Microtechnology-based methods for organoid models

Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy...

Full description

Saved in:
Bibliographic Details
Published inMicrosystems & nanoengineering Vol. 6; no. 1; p. 76
Main Authors Velasco, Vanessa, Shariati, S. Ali, Esfandyarpour, Rahim
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Organ-on-a-Chip: Micromanufacturing offers a boost to three-dimensional cell cultures Microtechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited.
AbstractList Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.
Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Organ-on-a-Chip: Micromanufacturing offers a boost to three-dimensional cell cultures Microtechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited.
Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine. Microtechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited.
Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.
Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.Organ-on-a-Chip: Micromanufacturing offers a boost to three-dimensional cell culturesMicrotechnology-based approaches could overcome the limitations of current three-dimensional cell and tissue culture processes. Complex 3D cultures provide deeper insights into human biology and pathology than standard 2D cultures, but their high complexity brings issues like low reproducibility and low throughput. In this paper, Rahim Esfandyarpour, PhD, Assistant Professor of Electrical Engineering, & Biomedical Engineering, and his collaborators from the University of California, Irvine, Santa Cruz, and Stanford University introduce the benefits of microscale technologies. The team describe how microcontact printing of cell-scaffold proteins onto culture mediums allows for higher throughput. The team also describe the construction of an “organ-on-a-chip,” where cultures are constrained between microfluidic nutrient exchange channels, driving the development of complex and accurate tissue structures. Organ-on-a-chip devices are highly economical and offer a platform that is yet to be fully exploited.
ArticleNumber 76
Author Esfandyarpour, Rahim
Velasco, Vanessa
Shariati, S. Ali
Author_xml – sequence: 1
  givenname: Vanessa
  surname: Velasco
  fullname: Velasco, Vanessa
  organization: Biochemistry Department, Stanford University
– sequence: 2
  givenname: S. Ali
  surname: Shariati
  fullname: Shariati, S. Ali
  organization: Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California
– sequence: 3
  givenname: Rahim
  surname: Esfandyarpour
  fullname: Esfandyarpour, Rahim
  email: rahimes@uci.edu
  organization: Department of Electrical Engineering, University of California, Department of Biomedical Engineering, University of California Irvine, Henry Samueli School of Engineering, University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34567686$$D View this record in MEDLINE/PubMed
BookMark eNp9kctOxCAYhYkZ44yjL-DCTOLGTZUWKLAxMcZbonGja0LL3xkmLSi0Jr69jONldOGK23cOB84uGjnvAKGDHJ_kmIjTSHPCRYYLnGGcC5aRLTQpMGMZp4SONuZjtB_jEieKEy4x20FjQlnJS1FOUH5v6-B7qBfOt37-llU6gpl10C-8ibPGh5kPc-28TZveQBv30Haj2wj7n-MUPV1dPl7cZHcP17cX53dZzSjuM2mg4QR4TgQISUGDKQnRxlSNKRnwShpJqBbY0KbWlPK6BM2qtOC0qACTKTpb-z4PVQemBtcH3arnYDsd3pTXVv0-cXah5v5VCUpIujUZHH8aBP8yQOxVZ2MNbasd-CGqgvFS4rLAMqFHf9ClH4JLz1MFpZKynMkVdbiZ6DvK128mQKyB9KUxBmhUbXvdW78KaFuVY7XqTq27U6k79dGdIkla_JF-uf8rImtRTLCbQ_iJ_Y_qHXvHrCY
CitedBy_id crossref_primary_10_1021_acsami_4c19276
crossref_primary_10_1007_s12015_023_10551_z
crossref_primary_10_1002_smll_202101931
crossref_primary_10_1007_s11814_022_1327_5
crossref_primary_10_1016_j_drudis_2024_104114
crossref_primary_10_1007_s10544_022_00617_z
crossref_primary_10_1016_j_theriogenology_2023_12_013
crossref_primary_10_1063_5_0134177
crossref_primary_10_53941_ijddp_v1i1_188
crossref_primary_10_1016_j_mee_2022_111898
crossref_primary_10_1039_D4LC00149D
crossref_primary_10_1021_acsptsci_4c00260
crossref_primary_10_1016_j_addr_2021_06_001
crossref_primary_10_1039_D4LC00016A
crossref_primary_10_1007_s13206_023_00118_y
crossref_primary_10_1007_s10544_024_00712_3
crossref_primary_10_1021_acs_analchem_1c04641
crossref_primary_10_3390_polym13223920
crossref_primary_10_1007_s00249_021_01551_3
crossref_primary_10_1007_s13206_022_00067_y
crossref_primary_10_1016_j_mattod_2025_02_002
crossref_primary_10_3390_biomedicines10071541
crossref_primary_10_1016_j_actbio_2021_04_008
crossref_primary_10_1109_TMBMC_2024_3369391
crossref_primary_10_3390_cells11213410
crossref_primary_10_1088_1758_5090_ad1b1e
crossref_primary_10_1088_1758_5090_acee21
crossref_primary_10_1002_adhm_202101312
crossref_primary_10_1039_D0LC01300E
crossref_primary_10_1016_j_rbmo_2022_03_016
crossref_primary_10_3390_polym13213782
crossref_primary_10_1016_j_bioactmat_2024_11_002
crossref_primary_10_34133_cbsystems_0107
crossref_primary_10_37871_jbres1224
crossref_primary_10_1039_D2AN00599A
crossref_primary_10_3390_app131810269
crossref_primary_10_1016_j_medntd_2023_100276
crossref_primary_10_1515_nanoph_2021_0426
crossref_primary_10_3390_ijms241210131
crossref_primary_10_1007_s42242_023_00241_7
crossref_primary_10_1128_mmbr_00025_22
crossref_primary_10_1186_s13567_021_00904_2
crossref_primary_10_1186_s43088_021_00172_1
crossref_primary_10_1063_5_0197807
crossref_primary_10_1002_bit_28606
crossref_primary_10_1371_journal_pone_0282064
crossref_primary_10_3390_ijms241310882
crossref_primary_10_3390_nano10112236
crossref_primary_10_3390_ijms24031912
crossref_primary_10_1021_acsami_4c18728
crossref_primary_10_1016_j_bprint_2022_e00243
crossref_primary_10_1007_s12015_023_10655_6
crossref_primary_10_1186_s13287_023_03341_4
crossref_primary_10_1007_s12272_022_01390_6
crossref_primary_10_52547_ibj_3594
crossref_primary_10_1016_j_ymeth_2022_03_011
crossref_primary_10_1039_D3LC00876B
crossref_primary_10_1039_D3BM02012F
crossref_primary_10_1002_smsc_202400314
crossref_primary_10_1002_admt_202201926
crossref_primary_10_1021_acsbiomaterials_2c01290
crossref_primary_10_1007_s13770_023_00607_z
crossref_primary_10_3389_fonc_2022_837233
crossref_primary_10_1186_s44280_024_00052_0
crossref_primary_10_1183_16000617_0127_2023
crossref_primary_10_1002_adfm_202310961
crossref_primary_10_1007_s13770_024_00672_y
crossref_primary_10_1063_5_0093806
crossref_primary_10_1038_s12276_021_00606_x
crossref_primary_10_3390_ijms25021165
crossref_primary_10_1017_S0963180123000543
crossref_primary_10_3390_mi15040466
crossref_primary_10_1002_mabi_202100191
crossref_primary_10_3389_fcell_2021_696668
crossref_primary_10_1002_advs_202200475
crossref_primary_10_1042_EBC20200150
crossref_primary_10_1002_biot_202200365
crossref_primary_10_1016_j_mtbio_2025_101672
crossref_primary_10_1021_acs_analchem_3c02676
crossref_primary_10_3390_biom11111572
crossref_primary_10_1016_j_bioactmat_2022_03_039
crossref_primary_10_1002_smtd_202301145
crossref_primary_10_3389_fnins_2021_674563
crossref_primary_10_1002_advs_202304160
crossref_primary_10_1021_jacsau_1c00313
crossref_primary_10_1080_17425247_2024_2388841
crossref_primary_10_34133_cbsystems_0018
crossref_primary_10_1007_s13206_022_00086_9
crossref_primary_10_1016_j_ces_2021_116632
crossref_primary_10_1021_acsapm_2c01613
crossref_primary_10_3390_mi14010151
crossref_primary_10_3389_fcell_2023_1083175
crossref_primary_10_3390_ijms23137444
crossref_primary_10_51335_organoid_2022_2_e4
crossref_primary_10_1088_1758_5090_ad2534
crossref_primary_10_1038_s41378_024_00756_8
crossref_primary_10_1039_D0LC01141J
crossref_primary_10_1002_smll_202310614
crossref_primary_10_3390_ijms24108657
crossref_primary_10_3389_fcell_2021_743907
crossref_primary_10_1002_adma_202300692
crossref_primary_10_3390_ijms252011000
crossref_primary_10_1021_acschemneuro_4c00625
crossref_primary_10_1016_j_addr_2021_113839
crossref_primary_10_3389_fcell_2022_878311
crossref_primary_10_1038_s41467_023_42297_0
crossref_primary_10_1016_j_brainresbull_2023_110673
crossref_primary_10_3390_cancers13174440
crossref_primary_10_1038_s41598_022_15177_8
crossref_primary_10_4049_jimmunol_2200573
crossref_primary_10_3389_fonc_2022_960340
crossref_primary_10_1080_03079457_2022_2084363
crossref_primary_10_3390_cells12071001
crossref_primary_10_3390_mi12050497
crossref_primary_10_1016_j_ejphar_2024_176318
crossref_primary_10_1038_s41378_021_00277_8
crossref_primary_10_1177_20417314231172584
crossref_primary_10_1016_j_addr_2023_114842
crossref_primary_10_1088_1758_5090_ac933c
crossref_primary_10_3390_bioengineering8110185
crossref_primary_10_51335_organoid_2021_1_e11
crossref_primary_10_1039_D1LC01177D
crossref_primary_10_34133_bmr_0016
crossref_primary_10_1007_s00216_024_05435_1
crossref_primary_10_1016_j_theriogenology_2024_02_023
crossref_primary_10_3390_mi13030428
crossref_primary_10_1007_s44164_022_00023_y
crossref_primary_10_34133_2022_9804014
crossref_primary_10_1002_smtd_202301009
crossref_primary_10_1002_advs_202100798
crossref_primary_10_3389_ftox_2021_773953
crossref_primary_10_1089_ten_tea_2023_0219
crossref_primary_10_21769_BioProtoc_4469
crossref_primary_10_3390_cancers13122870
crossref_primary_10_1016_j_bios_2022_114750
crossref_primary_10_1038_s41377_024_01406_4
crossref_primary_10_3390_futurepharmacol2030025
crossref_primary_10_1016_j_crmeth_2022_100337
crossref_primary_10_1016_j_critrevonc_2022_103610
crossref_primary_10_2174_1566524023666230511152646
crossref_primary_10_1016_j_radphyschem_2024_112177
crossref_primary_10_1002_anbr_202200104
crossref_primary_10_1016_j_pmatsci_2023_101216
crossref_primary_10_1007_s00204_024_03870_8
crossref_primary_10_1038_s41598_022_13987_4
crossref_primary_10_1002_adhm_202302456
crossref_primary_10_1016_j_bioactmat_2021_11_009
crossref_primary_10_1186_s12967_024_05824_1
crossref_primary_10_1007_s13206_022_00075_y
crossref_primary_10_3390_ijms22158196
crossref_primary_10_1039_D3MH00849E
Cites_doi 10.3390/ijms16035517
10.1038/nature09941
10.1038/s41586-019-1535-2
10.1088/1758-5090/8/1/014102
10.3390/app8030412
10.1016/S0091-679X(10)97008-8
10.1016/j.jdermsci.2004.03.004
10.1038/nmat3937
10.1038/nature12517
10.1016/j.pharmthera.2016.03.013
10.1016/j.matdes.2017.04.094
10.1242/dev.129452
10.1016/j.cell.2016.05.082
10.1016/j.cell.2018.11.013
10.1007/s10544-011-9608-5
10.1016/0955-0674(95)80071-9
10.1186/1741-7007-10-29
10.1002/adhm.201701018
10.1101/465039
10.1089/ten.tec.2012.0157
10.1016/j.neo.2014.12.004
10.1016/j.tcb.2019.11.004
10.1038/nm.4189
10.1039/C5TB00637F
10.1007/BF01404744
10.1016/j.stem.2015.12.005
10.1039/C6IB00039H
10.1038/s41593-018-0175-4
10.1007/s10439-016-1612-8
10.1016/j.semcancer.2005.06.009
10.1016/j.copbio.2012.01.011
10.1039/C7LC01084B
10.1039/C7PY00559H
10.1159/000047858
10.1038/nprot.2014.102
10.1007/978-1-4939-3603-8_4
10.1002/bit.10655
10.3390/ijms19010181
10.1038/nature07935
10.1002/biot.200700228
10.1038/nprot.2016.131
10.3390/mi8040094
10.1163/016942410X507939
10.1146/annurev.bioeng.3.1.335
10.1634/stemcells.2008-0183
10.1177/1087057117696795
10.1021/acsbiomaterials.8b00904
10.1063/1.3576905
10.1038/s41567-018-0046-7
10.1080/09553007014551401
10.1038/s41598-018-21201-7
10.1126/science.aal1810
10.1039/C0AN00609B
10.1088/1758-5090/7/4/044103
10.1016/j.drudis.2012.10.003
10.1038/nbt.3906
10.1038/nnano.2010.23
10.1016/j.cell.2007.08.006
10.3892/ijo.2016.3376
10.1038/nprot.2013.125
10.1039/C7RA11714K
10.1038/nm.4214
10.1038/nmeth.3016
10.1038/s41576-018-0040-z
10.1038/s41568-018-0007-6
10.1016/S0142-9612(99)00165-9
10.1038/nmeth.2684
10.1021/ac035415s
10.1002/adhm.201601118
10.1016/j.semcancer.2005.05.002
10.1038/nbt.2958
10.1016/j.jconrel.2012.04.045
10.1038/nprot.2014.158
10.1038/nprot.2016.006
10.1038/s41591-019-0422-6
10.1038/nature12271
10.1002/jcb.26622
10.1002/bit.22361
10.1073/pnas.1015938108
10.1021/acsami.6b00202
10.1038/s41467-018-06684-2
10.1242/dev.143693
10.4161/cbt.8.4.7432
10.1016/j.stem.2016.05.022
10.1016/j.devcel.2016.08.014
10.1016/j.stemcr.2018.06.018
10.1039/C9LC00496C
10.1016/j.biomaterials.2016.09.003
10.3390/ijms20184628
10.1016/j.molmed.2017.02.007
10.1039/b821581m
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020.
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020.
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
L6V
LK8
M0S
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
DOI 10.1038/s41378-020-00185-3
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2055-7434
ExternalDocumentID PMC8433138
34567686
10_1038_s41378_020_00185_3
Genre Journal Article
Review
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R00 GM126027
– fundername: NIGMS NIH HHS
  grantid: F32 GM123576
– fundername: NIGMS NIH HHS
  grantid: K99 GM126027
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
HZ~
KQ8
L6V
LK8
M7P
M7S
M~E
NAO
O9-
OK1
PIMPY
PQQKQ
PROAC
PTHSS
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
EJD
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c540t-9def73e7138e894eaed633addbfd65e7b9d934a80d4fca447c6ea5b4fc742be03
IEDL.DBID AAJSJ
ISSN 2055-7434
2096-1030
IngestDate Thu Aug 21 17:20:31 EDT 2025
Fri Jul 11 11:17:33 EDT 2025
Wed Aug 13 10:54:38 EDT 2025
Thu Apr 03 07:01:40 EDT 2025
Tue Jul 01 03:27:10 EDT 2025
Thu Apr 24 22:58:55 EDT 2025
Fri Feb 21 02:38:39 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Electrical and electronic engineering
Bionanoelectronics
Language English
License The Author(s) 2020.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-9def73e7138e894eaed633addbfd65e7b9d934a80d4fca447c6ea5b4fc742be03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://www.nature.com/articles/s41378-020-00185-3
PMID 34567686
PQID 2449451599
PQPubID 2041946
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8433138
proquest_miscellaneous_2576906209
proquest_journals_2449451599
pubmed_primary_34567686
crossref_citationtrail_10_1038_s41378_020_00185_3
crossref_primary_10_1038_s41378_020_00185_3
springer_journals_10_1038_s41378_020_00185_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-05
PublicationDateYYYYMMDD 2020-10-05
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Microsystems & nanoengineering
PublicationTitleAbbrev Microsyst Nanoeng
PublicationTitleAlternate Microsyst Nanoeng
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
References Park (CR55) 2015; 3
Bauwens (CR76) 2008; 26
Murphy, Atala (CR53) 2014; 32
Jung (CR97) 2019; 19
Dahl-Jensen, Grapin-Botton (CR7) 2017; 144
Dzobo, Motaung, Adesida (CR46) 2019; 20
Gong (CR9) 2015; 10
Weiswald, Bellet, Dangles-Marie (CR6) 2015; 17
Shim (CR56) 2016; 8
Jackson, Lu (CR1) 2016; 8
CR47
Breslin, O’Driscoll (CR3) 2013; 18
Fukuda, Nakazawa (CR16) 2011; 5
Wang, Wang, Guo, Zhu, Qin (CR91) 2018; 8
Tewary, Shakiba, Zandstra (CR77) 2018; 19
Kim (CR59) 2004; 1
Vinci (CR63) 2012; 10
Casson, O’Kane, Smith, Dalby, Berry (CR52) 2018; 8
Drost, Clevers (CR67) 2018; 18
Kopper (CR23) 2019; 25
Khademhosseini (CR81) 2004; 76
Saheli (CR28) 2018; 119
Zhang (CR96) 2017; 114
CR54
Kelm, Timmins, Brown, Fussenegger, Nielsen (CR44) 2003; 83
Drost (CR22) 2016; 11
Zhang (CR15) 2017; 45
Kondo (CR100) 2011; 108
Hu (CR24) 2018; 175
Orlova (CR99) 2014; 9
Janshoff (CR10) 2010; 24
Harrison, Sozen, Christodoulou, Kyprianou, Zernicka-Goetz (CR89) 2017; 356
Deglincerti (CR83) 2016; 11
Lin, Chang (CR31) 2008; 3
Mehta, Hsiao, Ingram, Luker, Takayama (CR65) 2012; 164
Muffat (CR70) 2016; 22
Kumar, Starly (CR12) 2015; 7
Gao, Huang, Schilling, Hubbell, Cui (CR60) 2018; 7
Park (CR57) 2016; 13
Lin (CR40) 2016; 8
Lancaster (CR19) 2013; 501
Wang (CR82) 2017; 128
Yin (CR8) 2016; 18
Kuo (CR41) 2017; 7
Park (CR69) 2018; 21
CR78
Sato (CR20) 2009; 459
Schwarz, Goodwin, Wolf (CR33) 1992; 14
Cho (CR58) 2004; 35
Hsiao (CR39) 2012; 14
Karzbrun, Kshirsagar, Cohen, Hanna, Reiner (CR90) 2018; 14
Rimann, Graf-Hausner (CR36) 2012; 23
Lancaster (CR88) 2017; 35
Tseng (CR51) 2013; 19
Souza (CR48) 2010; 5
Lazzari, Couvreur, Mura (CR5) 2017; 8
Sutherland, McCredie, Inch (CR43) 1971; 46
Warmflash, Sorre, Etoc, Siggia, Brivanlou (CR86) 2014; 11
CR84
Kane, Takayama, Ostuni, Ingber, Whitesides (CR80) 1999; 20
Azioune, Storch, Bornens, Théry, Piel (CR85) 2009; 9
Briscoe, Small (CR87) 2015; 142
Birgersdotter, Sandberg, Ernberg (CR25) 2005; 15
Vadivelu, Kamble, Shiddiky, Nguyen (CR14) 2017; 8
Tibbitt, Anseth (CR27) 2009; 103
Yamada, Cukierman (CR30) 2007; 130
Quadrato, Brown, Arlotta (CR73) 2016; 22
Przepiorski (CR34) 2018; 11
Tung (CR38) 2011; 136
Kelava, Lancaster (CR74) 2016; 18
Whitesides, Ostuni, Takayama, Jiang, Ingber (CR79) 2001; 3
Zhang (CR62) 2016; 110
Zheng (CR93) 2019; 573
Keller (CR37) 1995; 7
Sutherland, Inch, McCredie, Kruuv (CR42) 1970; 18
Kretzschmar, Clevers (CR21) 2016; 38
Sun (CR94) 2018; 4
Vertrees (CR35) 2009; 8
Haisler (CR49) 2013; 8
Jong (CR13) 2005; 15
Mironov (CR61) 2009; 30
Kasendra (CR95) 2018; 8
Dutta, Heo, Clevers (CR66) 2017; 23
Clevers (CR4) 2016; 165
Meenach (CR29) 2016; 48
Yu, Hunziker, Choudhury (CR71) 2019; 10
Takebe (CR18) 2013; 499
Török (CR11) 2001; 169
Nath, Devi (CR50) 2016; 163
Eiraku (CR17) 2011; 472
Hoarau-Véchot, Rafii, Touboul, Pasquier (CR32) 2018; 19
Antoni, Burckel, Josset, Noel (CR64) 2015; 16
Wang, Wang, Zhu, Qin (CR92) 2018; 18
Lancaster, Knoblich (CR72) 2014; 9
Nazareth (CR75) 2013; 10
Marton, Pașca (CR98) 2020; 30
Murphy, McDevitt, Engler (CR26) 2014; 13
Fang, Eglen (CR2) 2017; 22
Ormel (CR68) 2018; 9
Yuhas, Li, Martinez, Ladman (CR45) 1977; 37
MA Lancaster (185_CR72) 2014; 9
185_CR78
A Przepiorski (185_CR34) 2018; 11
B Lin (185_CR40) 2016; 8
RM Sutherland (185_CR43) 1971; 46
M Saheli (185_CR28) 2018; 119
J Casson (185_CR52) 2018; 8
G Mehta (185_CR65) 2012; 164
Y Fang (185_CR2) 2017; 22
J Hoarau-Véchot (185_CR32) 2018; 19
E Karzbrun (185_CR90) 2018; 14
J Briscoe (185_CR87) 2015; 142
H Hu (185_CR24) 2018; 175
M Rimann (185_CR36) 2012; 23
SA Meenach (185_CR29) 2016; 48
YS Zhang (185_CR62) 2016; 110
185_CR84
S Dahl-Jensen (185_CR7) 2017; 144
K Dzobo (185_CR46) 2019; 20
A Khademhosseini (185_CR81) 2004; 76
LB Weiswald (185_CR6) 2015; 17
A Azioune (185_CR85) 2009; 9
RZ Lin (185_CR31) 2008; 3
RS Kane (185_CR80) 1999; 20
WL Haisler (185_CR49) 2013; 8
M Vinci (185_CR63) 2012; 10
K Kretzschmar (185_CR21) 2016; 38
É Török (185_CR11) 2001; 169
SK Kim (185_CR59) 2004; 1
GR Souza (185_CR48) 2010; 5
C-T Kuo (185_CR41) 2017; 7
X Gong (185_CR9) 2015; 10
A Janshoff (185_CR10) 2010; 24
A Kumar (185_CR12) 2015; 7
M Eiraku (185_CR17) 2011; 472
Y-C Tung (185_CR38) 2011; 136
SE Harrison (185_CR89) 2017; 356
X Yin (185_CR8) 2016; 18
A Birgersdotter (185_CR25) 2005; 15
RK Vadivelu (185_CR14) 2017; 8
Y Wang (185_CR82) 2017; 128
D Antoni (185_CR64) 2015; 16
EL Jackson (185_CR1) 2016; 8
T Takebe (185_CR18) 2013; 499
O Kopper (185_CR23) 2019; 25
BK Jong (185_CR13) 2005; 15
H-J Cho (185_CR58) 2004; 35
V Mironov (185_CR61) 2009; 30
Y Zheng (185_CR93) 2019; 573
A Warmflash (185_CR86) 2014; 11
G Lazzari (185_CR5) 2017; 8
J Drost (185_CR22) 2016; 11
Y Wang (185_CR92) 2018; 18
YS Zhang (185_CR96) 2017; 114
A Deglincerti (185_CR83) 2016; 11
S Breslin (185_CR3) 2013; 18
AY Hsiao (185_CR39) 2012; 14
GM Whitesides (185_CR79) 2001; 3
J Park (185_CR69) 2018; 21
M Kasendra (185_CR95) 2018; 8
H Tseng (185_CR51) 2013; 19
H Park (185_CR57) 2016; 13
KM Yamada (185_CR30) 2007; 130
EJP Nazareth (185_CR75) 2013; 10
185_CR47
CL Bauwens (185_CR76) 2008; 26
J Kondo (185_CR100) 2011; 108
M Tewary (185_CR77) 2018; 19
MA Lancaster (185_CR88) 2017; 35
J Drost (185_CR67) 2018; 18
G Quadrato (185_CR73) 2016; 22
J Muffat (185_CR70) 2016; 22
H Clevers (185_CR4) 2016; 165
GM Keller (185_CR37) 1995; 7
JM Kelm (185_CR44) 2003; 83
185_CR54
Y Wang (185_CR91) 2018; 8
RM Marton (185_CR98) 2020; 30
J Fukuda (185_CR16) 2011; 5
G Gao (185_CR60) 2018; 7
JY Park (185_CR55) 2015; 3
VV Orlova (185_CR99) 2014; 9
RP Schwarz (185_CR33) 1992; 14
WL Murphy (185_CR26) 2014; 13
PR Ormel (185_CR68) 2018; 9
J-H Shim (185_CR56) 2016; 8
D Dutta (185_CR66) 2017; 23
MA Lancaster (185_CR19) 2013; 501
JM Yuhas (185_CR45) 1977; 37
I Kelava (185_CR74) 2016; 18
RM Sutherland (185_CR42) 1970; 18
S Nath (185_CR50) 2016; 163
F Yu (185_CR71) 2019; 10
MW Tibbitt (185_CR27) 2009; 103
T Sato (185_CR20) 2009; 459
RA Vertrees (185_CR35) 2009; 8
DJ Jung (185_CR97) 2019; 19
YS Zhang (185_CR15) 2017; 45
SV Murphy (185_CR53) 2014; 32
Q Sun (185_CR94) 2018; 4
References_xml – volume: 19
  start-page: 595
  year: 2018
  end-page: 614
  ident: CR77
  article-title: Stem cell bioengineering: building from stem cell biology
  publication-title: Nat. Rev. Genet.
– volume: 14
  start-page: 515
  year: 2018
  end-page: 522
  ident: CR90
  article-title: Human brain organoids on a chip reveal the physics of folding
  publication-title: Nat. Phys.
– volume: 8
  start-page: 356
  year: 2009
  end-page: 365
  ident: CR35
  article-title: Development of a three-dimensional model of lung cancer using cultured transformed lung cells
  publication-title: Cancer Biol. Ther.
– volume: 169
  start-page: 34
  year: 2001
  end-page: 41
  ident: CR11
  article-title: Optimization of hepatocyte spheroid formation for hepatic tissue engineering on three-dimensional biodegradable polymer within a flow bioreactor prior to implantation
  publication-title: Cells Tissues Organs
– volume: 24
  start-page: 2079
  year: 2010
  end-page: 2104
  ident: CR10
  article-title: Cell adhesion monitoring using substrate-integrated sensors
  publication-title: J. Adhes. Sci. Technol.
– volume: 18
  start-page: 240
  year: 2013
  end-page: 249
  ident: CR3
  article-title: Three-dimensional cell culture: the missing link in drug discovery
  publication-title: Drug Discov. Today
– volume: 459
  start-page: 262
  year: 2009
  end-page: 265
  ident: CR20
  article-title: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
  publication-title: Nature
– volume: 142
  start-page: 3996
  year: 2015
  end-page: 4009
  ident: CR87
  article-title: Morphogen rules: design principles of gradient- mediated embryo patterning
  publication-title: Development
– volume: 48
  start-page: 1701
  year: 2016
  end-page: 1709
  ident: CR29
  article-title: Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics
  publication-title: Int. J. Oncol.
– volume: 8
  start-page: 4947
  year: 2017
  end-page: 4969
  ident: CR5
  article-title: Multicellular tumor spheroids: a relevant 3D model for the: In vitro preclinical investigation of polymer nanomedicines
  publication-title: Polym. Chem.
– ident: CR54
– volume: 18
  start-page: 491
  year: 1970
  end-page: 495
  ident: CR42
  article-title: A multi-component radiation survival curve using an in vitro tumour model
  publication-title: Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med
– volume: 35
  start-page: 74
  year: 2004
  end-page: 77
  ident: CR58
  article-title: Effects of hair follicle dermal sheath cells in the reconstruction of skin equivalents
  publication-title: J. Dermatol. Sci.
– volume: 23
  start-page: 393
  year: 2017
  end-page: 410
  ident: CR66
  article-title: Disease modeling in stem cell-derived 3D organoid systems
  publication-title: Trends Mol. Med.
– volume: 19
  start-page: 181
  year: 2018
  ident: CR32
  article-title: Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancermicroenvironment interactions?
  publication-title: Int. J. Mol. Sci.
– volume: 4
  start-page: 4425
  year: 2018
  end-page: 4433
  ident: CR94
  article-title: Microfluidic formation of coculture tumor spheroids with stromal cells as a novel 3D tumor model for drug testing
  publication-title: ACS Biomater. Sci. Eng.
– volume: 18
  start-page: 407
  year: 2018
  end-page: 418
  ident: CR67
  article-title: Organoids in cancer research
  publication-title: Nat. Rev. Cancer
– volume: 45
  start-page: 148
  year: 2017
  end-page: 163
  ident: CR15
  article-title: 3D bioprinting for tissue and organ fabrication
  publication-title: Ann. Biomed. Eng.
– volume: 356
  year: 2017
  ident: CR89
  article-title: Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro
  publication-title: Science
– volume: 8
  start-page: 5906
  year: 2016
  end-page: 5916
  ident: CR40
  article-title: Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming induc- tive microtissues for hair-follicle regeneration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 472
  start-page: 51
  year: 2011
  end-page: 56
  ident: CR17
  article-title: Self-organizing optic-cup morphogenesis in three-dimensional culture
  publication-title: Nature
– volume: 14
  start-page: 51
  year: 1992
  end-page: 57
  ident: CR33
  article-title: Cell culture for three-dimensional modeling in rotating-wall vessels: An application of simulated microgravity
  publication-title: J. Tissue Cult. Methods
– volume: 7
  start-page: 862
  year: 1995
  end-page: 869
  ident: CR37
  article-title: In vitro differentiation of embryonic stem cells
  publication-title: Curr. Opin. Cell Biol.
– volume: 20
  start-page: 4628
  year: 2019
  ident: CR46
  article-title: Recent trends in decellularized extracellular matrix bioinks for 3D printing: an updated review
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 1
  year: 2018
  end-page: 14
  ident: CR95
  article-title: Development of a primary human small intestine-on-a- chip using biopsy-derived organoids
  publication-title: Sci. Rep.
– volume: 18
  start-page: 736
  year: 2016
  end-page: 748
  ident: CR74
  article-title: Stem cell models of human brain development
  publication-title: Cell Stem Cell
– volume: 76
  start-page: 3675
  year: 2004
  end-page: 3681
  ident: CR81
  article-title: A Soft lithographic approach to fabricate patterned microfluidic channels
  publication-title: Anal. Chem.
– volume: 35
  start-page: 659
  year: 2017
  end-page: 666
  ident: CR88
  article-title: Guided self-organization and cortical plate formation in human brain organoids
  publication-title: Nat. Biotechnol.
– volume: 10
  start-page: 1225
  year: 2013
  end-page: 1231
  ident: CR75
  article-title: High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias
  publication-title: Nat. Methods
– volume: 8
  start-page: 672
  year: 2016
  end-page: 683
  ident: CR1
  article-title: Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids
  publication-title: Integr. Biol. (Camb.)
– volume: 19
  start-page: 2854
  year: 2019
  end-page: 2865
  ident: CR97
  article-title: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity
  publication-title: Lab Chip
– ident: CR47
– volume: 10
  year: 2012
  ident: CR63
  article-title: Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation
  publication-title: BMC Biol.
– volume: 10
  start-page: 1
  year: 2015
  end-page: 18
  ident: CR9
  article-title: Generation of multicellular tumor spheroids with microwell- based agarose scaffolds for drug testing
  publication-title: PLoS ONE
– volume: 8
  start-page: 14102
  year: 2016
  ident: CR56
  article-title: Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint
  publication-title: Biofabrication
– volume: 20
  start-page: 2363
  year: 1999
  end-page: 2376
  ident: CR80
  article-title: Patterning proteins and cells using soft lithography
  publication-title: Biomaterials
– volume: 18
  start-page: 25
  year: 2016
  end-page: 38
  ident: CR8
  article-title: Engineering stem cell organoids
  publication-title: Cell Stem Cell
– volume: 30
  start-page: 2164
  year: 2009
  end-page: 2174
  ident: CR61
  article-title: Organ printing: tissue spheroids as building blocks
  publication-title: Bio- Mater.
– volume: 8
  start-page: 1940
  year: 2013
  ident: CR49
  article-title: Three-dimensional cell culturing by magnetic levitation
  publication-title: Nat. Protoc.
– volume: 18
  start-page: 851
  year: 2018
  end-page: 860
  ident: CR92
  article-title: Human brain organoid-on-a-chip to model prenatal nicotine exposure
  publication-title: Lab Chip
– volume: 3
  start-page: 5415
  year: 2015
  end-page: 5425
  ident: CR55
  article-title: 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration
  publication-title: J. Mater. Chem. B
– volume: 573
  start-page: 421
  year: 2019
  end-page: 425
  ident: CR93
  article-title: Controlled modelling of human epiblast and amnion development using stem cells
  publication-title: Nature
– volume: 9
  start-page: 1514
  year: 2014
  end-page: 1531
  ident: CR99
  article-title: Generation, expansion and functional analysis of endo-thelial cells and pericytes derived from human pluripotent stem cells
  publication-title: Nat. Protoc.
– volume: 3
  start-page: 335
  year: 2001
  end-page: 373
  ident: CR79
  article-title: Soft lithography in biology and biochemistry
  publication-title: Annu. Rev. Biomed. Eng.
– volume: 8
  start-page: 1677
  year: 2018
  end-page: 1685
  ident: CR91
  article-title: Engineering stem cell-derived 3D brain organoids in a perfusable organ-on-a-chip system
  publication-title: RSC Adv.
– volume: 3
  start-page: 1172
  year: 2008
  end-page: 1184
  ident: CR31
  article-title: Recent advances in three-dimensional multicellular spheroid culture for biomedical research
  publication-title: Biotechnol. J.
– volume: 11
  start-page: 2223
  year: 2016
  end-page: 2232
  ident: CR83
  article-title: Self-organization of human embryonic stem cells on micropatterns
  publication-title: Nat. Protoc.
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: CR53
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat. Biotechnol.
– volume: 17
  start-page: 1
  year: 2015
  end-page: 15
  ident: CR6
  article-title: Spherical cancer models in tumor biology
  publication-title: Neoplasia (U. S.)
– volume: 136
  start-page: 473
  year: 2011
  end-page: 478
  ident: CR38
  article-title: High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array
  publication-title: Analyst
– volume: 7
  start-page: 44103
  year: 2015
  ident: CR12
  article-title: Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes
  publication-title: Biofabrication
– volume: 130
  start-page: 601
  year: 2007
  end-page: 610
  ident: CR30
  article-title: Modeling tissue morphogenesis and cancer in 3D
  publication-title: Cell
– volume: 5
  start-page: 291
  year: 2010
  end-page: 296
  ident: CR48
  article-title: Three-dimensional tissue culture based on magnetic cell levitation
  publication-title: Nat. Nanotechnol.
– volume: 9
  year: 2018
  ident: CR68
  article-title: Microglia innately develop within cerebral organoids
  publication-title: Nat. Commun.
– volume: 8
  start-page: 412
  year: 2018
  ident: CR52
  article-title: Interleukin 6 plays a role in the migration of magnetically levitated mesenchymal stem cells spheroids
  publication-title: Appl. Sci.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 23
  ident: CR14
  article-title: Microfluidic technology for the generation of cell spheroids and their applications
  publication-title: Micromachines
– volume: 7
  year: 2017
  ident: CR41
  article-title: Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array
  publication-title: Sci. Rep.
– volume: 108
  start-page: 6235
  year: 2011
  end-page: 6240
  ident: CR100
  article-title: Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer
  publication-title: Proc. Natl Acad. Sci. USA.
– ident: CR84
– volume: 14
  start-page: 313
  year: 2012
  end-page: 323
  ident: CR39
  article-title: Micro-ring structures stabilize microdroplets to enable long term spheroid culture in 384 hanging drop array plates
  publication-title: Biomed. Microdevices
– volume: 37
  start-page: 3639
  year: 1977
  end-page: 3643
  ident: CR45
  article-title: A simplified method for production and growth of multicellular tumor spheroids
  publication-title: Cancer Res.
– volume: 22
  start-page: 456
  year: 2017
  end-page: 472
  ident: CR2
  article-title: Three-dimensional cell cultures in drug discovery and development
  publication-title: SLAS Disco.
– volume: 499
  start-page: 481
  year: 2013
  end-page: 484
  ident: CR18
  article-title: Vascularized and functional human liver from an iPSC-derived organ bud transplant
  publication-title: Nature
– volume: 144
  start-page: 946
  year: 2017
  end-page: 951
  ident: CR7
  article-title: The physics of organoids: a biophysical approach to understanding organogenesis
  publication-title: Development
– volume: 11
  start-page: 847
  year: 2014
  end-page: 854
  ident: CR86
  article-title: A method to recapitulate early embryonic spatial patterning in human embryonic stem cells
  publication-title: Nat. Methods
– volume: 9
  start-page: 1640
  year: 2009
  end-page: 1642
  ident: CR85
  article-title: Simple and rapid process for single cell micro-patterning
  publication-title: Lab Chip
– volume: 83
  start-page: 173
  year: 2003
  end-page: 180
  ident: CR44
  article-title: Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types
  publication-title: Biotechnol. Bioeng.
– volume: 26
  start-page: 2300
  year: 2008
  end-page: 2310
  ident: CR76
  article-title: Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories
  publication-title: Stem Cells
– volume: 30
  start-page: 133
  year: 2020
  end-page: 143
  ident: CR98
  article-title: Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease
  publication-title: Trends Cell Biol.
– volume: 1
  start-page: 149
  year: 2004
  end-page: 156
  ident: CR59
  article-title: Tissue engineered spinal cord using bone marrow stromal stem cells seeded pga scaffolds; preliminary study
  publication-title: Tissue Eng. Regen. Med
– ident: CR78
– volume: 13
  start-page: 547
  year: 2014
  end-page: 557
  ident: CR26
  article-title: Materials as stem cell regulators
  publication-title: Nat. Mater.
– volume: 16
  start-page: 5517
  year: 2015
  end-page: 5527
  ident: CR64
  article-title: Three-dimensional cell culture: a breakthrough in vivo
  publication-title: Int. J. Mol. Sci.
– volume: 15
  start-page: 405
  year: 2005
  end-page: 412
  ident: CR25
  article-title: Gene expression perturbation in vitro—a growing case for three-dimensional (3D) culture systems
  publication-title: Semin. Cancer Biol.
– volume: 7
  start-page: 1701018
  year: 2018
  ident: CR60
  article-title: Organ bioprinting: are we there yet?
  publication-title: Adv. Healthc. Mater.
– volume: 9
  start-page: 2329
  year: 2014
  end-page: 2340
  ident: CR72
  article-title: Generation of cerebral organoids from human pluripotent stem cells
  publication-title: Nat. Protoc.
– volume: 13
  start-page: 465
  year: 2016
  end-page: 474
  ident: CR57
  article-title: Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Eng
  publication-title: Regen. Med.
– volume: 110
  start-page: 45
  year: 2016
  end-page: 59
  ident: CR62
  article-title: Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip
  publication-title: Biomaterials
– volume: 22
  start-page: 1220
  year: 2016
  end-page: 1228
  ident: CR73
  article-title: The promises and challenges of human brain organoids as models of neuropsychiatric disease
  publication-title: Nat. Med
– volume: 165
  start-page: 1586
  year: 2016
  end-page: 1597
  ident: CR4
  article-title: Modeling development and disease with organoids
  publication-title: Cell
– volume: 15
  start-page: 365
  year: 2005
  end-page: 377
  ident: CR13
  article-title: Three-dimensional tissue culture models in cancer biology
  publication-title: Semin. Cancer Biol.
– volume: 19
  start-page: 665
  year: 2013
  end-page: 675
  ident: CR51
  article-title: Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation
  publication-title: Tissue Eng. Part C. Methods
– volume: 103
  start-page: 655
  year: 2009
  end-page: 663
  ident: CR27
  article-title: Hydrogels as extracellular matrix mimics for 3D cell culture
  publication-title: Biotechnol. Bioeng.
– volume: 163
  start-page: 94
  year: 2016
  end-page: 108
  ident: CR50
  article-title: Three-dimensional culture systems in cancer research: focus on tumor spheroid model
  publication-title: Pharmacol. Ther.
– volume: 5
  start-page: 22205
  year: 2011
  ident: CR16
  article-title: Hepatocyte spheroid arrays inside microwells connected with microchannels
  publication-title: Biomicrofluidics
– volume: 38
  start-page: 590
  year: 2016
  end-page: 600
  ident: CR21
  article-title: Organoids: modeling development and the stem cell niche in a dish
  publication-title: Dev. Cell
– volume: 46
  start-page: 113
  year: 1971
  end-page: 120
  ident: CR43
  article-title: Growth of multicell spheroids in tissue culture as a model of nodular Carcinomas2
  publication-title: JNCI J. Natl Cancer Inst.
– volume: 164
  start-page: 192
  year: 2012
  end-page: 204
  ident: CR65
  article-title: Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy
  publication-title: J. Control. Release
– volume: 22
  start-page: 1358
  year: 2016
  end-page: 1367
  ident: CR70
  article-title: Efficient derivation of microglia-like cells from human plur- ipotent stem cells
  publication-title: Nat. Med
– volume: 119
  start-page: 4320
  year: 2018
  end-page: 4333
  ident: CR28
  article-title: Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function
  publication-title: J. Cell. Biochem.
– volume: 501
  start-page: 373
  year: 2013
  end-page: 379
  ident: CR19
  article-title: Cerebral organoids model human brain development and microcephaly
  publication-title: Nature
– volume: 21
  start-page: 941
  year: 2018
  end-page: 951
  ident: CR69
  article-title: A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease
  publication-title: Nat. Neurosci.
– volume: 11
  start-page: 347
  year: 2016
  end-page: 358
  ident: CR22
  article-title: Organoid culture systems for prostate epithelial and cancer tissue
  publication-title: Nat. Protoc.
– volume: 114
  start-page: E2293
  year: 2017
  end-page: E2302
  ident: CR96
  article-title: Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors
  publication-title: Proc. Natl Acad. Sci. U. S. A
– volume: 175
  start-page: 1591
  year: 2018
  end-page: 1606
  ident: CR24
  article-title: Long-term expansion of functional mouse and human hepa- tocytes as 3D organoids
  publication-title: Cell
– volume: 128
  start-page: 44
  year: 2017
  end-page: 55
  ident: CR82
  article-title: A microengineered collagen scaffold for generating a polarized crypt villus architecture of human small intestinal epithelium
  publication-title: Bio-Mater.
– volume: 25
  start-page: 838
  year: 2019
  end-page: 849
  ident: CR23
  article-title: An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity
  publication-title: Nat. Med
– volume: 11
  start-page: 470
  year: 2018
  end-page: 484
  ident: CR34
  article-title: A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells
  publication-title: Stem Cell Rep.
– volume: 23
  start-page: 803
  year: 2012
  end-page: 809
  ident: CR36
  article-title: Synthetic 3D multicellular systems for drug development
  publication-title: Curr. Opin. Biotechnol.
– volume: 10
  start-page: 1
  year: 2019
  end-page: 12
  ident: CR71
  article-title: Engineering microfluidic organoid-on-a-chip platforms
  publication-title: Micromachines
– volume: 16
  start-page: 5517
  year: 2015
  ident: 185_CR64
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms16035517
– volume: 472
  start-page: 51
  year: 2011
  ident: 185_CR17
  publication-title: Nature
  doi: 10.1038/nature09941
– volume: 114
  start-page: E2293
  year: 2017
  ident: 185_CR96
  publication-title: Proc. Natl Acad. Sci. U. S. A
– volume: 573
  start-page: 421
  year: 2019
  ident: 185_CR93
  publication-title: Nature
  doi: 10.1038/s41586-019-1535-2
– volume: 8
  start-page: 14102
  year: 2016
  ident: 185_CR56
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/8/1/014102
– volume: 8
  start-page: 412
  year: 2018
  ident: 185_CR52
  publication-title: Appl. Sci.
  doi: 10.3390/app8030412
– ident: 185_CR84
  doi: 10.1016/S0091-679X(10)97008-8
– volume: 35
  start-page: 74
  year: 2004
  ident: 185_CR58
  publication-title: J. Dermatol. Sci.
  doi: 10.1016/j.jdermsci.2004.03.004
– volume: 13
  start-page: 547
  year: 2014
  ident: 185_CR26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3937
– volume: 501
  start-page: 373
  year: 2013
  ident: 185_CR19
  publication-title: Nature
  doi: 10.1038/nature12517
– volume: 163
  start-page: 94
  year: 2016
  ident: 185_CR50
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2016.03.013
– volume: 128
  start-page: 44
  year: 2017
  ident: 185_CR82
  publication-title: Bio-Mater.
  doi: 10.1016/j.matdes.2017.04.094
– volume: 142
  start-page: 3996
  year: 2015
  ident: 185_CR87
  publication-title: Development
  doi: 10.1242/dev.129452
– volume: 165
  start-page: 1586
  year: 2016
  ident: 185_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.082
– volume: 175
  start-page: 1591
  year: 2018
  ident: 185_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2018.11.013
– volume: 1
  start-page: 149
  year: 2004
  ident: 185_CR59
  publication-title: Tissue Eng. Regen. Med
– volume: 14
  start-page: 313
  year: 2012
  ident: 185_CR39
  publication-title: Biomed. Microdevices
  doi: 10.1007/s10544-011-9608-5
– volume: 46
  start-page: 113
  year: 1971
  ident: 185_CR43
  publication-title: JNCI J. Natl Cancer Inst.
– volume: 7
  start-page: 862
  year: 1995
  ident: 185_CR37
  publication-title: Curr. Opin. Cell Biol.
  doi: 10.1016/0955-0674(95)80071-9
– volume: 10
  year: 2012
  ident: 185_CR63
  publication-title: BMC Biol.
  doi: 10.1186/1741-7007-10-29
– volume: 7
  start-page: 1701018
  year: 2018
  ident: 185_CR60
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.201701018
– ident: 185_CR78
  doi: 10.1101/465039
– volume: 19
  start-page: 665
  year: 2013
  ident: 185_CR51
  publication-title: Tissue Eng. Part C. Methods
  doi: 10.1089/ten.tec.2012.0157
– volume: 17
  start-page: 1
  year: 2015
  ident: 185_CR6
  publication-title: Neoplasia (U. S.)
  doi: 10.1016/j.neo.2014.12.004
– volume: 30
  start-page: 133
  year: 2020
  ident: 185_CR98
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2019.11.004
– volume: 22
  start-page: 1358
  year: 2016
  ident: 185_CR70
  publication-title: Nat. Med
  doi: 10.1038/nm.4189
– volume: 3
  start-page: 5415
  year: 2015
  ident: 185_CR55
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB00637F
– volume: 14
  start-page: 51
  year: 1992
  ident: 185_CR33
  publication-title: J. Tissue Cult. Methods
  doi: 10.1007/BF01404744
– volume: 18
  start-page: 25
  year: 2016
  ident: 185_CR8
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.12.005
– volume: 8
  start-page: 672
  year: 2016
  ident: 185_CR1
  publication-title: Integr. Biol. (Camb.)
  doi: 10.1039/C6IB00039H
– volume: 21
  start-page: 941
  year: 2018
  ident: 185_CR69
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0175-4
– volume: 45
  start-page: 148
  year: 2017
  ident: 185_CR15
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1612-8
– volume: 15
  start-page: 405
  year: 2005
  ident: 185_CR25
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2005.06.009
– volume: 23
  start-page: 803
  year: 2012
  ident: 185_CR36
  publication-title: Curr. Opin. Biotechnol.
  doi: 10.1016/j.copbio.2012.01.011
– volume: 18
  start-page: 851
  year: 2018
  ident: 185_CR92
  publication-title: Lab Chip
  doi: 10.1039/C7LC01084B
– volume: 8
  start-page: 4947
  year: 2017
  ident: 185_CR5
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY00559H
– volume: 10
  start-page: 1
  year: 2015
  ident: 185_CR9
  publication-title: PLoS ONE
– volume: 169
  start-page: 34
  year: 2001
  ident: 185_CR11
  publication-title: Cells Tissues Organs
  doi: 10.1159/000047858
– volume: 9
  start-page: 1514
  year: 2014
  ident: 185_CR99
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.102
– ident: 185_CR47
  doi: 10.1007/978-1-4939-3603-8_4
– volume: 83
  start-page: 173
  year: 2003
  ident: 185_CR44
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10655
– volume: 19
  start-page: 181
  year: 2018
  ident: 185_CR32
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19010181
– volume: 459
  start-page: 262
  year: 2009
  ident: 185_CR20
  publication-title: Nature
  doi: 10.1038/nature07935
– volume: 3
  start-page: 1172
  year: 2008
  ident: 185_CR31
  publication-title: Biotechnol. J.
  doi: 10.1002/biot.200700228
– volume: 11
  start-page: 2223
  year: 2016
  ident: 185_CR83
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.131
– volume: 8
  start-page: 1
  year: 2017
  ident: 185_CR14
  publication-title: Micromachines
  doi: 10.3390/mi8040094
– volume: 24
  start-page: 2079
  year: 2010
  ident: 185_CR10
  publication-title: J. Adhes. Sci. Technol.
  doi: 10.1163/016942410X507939
– volume: 3
  start-page: 335
  year: 2001
  ident: 185_CR79
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.3.1.335
– volume: 26
  start-page: 2300
  year: 2008
  ident: 185_CR76
  publication-title: Stem Cells
  doi: 10.1634/stemcells.2008-0183
– volume: 22
  start-page: 456
  year: 2017
  ident: 185_CR2
  publication-title: SLAS Disco.
  doi: 10.1177/1087057117696795
– volume: 4
  start-page: 4425
  year: 2018
  ident: 185_CR94
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00904
– volume: 5
  start-page: 22205
  year: 2011
  ident: 185_CR16
  publication-title: Biomicrofluidics
  doi: 10.1063/1.3576905
– volume: 10
  start-page: 1
  year: 2019
  ident: 185_CR71
  publication-title: Micromachines
– volume: 14
  start-page: 515
  year: 2018
  ident: 185_CR90
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-018-0046-7
– volume: 18
  start-page: 491
  year: 1970
  ident: 185_CR42
  publication-title: Int. J. Radiat. Biol. Relat. Stud. Phys., Chem. Med
  doi: 10.1080/09553007014551401
– volume: 8
  start-page: 1
  year: 2018
  ident: 185_CR95
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-21201-7
– volume: 356
  year: 2017
  ident: 185_CR89
  publication-title: Science
  doi: 10.1126/science.aal1810
– volume: 136
  start-page: 473
  year: 2011
  ident: 185_CR38
  publication-title: Analyst
  doi: 10.1039/C0AN00609B
– volume: 7
  start-page: 44103
  year: 2015
  ident: 185_CR12
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/7/4/044103
– volume: 18
  start-page: 240
  year: 2013
  ident: 185_CR3
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2012.10.003
– volume: 35
  start-page: 659
  year: 2017
  ident: 185_CR88
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3906
– volume: 5
  start-page: 291
  year: 2010
  ident: 185_CR48
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.23
– volume: 130
  start-page: 601
  year: 2007
  ident: 185_CR30
  publication-title: Cell
  doi: 10.1016/j.cell.2007.08.006
– volume: 48
  start-page: 1701
  year: 2016
  ident: 185_CR29
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2016.3376
– volume: 8
  start-page: 1940
  year: 2013
  ident: 185_CR49
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2013.125
– volume: 8
  start-page: 1677
  year: 2018
  ident: 185_CR91
  publication-title: RSC Adv.
  doi: 10.1039/C7RA11714K
– volume: 22
  start-page: 1220
  year: 2016
  ident: 185_CR73
  publication-title: Nat. Med
  doi: 10.1038/nm.4214
– volume: 11
  start-page: 847
  year: 2014
  ident: 185_CR86
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3016
– volume: 13
  start-page: 465
  year: 2016
  ident: 185_CR57
  publication-title: Regen. Med.
– volume: 19
  start-page: 595
  year: 2018
  ident: 185_CR77
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-018-0040-z
– volume: 18
  start-page: 407
  year: 2018
  ident: 185_CR67
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/s41568-018-0007-6
– volume: 20
  start-page: 2363
  year: 1999
  ident: 185_CR80
  publication-title: Biomaterials
  doi: 10.1016/S0142-9612(99)00165-9
– volume: 10
  start-page: 1225
  year: 2013
  ident: 185_CR75
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2684
– volume: 76
  start-page: 3675
  year: 2004
  ident: 185_CR81
  publication-title: Anal. Chem.
  doi: 10.1021/ac035415s
– ident: 185_CR54
  doi: 10.1002/adhm.201601118
– volume: 15
  start-page: 365
  year: 2005
  ident: 185_CR13
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2005.05.002
– volume: 32
  start-page: 773
  year: 2014
  ident: 185_CR53
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2958
– volume: 164
  start-page: 192
  year: 2012
  ident: 185_CR65
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2012.04.045
– volume: 9
  start-page: 2329
  year: 2014
  ident: 185_CR72
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2014.158
– volume: 11
  start-page: 347
  year: 2016
  ident: 185_CR22
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2016.006
– volume: 7
  year: 2017
  ident: 185_CR41
  publication-title: Sci. Rep.
– volume: 25
  start-page: 838
  year: 2019
  ident: 185_CR23
  publication-title: Nat. Med
  doi: 10.1038/s41591-019-0422-6
– volume: 499
  start-page: 481
  year: 2013
  ident: 185_CR18
  publication-title: Nature
  doi: 10.1038/nature12271
– volume: 119
  start-page: 4320
  year: 2018
  ident: 185_CR28
  publication-title: J. Cell. Biochem.
  doi: 10.1002/jcb.26622
– volume: 103
  start-page: 655
  year: 2009
  ident: 185_CR27
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.22361
– volume: 108
  start-page: 6235
  year: 2011
  ident: 185_CR100
  publication-title: Proc. Natl Acad. Sci. USA.
  doi: 10.1073/pnas.1015938108
– volume: 30
  start-page: 2164
  year: 2009
  ident: 185_CR61
  publication-title: Bio- Mater.
– volume: 8
  start-page: 5906
  year: 2016
  ident: 185_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00202
– volume: 9
  year: 2018
  ident: 185_CR68
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06684-2
– volume: 144
  start-page: 946
  year: 2017
  ident: 185_CR7
  publication-title: Development
  doi: 10.1242/dev.143693
– volume: 8
  start-page: 356
  year: 2009
  ident: 185_CR35
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.8.4.7432
– volume: 18
  start-page: 736
  year: 2016
  ident: 185_CR74
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2016.05.022
– volume: 38
  start-page: 590
  year: 2016
  ident: 185_CR21
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2016.08.014
– volume: 11
  start-page: 470
  year: 2018
  ident: 185_CR34
  publication-title: Stem Cell Rep.
  doi: 10.1016/j.stemcr.2018.06.018
– volume: 19
  start-page: 2854
  year: 2019
  ident: 185_CR97
  publication-title: Lab Chip
  doi: 10.1039/C9LC00496C
– volume: 110
  start-page: 45
  year: 2016
  ident: 185_CR62
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.09.003
– volume: 37
  start-page: 3639
  year: 1977
  ident: 185_CR45
  publication-title: Cancer Res.
– volume: 20
  start-page: 4628
  year: 2019
  ident: 185_CR46
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20184628
– volume: 23
  start-page: 393
  year: 2017
  ident: 185_CR66
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2017.02.007
– volume: 9
  start-page: 1640
  year: 2009
  ident: 185_CR85
  publication-title: Lab Chip
  doi: 10.1039/b821581m
SSID ssj0001737905
ssib048324881
Score 2.5326095
SecondaryResourceType review_article
Snippet Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 76
SubjectTerms 639/166/987
639/925/350/1057
Animal models
Biochips
Biomaterials
Biomedical engineering
Biomedical materials
Cell culture
Complexity
Electrical engineering
Engineering
Exchanging
Medical treatment
Microfluidics
Microprinting
Microtechnology
Organoids
Production methods
Reproducibility
Review
Review Article
Spheroids
Stem cells
Three dimensional models
Tissue culture
Two dimensional models
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bS8MwFD7ofNEH8W51SgXfNKxb0qZ5EhHHEOaTg72VtklwIJ3a-f89J73MOfSxbUqbk5Oc7-TyfQDXRgQWoT1nOg1ihhFvwJTSmtnAENrWfSPp7PD4ORpNxNM0nNYTbmW9rbIZE91Arec5zZH3MAwpQcFX3b1_MFKNotXVWkJjE7aIuoy8Wk7bcCrQW0XDlu7mXCQnPirSm0Pkzkhhqz5HE_C4V-J4TnSzAzpqjWGM8dVYtQZA1_dR_lpMdTFquAe7Nbj07ytv2IcNUxzAzg_KwUPoj2kH3qKdUGcUxrRfCUmXPkJY3wk9zWd4k1RyyiOYDB9fHkaslk1gOcKvBVPaWMkNZp-xiZUwqdER5ziOZVZHoZGZ0oqLNA60sHkqhMwjk4YZXmCanJmAH0OnmBfmFHzEjlZFfZsKTNO0VUoGqVSRDq3QQobGg35joCSvOcVJ2uItcWvbPE4qoyZo1MQZNeEe3LTvvFeMGv-W7jZ2T-reVSZLX_Dgqn2M_YIWO9LCzL-wDCZSxMEcYJmTqpnaz3FEjZhmRR7IlQZsCxDn9uqTYvbquLdjOmHGYw9um6Ze_tbftTj7vxbnsD0gt3P7ErrQWXx-mQvEOovs0jn0N1SP-BM
  priority: 102
  providerName: ProQuest
Title Microtechnology-based methods for organoid models
URI https://link.springer.com/article/10.1038/s41378-020-00185-3
https://www.ncbi.nlm.nih.gov/pubmed/34567686
https://www.proquest.com/docview/2449451599
https://www.proquest.com/docview/2576906209
https://pubmed.ncbi.nlm.nih.gov/PMC8433138
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xuLAHBCws4VEFidtikdZObB9LoaCKohUsUm9RUtsCCaWIlv_PjPOA8pK4JEo9UZOx4_nGnvkG4NCKyCG058xkkWJo8TpMa2OYiyyhbdO2knKHh1fJxa0YjOLRAnTqXBgftO8pLf00XUeHHU9xsiUu2A7lQaONYXwRlomqHcf2crc7uBm8rqxITqxTVYZMxNUnN89boQ_Q8mOE5LttUm99-muwWsHGsFs-6Dos2GIDfr0hE_wN7SHF1s2apXJGBsqEZYnoaYjgNPQlnCb3-CPVv5luwm3_7H_vglUFEdgYgdWMaWOd5Bb9SmWVFjazJuEcZ6jcmSS2MtdGc5GpyAg3zoSQ48RmcY4X6ADnNuJbsFRMCrsNIaJCp5O2ywQ6YMZpLaNM6sTEThghYxtAu1ZQOq7YwqloxUPqd625SkulpqjU1Cs15QH8be55LLkyvpXeq_WeVt_NNEWwoQVBLB3AQdOMI562MbLCTp5RBl0kYleOUOZP2U3N33HEg-hAJQHIuQ5sBIhNe76luL_zrNqKcse4CuCo7urXx_r6LXZ-Jr4LKx0ahj4CYQ-WZk_Pdh9RzSxvwaIcSTyq_nmrGtJ0Ph1e3uD55Ozq3zW29pJey68bvAAWQ_hx
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOqDwbKBAkOIHVbOzE8aFCCFi2tNtTK_VmkngsKlXZQrZC_Cl-IzPOoywVvfW4G-8j45l839iebwBeoUo8UXspXJkUghAvFcY4J3yCzLbdBDXXDs8P8tmR-nKcHa_B76EWho9VDs_E8KB2i5rXyLcJhoxi8DXvzr4L7hrFu6tDC43OLfbw109K2dqd3Y80v6_TdPrp8MNM9F0FRE3sZCmMQ68lUnJWYGEUluhyKSnMK-_yDHVlnJGqLBKnfF0qpescy6yiF5RFVphI-t4bcFNJQnKuTJ9-HvxXUXSoQZ09rPFoyfpX3N-OMgXBHb36up1EFtst4QfL26Zc2k2wKeQqNl4ivJfPbf6zeRswcboBd3syG7_vvO8erGFzH-78JXH4ACZzPvG3HBfwBcOmi7vG1W1MlDkOjaUWJ_Qmd-VpH8LRtRj0Eaw3iwY3ISau6k0-8aWitNB5Y3RSapO7zCundIYRTAYD2brXMOdWGqc27KXLwnZGtWRUG4xqZQRvxs-cdQoeV47eGuxu-2hu7YXvRfByvExxyJsrZYOLcxpDiRtrPic05nE3TePPSWKplNblEeiVCRwHsMb36pXm5FvQ-i64ok0WEbwdpvrib_3_Lp5cfRcv4NbscL5v93cP9p7C7ZRdMJyJ2IL15Y9zfEY8a1k9D84dw9frjqY_f8w3kA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ_gkRh5IH5bRK2JPunmet1tt_tgjAoXELkQIwlva9udjSSkh_YI4V_zr3OmX3gSeeOx7V57nZ3p_GZ3Zn4Ar1BFnqC9FC6PMkEeLxbGOCd8hIy23QQ11w7vz9KdQ_X5KDlagd99LQynVfbfxOZD7eYlr5GPyQ0Zxc7XjH2XFnGwNX1_-lMwgxTvtPZ0Gq2K7OHFOYVv9bvdLZrr13E83f72aUd0DAOiJKSyEMah1xIpUMswMwpzdKmUZPKFd2mCujDOSJVnkVO-zJXSZYp5UtABRZQFRpLuewtWNUdFI1j9uD07-NprsyJbUX2v9mbFR0vuhsVsdxQ3COb36qp4IpmNa_Im3Ow25kJvcqJCLnvKK_D3ahbnP1u5jYec3oX1DtqGH1pdvAcrWN2Htb8aHj6AyT7n_y2G5XzBTtSFLY11HRKADhuaqfkxnWSOnvohHN6ISB_BqJpX-ARCQq7epBOfKwoSnTdGR7k2qUu8ckonGMCkF5Atu47mTKxxYpuddZnZVqiWhGoboVoZwJvhN6dtP49rR2_2credbdf2UhMDeDlcJqvkrZa8wvkZjaEwjjtARzTmcTtNw-MkYVYK8tIA9NIEDgO44_fyler4R9P5O-P6NpkF8Laf6su_9f-32Lj-LV7AbbIk-2V3tvcU7sSsgU2CxCaMFr_O8BmBrkXxvNPuEL7ftEH9AVKTPSI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Microtechnology-based+methods+for+organoid+models&rft.jtitle=Microsystems+%26+nanoengineering&rft.au=Velasco%2C+Vanessa&rft.au=Shariati%2C+S.+Ali&rft.au=Esfandyarpour%2C+Rahim&rft.date=2020-10-05&rft.pub=Nature+Publishing+Group+UK&rft.issn=2096-1030&rft.eissn=2055-7434&rft.volume=6&rft_id=info:doi/10.1038%2Fs41378-020-00185-3&rft_id=info%3Apmid%2F34567686&rft.externalDocID=PMC8433138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2055-7434&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2055-7434&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2055-7434&client=summon