Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite
Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photolu...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 12183 - 7 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.09.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without
I-V
hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K
+
, the conduction band minimum (CBM) became similar to the CBM level of the TiO
2
-Li. In this situation, the electron transfer barrier at the interface between TiO
2
-Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K
+
was faster than that without K
+
. It is concluded that stagnation-less carrier transportation could minimise the
I-V
hysteresis of PSCs. |
---|---|
AbstractList | Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without
I-V
hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K
+
, the conduction band minimum (CBM) became similar to the CBM level of the TiO
2
-Li. In this situation, the electron transfer barrier at the interface between TiO
2
-Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K
+
was faster than that without K
+
. It is concluded that stagnation-less carrier transportation could minimise the
I-V
hysteresis of PSCs. Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K , the conduction band minimum (CBM) became similar to the CBM level of the TiO -Li. In this situation, the electron transfer barrier at the interface between TiO -Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K was faster than that without K . It is concluded that stagnation-less carrier transportation could minimise the I-V hysteresis of PSCs. Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K+, the conduction band minimum (CBM) became similar to the CBM level of the TiO2-Li. In this situation, the electron transfer barrier at the interface between TiO2-Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K+ was faster than that without K+. It is concluded that stagnation-less carrier transportation could minimise the I-V hysteresis of PSCs.Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K+, the conduction band minimum (CBM) became similar to the CBM level of the TiO2-Li. In this situation, the electron transfer barrier at the interface between TiO2-Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K+ was faster than that without K+. It is concluded that stagnation-less carrier transportation could minimise the I-V hysteresis of PSCs. Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed. The crystal lattice of the organometal halide perovskite was expanded with increasing of the potassium ratio, where both absorption and photoluminescence spectra shifted to the longer wavelength, suggesting that the optical band gap decreased. In the case of the perovskite with the 5% K+, the conduction band minimum (CBM) became similar to the CBM level of the TiO2-Li. In this situation, the electron transfer barrier at the interface between TiO2-Li and the perovskite was minimised. In fact, the transient current rise at the maximum power voltages of PSCs with 5% K+ was faster than that without K+. It is concluded that stagnation-less carrier transportation could minimise the I-V hysteresis of PSCs. |
ArticleNumber | 12183 |
Author | Wang, Haibin Uchida, Satoshi Murakami, Takurou N. Kubo, Takaya Segawa, Hiroshi Kinoshita, Takumi Awai, Fumiyasu Tang, Zeguo Jono, Ryota Bessho, Takeru Maitani, Masato M. |
Author_xml | – sequence: 1 givenname: Zeguo surname: Tang fullname: Tang, Zeguo organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 2 givenname: Takeru surname: Bessho fullname: Bessho, Takeru organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 3 givenname: Fumiyasu surname: Awai fullname: Awai, Fumiyasu organization: Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku – sequence: 4 givenname: Takumi surname: Kinoshita fullname: Kinoshita, Takumi organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 5 givenname: Masato M. surname: Maitani fullname: Maitani, Masato M. organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 6 givenname: Ryota orcidid: 0000-0001-9098-854X surname: Jono fullname: Jono, Ryota organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 7 givenname: Takurou N. surname: Murakami fullname: Murakami, Takurou N. organization: Research Center for Photovoltaics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba – sequence: 8 givenname: Haibin surname: Wang fullname: Wang, Haibin organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 9 givenname: Takaya surname: Kubo fullname: Kubo, Takaya organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 10 givenname: Satoshi orcidid: 0000-0002-4971-574X surname: Uchida fullname: Uchida, Satoshi organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku – sequence: 11 givenname: Hiroshi surname: Segawa fullname: Segawa, Hiroshi email: csegawa@mail.ecc.u-tokyo.ac.jp organization: Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28939887$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UcFqFTEUDVKxtfYHXMiAGzfRJJPMJBtBSmuFghvdCSGT3HlNnZmMuTOl_Xvz-mp5FjSbBHLOuefc85IcTGkCQl5z9p6zWn9AyZXRlPGWciHrht4-I0eCSUVFLcTB3vuQnCBes3KUMJKbF-RQaFMbrdsj8uPiDhfIgBFpnwGqGXK6wZ9xgQrT4HLlYRiwGl2AKvXVnBaHGNeRhjRDqFLeuCmNsLihunJDDPsKr8jz3g0IJw_3Mfl-fvbt9IJefv385fTTJfVKsoUa37VOMe8dBNY4EKHYVNx5EQJj2gQmAHrj2yA71mndm863Uri2RKgbw-pj8nGnO6_dCMHDtGQ32DnH0eU7m1y0f_9M8cpu0o1VDWei5kXg3YNATr9WwMWOEbfB3QRpRcuNFC1rpJEF-vYJ9DqteSrxCkqpsmMhVEG92Xf0aOXP4gtA7AA-J8QM_SOEM7st2O4KtqVge1-wvS0k_YTk4-KWmLap4vB_ar2jYpkzbSDv2f436zeVgr0n |
CitedBy_id | crossref_primary_10_1039_D2QM00491G crossref_primary_10_1088_2053_1591_aac183 crossref_primary_10_1016_j_isci_2020_101817 crossref_primary_10_1021_acs_chemmater_8b02989 crossref_primary_10_1021_acsami_2c11929 crossref_primary_10_1021_acs_jpclett_8b00830 crossref_primary_10_1016_j_electacta_2019_01_102 crossref_primary_10_1016_j_orgel_2018_09_040 crossref_primary_10_1016_j_solmat_2020_110625 crossref_primary_10_1002_solr_202000272 crossref_primary_10_1587_transele_2022OMP0004 crossref_primary_10_1021_acsaem_1c01568 crossref_primary_10_1007_s10854_022_09565_z crossref_primary_10_1016_j_joule_2020_03_005 crossref_primary_10_1021_acs_chemmater_8b04017 crossref_primary_10_1016_j_matchemphys_2020_124032 crossref_primary_10_1016_j_mssp_2022_106788 crossref_primary_10_1039_C8TA05593A crossref_primary_10_1039_C8EE02252F crossref_primary_10_1016_j_solmat_2022_111966 crossref_primary_10_1021_acsenergylett_8b01504 crossref_primary_10_1007_s42452_021_04877_x crossref_primary_10_1016_j_optmat_2021_110819 crossref_primary_10_1002_solr_201800302 crossref_primary_10_1016_j_nanoen_2022_107579 crossref_primary_10_1002_admi_202201632 crossref_primary_10_1039_D0RA10751D crossref_primary_10_1039_C8TA02071J crossref_primary_10_3390_polym14030398 crossref_primary_10_1021_acsami_8b15578 crossref_primary_10_1002_slct_202303571 crossref_primary_10_1016_j_tsf_2019_03_030 crossref_primary_10_1109_JPHOTOV_2019_2922388 crossref_primary_10_1021_acs_jpcc_7b12464 crossref_primary_10_3390_cryst10090761 crossref_primary_10_1016_j_jechem_2019_11_008 crossref_primary_10_1021_acsaem_2c00225 crossref_primary_10_1039_C9RA05323A crossref_primary_10_1002_aenm_201903299 crossref_primary_10_1021_acsami_0c06284 crossref_primary_10_3390_nano14191554 crossref_primary_10_1021_acsphotonics_8b00124 crossref_primary_10_1016_j_jssc_2020_121785 crossref_primary_10_1021_acsenergylett_9b02272 crossref_primary_10_3389_fchem_2020_00796 crossref_primary_10_1021_acsami_0c05878 crossref_primary_10_1002_solr_201900053 crossref_primary_10_1002_aenm_202200111 crossref_primary_10_1021_acsaem_1c00226 crossref_primary_10_1021_acs_jpcc_0c11122 crossref_primary_10_1007_s00339_019_2866_4 crossref_primary_10_1039_C9TA07595J crossref_primary_10_1155_2019_2878060 crossref_primary_10_1016_j_jallcom_2020_157660 crossref_primary_10_1021_acsmaterialslett_1c00684 crossref_primary_10_1021_acsaem_0c01717 crossref_primary_10_1002_smtd_201900569 crossref_primary_10_1016_j_electacta_2025_145901 crossref_primary_10_1063_5_0228415 crossref_primary_10_1007_s40820_021_00675_7 crossref_primary_10_1021_acsomega_3c09654 crossref_primary_10_1002_aenm_201902579 crossref_primary_10_1002_solr_202500025 crossref_primary_10_1088_1674_1056_ab99ae crossref_primary_10_3390_ma11091605 crossref_primary_10_1016_j_ijleo_2021_168294 crossref_primary_10_1007_s42247_021_00177_7 crossref_primary_10_1021_acsami_9b09564 crossref_primary_10_1002_aesr_202400003 crossref_primary_10_1002_smll_202005495 crossref_primary_10_1039_C9RA05371A crossref_primary_10_1002_smtd_201700387 crossref_primary_10_1016_j_cplett_2020_137882 crossref_primary_10_1016_j_mattod_2020_03_025 crossref_primary_10_1002_admi_201800326 crossref_primary_10_1380_vss_66_103 crossref_primary_10_1002_aelm_202100291 crossref_primary_10_1016_j_solener_2023_112087 crossref_primary_10_1021_acs_chemmater_9b01650 crossref_primary_10_1155_2018_8654963 crossref_primary_10_9746_sicetr_60_419 crossref_primary_10_1021_jacs_8b03191 crossref_primary_10_1002_adfm_201800346 crossref_primary_10_3390_nano11061607 crossref_primary_10_1002_solr_202000584 crossref_primary_10_1021_acs_jpcc_8b00980 crossref_primary_10_1016_j_poly_2022_115717 crossref_primary_10_1021_acsaem_0c00182 crossref_primary_10_1016_j_optcom_2021_127516 crossref_primary_10_1002_ente_202100492 crossref_primary_10_1007_s10853_022_06998_z crossref_primary_10_1002_solr_202100112 crossref_primary_10_1002_adma_201707350 crossref_primary_10_1016_j_jpcs_2019_109147 crossref_primary_10_1039_D2TC02633C crossref_primary_10_1039_D3NA00029J crossref_primary_10_1063_5_0008736 crossref_primary_10_3390_en14020386 crossref_primary_10_1002_aenm_202000768 crossref_primary_10_1007_s42247_024_00835_6 crossref_primary_10_1038_s41467_021_22783_z crossref_primary_10_1002_adom_202000742 crossref_primary_10_1016_j_joule_2019_01_007 crossref_primary_10_1039_D2TC04529J crossref_primary_10_1007_s11426_019_9448_3 crossref_primary_10_1002_solr_202201080 crossref_primary_10_1016_j_solener_2021_06_001 crossref_primary_10_1016_j_solener_2019_10_034 crossref_primary_10_1021_acs_nanolett_8b00701 crossref_primary_10_1021_acsomega_1c01286 crossref_primary_10_1016_j_nanoen_2021_106286 crossref_primary_10_1016_j_cej_2019_122830 crossref_primary_10_1021_acs_chemrev_8b00318 crossref_primary_10_1002_adfm_202404402 crossref_primary_10_1016_j_solener_2021_02_018 crossref_primary_10_1016_j_cej_2021_130841 crossref_primary_10_1002_aenm_201902492 crossref_primary_10_1002_pssr_202100119 crossref_primary_10_1016_j_apsusc_2024_160139 crossref_primary_10_7567_JJAP_57_04FS07 crossref_primary_10_1016_j_cplett_2019_05_050 crossref_primary_10_3390_ijms231911792 crossref_primary_10_1021_acsaem_2c00846 crossref_primary_10_1021_acsmaterialslett_1c00356 crossref_primary_10_1002_adma_201900067 crossref_primary_10_1246_bcsj_20180071 crossref_primary_10_1103_PhysRevMaterials_4_092402 crossref_primary_10_1002_adfm_202302048 crossref_primary_10_1016_j_cinorg_2024_100066 crossref_primary_10_1016_j_jallcom_2020_158335 crossref_primary_10_1016_j_nanoen_2021_106141 crossref_primary_10_1002_aenm_201801312 crossref_primary_10_1016_j_solener_2020_10_092 crossref_primary_10_1016_j_mseb_2023_116830 crossref_primary_10_3390_pr10081444 crossref_primary_10_1039_D2TC00882C crossref_primary_10_1007_s10853_018_03258_x crossref_primary_10_1016_j_solener_2018_11_025 crossref_primary_10_1038_s41578_023_00610_9 crossref_primary_10_1039_D4NJ05274A crossref_primary_10_1021_acsenergylett_8b00964 crossref_primary_10_3390_nano12213751 crossref_primary_10_1002_eom2_12015 crossref_primary_10_1007_s40820_023_01040_6 crossref_primary_10_1021_acsenergylett_9b01237 crossref_primary_10_1002_solr_202000452 crossref_primary_10_1016_j_optmat_2019_03_048 crossref_primary_10_1039_C9TA00239A crossref_primary_10_1016_j_nanoen_2017_12_047 crossref_primary_10_2493_jjspe_90_642 crossref_primary_10_3390_nano9050666 crossref_primary_10_1002_adom_201901897 crossref_primary_10_1021_acsaem_2c00620 crossref_primary_10_1016_j_jphotochemrev_2018_02_002 crossref_primary_10_1039_C9TA08130E crossref_primary_10_1039_D4EE01841A crossref_primary_10_1088_2515_7655_aaeee5 crossref_primary_10_1021_acsaem_8b00400 crossref_primary_10_1021_acsomega_2c01195 crossref_primary_10_1016_j_jcrysgro_2018_08_027 crossref_primary_10_1126_science_aah5065 crossref_primary_10_1021_acsaem_0c02264 crossref_primary_10_1021_acs_langmuir_3c02376 crossref_primary_10_4011_shikizai_96_324 crossref_primary_10_1021_acsaem_8b01978 crossref_primary_10_1021_acsomega_0c04406 crossref_primary_10_1016_j_solener_2022_01_053 crossref_primary_10_1039_D0TA08656H crossref_primary_10_1016_j_mtener_2024_101611 crossref_primary_10_1016_j_optlastec_2022_108500 crossref_primary_10_1039_D0SE00555J crossref_primary_10_1021_acsaem_9b01819 crossref_primary_10_1021_acsami_8b16963 crossref_primary_10_1039_C9CS00790C crossref_primary_10_1038_nature25989 crossref_primary_10_1039_C7RA13582C crossref_primary_10_1021_acsaem_9b00162 crossref_primary_10_1039_C9NR10548D crossref_primary_10_1002_adma_201803019 crossref_primary_10_1002_solr_201900369 crossref_primary_10_1007_s11664_022_09688_3 crossref_primary_10_1002_aenm_201801403 crossref_primary_10_1016_j_solener_2020_10_048 crossref_primary_10_1557_s43578_022_00676_1 crossref_primary_10_1002_anie_201905521 crossref_primary_10_1021_acsami_9b20988 crossref_primary_10_1039_C8CP01085D crossref_primary_10_1016_j_jpowsour_2021_230783 crossref_primary_10_1016_j_nxmate_2023_100044 crossref_primary_10_1002_smll_201802319 crossref_primary_10_1016_j_renene_2019_06_139 crossref_primary_10_1002_cssc_202101089 crossref_primary_10_1002_solr_202400359 crossref_primary_10_1021_acsaem_9b02117 crossref_primary_10_1021_acsami_8b00495 crossref_primary_10_1002_adma_201902037 crossref_primary_10_1016_j_jcis_2025_137321 crossref_primary_10_1021_acsami_0c08396 crossref_primary_10_7567_JJAP_57_08RE12 crossref_primary_10_1016_j_electacta_2017_10_092 crossref_primary_10_7567_JJAP_57_08RE11 crossref_primary_10_1002_ange_201905521 crossref_primary_10_1016_j_mtcomm_2023_107623 crossref_primary_10_1039_D1TA03063A crossref_primary_10_1515_rams_2020_0015 crossref_primary_10_1007_s10854_023_11670_6 crossref_primary_10_1039_D0RA07107B crossref_primary_10_3390_ma16186170 crossref_primary_10_1002_adma_202108616 crossref_primary_10_1021_acsenergylett_2c01915 crossref_primary_10_1039_C8TC05484C crossref_primary_10_1002_adma_201805214 crossref_primary_10_1021_acsaem_2c02842 crossref_primary_10_1016_j_apenergy_2020_115582 crossref_primary_10_1038_s41565_018_0304_y crossref_primary_10_3390_app122010454 crossref_primary_10_1021_acsaem_2c02161 crossref_primary_10_1246_cl_190256 crossref_primary_10_1002_aenm_202003628 crossref_primary_10_1016_j_solener_2023_04_058 crossref_primary_10_1039_C9TA02142F crossref_primary_10_3389_fchem_2020_00754 crossref_primary_10_1002_solr_201900251 crossref_primary_10_1246_cl_180216 crossref_primary_10_1002_admi_201800260 crossref_primary_10_3390_photonics9110791 crossref_primary_10_1021_acsaem_8b00964 crossref_primary_10_1016_j_orgel_2021_106310 |
Cites_doi | 10.1038/nenergy.2016.177 10.1038/ncomms10334 10.1021/acs.jpclett.5b01432 10.1038/ncomms6784 10.1021/jz5011187 10.1002/aenm.201500829 10.1126/science.aaa9272 10.1002/pssr.201600199 10.1021/jp411112k 10.1021/acs.jpclett.5b00380 10.1039/c3ee43822h 10.1109/JPHOTOV.2015.2498039 10.1021/acsenergylett.6b00457 10.1039/C5EE02608C 10.1021/jacs.6b12432 10.1002/aenm.201501310 10.1038/srep00591 10.1002/aenm.201600396 10.1246/cl.150933 10.1021/jz502367k 10.3934/matersci.2016.3.737 10.1039/C5EE03874J 10.1126/science.aah5557 10.1126/science.1228604 10.1038/nature14133 10.1021/jz500113x 10.1038/nphoton.2013.80 10.1002/aenm.201601451 10.1021/cm404006p 10.1021/acs.accounts.5b00420 10.1038/nmat4065 10.1021/acs.chemmater.5b04107 10.1021/acs.jpclett.6b03014 10.1126/science.aai9081 10.1039/C6SC03542F 10.1021/acs.jpcc.6b04233 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-017-12436-x |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 7 |
ExternalDocumentID | PMC5610231 28939887 10_1038_s41598_017_12436_x |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-9cb7a50ccaed06ae2d94151ac2dd0089d02eef9c7d4b0b88f9bc742a798836903 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:01:49 EDT 2025 Fri Jul 11 09:19:54 EDT 2025 Wed Aug 13 07:35:48 EDT 2025 Mon Jul 21 06:01:07 EDT 2025 Tue Jul 01 02:41:07 EDT 2025 Thu Apr 24 22:50:49 EDT 2025 Fri Feb 21 02:39:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-9cb7a50ccaed06ae2d94151ac2dd0089d02eef9c7d4b0b88f9bc742a798836903 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9098-854X 0000-0002-4971-574X |
OpenAccessLink | https://www.proquest.com/docview/1955052225?pq-origsite=%requestingapplication% |
PMID | 28939887 |
PQID | 1955052225 |
PQPubID | 2041939 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5610231 proquest_miscellaneous_1942706494 proquest_journals_1955052225 pubmed_primary_28939887 crossref_primary_10_1038_s41598_017_12436_x crossref_citationtrail_10_1038_s41598_017_12436_x springer_journals_10_1038_s41598_017_12436_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-22 |
PublicationDateYYYYMMDD | 2017-09-22 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Eperon (CR14) 2014; 7 Li (CR39) 2017; 7 Dimesso, Wussler, Mayer, Mankel (CR38) 2016; 3 Eperon (CR13) 2015; 6 Snaith (CR25) 2014; 5 Yuan, Huang (CR29) 2016; 49 Weller, Weber, Frost, Walsh (CR36) 2015; 6 Cojocaru (CR32) 2015; 44 Saliba (CR24) 2016; 354 Ma (CR15) 2016; 8 Jackson (CR8) 2016; 10 Yang (CR18) 2015; 348 Shao, Xiao, Bi, Yuan, Huang (CR31) 2014; 5 Zhang (CR6) 2016; 6 Sánchez (CR26) 2014; 5 Li (CR19) 2016; 28 Wu (CR27) 2015; 5 Xie (CR37) 2017; 139 Baena (CR35) 2015; 8 Tan (CR22) 2017; 355 Tress, Correa Baena, Saliba, Abate, Graetzel (CR34) 2016; 6 Jeon (CR16) 2015; 517 Heo (CR4) 2013; 7 Pang (CR9) 2014; 26 CR7 Grätzel (CR1) 2014; 13 Levine (CR28) 2016; 120 Syzgantseva, Saliba, Gra, Rothlisberger (CR23) 2017; 8 Koh (CR10) 2014; 118 Zheng (CR17) 2016; 1 Saliba (CR20) 2016; 9 Lee, Teuscher, Miyasaka, Murakami, Snaith (CR2) 2012; 338 Lee (CR21) 2015; 5 Green (CR5) 2016; 15 Binek, Hanusch, Docampo, Bein (CR12) 2015; 6 Pellet (CR11) 2014 Kim (CR3) 2012; 2 Jiang (CR33) 2016; 1 Meloni (CR30) 2016; 7 Z Li (12436_CR39) 2017; 7 B Wu (12436_CR27) 2015; 5 M Grätzel (12436_CR1) 2014; 13 X Zheng (12436_CR17) 2016; 1 NJ Jeon (12436_CR16) 2015; 517 S Meloni (12436_CR30) 2016; 7 JH Heo (12436_CR4) 2013; 7 HJ Snaith (12436_CR25) 2014; 5 P Jackson (12436_CR8) 2016; 10 N Pellet (12436_CR11) 2014 Q Jiang (12436_CR33) 2016; 1 H-S Kim (12436_CR3) 2012; 2 M Saliba (12436_CR20) 2016; 9 GE Eperon (12436_CR14) 2014; 7 Y Shao (12436_CR31) 2014; 5 GE Eperon (12436_CR13) 2015; 6 L-Q Xie (12436_CR37) 2017; 139 OA Syzgantseva (12436_CR23) 2017; 8 JW Lee (12436_CR21) 2015; 5 MA Green (12436_CR5) 2016; 15 A Binek (12436_CR12) 2015; 6 L Dimesso (12436_CR38) 2016; 3 I Levine (12436_CR28) 2016; 120 MT Weller (12436_CR36) 2015; 6 JPC Baena (12436_CR35) 2015; 8 W Tress (12436_CR34) 2016; 6 RS Sánchez (12436_CR26) 2014; 5 MM Lee (12436_CR2) 2012; 338 S Pang (12436_CR9) 2014; 26 TM Koh (12436_CR10) 2014; 118 Z Li (12436_CR19) 2016; 28 Y Yuan (12436_CR29) 2016; 49 S Zhang (12436_CR6) 2016; 6 WS Yang (12436_CR18) 2015; 348 12436_CR7 H Tan (12436_CR22) 2017; 355 F Ma (12436_CR15) 2016; 8 L Cojocaru (12436_CR32) 2015; 44 M Saliba (12436_CR24) 2016; 354 |
References_xml | – volume: 1 year: 2016 ident: CR33 article-title: Enhanced electron extraction using SnO for high-efficiency planar-structure HC(NH ) PbI -based perovskite solar cells publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 7 year: 2016 ident: CR30 article-title: Ionic polarization-induced current–voltage hysteresis in CH NH PbX perovskite solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms10334 – volume: 6 start-page: 3209 year: 2015 end-page: 3212 ident: CR36 article-title: Cubic perovskite structure of black formamidinium lead Iodide, α-[HC(NH ) ]PbI , at 298 K publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01432 – volume: 5 year: 2014 ident: CR31 article-title: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH NH PbI planar heterojunction solar cells publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 15 start-page: 659 year: 2016 end-page: 676 ident: CR5 article-title: Solar cell efficiency tables (version 49) publication-title: Prog. Photovoltaics Res. Appl. – volume: 5 start-page: 2357 year: 2014 end-page: 2363 ident: CR26 article-title: Slow dynamic processes in lead halide perovskite solar cells. Characteristic times and hysteresis publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5011187 – volume: 5 year: 2015 ident: CR27 article-title: Charge accumulation and hysteresis in perovskite-based solar cells: An electro-optical analysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500829 – volume: 348 start-page: 1234 year: 2015 end-page: 1237 ident: CR18 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science doi: 10.1126/science.aaa9272 – volume: 10 start-page: 583 year: 2016 end-page: 586 ident: CR8 article-title: Effects of heavy alkali elements in Cu(In,Ga)Se solar cells with efficiencies up to 22.6% publication-title: Phys. Status Solidi-Rapid Res. Lett. doi: 10.1002/pssr.201600199 – volume: 118 start-page: 16458 year: 2014 end-page: 16462 ident: CR10 article-title: Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells publication-title: J. Phys. Chem. C doi: 10.1021/jp411112k – volume: 6 start-page: 1249 year: 2015 end-page: 1253 ident: CR12 article-title: Stabilization of the trigonal high-temperature phase of formamidinium lead iodide publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00380 – volume: 7 start-page: 982 year: 2014 end-page: 988 ident: CR14 article-title: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 6 start-page: 145 year: 2016 end-page: 152 ident: CR6 article-title: 335-W world-record p-type monocrystalline module with 20.6% efficient PERC solar cells publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2015.2498039 – volume: 1 start-page: 1014 year: 2016 end-page: 1020 ident: CR17 article-title: Improved phase stability of formamidinium lead triiodide perovskite by strain relaxation publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00457 – volume: 8 start-page: 2928 year: 2015 end-page: 2934 ident: CR35 article-title: Highly efficient planar perovskite solar cells through band alignment engineering publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02608C – start-page: 3151 year: 2014 end-page: 3157 ident: CR11 article-title: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting publication-title: Angew. Chemie-Int. Ed. – volume: 139 start-page: 3320 year: 2017 end-page: 3323 ident: CR37 article-title: Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12432 – volume: 5 year: 2015 ident: CR21 article-title: Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501310 – volume: 2 year: 2012 ident: CR3 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 6 year: 2016 ident: CR34 article-title: Inverted current-voltage hysteresis in mixed perovskite solar cells: Polarization, energy barriers, and defect recombination publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600396 – volume: 44 start-page: 1750 year: 2015 end-page: 1752 ident: CR32 article-title: Origin of the hysteresis in I-V curves for planar structure perovskite solar cells rationalized with a surface boundary-induced capacitance model publication-title: Chem. Lett. doi: 10.1246/cl.150933 – volume: 6 start-page: 129 year: 2015 end-page: 138 ident: CR13 article-title: Efficient, semitransparent neutral-colored solar cells based on microstructured formamidinium lead trihalide perovskite publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502367k – volume: 3 start-page: 737 year: 2016 end-page: 755 ident: CR38 article-title: Inorganic alkali lead iodide semiconducting APbI (A = Li, Na, K, Cs) and NH PbI films prepared from solution: Structure, morphology, and electronic structure publication-title: AIMS Materials Science doi: 10.3934/matersci.2016.3.737 – volume: 9 start-page: 1989 year: 2016 end-page: 1997 ident: CR20 article-title: Cesium-containing triple cation perovskite solar cells: Improved stability, reproducibility and high efficiency publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 354 start-page: 206 year: 2016 end-page: 209 ident: CR24 article-title: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance publication-title: Science doi: 10.1126/science.aah5557 – volume: 338 start-page: 643 year: 2012 end-page: 647 ident: CR2 article-title: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites publication-title: Science doi: 10.1126/science.1228604 – volume: 517 start-page: 476 year: 2015 end-page: 480 ident: CR16 article-title: Compositional engineering of perovskite materials for high-performance solar cells publication-title: Nature doi: 10.1038/nature14133 – volume: 5 start-page: 1511 year: 2014 end-page: 1515 ident: CR25 article-title: Anomalous hysteresis in perovskite solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 7 start-page: 486 year: 2013 end-page: 491 ident: CR4 article-title: Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors publication-title: Nature Photonics doi: 10.1038/nphoton.2013.80 – volume: 7 year: 2017 ident: CR39 article-title: Acid additives enhancing the conductivity of Spiro-OMeTAD toward high-efficiency and hysteresis-less planar perovskite solar cells publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601451 – volume: 26 start-page: 1485 year: 2014 end-page: 1491 ident: CR9 article-title: NH CH = NH PbI : An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells publication-title: Chem. Mater. doi: 10.1021/cm404006p – volume: 49 start-page: 286 year: 2016 end-page: 293 ident: CR29 article-title: Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00420 – ident: CR7 – volume: 13 start-page: 838 year: 2014 end-page: 842 ident: CR1 article-title: The light and shade of perovskite solar cells publication-title: Nature Mater. doi: 10.1038/nmat4065 – volume: 28 start-page: 284 year: 2016 end-page: 292 ident: CR19 article-title: Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04107 – volume: 8 start-page: 1191 year: 2017 end-page: 1196 ident: CR23 article-title: Stabilization of the perovskite phase of formamidinium lead triiodide by methylammonium, Cs, and/or Rb doping publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b03014 – volume: 355 start-page: 722 year: 2017 end-page: 726 ident: CR22 article-title: Efficient and stable solution-processed planar perovskite solar cells via contact passivation publication-title: Science doi: 10.1126/science.aai9081 – volume: 8 start-page: 800 year: 2016 end-page: 805 ident: CR15 article-title: Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission publication-title: Chem. Sci. doi: 10.1039/C6SC03542F – volume: 120 start-page: 16399 year: 2016 end-page: 16411 ident: CR28 article-title: Interface-dependent ion migration/accumulation controls hysteresis in MAPbI solar cells publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04233 – volume: 8 start-page: 2928 year: 2015 ident: 12436_CR35 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02608C – volume: 5 start-page: 2357 year: 2014 ident: 12436_CR26 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz5011187 – volume: 7 year: 2017 ident: 12436_CR39 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601451 – start-page: 3151 volume-title: Angew. Chemie-Int. Ed. year: 2014 ident: 12436_CR11 – volume: 5 year: 2015 ident: 12436_CR27 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500829 – ident: 12436_CR7 – volume: 28 start-page: 284 year: 2016 ident: 12436_CR19 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04107 – volume: 118 start-page: 16458 year: 2014 ident: 12436_CR10 publication-title: J. Phys. Chem. C doi: 10.1021/jp411112k – volume: 44 start-page: 1750 year: 2015 ident: 12436_CR32 publication-title: Chem. Lett. doi: 10.1246/cl.150933 – volume: 9 start-page: 1989 year: 2016 ident: 12436_CR20 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE03874J – volume: 5 year: 2015 ident: 12436_CR21 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501310 – volume: 8 start-page: 1191 year: 2017 ident: 12436_CR23 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b03014 – volume: 7 year: 2016 ident: 12436_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms10334 – volume: 5 start-page: 1511 year: 2014 ident: 12436_CR25 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500113x – volume: 13 start-page: 838 year: 2014 ident: 12436_CR1 publication-title: Nature Mater. doi: 10.1038/nmat4065 – volume: 26 start-page: 1485 year: 2014 ident: 12436_CR9 publication-title: Chem. Mater. doi: 10.1021/cm404006p – volume: 6 start-page: 3209 year: 2015 ident: 12436_CR36 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01432 – volume: 5 year: 2014 ident: 12436_CR31 publication-title: Nat. Commun. doi: 10.1038/ncomms6784 – volume: 3 start-page: 737 year: 2016 ident: 12436_CR38 publication-title: AIMS Materials Science doi: 10.3934/matersci.2016.3.737 – volume: 6 year: 2016 ident: 12436_CR34 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600396 – volume: 6 start-page: 145 year: 2016 ident: 12436_CR6 publication-title: IEEE J. Photovoltaics doi: 10.1109/JPHOTOV.2015.2498039 – volume: 8 start-page: 800 year: 2016 ident: 12436_CR15 publication-title: Chem. Sci. doi: 10.1039/C6SC03542F – volume: 1 start-page: 1014 year: 2016 ident: 12436_CR17 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.6b00457 – volume: 355 start-page: 722 year: 2017 ident: 12436_CR22 publication-title: Science doi: 10.1126/science.aai9081 – volume: 7 start-page: 982 year: 2014 ident: 12436_CR14 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee43822h – volume: 120 start-page: 16399 year: 2016 ident: 12436_CR28 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04233 – volume: 10 start-page: 583 year: 2016 ident: 12436_CR8 publication-title: Phys. Status Solidi-Rapid Res. Lett. doi: 10.1002/pssr.201600199 – volume: 517 start-page: 476 year: 2015 ident: 12436_CR16 publication-title: Nature doi: 10.1038/nature14133 – volume: 354 start-page: 206 year: 2016 ident: 12436_CR24 publication-title: Science doi: 10.1126/science.aah5557 – volume: 49 start-page: 286 year: 2016 ident: 12436_CR29 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00420 – volume: 139 start-page: 3320 year: 2017 ident: 12436_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12432 – volume: 348 start-page: 1234 year: 2015 ident: 12436_CR18 publication-title: Science doi: 10.1126/science.aaa9272 – volume: 338 start-page: 643 year: 2012 ident: 12436_CR2 publication-title: Science doi: 10.1126/science.1228604 – volume: 6 start-page: 129 year: 2015 ident: 12436_CR13 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz502367k – volume: 6 start-page: 1249 year: 2015 ident: 12436_CR12 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00380 – volume: 1 year: 2016 ident: 12436_CR33 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.177 – volume: 2 year: 2012 ident: 12436_CR3 publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 15 start-page: 659 year: 2016 ident: 12436_CR5 publication-title: Prog. Photovoltaics Res. Appl. – volume: 7 start-page: 486 year: 2013 ident: 12436_CR4 publication-title: Nature Photonics doi: 10.1038/nphoton.2013.80 |
SSID | ssj0000529419 |
Score | 2.6049716 |
Snippet | Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without
I-V
hysteresis were constructed.... Potassium-doped organometal halide perovskite solar cells (PSCs) of more than 20% power conversion efficiency (PCE) without I-V hysteresis were constructed.... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 12183 |
SubjectTerms | 140/125 639/4077/909/4101/4096/946 639/638/439/946 Conduction Electron transfer Humanities and Social Sciences Hysteresis multidisciplinary Photons Photovoltaic cells Potassium Science Science (multidisciplinary) Solar cells Titanium dioxide |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB5CSqCX0jZ9uEmKAr21av2QLetQSigNSyE5dSGHgNGTLGTtdL1bkn-fGT-WbJLmbMm2vhl5vk-yZgA-Sa-TzAnJY5sbLkRqudai5Ea6IqBqMTKn08gnp8VkKn6f5WdbMJY7GgBsH5V2VE9qurj8ev335gdO-O_9kfHyW4tBiA6K4fcWo1VWcOSUzzAySZqoJwPd73N9p0okajg783jXzfj0gHQ-_Hfy3gZqF5eOX8KLgVCyo94DXsGWr1_DTl9i8mYXzieUqhk19azlYeE9o8Tg_1pas2UtjZ3R0n3L5tp51gR21SyRTs9Wc-4QCMe6qk_N3CM87AI5u7t7hzcwPf715-eEDxUVuEVmtuTKGqnzGK3mXVxonzrEI0-0TZ1DMqBcnHoflJVOmNiUZVDGonbWlNQsQx2dvYXtuqn9e2DOKquyUDjjkYShyA4hCK1LK3OZ6eAiSEYcKzukG6eqF5dVt-2dlVWPfYXYVx321XUEn9d9rvpkG0-23h_NU41-UyWKJBeJ2AgO15dxyhCYuvbNitqIVCIVUyKCd701149D_ZnhYGUEcsPO6waUjnvzSj276NJyExNFthzBl9Ej7rzWf0fx4elR7MHzlLyT9sHSfdheLlb-AGnQ0nzsfPsWdU8HAg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5CQqGX0vTpJC0q9NaK2pZsWcewNCyF9tRADgUj60EWuvYS75bm33dGfpBt2kLPkmxp9Jjv00ifAN4qbzLhpOKpLRouZW65MbLijXJlQNbSqIJuI3_-Ui4v5aer4uoA8ukuTDy0HyUt4zI9nQ770KOjoctguKaiRxIlR9x4RNLtNKoX5WLeV6HIlcz0eD8mFdUfiu77oHvA8v75yN-CpNH3XDyGRyNoZOdDNY_hwLdP4MHwjOTtU_i2JDlm5M2rnocb7xmJf__oaV-W9URdGW3P92xtnGddYJtui5B5tVtz1228Y_Flp27tEYeza8Tl7u4XnsHlxceviyUfX03gFtHXlmvbKFOk2DPepaXxuUN7FJmxuXPo8LVLc--DtsrJJm2qKujGIj82JFwmkCuL53DYdq1_CcxZbbUIpWs8Ai0k0iEEaUxlVaGECS6BbLJjbUdJcXrZ4nsdQ9uiqgfb12j7Otq-_pnAu7nMZhDU-Gfus6l76nFy9XWmiVYRUU3gzZyM04KMaVrf7SiPzBXCLS0TeDH05vw75JgCG6sSUHv9PGcgye39lHZ1HaW3CW0iIk7g_TQi7lTrr604-b_sp_Awp9FKsa_8DA63Nzv_CqHPtnkdx_ovfQgB7Q priority: 102 providerName: Springer Nature |
Title | Hysteresis-free perovskite solar cells made of potassium-doped organometal halide perovskite |
URI | https://link.springer.com/article/10.1038/s41598-017-12436-x https://www.ncbi.nlm.nih.gov/pubmed/28939887 https://www.proquest.com/docview/1955052225 https://www.proquest.com/docview/1942706494 https://pubmed.ncbi.nlm.nih.gov/PMC5610231 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFexr7nrQsa7G0T9YdsWU8jDS0h0DK2FfIwMLI-aKCxszoZ3X-_O9txm5X1xQZL_tDdWfe7O-kO4KN0OkqskDw0acmFiA3XWuS8lDbzaLWUMqXdyKdn2fRczObpvHe4Nf2yyu2c2E7UtjbkIz-MFGFpsk6-rH5xqhpF0dW-hMZD2KfUZbSkS87l4GOhKJaIVL9XJkzywwb1Fe0pw6kZFVuS8etdfXQHZN5dK_lPwLTVQydP4UkPINm44_gzeOCq5_CoKyn55wX8nFJqZrShFw33V84xSgT-uyEfLWvIjGXkqm_YUlvHas9W9Rrh82Kz5LZeOcvaKk_10iEmZxeI0e3tJ7yE85PjH5Mp7ysocINIbM2VKaVOQ-SSs2GmXWyRHmmkTWwtKn9lw9g5r4y0ogzLPPeqNGgra0pilqDdnLyCvaqu3Btg1iijEp_Z0iHoQqPaey-0zo1MZaK9DSDa0rEwfXpxqnJxWbRh7iQvOtoXSPuipX1xHcCn4Z5Vl1zj3t4HW_YU_Y_WFDdiEcCHoRl_ESKmrly9oT4ilgi9lAjgdcfN4XVobyY4WBmA3OHz0IHSb--2VIuLNg03IU9ExwF83krErc_67yje3j-Kd_A4JumkuFd8AHvrq417j7BnXY5a2R7B_ng8-z7D89Hx2ddveHWSTUatKwGPpyL_C5WYCV0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJTmA1D2cdHxDi0WpL2xVCrdQDUurYjroSm2ybXWj_FL-RmbzoUtFbz3Ycezz2fJ_HngF4JZ0OIisk902ccSFCw7UWCc-kHebIWjIZ02vkvfFwdCC-HMaHK_C7ewtD1yq7PbHeqG1p6Ix8I1CEpYmdvJ-dcMoaRd7VLoVGoxY77vwXUrbq3fZnnN_XYbi1uf9pxNusAtwgOplzZTKpYx977qw_1C60Co1YoE1oLRpEZf3QuVwZaUXmZ0mSq8wgf9QU2CtCLhlhuzdgVURIZQaw-nFz_PVbf6pDfjMRqPZ1jh8lGxU2Tq_Y0BigKY2G_GzZAl6CtZdvZ_7joq0t39ZduNNCVvah0bF7sOKK-3CzSWJ5_gC-jygYNLL2ScXzU-cYhR7_WdGpMKuIODNyDlRsqq1jZc5m5RwB-2Qx5bacOcvqvFLl1CELYMfICuzFFh7CwbVI9xEMirJwT4BZo4yK8qHNHMI8pPF5ngutEyNjGencehB0ckxNG9Cc8mr8SGvHepSkjexTlH1ayz498-BN_82sCedxZe31bnrSdmlX6V9F9OBlX4yLkoSpC1cuqI4IJYI9JTx43Mxm_ztkuBEOVnogl-a5r0ABv5dLislxHfibsC7icQ_edhpxoVv_HcXa1aN4AbdG-3u76e72eOcp3A5JU8nrFq7DYH66cM8QdM2z562mMzi67sX1B-VXQrI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhCXimdJKWAkOIG1eThxckAIUVZbChUHKu0BKTh-qCuxydLsQvvX-HXM5EWXit56juPE4xnP93nsGYDn0qogMkJyX8cFFyLUXCmR8kKaxCFrKWRMt5E_HSaTI_FhGk834Hd_F4aOVfZrYrNQm0rTHvkoyAhLEzsZue5YxOe98ZvFD04VpCjS2pfTaFXkwJ79QvpWv97fw7l-EYbj91_eTXhXYYBrRCpLnulCqtjHUVjjJ8qGJkOHFigdGoPOMTN-aK3LtDSi8Is0dVmhkUsqSvIVIa-MsN9rcF1GcUA2Jqdy2N-hCJoIsu6ejh-loxq7pvts6BbQqUYJP133hRcA7sVzmv8EaxsfOL4NWx14ZW9bbbsDG7a8CzfacpZn9-DrhNJCI3-f1dydWMsoCfnPmvaHWU0UmlGYoGZzZSyrHFtUS4Tus9Wcm2phDWsqTFVzi3yAHSM_MOd7uA9HVyLbB7BZVqV9CMzoTGeRS0xhEfAhoXfOCaVSLWMZKWc8CHo55rpLbU4VNr7nTYg9SvNW9jnKPm9kn5968HJ4Z9Em9ri09W4_PXln5HX-VyU9eDY8RvMkYarSVitqI0KJsC8THmy3szl8DrluhIOVHsi1eR4aUOrv9Sfl7LhJAU6oF5G5B696jTj3W_8dxc7lo3gKN9Gk8o_7hweP4FZIikrht3AXNpcnK_sY0deyeNKoOYNvV21XfwAzjkWC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hysteresis-free+perovskite+solar+cells+made+of+potassium-doped+organometal+halide+perovskite&rft.jtitle=Scientific+reports&rft.au=Tang%2C+Zeguo&rft.au=Bessho%2C+Takeru&rft.au=Awai%2C+Fumiyasu&rft.au=Kinoshita%2C+Takumi&rft.date=2017-09-22&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=7&rft.spage=1&rft.epage=7&rft_id=info:doi/10.1038%2Fs41598-017-12436-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |