Total and regional appendicular skeletal muscle mass prediction from dual-energy X-ray absorptiometry body composition models

Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 2590 - 10
Main Authors McCarthy, Cassidy, Tinsley, Grant M., Bosy-Westphal, Anja, Müller, Manfred J., Shepherd, John, Gallagher, Dympna, Heymsfield, Steven B.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R 2 s (0.88–0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM – 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.
AbstractList Abstract Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R2s (0.88–0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM – 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.
Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R 2 s (0.88–0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM – 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.
Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R2s (0.88-0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM - 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R2s (0.88-0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM - 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.
Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R2s (0.88–0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM – 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.
Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method for SM mass measurement is whole-body magnetic resonance imaging (MRI), although dual-energy X-ray absorptiometry (DXA) appendicular lean mass (ALM) serves as an affordable and practical SM surrogate. Empirical equations, developed on relatively small and diverse samples, are now used to predict total body SM from ALM and other covariates; prediction models for extremity SM mass are lacking. The aim of the current study was to develop and validate total body, arm, and leg SM mass prediction equations based on a large sample (N = 475) of adults evaluated with whole-body MRI and DXA for SM and ALM, respectively. Initial models were fit using ordinary least squares stepwise selection procedures; covariates beyond extremity lean mass made only small contributions to the final models that were developed using Deming regression. All three developed final models (total, arm, and leg) had high R s (0.88-0.93; all p < 0.001) and small root-mean square errors (1.74, 0.41, and 0.95 kg) with no bias in the validation sample (N = 95). The new total body SM prediction model (SM = 1.12 × ALM - 0.63) showed good performance, with some bias, against previously reported DXA-ALM prediction models. These new total body and extremity SM prediction models, developed and validated in a large sample, afford an important and practical opportunity to evaluate SM mass in research and clinical settings.
ArticleNumber 2590
Author Shepherd, John
Heymsfield, Steven B.
Gallagher, Dympna
Bosy-Westphal, Anja
McCarthy, Cassidy
Müller, Manfred J.
Tinsley, Grant M.
Author_xml – sequence: 1
  givenname: Cassidy
  surname: McCarthy
  fullname: McCarthy, Cassidy
  organization: Pennington Biomedical Research Center, Louisiana State University System
– sequence: 2
  givenname: Grant M.
  surname: Tinsley
  fullname: Tinsley, Grant M.
  organization: Department of Kinesiology and Sport Management, Texas Tech University
– sequence: 3
  givenname: Anja
  surname: Bosy-Westphal
  fullname: Bosy-Westphal, Anja
  organization: Department of Human Nutrition and Food Science, Christian-Albrecht’s-University of Kiel
– sequence: 4
  givenname: Manfred J.
  surname: Müller
  fullname: Müller, Manfred J.
  organization: Department of Human Nutrition and Food Science, Christian-Albrecht’s-University of Kiel
– sequence: 5
  givenname: John
  surname: Shepherd
  fullname: Shepherd, John
  organization: University of Hawaii Cancer Center
– sequence: 6
  givenname: Dympna
  surname: Gallagher
  fullname: Gallagher, Dympna
  organization: Department of Medicine, College of Physicians and Surgeons, New York Obesity Research Center, Columbia University
– sequence: 7
  givenname: Steven B.
  surname: Heymsfield
  fullname: Heymsfield, Steven B.
  email: steven.heymsfield@pbrc.edu
  organization: Pennington Biomedical Research Center, Louisiana State University System
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36788294$$D View this record in MEDLINE/PubMed
BookMark eNp9kstu1TAQhiNUREvpC7BAltiwCdiOndgbJFRRqFSJTZHYWb5MQg5OHOwEKQvevT4npbRd1Btf5vt_z2jmZXE0hhGK4jXB7wmuxIfECJeixLQqqRS0KddnxQnFjJe0ovTo3vm4OEtph_PiVDIiXxTHVd0IkS8nxd_rMGuP9OhQhK4P4_4yTTC63i5eR5R-gYc9MizJekCDTglNEXJ8zjhqYxiQW7QvYYTYrehHGfWKtEkhTpkYYI4rMsGtyIZhCqk_yIbgwKdXxfNW-wRnt_tp8f3i8_X51_Lq25fL809XpeUMz6U02LYmn3UlrKhp60yNSQvOMQGa1cwZaiS0lghRO66pIMQBcEe1gaaB6rS43Hxd0Ds1xX7QcVVB9-rwEGKndJz7XJ_iIv9EGlMTTJnhtdSVgbq1vOGMciqy18fNa1rMAM7COEftH5g-jIz9T9WFP0pKKnHdZIN3twYx_F4gzWrokwXv9QhhSYo2TYMJJkRm9O0jdBeWmHt0oOoKMyxZpt7cz-gulX9dzgDdABtDShHaO4RgtZ8mtU2TytOkDtOk1iwSj0S2n_W-ebmq3j8trTZpyv-MHcT_aT-hugHjJeMe
CitedBy_id crossref_primary_10_1080_10790268_2024_2338295
crossref_primary_10_1002_jcsm_13418
crossref_primary_10_1111_cpf_12914
crossref_primary_10_1172_JCI183984
crossref_primary_10_1139_apnm_2024_0046
crossref_primary_10_1111_cpf_12874
crossref_primary_10_1186_s13102_024_00877_7
crossref_primary_10_1007_s42058_024_00142_3
crossref_primary_10_3390_healthcare12131254
crossref_primary_10_1038_s41430_023_01331_6
crossref_primary_10_1210_jendso_bvae164
crossref_primary_10_1038_s41430_023_01396_3
crossref_primary_10_1007_s00421_024_05672_3
crossref_primary_10_1093_jbmrpl_ziae088
crossref_primary_10_1038_s41598_024_77965_8
crossref_primary_10_1017_S000711452400076X
Cites_doi 10.1093/ajcn/76.2.378
10.1111/obr.12254
10.1002/14651858.CD012705.pub2
10.1002/jcsm.12353
10.1038/s41430-018-0150-x
10.1093/ajcn/nqaa194
10.1002/jcsm.13083
10.1007/978-981-13-1435-3_3
10.3803/EnM.2021.1274
10.1152/japplphysiol.00260.2004
10.1177/1948550617697177
10.1016/j.clnu.2021.11.014
10.1016/j.cmet.2012.06.011
10.1038/oby.2011.40
10.1371/journal.pone.0053561
10.1093/gerona/50a.special_issue.23
10.1016/j.clnu.2020.02.008
10.1093/ageing/afy169
10.1093/gerona/56.3.m146
10.1111/sms.14017
10.1038/ijo.2013.1
10.3390/nu12030755
ContentType Journal Article
Copyright The Author(s) 2023. corrected publication 2023
2023. The Author(s).
The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2023
Copyright_xml – notice: The Author(s) 2023. corrected publication 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2023
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-023-29827-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
CrossRef
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 10
ExternalDocumentID oai_doaj_org_article_58fbc17b61024b569a3be6fc57542528
PMC9929067
36788294
10_1038_s41598_023_29827_y
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: BMBF Kompetenznetz Adipositas, Core domain “Body composition”
  grantid: Körperzusammensetzung; FKZ 01GI1125
– fundername: Seca GmbH & Co. KG
  grantid: BCA-01
– fundername: National Institutes of Health
  grantid: R01DK109008; P30DK072476
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: Deutsche Forschungsgemeinschaft
  grantid: DFG Mü 714/ 8-3; DFG Bo 3296/1-1
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: NIH HHS
  grantid: P30DK072476
– fundername: NIH HHS
  grantid: R01DK109008
– fundername: ;
  grantid: DFG Mü 714/ 8-3; DFG Bo 3296/1-1
– fundername: ;
  grantid: Körperzusammensetzung; FKZ 01GI1125
– fundername: ;
  grantid: R01DK109008; P30DK072476
– fundername: ;
  grantid: BCA-01
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-9b0cfbc54a38c862fdb601fedd48ea464db2b9efc1886d5a2811dee5d2abe77e3
IEDL.DBID DOA
ISSN 2045-2322
IngestDate Wed Aug 27 01:28:31 EDT 2025
Thu Aug 21 18:37:51 EDT 2025
Tue Aug 05 11:34:28 EDT 2025
Wed Aug 13 11:11:28 EDT 2025
Thu Apr 03 07:10:07 EDT 2025
Tue Jul 01 04:24:09 EDT 2025
Thu Apr 24 22:55:38 EDT 2025
Fri Feb 21 02:40:03 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-9b0cfbc54a38c862fdb601fedd48ea464db2b9efc1886d5a2811dee5d2abe77e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/58fbc17b61024b569a3be6fc57542528
PMID 36788294
PQID 2776304094
PQPubID 2041939
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_58fbc17b61024b569a3be6fc57542528
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9929067
proquest_miscellaneous_2777010119
proquest_journals_2776304094
pubmed_primary_36788294
crossref_primary_10_1038_s41598_023_29827_y
crossref_citationtrail_10_1038_s41598_023_29827_y
springer_journals_10_1038_s41598_023_29827_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-14
PublicationDateYYYYMMDD 2023-02-14
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Cruz-Jentoft (CR2) 2019; 48
Snyder (CR13) 1975
Bosy-Westphal (CR19) 2011; 19
Hubers (CR21) 2019; 73
Tinsley, Moore, Benavides, Dellinger, Adamson (CR22) 2020; 39
Walowski (CR7) 2020
Donini (CR3) 2022; 41
McCarthy (CR15) 2022
Bosy-Westphal, Kahlhofer, Lagerpusch, Skurk, Muller (CR18) 2015; 16
Stanley (CR12) 2020; 112
Kim (CR8) 2004; 1985
Heymsfield, Gallagher, Visser, Nunez, Wang (CR6) 1995; 50
Zhao (CR11) 2013; 8
Briggs (CR1) 2022; 5
Bosy-Westphal (CR20) 2013; 37
Sagayama (CR10) 2021; 31
CR26
CR24
Bourgeois (CR17) 2019; 10
CR23
Kim, Wang, Heymsfield, Baumgartner, Gallagher (CR9) 2002; 76
Fearon, Glass, Guttridge (CR4) 2012; 16
Park, Lim, Kim, Kim (CR14) 2021; 36
Lakens (CR25) 2017; 8
Fried (CR5) 2001; 56
Yamada (CR16) 2018; 1088
R Briggs (29827_CR1) 2022; 5
AJ Cruz-Jentoft (29827_CR2) 2019; 48
A Stanley (29827_CR12) 2020; 112
J Kim (29827_CR9) 2002; 76
GM Tinsley (29827_CR22) 2020; 39
C McCarthy (29827_CR15) 2022
D Lakens (29827_CR25) 2017; 8
B Bourgeois (29827_CR17) 2019; 10
WS Snyder (29827_CR13) 1975
M Hubers (29827_CR21) 2019; 73
LM Donini (29827_CR3) 2022; 41
A Bosy-Westphal (29827_CR18) 2015; 16
SB Heymsfield (29827_CR6) 1995; 50
A Bosy-Westphal (29827_CR20) 2013; 37
Y Yamada (29827_CR16) 2018; 1088
X Zhao (29827_CR11) 2013; 8
A Bosy-Westphal (29827_CR19) 2011; 19
KC Fearon (29827_CR4) 2012; 16
H Sagayama (29827_CR10) 2021; 31
SS Park (29827_CR14) 2021; 36
J Kim (29827_CR8) 2004; 1985
CO Walowski (29827_CR7) 2020
LP Fried (29827_CR5) 2001; 56
29827_CR24
29827_CR23
29827_CR26
37558734 - Sci Rep. 2023 Aug 9;13(1):12922
References_xml – volume: 76
  start-page: 378
  year: 2002
  end-page: 383
  ident: CR9
  article-title: Total-body skeletal muscle mass: Estimation by a new dual-energy X-ray absorptiometry method
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/76.2.378
– volume: 16
  start-page: 36
  issue: Suppl 1
  year: 2015
  end-page: 44
  ident: CR18
  article-title: Deep body composition phenotyping during weight cycling: Relevance to metabolic efficiency and metabolic risk
  publication-title: Obes. Rev.
  doi: 10.1111/obr.12254
– volume: 5
  start-page: CD012705
  year: 2022
  ident: CR1
  article-title: Comprehensive Geriatric Assessment for community-dwelling, high-risk, frail, older people
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD012705.pub2
– volume: 10
  start-page: 84
  year: 2019
  end-page: 94
  ident: CR17
  article-title: Improved strength prediction combining clinically available measures of skeletal muscle mass and quality
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12353
– volume: 73
  start-page: 62
  year: 2019
  end-page: 71
  ident: CR21
  article-title: Association between fat mass, adipose tissue, fat fraction per adipose tissue, and metabolic risks: A cross-sectional study in normal, overweight, and obese adults
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/s41430-018-0150-x
– volume: 112
  start-page: 967
  year: 2020
  end-page: 978
  ident: CR12
  article-title: Distinct phenotypic characteristics of normal-weight adults at risk of developing cardiovascular and metabolic diseases
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/nqaa194
– year: 2022
  ident: CR15
  article-title: D(3) -creatine dilution for skeletal muscle mass measurement: Historical development and current status
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.13083
– volume: 1088
  start-page: 47
  year: 2018
  end-page: 72
  ident: CR16
  article-title: Muscle mass, quality, and composition changes during atrophy and sarcopenia
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-1435-3_3
– year: 1975
  ident: CR13
  publication-title: Report of the Task Group on Reference Man
– volume: 36
  start-page: 1219
  year: 2021
  end-page: 1231
  ident: CR14
  article-title: Comparison of two DXA systems, hologic horizon W and GE lunar prodigy, for assessing body composition in healthy Korean adults
  publication-title: Endocrinol. Metab. (Seoul)
  doi: 10.3803/EnM.2021.1274
– ident: CR23
– volume: 1985
  start-page: 655
  issue: 97
  year: 2004
  end-page: 660
  ident: CR8
  article-title: Intermuscular adipose tissue-free skeletal muscle mass: Estimation by dual-energy X-ray absorptiometry in adults
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00260.2004
– volume: 8
  start-page: 355
  year: 2017
  end-page: 362
  ident: CR25
  article-title: Equivalence tests: A practical primer for t tests, correlations, and meta-analyses
  publication-title: Soc. Psychol. Personal Sci.
  doi: 10.1177/1948550617697177
– volume: 41
  start-page: 990
  year: 2022
  end-page: 1000
  ident: CR3
  article-title: Definition and diagnostic criteria for sarcopenic obesity: ESPEN and EASO consensus statement
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2021.11.014
– volume: 16
  start-page: 153
  year: 2012
  end-page: 166
  ident: CR4
  article-title: Cancer cachexia: Mediators, signaling, and metabolic pathways
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.06.011
– volume: 19
  start-page: 1503
  year: 2011
  end-page: 1510
  ident: CR19
  article-title: Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain
  publication-title: Obesity (Silver Spring)
  doi: 10.1038/oby.2011.40
– volume: 8
  start-page: e53561
  year: 2013
  ident: CR11
  article-title: Estimation of total body skeletal muscle mass in Chinese adults: Prediction model by dual-energy X-ray absorptiometry
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053561
– volume: 50
  start-page: 23
  year: 1995
  end-page: 29
  ident: CR6
  article-title: Measurement of skeletal muscle: laboratory and epidemiological methods
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/50a.special_issue.23
– volume: 39
  start-page: 3160
  year: 2020
  end-page: 3167
  ident: CR22
  article-title: 3-Dimensional optical scanning for body composition assessment: A 4-component model comparison of four commercially available scanners
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2020.02.008
– volume: 48
  start-page: 16
  year: 2019
  end-page: 31
  ident: CR2
  article-title: Sarcopenia: Revised European consensus on definition and diagnosis
  publication-title: Age Ageing
  doi: 10.1093/ageing/afy169
– volume: 56
  start-page: M146
  year: 2001
  end-page: 156
  ident: CR5
  article-title: Frailty in older adults: Evidence for a phenotype
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/56.3.m146
– volume: 31
  start-page: 1897
  year: 2021
  end-page: 1907
  ident: CR10
  article-title: Validation of skeletal muscle mass estimation equations in active young adults: A preliminary study
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.14017
– volume: 37
  start-page: 1371
  year: 2013
  end-page: 1377
  ident: CR20
  article-title: Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults
  publication-title: Int. J. Obes. (Lond)
  doi: 10.1038/ijo.2013.1
– ident: CR26
– year: 2020
  ident: CR7
  article-title: Reference values for skeletal muscle mass—Current concepts and methodological considerations
  publication-title: Nutrients
  doi: 10.3390/nu12030755
– ident: CR24
– volume: 41
  start-page: 990
  year: 2022
  ident: 29827_CR3
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2021.11.014
– year: 2022
  ident: 29827_CR15
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.13083
– volume: 1985
  start-page: 655
  issue: 97
  year: 2004
  ident: 29827_CR8
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00260.2004
– volume: 37
  start-page: 1371
  year: 2013
  ident: 29827_CR20
  publication-title: Int. J. Obes. (Lond)
  doi: 10.1038/ijo.2013.1
– volume: 112
  start-page: 967
  year: 2020
  ident: 29827_CR12
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/nqaa194
– volume: 48
  start-page: 16
  year: 2019
  ident: 29827_CR2
  publication-title: Age Ageing
  doi: 10.1093/ageing/afy169
– volume: 56
  start-page: M146
  year: 2001
  ident: 29827_CR5
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/56.3.m146
– volume: 50
  start-page: 23
  year: 1995
  ident: 29827_CR6
  publication-title: J. Gerontol. A Biol. Sci. Med. Sci.
  doi: 10.1093/gerona/50a.special_issue.23
– volume-title: Report of the Task Group on Reference Man
  year: 1975
  ident: 29827_CR13
– volume: 36
  start-page: 1219
  year: 2021
  ident: 29827_CR14
  publication-title: Endocrinol. Metab. (Seoul)
  doi: 10.3803/EnM.2021.1274
– volume: 16
  start-page: 36
  issue: Suppl 1
  year: 2015
  ident: 29827_CR18
  publication-title: Obes. Rev.
  doi: 10.1111/obr.12254
– ident: 29827_CR24
– ident: 29827_CR26
– volume: 5
  start-page: CD012705
  year: 2022
  ident: 29827_CR1
  publication-title: Cochrane Database Syst. Rev.
  doi: 10.1002/14651858.CD012705.pub2
– volume: 8
  start-page: 355
  year: 2017
  ident: 29827_CR25
  publication-title: Soc. Psychol. Personal Sci.
  doi: 10.1177/1948550617697177
– volume: 39
  start-page: 3160
  year: 2020
  ident: 29827_CR22
  publication-title: Clin. Nutr.
  doi: 10.1016/j.clnu.2020.02.008
– volume: 76
  start-page: 378
  year: 2002
  ident: 29827_CR9
  publication-title: Am. J. Clin. Nutr.
  doi: 10.1093/ajcn/76.2.378
– volume: 16
  start-page: 153
  year: 2012
  ident: 29827_CR4
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2012.06.011
– volume: 19
  start-page: 1503
  year: 2011
  ident: 29827_CR19
  publication-title: Obesity (Silver Spring)
  doi: 10.1038/oby.2011.40
– volume: 73
  start-page: 62
  year: 2019
  ident: 29827_CR21
  publication-title: Eur. J. Clin. Nutr.
  doi: 10.1038/s41430-018-0150-x
– volume: 8
  start-page: e53561
  year: 2013
  ident: 29827_CR11
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0053561
– volume: 31
  start-page: 1897
  year: 2021
  ident: 29827_CR10
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.14017
– volume: 10
  start-page: 84
  year: 2019
  ident: 29827_CR17
  publication-title: J. Cachexia Sarcopenia Muscle
  doi: 10.1002/jcsm.12353
– ident: 29827_CR23
– volume: 1088
  start-page: 47
  year: 2018
  ident: 29827_CR16
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-13-1435-3_3
– year: 2020
  ident: 29827_CR7
  publication-title: Nutrients
  doi: 10.3390/nu12030755
– reference: 37558734 - Sci Rep. 2023 Aug 9;13(1):12922
SSID ssj0000529419
Score 2.4989202
Snippet Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference method...
Abstract Sarcopenia, sarcopenic obesity, frailty, and cachexia have in common skeletal muscle (SM) as a main component of their pathophysiology. The reference...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2590
SubjectTerms 692/308
692/308/53
692/308/53/2421
Absorptiometry, Photon - methods
Adult
Arm
Body Composition
Cachexia
Dual energy X-ray absorptiometry
Humanities and Social Sciences
Humans
Magnetic Resonance Imaging
multidisciplinary
Muscle, Skeletal - diagnostic imaging
Muscle, Skeletal - physiology
Musculoskeletal system
Prediction models
Regression analysis
Sarcopenia
Sarcopenia - diagnostic imaging
Science
Science (multidisciplinary)
Skeletal muscle
Whole Body Imaging
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLanmmD2QkbmA1duLYOSFAVBUSnFppb5ZfgYpusiS7hxz47_U43lTLo7dV4qyczIzns-fxIfSGUWOpk55UrOGk1MYRwyEKT31e57oxMhbSfv1WnV-WXxZ8kQ7chpRWuV0T40LtOgtn5KdMBEvIYTfyfvWLAGsURFcThcZ99ABal0FKl1iI-YwFolglrVOtTF7I0yH4K6gpY0BgJpkg444_im37_4U1_06Z_CNuGt3R2T56nHAk_jAJ_gDd8-0T9HBilhyfot8XXUDVWLcOA_UCwG2sV8B3exUTT_HwM_gbGLLcDOEP8DKAaLzqIWwDosJQdoKhTov4WB2IF6TXI9Zm6HpYZZZ-3Y_YdG7EkJWeUr9wJNYZnqHLs88Xn85JYlogNiC2NalNbhsTfutC2rDHaZwJG7XGO1dKr8uqdIaZ2jeWSlk5rpmk1HnPHdPGC-GL52iv7Vr_EmEO3s43MmgAL31ujA2bMJ3bggvHvMszRLffW9nUhhzYMK5VDIcXUk0yUkFGKspIjRl6Oz-zmppw3Dn6I4hxHgkNtOOFrv-ukj0qLsP7UmECemSl4VWtC-OrxnJgBOZMZuh4qwQqWfWgbnUwQ6_n28EeIciiW99t4hgBfftonaEXk87MMykCMpAMnhY72rQz1d077dWP2PO7rqEvv8jQu63e3U7r_5_i8O63OEKPGJgC8NuUx2hv3W_8ScBYa_MqGtINNS0oqw
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKERIXVL7TFmQkbhCInTh2DggBoqqQyqkr7c2yYwcqusmS7ErNof-9M06yaGHhxC1K7MjxzGTeaDzzCHnJmS2ZUz7OeSXizFgXW4FZeOaTIjGVVaGQ9uxrfjrLvszFfI9MdEfjBnY7Qzvkk5q1l2-ufvbvweDfDSXj6m0HTggLxTiykiku4_4WuQ2eSaKhno1wf-j1zYuMFWPtzO6pW_4ptPHfhT3_PEL5Wx41uKeTA3JvxJX0w6AI98merx-QOwPTZP-QXJ838IHU1I4iFQPCb2qWyH97EQ6i0u4H-B8cslh38AK6AFBNly2mcVB0FMtQKNZtxT5UC9J53JqeGts1Lf51Fn7V9tQ2rqd4Sn08CkYD0U73iMxOPp9_Oo1H5oW4BAS3igublJWFa5OqEmKeylkI3CrvXKa8yfLMWW4LX5VMqdwJwxVjznvhuLFeSp8-Jvt1U_unhAr0fr5SoBEi84m1JQRlJilTIR33LokIm_Zbl2NbcmTHuNQhPZ4qPchIg4x0kJHuI_JqM2c5NOX45-iPKMbNSGyoHW407Tc92qcWCr6XSQtokmdW5IVJrc-rUiBDsOAqIseTEuhJSTWX8HdOMEKOyIvNY7BPTLqY2jfrMEZiHz9WROTJoDOblaSAFBTH2XJLm7aWuv2kvvgeeoAXBfbplxF5Pendr2X9fSsO_8dWHJG7HA0GWXGyY7K_atf-GSCzlX0ezO0G7Ns41w
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9QwDLaWRUhcEG-6u6AgcYOKJm3a9AgjViskOO1Kc4uSxoUVTDtqZw498N-J0wcaWJC4VVOnytRO_KW2PwO8EtxW3CmMc1HLODPWxVZSFJ5jUiamtioU0n76nF9cZR_Xcn0EYq6FCUn7gdIybNNzdtjb3jsaKgYT1HlMiSIebsFtom4nq17lq-W7CkWuMl5O9TFJqm4YeuCDAlX_TfjyzzTJ32KlwQWd34d7E3Zk78bZPoAjbB7CnbGb5PAIfly2Hkkz0zhG7RYIYjOzpR631yHZlPXfvI8hkc2-9w9gGw-c2bajUA2ph1GpCaParBhDRSBbx50ZmLF929HOssFdNzDbuoFRJvqU7sVCM53-MVydf7hcXcRTd4W48ihtF5c2qWrrr02qKn-uqZ31h7MancsUmizPnBW2xLriSuVOGqE4d4jSCWOxKDB9AsdN2-AzYJI8HNbKa11mmFhb-YOXSapUFk6gSyLg8_vW1UQ9Th0wvusQAk-VHnWkvY500JEeIni9jNmOxBv_lH5PalwkiTQ7_NB2X_RkRFoq_395YT1iFJmVeWlSi3ldSeoCLIWK4Gw2Aj2t5F6Lwu_ACZ2CI3i53PZrkAIrpsF2H2QK4urjZQRPR5tZZpJ6NKAEjS4OrOlgqod3muuvgee7LImLv4jgzWx3v6b191dx8n_ip3BX0NKgHjfZGRzvuj0-9zhrZ1-EhfUTwfknFQ
  priority: 102
  providerName: Springer Nature
Title Total and regional appendicular skeletal muscle mass prediction from dual-energy X-ray absorptiometry body composition models
URI https://link.springer.com/article/10.1038/s41598-023-29827-y
https://www.ncbi.nlm.nih.gov/pubmed/36788294
https://www.proquest.com/docview/2776304094
https://www.proquest.com/docview/2777010119
https://pubmed.ncbi.nlm.nih.gov/PMC9929067
https://doaj.org/article/58fbc17b61024b569a3be6fc57542528
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY9_z1gUN9raZ2rJkyY9paCmBlrG1kDchWTIrXexgJw9-2P--O9nJmn2-7CUBWzbi7uS74-5-P0LesdSWqVM-zlklYm6si63AKnzqkyIxlVVhkPb8Ij-74vOFWNyi-sKesAEeeBDckVAVvE1acPOMW5EXJrM-r0qB1K2ChTFf8Hm3kqkB1ZsVPC3GKZkkU0cdeCqcJmNIXaaYjPs9TxQA-38XZf7aLPlTxTQ4otNH5OEYQdLpsPPH5I6vn5D7A6dk_5R8u2wgnqamdhRJFzDQpmaFTLfXoeWUdjfgaXDJctPBC-gSwme6arFgg0qiOHBCcUIr9mEukC7i1vTU2K5p8fuy9Ou2p7ZxPcV-9LHpiwZKne4ZuTo9uZydxSPHQlxCrLaOC5uUIGDBTaZKyG4qZyFFq7xzXHnDc-4ss4WvylSp3AnDVJo674VjxnopffacHNRN7V8SKtDP-UqB7gX3ibUlpF8mKTMhHfMuiUi6lbcuRwBy5MH4qkMhPFN60JEGHemgI91H5P3umdUAv_HX1ceoxt1KhM4OF8Cg9GhQ-l8GFZHDrRHo8Tx3mkn4DieYC0fk7e42nEQsr5jaN5uwRiJiX1pE5MVgM7udZBATKIZPyz1r2tvq_p36-ktA-y4KROSXEfmwtbsf2_qzKF79D1G8Jg8YHhjkv-GH5GDdbvwbiMHWdkLuyoWckHvT6fzzHP6PTy4-foKrs3w2CUcRfs-5-g7uFDZK
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJ4iaOHHiHBCi0GpL2xVCW6k3144dqGCTJdkVyoG_xG_E4yRbLY_eeltt7MjJjGc-Zx4fwHMaqjzU3PgJLZgfS6V9xTAKH5ogC2ShuCukPZok4-P4wwk72YBfQy0MplUONtEZal3l-I18m6Z2JwR4Gnkz_-4jaxRGVwcKjU4tDkz7wx7Zmtf77618X1C6tzt9N_Z7VgE_t-hk4WcqyAtlf8uI5xbPF1rZQ0lhtI65kXESa0VVZoo85DzRTFIehtoYpqlUJk1NZO97BTbjyM4awebO7uTjp9VXHYybxWHWV-cEEd9urIfEKjaKlGmcpn675gEdUcC_0O3fSZp_RGqdA9y7CTd65Eredqp2CzZMeRuudlyW7R34Oa0sjiey1ATJHhDgEzlHht0zl-pKmq_Ww-GQ2bKxNyAzC9vJvMZAESoHwUIXgpVhvnH1iOTEr2VLpGqqGu3azCzqlqhKtwTz4PtkM-KofJq7cHwpUrgHo7IqzQMgDP2rKbjVORabQKncHvtkkEcs1dTowINweN8i7xufI__GN-EC8BEXnYyElZFwMhKtBy9Xc-Zd248LR--gGFcjsWW3-6OqP4veAgjG7fOGqbJ4lcaKJZmMlEmKnCEHMaPcg61BCURvRxpxrvUePFtdthYAwzqyNNXSjUmxU2CYeXC_05nVSiKLRTjF2emaNq0tdf1KefbFdRnPMmQCSD14Nejd-bL-_yoeXvwUT-HaeHp0KA73JweP4DrFbYHsOvEWjBb10jy2CG-hnvTbisDpZe_k34YQabI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLVKEYgN4k2ggJFgBdEkThw7C4SAMmopVCxaaXbGjh2oYJIhmRHKgh_j67jXSaYaHt11FyVO5OQ-fJz7OIQ8YbEpYitdmLGSh6k2NjQco_Cxi_JIl0b6QtoPh9necfpuxmdb5NdYC4NplaNP9I7a1gX-I58wAZYQ4W5kUg5pER93py8X30NkkMJI60in0avIget-wPatfbG_C7J-ytj07dGbvXBgGAgLQCrLMDdRURo41oksANuX1sAGpXTWptLpNEutYSZ3ZRFLmVmumYxj6xy3TBsnhEvguRfIRZHwGG1MzMT6_w5G0NI4H-p0okROWlgrsZ6NIXmaZCLsNtZCTxnwL5z7d7rmHzFbvxROr5GrA4alr3qlu062XHWDXOpZLbub5OdRDYie6spSpH1AqE_1Arl2T3zSK22_wlqHQ-arFh5A5wDg6aLBkBGqCcWSF4o1YqHzlYl0Fja6o9q0dYMebu6WTUdNbTuKGfFD2hn1pD7tLXJ8LjK4TbarunJ3CeW40rpSgvbx1EXGFLAB1FGRcGGZs1FA4vF7q2JogY5MHN-UD8UnUvUyUiAj5WWkuoA8W9-z6BuAnDn6NYpxPRKbd_sTdfNZDb5AcQnvGwsDyJWlhme5TozLyoIjGzFnMiA7oxKowaO06lT_A_J4fRl8AQZ4dOXqlR8jsGdgnAfkTq8z65kkgEokw7vFhjZtTHXzSnXyxfcbz3PkBBABeT7q3em0_v8p7p39Fo_IZbBf9X7_8OA-ucLQKpBmJ90h28tm5R4A1Fuah96mKPl03kb8GwXMbII
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+and+regional+appendicular+skeletal+muscle+mass+prediction+from+dual-energy+X-ray+absorptiometry+body+composition+models&rft.jtitle=Scientific+reports&rft.au=Cassidy+McCarthy&rft.au=Grant+M.+Tinsley&rft.au=Anja+Bosy-Westphal&rft.au=Manfred+J.+M%C3%BCller&rft.date=2023-02-14&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41598-023-29827-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_58fbc17b61024b569a3be6fc57542528
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon