
– ident: CR40
– volume: 13
  start-page: 694
  year: 2022
  ident: CR24
  article-title: Femtometer-amplitude imaging of coherent super high frequency vibrations in micromechanical resonators
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-022-28223-w
– volume: 114
  start-page: 103502
  year: 2019
  ident: CR36
  article-title: Engineered acoustic mismatch for anchor loss control in contour mode resonators
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5086156
– volume: 10
  start-page: 2228
  year: 2019
  ident: CR23
  article-title: Imaging gigahertz zero-group-velocity Lamb waves
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-019-10085-4
– volume: 82
  start-page: 033705
  year: 2011
  ident: CR43
  article-title: Cryogenic microwave imaging of metal–insulator transition in doped silicon
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3554438
– volume: 116
  start-page: 14511
  year: 2019
  ident: CR44
  article-title: Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1818255116
– volume: 67
  start-page: 402
  year: 2020
  ident: CR32
  article-title: GHz Broadband SH0 Mode Lithium Niobate Acoustic Delay Lines
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2943355
– volume: 73
  start-page: 2278
  year: 1998
  ident: CR15
  article-title: Visualization of 10 um surface acoustic waves by stroboscopic x-ray topography
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121701
– volume: 78
  start-page: 159
  year: 2001
  ident: CR17
  article-title: Dynamic visualization of subangstrom high-frequency surface vibrations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1338954
– ident: CR3
– volume: 25
  start-page: 613
  year: 2000
  ident: CR16
  article-title: Scanning Michelson interferometer for imaging surface acoustic wave fields
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.000613
– volume: 21
  start-page: 12589
  year: 2021
  ident: CR1
  article-title: Piezoelectric MEMS resonators: a review
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3039052
– volume: 104
  start-page: 1801
  year: 2021
  ident: CR39
  article-title: Resonant modal interactions in micro/nano-mechanical structures
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06405-3
– volume: 29
  start-page: 313
  year: 2020
  ident: CR31
  article-title: A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4%
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.2982775
– volume: 32
  start-page: 110
  year: 1928
  ident: CR42
  article-title: Thermal agitation of electric charge in conductors
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.32.110
– volume: 67
  start-page: 1854
  year: 2020
  ident: CR10
  article-title: A wideband oscillator exploiting multiple resonances in lithium niobate MEMS resonator
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2989623
– volume: 40
  start-page: 2157
  year: 2015
  ident: CR22
  article-title: Imaging arbitrary acoustic whispering-gallery modes in the gigahertz range with ultrashort light pulses
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002157
– volume: 299
  start-page: 44
  year: 1982
  ident: CR14
  article-title: Direct imaging of travelling Rayleigh waves by stroboscopic X-ray topography
  publication-title: Nature
  doi: 10.1038/299044a0
– volume: 5
  start-page: 157
  year: 2022
  ident: CR34
  article-title: Gigahertz topological valley Hall effect in nanoelectromechanical phononic crystals
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00732-y
– volume: 9
  start-page: 061002
  year: 2018
  ident: CR25
  article-title: Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.061002
– ident: CR7
– volume: 88
  start-page: 123709
  year: 2017
  ident: CR21
  article-title: Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4995008
– ident: CR28
– volume: 99
  start-page: 124911
  year: 2006
  ident: CR8
  article-title: High-tone bulk acoustic resonators on sapphire, crystal quartz, fused silica, and silicon substrates
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2209029
– volume: 364
  start-page: 368
  year: 2019
  ident: CR5
  article-title: Phonon-mediated quantum state transfer and remote qubit entanglement
  publication-title: Science
  doi: 10.1126/science.aaw8415
– volume: 119
  start-page: 214101
  year: 2021
  ident: CR27
  article-title: Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0073530
– ident: 36936_CR37
  doi: 10.1109/IUS46767.2020.9251719
– volume: 97
  start-page: 233507
  year: 2010
  ident: 36936_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3521263
– volume: 116
  start-page: 14511
  year: 2019
  ident: 36936_CR44
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1818255116
– volume: 364
  start-page: 368
  year: 2019
  ident: 36936_CR5
  publication-title: Science
  doi: 10.1126/science.aaw8415
– volume: 67
  start-page: 1854
  year: 2020
  ident: 36936_CR10
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2020.2989623
– volume: 5
  start-page: 157
  year: 2022
  ident: 36936_CR34
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-022-00732-y
– ident: 36936_CR28
  doi: 10.1109/MEMSYS.2018.8346664
– volume: 13
  start-page: 694
  year: 2022
  ident: 36936_CR24
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-022-28223-w
– volume: 22
  start-page: 013001
  year: 2012
  ident: 36936_CR2
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/1/013001
– volume: 119
  start-page: 214101
  year: 2021
  ident: 36936_CR27
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0073530
– volume: 24
  start-page: 265
  year: 2015
  ident: 36936_CR35
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2014.2367418
– volume: 104
  start-page: 1801
  year: 2021
  ident: 36936_CR39
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06405-3
– ident: 36936_CR7
  doi: 10.1109/MWSYM.2005.1516616
– volume: 78
  start-page: 159
  year: 2001
  ident: 36936_CR17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1338954
– volume: 21
  start-page: 60
  year: 2020
  ident: 36936_CR26
  publication-title: IEEE Microw. Mag.
  doi: 10.1109/MMM.2020.3008240
– volume: 40
  start-page: 2157
  year: 2015
  ident: 36936_CR22
  publication-title: Opt. Lett.
  doi: 10.1364/OL.40.002157
– ident: 36936_CR45
  doi: 10.1109/IUS46767.2020.9251654
– volume: 563
  start-page: 666
  year: 2018
  ident: 36936_CR4
  publication-title: Nature
  doi: 10.1038/s41586-018-0717-7
– volume: 299
  start-page: 44
  year: 1982
  ident: 36936_CR14
  publication-title: Nature
  doi: 10.1038/299044a0
– ident: 36936_CR3
  doi: 10.1007/978-3-319-28688-4
– volume: 68
  start-page: 573
  year: 2020
  ident: 36936_CR30
  publication-title: IEEE Trans. Microw. Theory Tech.
  doi: 10.1109/TMTT.2019.2949808
– volume: 114
  start-page: 103502
  year: 2019
  ident: 36936_CR36
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5086156
– volume: 60
  start-page: 2330
  year: 1992
  ident: 36936_CR11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.107016
– volume: 73
  start-page: 2278
  year: 1998
  ident: 36936_CR15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121701
– volume: 32
  start-page: 110
  year: 1928
  ident: 36936_CR42
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.32.110
– volume: 9
  start-page: 061002
  year: 2018
  ident: 36936_CR25
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.061002
– volume: 67
  start-page: 402
  year: 2020
  ident: 36936_CR32
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2019.2943355
– ident: 36936_CR40
– volume: 79
  start-page: 290
  year: 2001
  ident: 36936_CR18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1385340
– volume: 88
  start-page: 123709
  year: 2017
  ident: 36936_CR21
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4995008
– volume: 73
  start-page: 016102
  year: 2009
  ident: 36936_CR12
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/73/1/016102
– volume: 11
  start-page: 2314
  year: 2020
  ident: 36936_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15472-w
– volume: 103
  start-page: 2197
  year: 2021
  ident: 36936_CR38
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-021-06273-x
– volume: 21
  start-page: 12589
  year: 2021
  ident: 36936_CR1
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3039052
– volume: 82
  start-page: 033705
  year: 2011
  ident: 36936_CR43
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.3554438
– volume: 99
  start-page: 124911
  year: 2006
  ident: 36936_CR8
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2209029
– volume: 17
  start-page: 044024
  year: 2022
  ident: 36936_CR13
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.17.044024
– volume: 25
  start-page: 613
  year: 2000
  ident: 36936_CR16
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.000613
– volume: 32
  start-page: 97
  year: 1928
  ident: 36936_CR41
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.32.97
– volume: 92
  start-page: 063502
  year: 2008
  ident: 36936_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2840183
– volume: 29
  start-page: 313
  year: 2020
  ident: 36936_CR31
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2020.2982775
– volume: 27
  start-page: 931
  year: 2018
  ident: 36936_CR9
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2018.2864177
– ident: 36936_CR29
  doi: 10.1109/IUS46767.2020.9251334
– volume: 53
  start-page: 07KD03
  year: 2014
  ident: 36936_CR33
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.53.07KD03
– volume: 10
  start-page: 2228
  year: 2019
  ident: 36936_CR23
  publication-title: Nat. Comm.
  doi: 10.1038/s41467-019-10085-4
SSID ssj0000391844
Score 2.450295
Snippet Implementing microelectromechanical system (MEMS) resonators calls for detailed microscopic understanding of the devices, such as energy dissipation channels,...
Implementing MEMS resonators calls for detailed microscopic understanding of the devices and imperfections from microfabrication. Lee et al. imaged...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1188
SubjectTerms 639/166/987
639/766/1130/2798
Acoustics
Bulk acoustic wave devices
Defects
Displacement
Energy dissipation
Finite element method
Humanities and Social Sciences
Mathematical models
Microelectromechanical systems
multidisciplinary
Quantum phenomena
Resonators
Room temperature
Science
Science (multidisciplinary)
Sensitivity
Spatial discrimination
Spatial resolution
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNH26SYsKvbUi1sOydUxCQyi0pwZyE7Y0agNdO6x3D_n3nZG922yflx5tySBmRqP5rJlvGHsj6zKGUDtRJaeEUcGITpdJRAWJqCsba6ka-eMne3FpPlxVV3dafVFO2EQPPAnu2KL3NF1oYmgTVUF2gJAG8BnK5EAm8r545t0BU9kHa4fQxcxVMqVujkeTfQIeUUJbp61wOydRJuz_XZT5a7LkTzem-SA6f8gezBEkP5lWfsDuQf-I7U89JW8fsy_oL4cRJQ_8epFbEPEh8XF9A0tB3MQiLafs6Vu-oGS8uQ_OAqgEmDTGEYDTL_VhOXL6S8sTLFY4jgrgI6W7T_0mnrDL8_efzy7E3E1BBIzKVqJFLCohxLpTpiI0iqEbKiKCddBKCbqT0WhQUWndVjqVVWuhJfgGKaQ26adsrx96eM54VFaFJjgMtawJUbcd1TA0tetiXXXaFExuJOvDTDVOHS---XzlrRs_acOjNnzWhncFe7v95mYi2vjr7FNS2HYmkWTnF2g6fjYd_y_TKdjRRt1-3rmjV8QBJi3i4oK93g7jnqOLlLaHYZ3nEM--lrpgzybr2K5E28YaNL-C1Tt2s7PU3ZH--mvm9UbkK2tbF-zdxsJ-LOvPonjxP0RxyO4r2hqUXKeO2N5quYaXGG2tuld5Y30HrFIouA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLKs-GFmQkbmB1_YidnBAgqgoJTlTam5X4USqxyZLsHvrvmXG8qZZHj4kdyfE3tmfGM98Q8oabhXfO1KyMtWBKOMVauYjMixCRurLSGrORv37T5xfqy7JcZofbmMMqd3ti2qh979BHfiqQm4lrsFfer38xrBqFt6u5hMZdcg-pyzCkyyzN7GNB9vNKqZwrs5DV6ajSzgAHFZO6lprVe-dRou3_l675d8jkH_em6Tg6OyQPsx5JP0zAPyJ3QveY3J8qS14_IZewa_YjzH-gV6tUiIj2kY7bdRgYMhSzOEwx1Nd0hSF5uRrOKmAiMOJGwQxHx3o_jBR9tTSG1QbaAQY6YtD7VHXiKbk4-_z90znLNRWYA91swxqwSHlw3rRClWiTggIHcPig69BwHmTLvZJBeCFlU8q4KBsdGjTiQnSxifIZOej6LhwR6oUWrnI1KFxaOS-bFjMZKlO33pStVAXhu5m1LhOOY92LnzZdfMvKTmhYQMMmNGxdkLfzN-uJbuPW3h8RsLknUmWnF_1wafPKsxqOX9W6yrsmYhptG8AmDvAcFrEOPBbkZAe3zet3tDfSVpDXczOsPLxOabrQb1MfZNuXXBbk-SQd80ikrrQC8SuI2ZObvaHut3RXPxK7N9i_3GhTkHc7CbsZ1v-n4sXtf3FMHggUegyeEyfkYDNsw0vQpjbtq7RkfgNUYR7r
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEC7WFcGL-Da6SgvetHX6kU76IKLisgjryYG9haQf68JOsiYz4Px7qzqZkdFR8Jh0B5r-qrrqS9cD4IUoZt65wvI8Wsm1dJo3aha5lyFS6crSGMpGPv1iTub681l-dgCbdkfTBg57qR31k5r3l69_fF-_Q4V_O6aMl28GndQdrQ9XxirD7TW4jpapIEU9ndz9dDIri4RGT7kz-z_dsU-pjP8-3_PPEMrf7lGTeTq-Dbcmv5K9HwXhDhyE9i7cGDtNru_BOZ6i3YB4BHaxSI2JWBfZsLoKPaeKxTz2Y0z1mi0oRG_qjrMIlBhMODKk5fSjvesHRv9uWQyLJY4jLGygIPixC8V9mB9_-vrxhE89FrhDX23Ja2SoIjhfNFLnxFHRoUN4fDA21EIE1QivVZBeKlXnKs7y2oSaSF2ILtZRPYDDtmvDI2BeGulKZ9EBM9p5VTeU2VAWtvFF3iidgdjsbOWmAuTUB-OyShfhqqxGNCpEo0poVDaDl9tvrsbyG_-c_YEA286k0tnpRdefV5MmVgbNsW5c6V0dKa22CciRAz6HWbRBxAyONnBXG3GsJFUGEwbZcgbPt8OoiXS9UrehW6U5VH1fCZXBw1E6titRpjQaxS-DYkdudpa6O9JefEvVvpEPi8IUGbzaSNivZf19Kx7_3_QncFOSElBwnTyCw2W_Ck_R21o2z5IK_QT41iZ5
  priority: 102
  providerName: Scholars Portal
Title Nanoscale imaging of super-high-frequency microelectromechanical resonators with femtometer sensitivity
URI https://link.springer.com/article/10.1038/s41467-023-36936-9
https://www.ncbi.nlm.nih.gov/pubmed/36864039
https://www.proquest.com/docview/2781416211
https://www.proquest.com/docview/2783496313
https://pubmed.ncbi.nlm.nih.gov/PMC9981767
https://doaj.org/article/64714bc8dcaf4343be254ec8de0f9e1f
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBf9YLCXse9l7Y4M9raZXWzHcR6vR2_loGVsK9xbSBy7LeySktw99L-v5HyM27rBXhIS22AsyZZk6SeAD1EyLY1JUha7lDPJjWSFmDpWcusIulIrRdnI5xfq7FIuV_FqD_iQC-OD9j2kpd-mh-iwz630Io0nDBMqFYql-3BI0O3E1XM1H_0qhHiupezzY6ZCPzB05wzyUP0P6Zd_hkn-dlfqj6DFU3jS647hrJvtM9iz1XN41FWTvHsBV7hT1i2uuQ1v1r74UFi7sN3e2oYRKjFzTRc3fReuKQyvr4CztpT8S7QK0fQmZ3rdtCH5Z0Nn1xtsx6UPWwp07ypNvITLxemP-Rnr6ygwg_rYhuVohUbWlEnBZUx2KCptSILSqtTmUWRFEZVSWF5yIfJYuGmcK5uT4WadcbkTr-Cgqiv7BsKSK260SVHJUtKUIi8oe0EnaVEmcSFkANGwspnpQcap1sXPzF92C5111MiQGpmnRpYG8HEcc9tBbPyz9wkRbOxJ8Nj-R91cZT27ZAqPXFkYXZrcUepsYdEOtvhtpy61kQvgeCB31stsm3FC_4oUWsQBvB-bUdroCiWvbL31fQhhX0QigNcdd4wzEUoriewXQLLDNztT3W2pbq49ojfavFGikgA-DRz2a1p_X4q3_9f9CB5zEgIKoOPHcLBptvYdalSbYgL7ySrBp158mcDhbLb8vsT3yenF128TL14T76vA57nU9wigI50
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJTmA1sR0nOSDEq9rSx6mVeguJH6USu1k2u0L7p_iNzDjJVsujtx439ma9nrc98w3AyySLrTFZwVNfCK6EUbyWsedWOE_QlbnWVI18eKRHJ-rLaXq6Ab-GWhhKqxx0YlDUtjF0Rr4jCJsp0RivvJv-4NQ1im5XhxYaHVvsu-VPDNnat3ufkL6vhNj9fPxxxPuuAtygdzLnFcZkiTM2q4VKKSpDFwYXZJ0uXJUkTtaJVdIJK6SsUunjtNKuojDGeeMrL_G91-A6Gt6YJCo7zVZnOoS2nivV1-bEMt9pVdBEaBi51Pg7vFizf6FNwL98279TNP-4pw3mb_cO3O79Vva-Y7S7sOEm9-BG18lyeR_OUEs3LdLbsfNxaHzEGs_axdTNOCEicz_rcraXbEwpgH33nbGjwmPiE4ZhPx3kN7OW0dkw8248x3EkO2spyb7rcvEATq5ktx_C5qSZuEfArNDC5KZAB08rY2VVU-VEnhW1zdJaqgiSYWdL0wOcU5-N72W4aJd52VGjRGqUgRplEcHr1XemHbzHpbM_EMFWMwmaOzxoZmdlL-mlRnOvapNbU3kq260dxuAOP7vYFy7xEWwP5C57fdGWF9wdwYvVMEo6Xd9UE9cswhxC95eJjGCr447VSqTOtUL2iyBb45u1pa6PTM6_BTRxjLeTTGcRvBk47GJZ_9-Kx5f_i-dwc3R8eFAe7B3tP4FbggSAEvfENmzOZwv3FD25ef0siA-Dr1ctr78BUnlcGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYgL4s1CASPBCazEj7V3DwgBJWopVByolNuy60ep1GTTbCKUv8avY8a7myo8eusxa2fjeL6xZ-yZ-Qh5wc3QWWtyloZcMCWsYpUcBuaED1i6MtMas5G_HOq9I_VpnI63yK8-FwbDKvs1MS7UrrZ4Rj4QWJuJa_BXBqELi_i6O3o7O2PIIIU3rT2dRguRA7_6Ce5b82Z_F2T9UojRx28f9ljHMMAsWCoLVoJ_xr11phIqRQ8NzBkYnPM69yXnXlbcKemFE1KWqQzDtNS-RJfGBxvKIOG9V8hVI1OOOmbGZn2-g5XXM6W6PJ2hzAaNiqsSbJJMavgdlm_shZEy4F927t_hmn_c2catcHSL3OxsWPquBd1tsuWnd8i1ltVydZccw4pdNyB7T08mkQSJ1oE2y5mfM6yOzMK8jd9e0QmGA3ZMPBOPSciIGTr36CAgDxDFc2Ia_GQB7QAB2mDAfct4cY8cXcps3yfb03rqHxLqhBY2szkYe1pZJ8sKsygyk1fOpJVUCeH9zBa2K3aOnBunRbx0l1nRSqMAaRRRGkWekFfr78zaUh8X9n6PAlv3xDLd8UE9Py46rS80bP2qspmzZcAU3sqDP-7hsx-G3POQkJ1e3EW3djTFOdIT8nzdDFqPVznl1NfL2Acr_UsuE_KgRcd6JFJnWgH8EmI2cLMx1M2W6cmPWFkcfG9utEnI6x5h58P6_1Q8uvhfPCPXQVOLz_uHB4_JDYH4xxg-sUO2F_OlfwJG3aJ6GrWHku-Xra6_AX5RYE4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoscale+imaging+of+super-high-frequency+microelectromechanical+resonators+with+femtometer+sensitivity&rft.jtitle=Nature+communications&rft.au=Lee%2C+Daehun&rft.au=Jahanbani%2C+Shahin&rft.au=Kramer%2C+Jack&rft.au=Lu%2C+Ruochen&rft.date=2023-03-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36936-9&rft.externalDocID=10_1038_s41467_023_36936_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon