Microtechnology-based methods for organoid models
Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy...
Saved in:
Published in | Microsystems & nanoengineering Vol. 6; no. 1; p. 76 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.
Organ-on-a-Chip: Micromanufacturing offers a boost to three-dimensional cell cultures
Microtechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited. |
---|---|
AbstractList | Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Organ-on-a-Chip: Micromanufacturing offers a boost to three-dimensional cell cultures Microtechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited. Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Microtechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited. Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.Organ-on-a-Chip: Micromanufacturing offers a boost to three-dimensional cell culturesMicrotechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited. |
ArticleNumber | 76 |
Author | Esfandyarpour, Rahim Velasco, Vanessa Shariati, S. Ali |
Author_xml | – sequence: 1 givenname: Vanessa surname: Velasco fullname: Velasco, Vanessa organization: Biochemistry Department, Stanford University – sequence: 2 givenname: S. Ali surname: Shariati fullname: Shariati, S. Ali organization: Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California – sequence: 3 givenname: Rahim surname: Esfandyarpour fullname: Esfandyarpour, Rahim email: rahimes@uci.edu organization: Department of Electrical Engineering, University of California, Department of Biomedical Engineering, University of California Irvine, Henry Samueli School of Engineering, University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34567686$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctOxCAYhYkZ44yjL-DCTOLGTZUWKLAxMcZbonGja0LL3xkmLSi0Jr69jONldOGK23cOB84uGjnvAKGDHJ_kmIjTSHPCRYYLnGGcC5aRLTQpMGMZp4SONuZjtB_jEieKEy4x20FjQlnJS1FOUH5v6-B7qBfOt37-llU6gpl10C-8ibPGh5kPc-28TZveQBv30Haj2wj7n-MUPV1dPl7cZHcP17cX53dZzSjuM2mg4QR4TgQISUGDKQnRxlSNKRnwShpJqBbY0KbWlPK6BM2qtOC0qACTKTpb-z4PVQemBtcH3arnYDsd3pTXVv0-cXah5v5VCUpIujUZHH8aBP8yQOxVZ2MNbasd-CGqgvFS4rLAMqFHf9ClH4JLz1MFpZKynMkVdbiZ6DvK128mQKyB9KUxBmhUbXvdW78KaFuVY7XqTq27U6k79dGdIkla_JF-uf8rImtRTLCbQ_iJ_Y_qHXvHrCY |
CitedBy_id | crossref_primary_10_1021_acsami_4c19276 crossref_primary_10_1007_s12015_023_10551_z crossref_primary_10_1002_smll_202101931 crossref_primary_10_1007_s11814_022_1327_5 crossref_primary_10_1016_j_drudis_2024_104114 crossref_primary_10_1007_s10544_022_00617_z crossref_primary_10_1016_j_theriogenology_2023_12_013 crossref_primary_10_1063_5_0134177 crossref_primary_10_53941_ijddp_v1i1_188 crossref_primary_10_1016_j_mee_2022_111898 crossref_primary_10_1039_D4LC00149D crossref_primary_10_1021_acsptsci_4c00260 crossref_primary_10_1016_j_addr_2021_06_001 crossref_primary_10_1039_D4LC00016A crossref_primary_10_1007_s13206_023_00118_y crossref_primary_10_1007_s10544_024_00712_3 crossref_primary_10_1021_acs_analchem_1c04641 crossref_primary_10_3390_polym13223920 crossref_primary_10_1007_s00249_021_01551_3 crossref_primary_10_1007_s13206_022_00067_y crossref_primary_10_1016_j_mattod_2025_02_002 crossref_primary_10_3390_biomedicines10071541 crossref_primary_10_1016_j_actbio_2021_04_008 crossref_primary_10_1109_TMBMC_2024_3369391 crossref_primary_10_3390_cells11213410 crossref_primary_10_1088_1758_5090_ad1b1e crossref_primary_10_1088_1758_5090_acee21 crossref_primary_10_1002_adhm_202101312 crossref_primary_10_1039_D0LC01300E crossref_primary_10_1016_j_rbmo_2022_03_016 crossref_primary_10_3390_polym13213782 crossref_primary_10_1016_j_bioactmat_2024_11_002 crossref_primary_10_34133_cbsystems_0107 crossref_primary_10_37871_jbres1224 crossref_primary_10_1039_D2AN00599A crossref_primary_10_3390_app131810269 crossref_primary_10_1016_j_medntd_2023_100276 crossref_primary_10_1515_nanoph_2021_0426 crossref_primary_10_3390_ijms241210131 crossref_primary_10_1007_s42242_023_00241_7 crossref_primary_10_1128_mmbr_00025_22 crossref_primary_10_1186_s13567_021_00904_2 crossref_primary_10_1186_s43088_021_00172_1 crossref_primary_10_1063_5_0197807 crossref_primary_10_1002_bit_28606 crossref_primary_10_1371_journal_pone_0282064 crossref_primary_10_3390_ijms241310882 crossref_primary_10_3390_nano10112236 crossref_primary_10_3390_ijms24031912 crossref_primary_10_1021_acsami_4c18728 crossref_primary_10_1016_j_bprint_2022_e00243 crossref_primary_10_1007_s12015_023_10655_6 crossref_primary_10_1186_s13287_023_03341_4 crossref_primary_10_1007_s12272_022_01390_6 crossref_primary_10_52547_ibj_3594 crossref_primary_10_1016_j_ymeth_2022_03_011 crossref_primary_10_1039_D3LC00876B crossref_primary_10_1039_D3BM02012F crossref_primary_10_1002_smsc_202400314 crossref_primary_10_1002_admt_202201926 crossref_primary_10_1021_acsbiomaterials_2c01290 crossref_primary_10_1007_s13770_023_00607_z crossref_primary_10_3389_fonc_2022_837233 crossref_primary_10_1186_s44280_024_00052_0 crossref_primary_10_1183_16000617_0127_2023 crossref_primary_10_1002_adfm_202310961 crossref_primary_10_1007_s13770_024_00672_y crossref_primary_10_1063_5_0093806 crossref_primary_10_1038_s12276_021_00606_x crossref_primary_10_3390_ijms25021165 crossref_primary_10_1017_S0963180123000543 crossref_primary_10_3390_mi15040466 crossref_primary_10_1002_mabi_202100191 crossref_primary_10_3389_fcell_2021_696668 crossref_primary_10_1002_advs_202200475 crossref_primary_10_1042_EBC20200150 crossref_primary_10_1002_biot_202200365 crossref_primary_10_1016_j_mtbio_2025_101672 crossref_primary_10_1021_acs_analchem_3c02676 crossref_primary_10_3390_biom11111572 crossref_primary_10_1016_j_bioactmat_2022_03_039 crossref_primary_10_1002_smtd_202301145 crossref_primary_10_3389_fnins_2021_674563 crossref_primary_10_1002_advs_202304160 crossref_primary_10_1021_jacsau_1c00313 crossref_primary_10_1080_17425247_2024_2388841 crossref_primary_10_34133_cbsystems_0018 crossref_primary_10_1007_s13206_022_00086_9 crossref_primary_10_1016_j_ces_2021_116632 crossref_primary_10_1021_acsapm_2c01613 crossref_primary_10_3390_mi14010151 crossref_primary_10_3389_fcell_2023_1083175 crossref_primary_10_3390_ijms23137444 crossref_primary_10_51335_organoid_2022_2_e4 crossref_primary_10_1088_1758_5090_ad2534 crossref_primary_10_1038_s41378_024_00756_8 crossref_primary_10_1039_D0LC01141J crossref_primary_10_1002_smll_202310614 crossref_primary_10_3390_ijms24108657 crossref_primary_10_3389_fcell_2021_743907 crossref_primary_10_1002_adma_202300692 crossref_primary_10_3390_ijms252011000 crossref_primary_10_1021_acschemneuro_4c00625 crossref_primary_10_1016_j_addr_2021_113839 crossref_primary_10_3389_fcell_2022_878311 crossref_primary_10_1038_s41467_023_42297_0 crossref_primary_10_1016_j_brainresbull_2023_110673 crossref_primary_10_3390_cancers13174440 crossref_primary_10_1038_s41598_022_15177_8 crossref_primary_10_4049_jimmunol_2200573 crossref_primary_10_3389_fonc_2022_960340 crossref_primary_10_1080_03079457_2022_2084363 crossref_primary_10_3390_cells12071001 crossref_primary_10_3390_mi12050497 crossref_primary_10_1016_j_ejphar_2024_176318 crossref_primary_10_1038_s41378_021_00277_8 crossref_primary_10_1177_20417314231172584 crossref_primary_10_1016_j_addr_2023_114842 crossref_primary_10_1088_1758_5090_ac933c crossref_primary_10_3390_bioengineering8110185 crossref_primary_10_51335_organoid_2021_1_e11 crossref_primary_10_1039_D1LC01177D crossref_primary_10_34133_bmr_0016 crossref_primary_10_1007_s00216_024_05435_1 crossref_primary_10_1016_j_theriogenology_2024_02_023 crossref_primary_10_3390_mi13030428 crossref_primary_10_1007_s44164_022_00023_y crossref_primary_10_34133_2022_9804014 crossref_primary_10_1002_smtd_202301009 crossref_primary_10_1002_advs_202100798 crossref_primary_10_3389_ftox_2021_773953 crossref_primary_10_1089_ten_tea_2023_0219 crossref_primary_10_21769_BioProtoc_4469 crossref_primary_10_3390_cancers13122870 crossref_primary_10_1016_j_bios_2022_114750 crossref_primary_10_1038_s41377_024_01406_4 crossref_primary_10_3390_futurepharmacol2030025 crossref_primary_10_1016_j_crmeth_2022_100337 crossref_primary_10_1016_j_critrevonc_2022_103610 crossref_primary_10_2174_1566524023666230511152646 crossref_primary_10_1016_j_radphyschem_2024_112177 crossref_primary_10_1002_anbr_202200104 crossref_primary_10_1016_j_pmatsci_2023_101216 crossref_primary_10_1007_s00204_024_03870_8 crossref_primary_10_1038_s41598_022_13987_4 crossref_primary_10_1002_adhm_202302456 crossref_primary_10_1016_j_bioactmat_2021_11_009 crossref_primary_10_1186_s12967_024_05824_1 crossref_primary_10_1007_s13206_022_00075_y crossref_primary_10_3390_ijms22158196 crossref_primary_10_1039_D3MH00849E |
Cites_doi | 10.3390/ijms16035517 10.1038/nature09941 10.1038/s41586-019-1535-2 10.1088/1758-5090/8/1/014102 10.3390/app8030412 10.1016/S0091-679X(10)97008-8 10.1016/j.jdermsci.2004.03.004 10.1038/nmat3937 10.1038/nature12517 10.1016/j.pharmthera.2016.03.013 10.1016/j.matdes.2017.04.094 10.1242/dev.129452 10.1016/j.cell.2016.05.082 10.1016/j.cell.2018.11.013 10.1007/s10544-011-9608-5 10.1016/0955-0674(95)80071-9 10.1186/1741-7007-10-29 10.1002/adhm.201701018 10.1101/465039 10.1089/ten.tec.2012.0157 10.1016/j.neo.2014.12.004 10.1016/j.tcb.2019.11.004 10.1038/nm.4189 10.1039/C5TB00637F 10.1007/BF01404744 10.1016/j.stem.2015.12.005 10.1039/C6IB00039H 10.1038/s41593-018-0175-4 10.1007/s10439-016-1612-8 10.1016/j.semcancer.2005.06.009 10.1016/j.copbio.2012.01.011 10.1039/C7LC01084B 10.1039/C7PY00559H 10.1159/000047858 10.1038/nprot.2014.102 10.1007/978-1-4939-3603-8_4 10.1002/bit.10655 10.3390/ijms19010181 10.1038/nature07935 10.1002/biot.200700228 10.1038/nprot.2016.131 10.3390/mi8040094 10.1163/016942410X507939 10.1146/annurev.bioeng.3.1.335 10.1634/stemcells.2008-0183 10.1177/1087057117696795 10.1021/acsbiomaterials.8b00904 10.1063/1.3576905 10.1038/s41567-018-0046-7 10.1080/09553007014551401 10.1038/s41598-018-21201-7 10.1126/science.aal1810 10.1039/C0AN00609B 10.1088/1758-5090/7/4/044103 10.1016/j.drudis.2012.10.003 10.1038/nbt.3906 10.1038/nnano.2010.23 10.1016/j.cell.2007.08.006 10.3892/ijo.2016.3376 10.1038/nprot.2013.125 10.1039/C7RA11714K 10.1038/nm.4214 10.1038/nmeth.3016 10.1038/s41576-018-0040-z 10.1038/s41568-018-0007-6 10.1016/S0142-9612(99)00165-9 10.1038/nmeth.2684 10.1021/ac035415s 10.1002/adhm.201601118 10.1016/j.semcancer.2005.05.002 10.1038/nbt.2958 10.1016/j.jconrel.2012.04.045 10.1038/nprot.2014.158 10.1038/nprot.2016.006 10.1038/s41591-019-0422-6 10.1038/nature12271 10.1002/jcb.26622 10.1002/bit.22361 10.1073/pnas.1015938108 10.1021/acsami.6b00202 10.1038/s41467-018-06684-2 10.1242/dev.143693 10.4161/cbt.8.4.7432 10.1016/j.stem.2016.05.022 10.1016/j.devcel.2016.08.014 10.1016/j.stemcr.2018.06.018 10.1039/C9LC00496C 10.1016/j.biomaterials.2016.09.003 10.3390/ijms20184628 10.1016/j.molmed.2017.02.007 10.1039/b821581m |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. L6V LK8 M0S M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM |
DOI | 10.1038/s41378-020-00185-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2055-7434 |
ExternalDocumentID | PMC8433138 34567686 10_1038_s41378_020_00185_3 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R00 GM126027 – fundername: NIGMS NIH HHS grantid: F32 GM123576 – fundername: NIGMS NIH HHS grantid: K99 GM126027 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE HZ~ KQ8 L6V LK8 M7P M7S M~E NAO O9- OK1 PIMPY PQQKQ PROAC PTHSS RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT EJD NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c540t-9def73e7138e894eaed633addbfd65e7b9d934a80d4fca447c6ea5b4fc742be03 |
IEDL.DBID | AAJSJ |
ISSN | 2055-7434 2096-1030 |
IngestDate | Thu Aug 21 17:20:31 EDT 2025 Fri Jul 11 11:17:33 EDT 2025 Wed Aug 13 10:54:38 EDT 2025 Thu Apr 03 07:01:40 EDT 2025 Tue Jul 01 03:27:10 EDT 2025 Thu Apr 24 22:58:55 EDT 2025 Fri Feb 21 02:38:39 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Electrical and electronic engineering Bionanoelectronics |
Language | English |
License | The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-9def73e7138e894eaed633addbfd65e7b9d934a80d4fca447c6ea5b4fc742be03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41378-020-00185-3 |
PMID | 34567686 |
PQID | 2449451599 |
PQPubID | 2041946 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433138 proquest_miscellaneous_2576906209 proquest_journals_2449451599 pubmed_primary_34567686 crossref_citationtrail_10_1038_s41378_020_00185_3 crossref_primary_10_1038_s41378_020_00185_3 springer_journals_10_1038_s41378_020_00185_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-05 |
PublicationDateYYYYMMDD | 2020-10-05 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Microsystems & nanoengineering |
PublicationTitleAbbrev | Microsyst Nanoeng |
PublicationTitleAlternate | Microsyst Nanoeng |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V |
References | Park (CR55) 2015; 3 Bauwens (CR76) 2008; 26 Murphy, Atala (CR53) 2014; 32 Jung (CR97) 2019; 19 Dahl-Jensen, Grapin-Botton (CR7) 2017; 144 Dzobo, Motaung, Adesida (CR46) 2019; 20 Gong (CR9) 2015; 10 Weiswald, Bellet, Dangles-Marie (CR6) 2015; 17 Shim (CR56) 2016; 8 Jackson, Lu (CR1) 2016; 8 CR47 Breslin, O’Driscoll (CR3) 2013; 18 Fukuda, Nakazawa (CR16) 2011; 5 Wang, Wang, Guo, Zhu, Qin (CR91) 2018; 8 Tewary, Shakiba, Zandstra (CR77) 2018; 19 Kim (CR59) 2004; 1 Vinci (CR63) 2012; 10 Casson, O’Kane, Smith, Dalby, Berry (CR52) 2018; 8 Drost, Clevers (CR67) 2018; 18 Kopper (CR23) 2019; 25 Khademhosseini (CR81) 2004; 76 Saheli (CR28) 2018; 119 Zhang (CR96) 2017; 114 CR54 Kelm, Timmins, Brown, Fussenegger, Nielsen (CR44) 2003; 83 Drost (CR22) 2016; 11 Zhang (CR15) 2017; 45 Kondo (CR100) 2011; 108 Hu (CR24) 2018; 175 Orlova (CR99) 2014; 9 Janshoff (CR10) 2010; 24 Harrison, Sozen, Christodoulou, Kyprianou, Zernicka-Goetz (CR89) 2017; 356 Deglincerti (CR83) 2016; 11 Lin, Chang (CR31) 2008; 3 Mehta, Hsiao, Ingram, Luker, Takayama (CR65) 2012; 164 Muffat (CR70) 2016; 22 Kumar, Starly (CR12) 2015; 7 Gao, Huang, Schilling, Hubbell, Cui (CR60) 2018; 7 Park (CR57) 2016; 13 Lin (CR40) 2016; 8 Lancaster (CR19) 2013; 501 Wang (CR82) 2017; 128 Yin (CR8) 2016; 18 Kuo (CR41) 2017; 7 Park (CR69) 2018; 21 CR78 Sato (CR20) 2009; 459 Schwarz, Goodwin, Wolf (CR33) 1992; 14 Cho (CR58) 2004; 35 Hsiao (CR39) 2012; 14 Karzbrun, Kshirsagar, Cohen, Hanna, Reiner (CR90) 2018; 14 Rimann, Graf-Hausner (CR36) 2012; 23 Lancaster (CR88) 2017; 35 Tseng (CR51) 2013; 19 Souza (CR48) 2010; 5 Lazzari, Couvreur, Mura (CR5) 2017; 8 Sutherland, McCredie, Inch (CR43) 1971; 46 Warmflash, Sorre, Etoc, Siggia, Brivanlou (CR86) 2014; 11 CR84 Kane, Takayama, Ostuni, Ingber, Whitesides (CR80) 1999; 20 Azioune, Storch, Bornens, Théry, Piel (CR85) 2009; 9 Briscoe, Small (CR87) 2015; 142 Birgersdotter, Sandberg, Ernberg (CR25) 2005; 15 Vadivelu, Kamble, Shiddiky, Nguyen (CR14) 2017; 8 Tibbitt, Anseth (CR27) 2009; 103 Yamada, Cukierman (CR30) 2007; 130 Quadrato, Brown, Arlotta (CR73) 2016; 22 Przepiorski (CR34) 2018; 11 Tung (CR38) 2011; 136 Kelava, Lancaster (CR74) 2016; 18 Whitesides, Ostuni, Takayama, Jiang, Ingber (CR79) 2001; 3 Zhang (CR62) 2016; 110 Zheng (CR93) 2019; 573 Keller (CR37) 1995; 7 Sutherland, Inch, McCredie, Kruuv (CR42) 1970; 18 Kretzschmar, Clevers (CR21) 2016; 38 Sun (CR94) 2018; 4 Vertrees (CR35) 2009; 8 Haisler (CR49) 2013; 8 Jong (CR13) 2005; 15 Mironov (CR61) 2009; 30 Kasendra (CR95) 2018; 8 Dutta, Heo, Clevers (CR66) 2017; 23 Clevers (CR4) 2016; 165 Meenach (CR29) 2016; 48 Yu, Hunziker, Choudhury (CR71) 2019; 10 Takebe (CR18) 2013; 499 Török (CR11) 2001; 169 Nath, Devi (CR50) 2016; 163 Eiraku (CR17) 2011; 472 Hoarau-Véchot, Rafii, Touboul, Pasquier (CR32) 2018; 19 Antoni, Burckel, Josset, Noel (CR64) 2015; 16 Wang, Wang, Zhu, Qin (CR92) 2018; 18 Lancaster, Knoblich (CR72) 2014; 9 Nazareth (CR75) 2013; 10 Marton, Pașca (CR98) 2020; 30 Murphy, McDevitt, Engler (CR26) 2014; 13 Fang, Eglen (CR2) 2017; 22 Ormel (CR68) 2018; 9 Yuhas, Li, Martinez, Ladman (CR45) 1977; 37 MA Lancaster (185_CR72) 2014; 9 185_CR78 A Przepiorski (185_CR34) 2018; 11 B Lin (185_CR40) 2016; 8 RM Sutherland (185_CR43) 1971; 46 M Saheli (185_CR28) 2018; 119 J Casson (185_CR52) 2018; 8 G Mehta (185_CR65) 2012; 164 Y Fang (185_CR2) 2017; 22 J Hoarau-Véchot (185_CR32) 2018; 19 E Karzbrun (185_CR90) 2018; 14 J Briscoe (185_CR87) 2015; 142 H Hu (185_CR24) 2018; 175 M Rimann (185_CR36) 2012; 23 SA Meenach (185_CR29) 2016; 48 YS Zhang (185_CR62) 2016; 110 185_CR84 S Dahl-Jensen (185_CR7) 2017; 144 K Dzobo (185_CR46) 2019; 20 A Khademhosseini (185_CR81) 2004; 76 LB Weiswald (185_CR6) 2015; 17 A Azioune (185_CR85) 2009; 9 RZ Lin (185_CR31) 2008; 3 RS Kane (185_CR80) 1999; 20 WL Haisler (185_CR49) 2013; 8 M Vinci (185_CR63) 2012; 10 K Kretzschmar (185_CR21) 2016; 38 É Török (185_CR11) 2001; 169 SK Kim (185_CR59) 2004; 1 GR Souza (185_CR48) 2010; 5 C-T Kuo (185_CR41) 2017; 7 X Gong (185_CR9) 2015; 10 A Janshoff (185_CR10) 2010; 24 A Kumar (185_CR12) 2015; 7 M Eiraku (185_CR17) 2011; 472 Y-C Tung (185_CR38) 2011; 136 SE Harrison (185_CR89) 2017; 356 X Yin (185_CR8) 2016; 18 A Birgersdotter (185_CR25) 2005; 15 RK Vadivelu (185_CR14) 2017; 8 Y Wang (185_CR82) 2017; 128 D Antoni (185_CR64) 2015; 16 EL Jackson (185_CR1) 2016; 8 T Takebe (185_CR18) 2013; 499 O Kopper (185_CR23) 2019; 25 BK Jong (185_CR13) 2005; 15 H-J Cho (185_CR58) 2004; 35 V Mironov (185_CR61) 2009; 30 Y Zheng (185_CR93) 2019; 573 A Warmflash (185_CR86) 2014; 11 G Lazzari (185_CR5) 2017; 8 J Drost (185_CR22) 2016; 11 Y Wang (185_CR92) 2018; 18 YS Zhang (185_CR96) 2017; 114 A Deglincerti (185_CR83) 2016; 11 S Breslin (185_CR3) 2013; 18 AY Hsiao (185_CR39) 2012; 14 GM Whitesides (185_CR79) 2001; 3 J Park (185_CR69) 2018; 21 M Kasendra (185_CR95) 2018; 8 H Tseng (185_CR51) 2013; 19 H Park (185_CR57) 2016; 13 KM Yamada (185_CR30) 2007; 130 EJP Nazareth (185_CR75) 2013; 10 185_CR47 CL Bauwens (185_CR76) 2008; 26 J Kondo (185_CR100) 2011; 108 M Tewary (185_CR77) 2018; 19 MA Lancaster (185_CR88) 2017; 35 J Drost (185_CR67) 2018; 18 G Quadrato (185_CR73) 2016; 22 J Muffat (185_CR70) 2016; 22 H Clevers (185_CR4) 2016; 165 GM Keller (185_CR37) 1995; 7 JM Kelm (185_CR44) 2003; 83 185_CR54 Y Wang (185_CR91) 2018; 8 RM Marton (185_CR98) 2020; 30 J Fukuda (185_CR16) 2011; 5 G Gao (185_CR60) 2018; 7 JY Park (185_CR55) 2015; 3 VV Orlova (185_CR99) 2014; 9 RP Schwarz (185_CR33) 1992; 14 WL Murphy (185_CR26) 2014; 13 PR Ormel (185_CR68) 2018; 9 J-H Shim (185_CR56) 2016; 8 D Dutta (185_CR66) 2017; 23 MA Lancaster (185_CR19) 2013; 501 JM Yuhas (185_CR45) 1977; 37 I Kelava (185_CR74) 2016; 18 RM Sutherland (185_CR42) 1970; 18 S Nath (185_CR50) 2016; 163 F Yu (185_CR71) 2019; 10 MW Tibbitt (185_CR27) 2009; 103 T Sato (185_CR20) 2009; 459 RA Vertrees (185_CR35) 2009; 8 DJ Jung (185_CR97) 2019; 19 YS Zhang (185_CR15) 2017; 45 SV Murphy (185_CR53) 2014; 32 Q Sun (185_CR94) 2018; 4 |
References_xml | – volume: 19 start-page: 595 year: 2018 end-page: 614 ident: CR77 article-title: Stem cell bioengineering: building from stem cell biology publication-title: Nat. Rev. Genet. – volume: 14 start-page: 515 year: 2018 end-page: 522 ident: CR90 article-title: Human brain organoids on a chip reveal the physics of folding publication-title: Nat. Phys. – volume: 8 start-page: 356 year: 2009 end-page: 365 ident: CR35 article-title: Development of a three-dimensional model of lung cancer using cultured transformed lung cells publication-title: Cancer Biol. Ther. – volume: 169 start-page: 34 year: 2001 end-page: 41 ident: CR11 article-title: Optimization of hepatocyte spheroid formation for hepatic tissue engineering on three-dimensional biodegradable polymer within a flow bioreactor prior to implantation publication-title: Cells Tissues Organs – volume: 24 start-page: 2079 year: 2010 end-page: 2104 ident: CR10 article-title: Cell adhesion monitoring using substrate-integrated sensors publication-title: J. Adhes. Sci. Technol. – volume: 18 start-page: 240 year: 2013 end-page: 249 ident: CR3 article-title: Three-dimensional cell culture: the missing link in drug discovery publication-title: Drug Discov. Today – volume: 459 start-page: 262 year: 2009 end-page: 265 ident: CR20 article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche publication-title: Nature – volume: 142 start-page: 3996 year: 2015 end-page: 4009 ident: CR87 article-title: Morphogen rules: design principles of gradient- mediated embryo patterning publication-title: Development – volume: 48 start-page: 1701 year: 2016 end-page: 1709 ident: CR29 article-title: Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics publication-title: Int. J. Oncol. – volume: 8 start-page: 4947 year: 2017 end-page: 4969 ident: CR5 article-title: Multicellular tumor spheroids: a relevant 3D model for the: In vitro preclinical investigation of polymer nanomedicines publication-title: Polym. Chem. – ident: CR54 – volume: 18 start-page: 491 year: 1970 end-page: 495 ident: CR42 article-title: A multi-component radiation survival curve using an in vitro tumour model publication-title: Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med – volume: 35 start-page: 74 year: 2004 end-page: 77 ident: CR58 article-title: Effects of hair follicle dermal sheath cells in the reconstruction of skin equivalents publication-title: J. Dermatol. Sci. – volume: 23 start-page: 393 year: 2017 end-page: 410 ident: CR66 article-title: Disease modeling in stem cell-derived 3D organoid systems publication-title: Trends Mol. Med. – volume: 19 start-page: 181 year: 2018 ident: CR32 article-title: Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancermicroenvironment interactions? publication-title: Int. J. Mol. Sci. – volume: 4 start-page: 4425 year: 2018 end-page: 4433 ident: CR94 article-title: Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing publication-title: ACS Biomater. Sci. Eng. – volume: 18 start-page: 407 year: 2018 end-page: 418 ident: CR67 article-title: Organoids in cancer research publication-title: Nat. Rev. Cancer – volume: 45 start-page: 148 year: 2017 end-page: 163 ident: CR15 article-title: 3D bioprinting for tissue and organ fabrication publication-title: Ann. Biomed. Eng. – volume: 356 year: 2017 ident: CR89 article-title: Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro publication-title: Science – volume: 8 start-page: 5906 year: 2016 end-page: 5916 ident: CR40 article-title: Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming induc- tive microtissues for hair-follicle regeneration publication-title: ACS Appl. Mater. Interfaces – volume: 472 start-page: 51 year: 2011 end-page: 56 ident: CR17 article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture publication-title: Nature – volume: 14 start-page: 51 year: 1992 end-page: 57 ident: CR33 article-title: Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity publication-title: J. Tissue Cult. Methods – volume: 7 start-page: 862 year: 1995 end-page: 869 ident: CR37 article-title: In vitro differentiation of embryonic stem cells publication-title: Curr. Opin. Cell Biol. – volume: 20 start-page: 4628 year: 2019 ident: CR46 article-title: Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 1 year: 2018 end-page: 14 ident: CR95 article-title: Development of a primary human small intestine-on-a- chip using biopsy-derived organoids publication-title: Sci. Rep. – volume: 18 start-page: 736 year: 2016 end-page: 748 ident: CR74 article-title: Stem cell models of human brain development publication-title: Cell Stem Cell – volume: 76 start-page: 3675 year: 2004 end-page: 3681 ident: CR81 article-title: A Soft lithographic approach to fabricate patterned microfluidic channels publication-title: Anal. Chem. – volume: 35 start-page: 659 year: 2017 end-page: 666 ident: CR88 article-title: Guided self-organization and cortical plate formation in human brain organoids publication-title: Nat. Biotechnol. – volume: 10 start-page: 1225 year: 2013 end-page: 1231 ident: CR75 article-title: High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias publication-title: Nat. Methods – volume: 8 start-page: 672 year: 2016 end-page: 683 ident: CR1 article-title: Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids publication-title: Integr. Biol. (Camb.) – volume: 19 start-page: 2854 year: 2019 end-page: 2865 ident: CR97 article-title: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity publication-title: Lab Chip – ident: CR47 – volume: 10 year: 2012 ident: CR63 article-title: Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation publication-title: BMC Biol. – volume: 10 start-page: 1 year: 2015 end-page: 18 ident: CR9 article-title: Generation of multicellular tumor spheroids with microwell- based agarose scaffolds for drug testing publication-title: PLoS ONE – volume: 8 start-page: 14102 year: 2016 ident: CR56 article-title: Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint publication-title: Biofabrication – volume: 20 start-page: 2363 year: 1999 end-page: 2376 ident: CR80 article-title: Patterning proteins and cells using soft lithography publication-title: Biomaterials – volume: 18 start-page: 25 year: 2016 end-page: 38 ident: CR8 article-title: Engineering stem cell organoids publication-title: Cell Stem Cell – volume: 30 start-page: 2164 year: 2009 end-page: 2174 ident: CR61 article-title: Organ printing: tissue spheroids as building blocks publication-title: Bio- Mater. – volume: 8 start-page: 1940 year: 2013 ident: CR49 article-title: Three-dimensional cell culturing by magnetic levitation publication-title: Nat. Protoc. – volume: 18 start-page: 851 year: 2018 end-page: 860 ident: CR92 article-title: Human brain organoid-on-a-chip to model prenatal nicotine exposure publication-title: Lab Chip – volume: 3 start-page: 5415 year: 2015 end-page: 5425 ident: CR55 article-title: 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration publication-title: J. Mater. Chem. B – volume: 573 start-page: 421 year: 2019 end-page: 425 ident: CR93 article-title: Controlled modelling of human epiblast and amnion development using stem cells publication-title: Nature – volume: 9 start-page: 1514 year: 2014 end-page: 1531 ident: CR99 article-title: Generation, expansion and functional analysis of endo-thelial cells and pericytes derived from human pluripotent stem cells publication-title: Nat. Protoc. – volume: 3 start-page: 335 year: 2001 end-page: 373 ident: CR79 article-title: Soft lithography in biology and biochemistry publication-title: Annu. Rev. Biomed. Eng. – volume: 8 start-page: 1677 year: 2018 end-page: 1685 ident: CR91 article-title: Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system publication-title: RSC Adv. – volume: 3 start-page: 1172 year: 2008 end-page: 1184 ident: CR31 article-title: Recent advances in three-dimensional multicellular spheroid culture for biomedical research publication-title: Biotechnol. J. – volume: 11 start-page: 2223 year: 2016 end-page: 2232 ident: CR83 article-title: Self-organization of human embryonic stem cells on micropatterns publication-title: Nat. Protoc. – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: CR53 article-title: 3D bioprinting of tissues and organs publication-title: Nat. Biotechnol. – volume: 17 start-page: 1 year: 2015 end-page: 15 ident: CR6 article-title: Spherical cancer models in tumor biology publication-title: Neoplasia (U. S.) – volume: 136 start-page: 473 year: 2011 end-page: 478 ident: CR38 article-title: High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array publication-title: Analyst – volume: 7 start-page: 44103 year: 2015 ident: CR12 article-title: Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes publication-title: Biofabrication – volume: 130 start-page: 601 year: 2007 end-page: 610 ident: CR30 article-title: Modeling tissue morphogenesis and cancer in 3D publication-title: Cell – volume: 5 start-page: 291 year: 2010 end-page: 296 ident: CR48 article-title: Three-dimensional tissue culture based on magnetic cell levitation publication-title: Nat. Nanotechnol. – volume: 9 year: 2018 ident: CR68 article-title: Microglia innately develop within cerebral organoids publication-title: Nat. Commun. – volume: 8 start-page: 412 year: 2018 ident: CR52 article-title: Interleukin 6 plays a role in the migration of magnetically levitated mesenchymal stem cells spheroids publication-title: Appl. Sci. – volume: 8 start-page: 1 year: 2017 end-page: 23 ident: CR14 article-title: Microfluidic technology for the generation of cell spheroids and their applications publication-title: Micromachines – volume: 7 year: 2017 ident: CR41 article-title: Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array publication-title: Sci. Rep. – volume: 108 start-page: 6235 year: 2011 end-page: 6240 ident: CR100 article-title: Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer publication-title: Proc. Natl Acad. Sci. USA. – ident: CR84 – volume: 14 start-page: 313 year: 2012 end-page: 323 ident: CR39 article-title: Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates publication-title: Biomed. Microdevices – volume: 37 start-page: 3639 year: 1977 end-page: 3643 ident: CR45 article-title: A simplified method for production and growth of multicellular tumor spheroids publication-title: Cancer Res. – volume: 22 start-page: 456 year: 2017 end-page: 472 ident: CR2 article-title: Three-dimensional cell cultures in drug discovery and development publication-title: SLAS Disco. – volume: 499 start-page: 481 year: 2013 end-page: 484 ident: CR18 article-title: Vascularized and functional human liver from an iPSC-derived organ bud transplant publication-title: Nature – volume: 144 start-page: 946 year: 2017 end-page: 951 ident: CR7 article-title: The physics of organoids: a biophysical approach to understanding organogenesis publication-title: Development – volume: 11 start-page: 847 year: 2014 end-page: 854 ident: CR86 article-title: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells publication-title: Nat. Methods – volume: 9 start-page: 1640 year: 2009 end-page: 1642 ident: CR85 article-title: Simple and rapid process for single cell micro-patterning publication-title: Lab Chip – volume: 83 start-page: 173 year: 2003 end-page: 180 ident: CR44 article-title: Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types publication-title: Biotechnol. Bioeng. – volume: 26 start-page: 2300 year: 2008 end-page: 2310 ident: CR76 article-title: Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories publication-title: Stem Cells – volume: 30 start-page: 133 year: 2020 end-page: 143 ident: CR98 article-title: Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease publication-title: Trends Cell Biol. – volume: 1 start-page: 149 year: 2004 end-page: 156 ident: CR59 article-title: Tissue engineered spinal cord using bone marrow stromal stem cells seeded pga scaffolds; preliminary study publication-title: Tissue Eng. Regen. Med – ident: CR78 – volume: 13 start-page: 547 year: 2014 end-page: 557 ident: CR26 article-title: Materials as stem cell regulators publication-title: Nat. Mater. – volume: 16 start-page: 5517 year: 2015 end-page: 5527 ident: CR64 article-title: Three-dimensional cell culture: a breakthrough in vivo publication-title: Int. J. Mol. Sci. – volume: 15 start-page: 405 year: 2005 end-page: 412 ident: CR25 article-title: Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems publication-title: Semin. Cancer Biol. – volume: 7 start-page: 1701018 year: 2018 ident: CR60 article-title: Organ bioprinting: are we there yet? publication-title: Adv. Healthc. Mater. – volume: 9 start-page: 2329 year: 2014 end-page: 2340 ident: CR72 article-title: Generation of cerebral organoids from human pluripotent stem cells publication-title: Nat. Protoc. – volume: 13 start-page: 465 year: 2016 end-page: 474 ident: CR57 article-title: Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng publication-title: Regen. Med. – volume: 110 start-page: 45 year: 2016 end-page: 59 ident: CR62 article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip publication-title: Biomaterials – volume: 22 start-page: 1220 year: 2016 end-page: 1228 ident: CR73 article-title: The promises and challenges of human brain organoids as models of neuropsychiatric disease publication-title: Nat. Med – volume: 165 start-page: 1586 year: 2016 end-page: 1597 ident: CR4 article-title: Modeling development and disease with organoids publication-title: Cell – volume: 15 start-page: 365 year: 2005 end-page: 377 ident: CR13 article-title: Three-dimensional tissue culture models in cancer biology publication-title: Semin. Cancer Biol. – volume: 19 start-page: 665 year: 2013 end-page: 675 ident: CR51 article-title: Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation publication-title: Tissue Eng. Part C. Methods – volume: 103 start-page: 655 year: 2009 end-page: 663 ident: CR27 article-title: Hydrogels as extracellular matrix mimics for 3D cell culture publication-title: Biotechnol. Bioeng. – volume: 163 start-page: 94 year: 2016 end-page: 108 ident: CR50 article-title: Three-dimensional culture systems in cancer research: focus on tumor spheroid model publication-title: Pharmacol. Ther. – volume: 5 start-page: 22205 year: 2011 ident: CR16 article-title: Hepatocyte spheroid arrays inside microwells connected with microchannels publication-title: Biomicrofluidics – volume: 38 start-page: 590 year: 2016 end-page: 600 ident: CR21 article-title: Organoids: modeling development and the stem cell niche in a dish publication-title: Dev. Cell – volume: 46 start-page: 113 year: 1971 end-page: 120 ident: CR43 article-title: Growth of multicell spheroids in tissue culture as a model of nodular Carcinomas2 publication-title: JNCI J. Natl Cancer Inst. – volume: 164 start-page: 192 year: 2012 end-page: 204 ident: CR65 article-title: Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy publication-title: J. Control. Release – volume: 22 start-page: 1358 year: 2016 end-page: 1367 ident: CR70 article-title: Efficient derivation of microglia-like cells from human plur- ipotent stem cells publication-title: Nat. Med – volume: 119 start-page: 4320 year: 2018 end-page: 4333 ident: CR28 article-title: Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function publication-title: J. Cell. Biochem. – volume: 501 start-page: 373 year: 2013 end-page: 379 ident: CR19 article-title: Cerebral organoids model human brain development and microcephaly publication-title: Nature – volume: 21 start-page: 941 year: 2018 end-page: 951 ident: CR69 article-title: A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease publication-title: Nat. Neurosci. – volume: 11 start-page: 347 year: 2016 end-page: 358 ident: CR22 article-title: Organoid culture systems for prostate epithelial and cancer tissue publication-title: Nat. Protoc. – volume: 114 start-page: E2293 year: 2017 end-page: E2302 ident: CR96 article-title: Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors publication-title: Proc. Natl Acad. Sci. U. S. A – volume: 175 start-page: 1591 year: 2018 end-page: 1606 ident: CR24 article-title: Long-term expansion of functional mouse and human hepa- tocytes as 3D organoids publication-title: Cell – volume: 128 start-page: 44 year: 2017 end-page: 55 ident: CR82 article-title: A microengineered collagen scaffold for generating a polarized crypt villus architecture of human small intestinal epithelium publication-title: Bio-Mater. – volume: 25 start-page: 838 year: 2019 end-page: 849 ident: CR23 article-title: An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity publication-title: Nat. Med – volume: 11 start-page: 470 year: 2018 end-page: 484 ident: CR34 article-title: A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells publication-title: Stem Cell Rep. – volume: 23 start-page: 803 year: 2012 end-page: 809 ident: CR36 article-title: Synthetic 3D multicellular systems for drug development publication-title: Curr. Opin. Biotechnol. – volume: 10 start-page: 1 year: 2019 end-page: 12 ident: CR71 article-title: Engineering microfluidic organoid-on-a-chip platforms publication-title: Micromachines – volume: 16 start-page: 5517 year: 2015 ident: 185_CR64 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms16035517 – volume: 472 start-page: 51 year: 2011 ident: 185_CR17 publication-title: Nature doi: 10.1038/nature09941 – volume: 114 start-page: E2293 year: 2017 ident: 185_CR96 publication-title: Proc. Natl Acad. Sci. U. S. A – volume: 573 start-page: 421 year: 2019 ident: 185_CR93 publication-title: Nature doi: 10.1038/s41586-019-1535-2 – volume: 8 start-page: 14102 year: 2016 ident: 185_CR56 publication-title: Biofabrication doi: 10.1088/1758-5090/8/1/014102 – volume: 8 start-page: 412 year: 2018 ident: 185_CR52 publication-title: Appl. Sci. doi: 10.3390/app8030412 – ident: 185_CR84 doi: 10.1016/S0091-679X(10)97008-8 – volume: 35 start-page: 74 year: 2004 ident: 185_CR58 publication-title: J. Dermatol. Sci. doi: 10.1016/j.jdermsci.2004.03.004 – volume: 13 start-page: 547 year: 2014 ident: 185_CR26 publication-title: Nat. Mater. doi: 10.1038/nmat3937 – volume: 501 start-page: 373 year: 2013 ident: 185_CR19 publication-title: Nature doi: 10.1038/nature12517 – volume: 163 start-page: 94 year: 2016 ident: 185_CR50 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2016.03.013 – volume: 128 start-page: 44 year: 2017 ident: 185_CR82 publication-title: Bio-Mater. doi: 10.1016/j.matdes.2017.04.094 – volume: 142 start-page: 3996 year: 2015 ident: 185_CR87 publication-title: Development doi: 10.1242/dev.129452 – volume: 165 start-page: 1586 year: 2016 ident: 185_CR4 publication-title: Cell doi: 10.1016/j.cell.2016.05.082 – volume: 175 start-page: 1591 year: 2018 ident: 185_CR24 publication-title: Cell doi: 10.1016/j.cell.2018.11.013 – volume: 1 start-page: 149 year: 2004 ident: 185_CR59 publication-title: Tissue Eng. Regen. Med – volume: 14 start-page: 313 year: 2012 ident: 185_CR39 publication-title: Biomed. Microdevices doi: 10.1007/s10544-011-9608-5 – volume: 46 start-page: 113 year: 1971 ident: 185_CR43 publication-title: JNCI J. Natl Cancer Inst. – volume: 7 start-page: 862 year: 1995 ident: 185_CR37 publication-title: Curr. Opin. Cell Biol. doi: 10.1016/0955-0674(95)80071-9 – volume: 10 year: 2012 ident: 185_CR63 publication-title: BMC Biol. doi: 10.1186/1741-7007-10-29 – volume: 7 start-page: 1701018 year: 2018 ident: 185_CR60 publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.201701018 – ident: 185_CR78 doi: 10.1101/465039 – volume: 19 start-page: 665 year: 2013 ident: 185_CR51 publication-title: Tissue Eng. Part C. Methods doi: 10.1089/ten.tec.2012.0157 – volume: 17 start-page: 1 year: 2015 ident: 185_CR6 publication-title: Neoplasia (U. S.) doi: 10.1016/j.neo.2014.12.004 – volume: 30 start-page: 133 year: 2020 ident: 185_CR98 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2019.11.004 – volume: 22 start-page: 1358 year: 2016 ident: 185_CR70 publication-title: Nat. Med doi: 10.1038/nm.4189 – volume: 3 start-page: 5415 year: 2015 ident: 185_CR55 publication-title: J. Mater. Chem. B doi: 10.1039/C5TB00637F – volume: 14 start-page: 51 year: 1992 ident: 185_CR33 publication-title: J. Tissue Cult. Methods doi: 10.1007/BF01404744 – volume: 18 start-page: 25 year: 2016 ident: 185_CR8 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.12.005 – volume: 8 start-page: 672 year: 2016 ident: 185_CR1 publication-title: Integr. Biol. (Camb.) doi: 10.1039/C6IB00039H – volume: 21 start-page: 941 year: 2018 ident: 185_CR69 publication-title: Nat. Neurosci. doi: 10.1038/s41593-018-0175-4 – volume: 45 start-page: 148 year: 2017 ident: 185_CR15 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-016-1612-8 – volume: 15 start-page: 405 year: 2005 ident: 185_CR25 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2005.06.009 – volume: 23 start-page: 803 year: 2012 ident: 185_CR36 publication-title: Curr. Opin. Biotechnol. doi: 10.1016/j.copbio.2012.01.011 – volume: 18 start-page: 851 year: 2018 ident: 185_CR92 publication-title: Lab Chip doi: 10.1039/C7LC01084B – volume: 8 start-page: 4947 year: 2017 ident: 185_CR5 publication-title: Polym. Chem. doi: 10.1039/C7PY00559H – volume: 10 start-page: 1 year: 2015 ident: 185_CR9 publication-title: PLoS ONE – volume: 169 start-page: 34 year: 2001 ident: 185_CR11 publication-title: Cells Tissues Organs doi: 10.1159/000047858 – volume: 9 start-page: 1514 year: 2014 ident: 185_CR99 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.102 – ident: 185_CR47 doi: 10.1007/978-1-4939-3603-8_4 – volume: 83 start-page: 173 year: 2003 ident: 185_CR44 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.10655 – volume: 19 start-page: 181 year: 2018 ident: 185_CR32 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19010181 – volume: 459 start-page: 262 year: 2009 ident: 185_CR20 publication-title: Nature doi: 10.1038/nature07935 – volume: 3 start-page: 1172 year: 2008 ident: 185_CR31 publication-title: Biotechnol. J. doi: 10.1002/biot.200700228 – volume: 11 start-page: 2223 year: 2016 ident: 185_CR83 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.131 – volume: 8 start-page: 1 year: 2017 ident: 185_CR14 publication-title: Micromachines doi: 10.3390/mi8040094 – volume: 24 start-page: 2079 year: 2010 ident: 185_CR10 publication-title: J. Adhes. Sci. Technol. doi: 10.1163/016942410X507939 – volume: 3 start-page: 335 year: 2001 ident: 185_CR79 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.3.1.335 – volume: 26 start-page: 2300 year: 2008 ident: 185_CR76 publication-title: Stem Cells doi: 10.1634/stemcells.2008-0183 – volume: 22 start-page: 456 year: 2017 ident: 185_CR2 publication-title: SLAS Disco. doi: 10.1177/1087057117696795 – volume: 4 start-page: 4425 year: 2018 ident: 185_CR94 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00904 – volume: 5 start-page: 22205 year: 2011 ident: 185_CR16 publication-title: Biomicrofluidics doi: 10.1063/1.3576905 – volume: 10 start-page: 1 year: 2019 ident: 185_CR71 publication-title: Micromachines – volume: 14 start-page: 515 year: 2018 ident: 185_CR90 publication-title: Nat. Phys. doi: 10.1038/s41567-018-0046-7 – volume: 18 start-page: 491 year: 1970 ident: 185_CR42 publication-title: Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med doi: 10.1080/09553007014551401 – volume: 8 start-page: 1 year: 2018 ident: 185_CR95 publication-title: Sci. Rep. doi: 10.1038/s41598-018-21201-7 – volume: 356 year: 2017 ident: 185_CR89 publication-title: Science doi: 10.1126/science.aal1810 – volume: 136 start-page: 473 year: 2011 ident: 185_CR38 publication-title: Analyst doi: 10.1039/C0AN00609B – volume: 7 start-page: 44103 year: 2015 ident: 185_CR12 publication-title: Biofabrication doi: 10.1088/1758-5090/7/4/044103 – volume: 18 start-page: 240 year: 2013 ident: 185_CR3 publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2012.10.003 – volume: 35 start-page: 659 year: 2017 ident: 185_CR88 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3906 – volume: 5 start-page: 291 year: 2010 ident: 185_CR48 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.23 – volume: 130 start-page: 601 year: 2007 ident: 185_CR30 publication-title: Cell doi: 10.1016/j.cell.2007.08.006 – volume: 48 start-page: 1701 year: 2016 ident: 185_CR29 publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3376 – volume: 8 start-page: 1940 year: 2013 ident: 185_CR49 publication-title: Nat. Protoc. doi: 10.1038/nprot.2013.125 – volume: 8 start-page: 1677 year: 2018 ident: 185_CR91 publication-title: RSC Adv. doi: 10.1039/C7RA11714K – volume: 22 start-page: 1220 year: 2016 ident: 185_CR73 publication-title: Nat. Med doi: 10.1038/nm.4214 – volume: 11 start-page: 847 year: 2014 ident: 185_CR86 publication-title: Nat. Methods doi: 10.1038/nmeth.3016 – volume: 13 start-page: 465 year: 2016 ident: 185_CR57 publication-title: Regen. Med. – volume: 19 start-page: 595 year: 2018 ident: 185_CR77 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-018-0040-z – volume: 18 start-page: 407 year: 2018 ident: 185_CR67 publication-title: Nat. Rev. Cancer doi: 10.1038/s41568-018-0007-6 – volume: 20 start-page: 2363 year: 1999 ident: 185_CR80 publication-title: Biomaterials doi: 10.1016/S0142-9612(99)00165-9 – volume: 10 start-page: 1225 year: 2013 ident: 185_CR75 publication-title: Nat. Methods doi: 10.1038/nmeth.2684 – volume: 76 start-page: 3675 year: 2004 ident: 185_CR81 publication-title: Anal. Chem. doi: 10.1021/ac035415s – ident: 185_CR54 doi: 10.1002/adhm.201601118 – volume: 15 start-page: 365 year: 2005 ident: 185_CR13 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2005.05.002 – volume: 32 start-page: 773 year: 2014 ident: 185_CR53 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2958 – volume: 164 start-page: 192 year: 2012 ident: 185_CR65 publication-title: J. Control. Release doi: 10.1016/j.jconrel.2012.04.045 – volume: 9 start-page: 2329 year: 2014 ident: 185_CR72 publication-title: Nat. Protoc. doi: 10.1038/nprot.2014.158 – volume: 11 start-page: 347 year: 2016 ident: 185_CR22 publication-title: Nat. Protoc. doi: 10.1038/nprot.2016.006 – volume: 7 year: 2017 ident: 185_CR41 publication-title: Sci. Rep. – volume: 25 start-page: 838 year: 2019 ident: 185_CR23 publication-title: Nat. Med doi: 10.1038/s41591-019-0422-6 – volume: 499 start-page: 481 year: 2013 ident: 185_CR18 publication-title: Nature doi: 10.1038/nature12271 – volume: 119 start-page: 4320 year: 2018 ident: 185_CR28 publication-title: J. Cell. Biochem. doi: 10.1002/jcb.26622 – volume: 103 start-page: 655 year: 2009 ident: 185_CR27 publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22361 – volume: 108 start-page: 6235 year: 2011 ident: 185_CR100 publication-title: Proc. Natl Acad. Sci. USA. doi: 10.1073/pnas.1015938108 – volume: 30 start-page: 2164 year: 2009 ident: 185_CR61 publication-title: Bio- Mater. – volume: 8 start-page: 5906 year: 2016 ident: 185_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00202 – volume: 9 year: 2018 ident: 185_CR68 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06684-2 – volume: 144 start-page: 946 year: 2017 ident: 185_CR7 publication-title: Development doi: 10.1242/dev.143693 – volume: 8 start-page: 356 year: 2009 ident: 185_CR35 publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.8.4.7432 – volume: 18 start-page: 736 year: 2016 ident: 185_CR74 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2016.05.022 – volume: 38 start-page: 590 year: 2016 ident: 185_CR21 publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.08.014 – volume: 11 start-page: 470 year: 2018 ident: 185_CR34 publication-title: Stem Cell Rep. doi: 10.1016/j.stemcr.2018.06.018 – volume: 19 start-page: 2854 year: 2019 ident: 185_CR97 publication-title: Lab Chip doi: 10.1039/C9LC00496C – volume: 110 start-page: 45 year: 2016 ident: 185_CR62 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.09.003 – volume: 37 start-page: 3639 year: 1977 ident: 185_CR45 publication-title: Cancer Res. – volume: 20 start-page: 4628 year: 2019 ident: 185_CR46 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20184628 – volume: 23 start-page: 393 year: 2017 ident: 185_CR66 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2017.02.007 – volume: 9 start-page: 1640 year: 2009 ident: 185_CR85 publication-title: Lab Chip doi: 10.1039/b821581m |
SSID | ssj0001737905 ssib048324881 |
Score | 2.5326095 |
SecondaryResourceType | review_article |
Snippet | Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 76 |
SubjectTerms | 639/166/987 639/925/350/1057 Animal models Biochips Biomaterials Biomedical engineering Biomedical materials Cell culture Complexity Electrical engineering Engineering Exchanging Medical treatment Microfluidics Microprinting Microtechnology Organoids Production methods Reproducibility Review Review Article Spheroids Stem cells Three dimensional models Tissue culture Two dimensional models |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7ofNEH8W51SgXfNKxb0qZ5EhHHEOaTg72VtklwIJ3a-f89J73MOfSxbUqbk5Oc7-TyfQDXRgQWoT1nOg1ihhFvwJTSmtnAENrWfSPp7PD4ORpNxNM0nNYTbmW9rbIZE91Arec5zZH3MAwpQcFX3b1_MFKNotXVWkJjE7aIuoy8Wk7bcCrQW0XDlu7mXCQnPirSm0Pkzkhhqz5HE_C4V-J4TnSzAzpqjWGM8dVYtQZA1_dR_lpMdTFquAe7Nbj07ytv2IcNUxzAzg_KwUPoj2kH3qKdUGcUxrRfCUmXPkJY3wk9zWd4k1RyyiOYDB9fHkaslk1gOcKvBVPaWMkNZp-xiZUwqdER5ziOZVZHoZGZ0oqLNA60sHkqhMwjk4YZXmCanJmAH0OnmBfmFHzEjlZFfZsKTNO0VUoGqVSRDq3QQobGg35joCSvOcVJ2uItcWvbPE4qoyZo1MQZNeEe3LTvvFeMGv-W7jZ2T-reVSZLX_Dgqn2M_YIWO9LCzL-wDCZSxMEcYJmTqpnaz3FEjZhmRR7IlQZsCxDn9uqTYvbquLdjOmHGYw9um6Ze_tbftTj7vxbnsD0gt3P7ErrQWXx-mQvEOovs0jn0N1SP-BM priority: 102 providerName: ProQuest |
Title | Microtechnology-based methods for organoid models |
URI | https://link.springer.com/article/10.1038/s41378-020-00185-3 https://www.ncbi.nlm.nih.gov/pubmed/34567686 https://www.proquest.com/docview/2449451599 https://www.proquest.com/docview/2576906209 https://pubmed.ncbi.nlm.nih.gov/PMC8433138 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuLAHBCws4VEFidtikdZObB9LoaCKohUsUm9RUtsCCaWIlv_PjPOA8pK4JEo9UZOx4_nGnvkG4NCKyCG058xkkWJo8TpMa2OYiyyhbdO2knKHh1fJxa0YjOLRAnTqXBgftO8pLf00XUeHHU9xsiUu2A7lQaONYXwRlomqHcf2crc7uBm8rqxITqxTVYZMxNUnN89boQ_Q8mOE5LttUm99-muwWsHGsFs-6Dos2GIDfr0hE_wN7SHF1s2apXJGBsqEZYnoaYjgNPQlnCb3-CPVv5luwm3_7H_vglUFEdgYgdWMaWOd5Bb9SmWVFjazJuEcZ6jcmSS2MtdGc5GpyAg3zoSQ48RmcY4X6ADnNuJbsFRMCrsNIaJCp5O2ywQ6YMZpLaNM6sTEThghYxtAu1ZQOq7YwqloxUPqd625SkulpqjU1Cs15QH8be55LLkyvpXeq_WeVt_NNEWwoQVBLB3AQdOMI562MbLCTp5RBl0kYleOUOZP2U3N33HEg-hAJQHIuQ5sBIhNe76luL_zrNqKcse4CuCo7urXx_r6LXZ-Jr4LKx0ahj4CYQ-WZk_Pdh9RzSxvwaIcSTyq_nmrGtJ0Ph1e3uD55Ozq3zW29pJey68bvAAWQ_hx |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqDwbKBAkOIHVbOzE8aFCCFi2tNtTK_VmkngsKlXZQrZC_Cl-IzPOoywVvfW4G-8j45l839iebwBeoUo8UXspXJkUghAvFcY4J3yCzLbdBDXXDs8P8tmR-nKcHa_B76EWho9VDs_E8KB2i5rXyLcJhoxi8DXvzr4L7hrFu6tDC43OLfbw109K2dqd3Y80v6_TdPrp8MNM9F0FRE3sZCmMQ68lUnJWYGEUluhyKSnMK-_yDHVlnJGqLBKnfF0qpescy6yiF5RFVphI-t4bcFNJQnKuTJ9-HvxXUXSoQZ09rPFoyfpX3N-OMgXBHb36up1EFtst4QfL26Zc2k2wKeQqNl4ivJfPbf6zeRswcboBd3syG7_vvO8erGFzH-78JXH4ACZzPvG3HBfwBcOmi7vG1W1MlDkOjaUWJ_Qmd-VpH8LRtRj0Eaw3iwY3ISau6k0-8aWitNB5Y3RSapO7zCundIYRTAYD2brXMOdWGqc27KXLwnZGtWRUG4xqZQRvxs-cdQoeV47eGuxu-2hu7YXvRfByvExxyJsrZYOLcxpDiRtrPic05nE3TePPSWKplNblEeiVCRwHsMb36pXm5FvQ-i64ok0WEbwdpvrib_3_Lp5cfRcv4NbscL5v93cP9p7C7ZRdMJyJ2IL15Y9zfEY8a1k9D84dw9frjqY_f8w3kA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRh5IH5bRK2JPunmet1tt_tgjAoXELkQIwlva9udjSSkh_YI4V_zr3OmX3gSeeOx7V57nZ3p_GZ3Zn4Ar1BFnqC9FC6PMkEeLxbGOCd8hIy23QQ11w7vz9KdQ_X5KDlagd99LQynVfbfxOZD7eYlr5GPyQ0Zxc7XjH2XFnGwNX1_-lMwgxTvtPZ0Gq2K7OHFOYVv9bvdLZrr13E83f72aUd0DAOiJKSyEMah1xIpUMswMwpzdKmUZPKFd2mCujDOSJVnkVO-zJXSZYp5UtABRZQFRpLuewtWNUdFI1j9uD07-NprsyJbUX2v9mbFR0vuhsVsdxQ3COb36qp4IpmNa_Im3Ow25kJvcqJCLnvKK_D3ahbnP1u5jYec3oX1DtqGH1pdvAcrWN2Htb8aHj6AyT7n_y2G5XzBTtSFLY11HRKADhuaqfkxnWSOnvohHN6ISB_BqJpX-ARCQq7epBOfKwoSnTdGR7k2qUu8ckonGMCkF5Atu47mTKxxYpuddZnZVqiWhGoboVoZwJvhN6dtP49rR2_2credbdf2UhMDeDlcJqvkrZa8wvkZjaEwjjtARzTmcTtNw-MkYVYK8tIA9NIEDgO44_fyler4R9P5O-P6NpkF8Laf6su_9f-32Lj-LV7AbbIk-2V3tvcU7sSsgU2CxCaMFr_O8BmBrkXxvNPuEL7ftEH9AVKTPSI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microtechnology-based+methods+for+organoid+models&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Velasco%2C+Vanessa&rft.au=Shariati%2C+S.+Ali&rft.au=Esfandyarpour%2C+Rahim&rft.date=2020-10-05&rft.pub=Nature+Publishing+Group+UK&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=6&rft_id=info:doi/10.1038%2Fs41378-020-00185-3&rft_id=info%3Apmid%2F34567686&rft.externalDocID=PMC8433138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon |