Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning
Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart elderca...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 16455 - 15 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.08.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-95947-y |
Cover
Loading…
Abstract | Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices. |
---|---|
AbstractList | Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices. Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual's functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual's functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices. Abstract Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices. |
ArticleNumber | 16455 |
Author | Soylu, Ahmet Uddin, Md Zia |
Author_xml | – sequence: 1 givenname: Md Zia surname: Uddin fullname: Uddin, Md Zia email: zia.uddin@sintef.no organization: SINTEF Digital – sequence: 2 givenname: Ahmet surname: Soylu fullname: Soylu, Ahmet organization: Norwegian University of Science and Technology - NTNU, OsloMet - Oslo Metropolitan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34385552$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhSNUREvpC7BAkdiwIOD4L84GCVVAK1ViA2vL157c-iqxi-0U5QF4b6Y3LbRd1Btb43M-z3jmZXUQYoCqet2SDy1h6mPmrehVQ2jb9KLnXbM8q44o4aKhjNKDe-fD6iTnHcElaM_b_kV1yDhTQgh6VP05mycTamOLv_ZlqRPYuA2--BjqOfuwrX-DSWYzQp0h5Jjy-9r5bJOffDCh1CaYcckewya4eozoyJcxlaZAmuoJppiWZmMyuDrAnMxY55JmW-aEkRHZAR95VT0fzJjh5HY_rn5-_fLj9Ky5-P7t_PTzRWMFJ6Xpe8sHy2EAcErIjgs-GK7AtZ1kg3WMO9J3IIENppNYIXXQiY1jTBK1YS07rs5Xrotmp6-wCJMWHY3X-0BMW21S8XYEPRgme8qspByxolNKdnIQThqkMa6Q9WllXc2bCZyFULC6B9CHN8Ff6m281orJFluIgHe3gBR_zZCLnvBjYRxNgDhnTYVs8Z224yh9-0i6i3PCn9-rCFe86wmq3tzP6F8qd91GgVoFNsWcEwza-mJueo0J-lG3RN_Mll5nS-Ns6f1s6QWt9JH1jv6kia2mjOKwhfQ_7SdcfwHBGeSA |
CitedBy_id | crossref_primary_10_3390_info13080360 crossref_primary_10_3390_s23010478 crossref_primary_10_2196_53863 crossref_primary_10_1016_j_engappai_2024_109678 crossref_primary_10_3390_info14070404 crossref_primary_10_3390_info13060275 crossref_primary_10_3389_fneur_2023_1260445 crossref_primary_10_1038_s41598_022_19484_y crossref_primary_10_3390_pr13010102 crossref_primary_10_1145_3565973 crossref_primary_10_3389_frobt_2024_1325296 crossref_primary_10_1109_ACCESS_2023_3318563 crossref_primary_10_48175_IJARSCT_22360 crossref_primary_10_1109_JSEN_2023_3319353 crossref_primary_10_1109_OJIM_2023_3301861 crossref_primary_10_5916_jamet_2023_47_3_131 crossref_primary_10_3390_jimaging11030091 crossref_primary_10_1186_s40537_024_00959_w crossref_primary_10_3390_math10173053 crossref_primary_10_1109_ACCESS_2024_3357143 crossref_primary_10_1016_j_neunet_2023_01_048 crossref_primary_10_1016_j_iot_2023_100960 crossref_primary_10_1016_j_procs_2023_08_203 crossref_primary_10_1007_s11831_024_10103_9 crossref_primary_10_3390_s22062360 crossref_primary_10_1007_s11042_023_17609_7 crossref_primary_10_1016_j_compbiomed_2024_109531 crossref_primary_10_2174_2666782701666220805105655 crossref_primary_10_3390_s23125551 crossref_primary_10_1016_j_inffus_2024_102457 crossref_primary_10_1016_j_inffus_2024_102412 crossref_primary_10_1007_s41060_025_00715_0 crossref_primary_10_1007_s10462_024_10822_2 crossref_primary_10_3390_su16010139 crossref_primary_10_1016_j_ijmedinf_2025_105878 crossref_primary_10_1038_s41598_025_90768_9 crossref_primary_10_3390_app14198884 crossref_primary_10_1016_j_inffus_2023_101955 crossref_primary_10_1109_JSEN_2023_3263231 crossref_primary_10_1016_j_cmpb_2022_107161 crossref_primary_10_3390_s22197480 crossref_primary_10_1115_1_4063132 crossref_primary_10_1109_JSEN_2023_3312146 crossref_primary_10_3389_fninf_2024_1454583 crossref_primary_10_1109_ACCESS_2021_3138778 crossref_primary_10_1145_3699747 crossref_primary_10_4108_eetpht_9_4483 crossref_primary_10_3390_s23239339 crossref_primary_10_3390_jpm13121703 crossref_primary_10_1088_1361_665X_ad9717 crossref_primary_10_1038_s41598_025_88378_6 crossref_primary_10_2478_jsiot_2024_0003 crossref_primary_10_3390_app132413009 crossref_primary_10_1016_j_patcog_2024_110480 crossref_primary_10_1088_2631_8695_ad43b9 crossref_primary_10_3390_s23052593 crossref_primary_10_1109_COMST_2023_3256323 |
Cites_doi | 10.1016/j.jbi.2014.07.009 10.1007/s00371-012-0752-6 10.3233/AIS-160372 10.3390/s150102059 10.1109/MSP.2012.2183489 10.1109/MWC.2013.6590049 10.1109/TNSRE.2011.2162250 10.1109/TSMCC.2012.2198883 10.1016/j.inffus.2019.08.004 10.1109/JSEN.2011.2146246 10.1038/538020a 10.1109/TBME.2015.2468589 10.1088/0967-3334/30/4/R01 10.1162/neco.1990.2.4.490 10.1109/JSEN.2010.2091719 10.1109/JSEN.2010.2045498 10.1089/big.2016.0047 10.1162/neco.1997.9.8.1735 10.1162/neco.2006.18.7.1527 10.1109/CIG.2018.8490433 10.1109/CIG.2016.7860414 10.1007/978-3-030-01219-9_47 10.4018/978-1-4666-3986-7.ch017 10.1109/ICASSP.2013.6638947 10.1145/2939672.2939778 10.1145/3278721.3278725 10.1109/TNNLS.2020.3027314 10.1145/3159652.3159731 10.1007/978-3-319-13105-4_14 10.5220/0006123702260234 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-95947-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (WRLC) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals (ODIN) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_fa36923c62434d5788676f5d6a336348 PMC8361103 34385552 10_1038_s41598_021_95947_y |
Genre | Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-99c4fc4efeed8567454fa48ed1763fcd34d097e6e3fa768552de75bd33608b313 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:33 EDT 2025 Thu Aug 21 18:13:19 EDT 2025 Fri Jul 11 05:34:10 EDT 2025 Wed Aug 13 07:02:32 EDT 2025 Mon Jul 21 05:46:01 EDT 2025 Tue Jul 01 03:49:08 EDT 2025 Thu Apr 24 22:59:40 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-99c4fc4efeed8567454fa48ed1763fcd34d097e6e3fa768552de75bd33608b313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/2560484790?pq-origsite=%requestingapplication% |
PMID | 34385552 |
PQID | 2560484790 |
PQPubID | 2041939 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fa36923c62434d5788676f5d6a336348 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361103 proquest_miscellaneous_2561483174 proquest_journals_2560484790 pubmed_primary_34385552 crossref_citationtrail_10_1038_s41598_021_95947_y crossref_primary_10_1038_s41598_021_95947_y springer_journals_10_1038_s41598_021_95947_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-12 |
PublicationDateYYYYMMDD | 2021-08-12 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Preece, Goulermas, Kenney, Howard, Meijer, Crompton (CR8) 2009; 30 Palumbo, Gallicchio, Pucci, Micheli (CR50) 2016; 8 Vishwakarma, Agrawal (CR12) 2013; 29 Hinton, Osindero, Teh (CR21) 2006; 18 CR36 CR35 CR34 CR33 CR32 CR31 CR30 Guidoux, Duclos, Fleury, Lacomme, Lamaudiere, Maneng, Paris, Ren, Rousset (CR9) 2014; 52 Kutlay, Gagula-Palalic (CR39) 2016; 4 Williams, Peng (CR28) 1990; 2 CR5 Kiranyaz, Ince, Gabbouj (CR20) 2016; 63 CR7 Chouldechova (CR42) 2017; 5 CR49 CR48 Edwards (CR1) 2012; 29 CR47 CR46 CR45 CR44 CR43 CR41 Hochreiter, Schmidhuber (CR24) 1997; 9 CR40 Castelvecchi (CR14) 2016; 538 Malhi, Mukhopadhyay, Schnepper, Haefke, Ewald (CR2) 2012; 12 Sak, Senior, Beaufays (CR27) 2014; 2014 Chen, Hoey, Nugent, Cook, Yu (CR13) 2012; 42 Castillejo, Martínez, Rodríguez-Molina, Cuerva (CR3) 2013; 20 CR18 CR17 Shoaib, Bosch, Incel, Scholten, Havinga (CR11) 2015; 15 CR16 Aziz, Robinovitch (CR4) 2011; 19 CR15 Banos, Villalonga, Garcia, Saez, Damas, Holgado, Lee, Pomares, Rojas (CR37) 2015; 14(S2:S6) Burns, Greene, McGrath, O’Shea, Kuris, Ayer, Stroiescu, Cionca (CR38) 2010; 10 CR10 Shany, Redmond, Narayanan, Lovell (CR6) 2012; 12 Uddin, Hassan, Alsanad, Savaglio (CR19) 2020 CR29 CR25 CR23 CR22 Gers, Schraudolph, Schmidhuber (CR26) 2003; 3 95947_CR41 T Shany (95947_CR6) 2012; 12 95947_CR40 J Edwards (95947_CR1) 2012; 29 S Kiranyaz (95947_CR20) 2016; 63 95947_CR43 95947_CR45 95947_CR44 95947_CR47 M Shoaib (95947_CR11) 2015; 15 95947_CR46 95947_CR49 95947_CR48 S Hochreiter (95947_CR24) 1997; 9 SJ Preece (95947_CR8) 2009; 30 H Sak (95947_CR27) 2014; 2014 95947_CR30 95947_CR32 95947_CR31 P Castillejo (95947_CR3) 2013; 20 95947_CR34 95947_CR33 95947_CR36 95947_CR35 O Banos (95947_CR37) 2015; 14(S2:S6) R Guidoux (95947_CR9) 2014; 52 K Malhi (95947_CR2) 2012; 12 95947_CR7 F Palumbo (95947_CR50) 2016; 8 95947_CR5 95947_CR23 95947_CR22 95947_CR25 95947_CR29 S Vishwakarma (95947_CR12) 2013; 29 A Chouldechova (95947_CR42) 2017; 5 RJ Williams (95947_CR28) 1990; 2 L Chen (95947_CR13) 2012; 42 D Castelvecchi (95947_CR14) 2016; 538 MZ Uddin (95947_CR19) 2020 95947_CR10 FA Gers (95947_CR26) 2003; 3 95947_CR16 95947_CR15 95947_CR18 95947_CR17 MA Kutlay (95947_CR39) 2016; 4 O Aziz (95947_CR4) 2011; 19 GE Hinton (95947_CR21) 2006; 18 A Burns (95947_CR38) 2010; 10 |
References_xml | – volume: 52 start-page: 271 year: 2014 end-page: 278 ident: CR9 article-title: A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.07.009 – volume: 29 start-page: 983 year: 2013 end-page: 1009 ident: CR12 article-title: A survey on activity recognition and behavior understanding in video surveillance publication-title: Vis. Comput. doi: 10.1007/s00371-012-0752-6 – ident: CR45 – ident: CR22 – volume: 8 start-page: 87 issue: 2 year: 2016 end-page: 107 ident: CR50 article-title: Human activity recognition using multisensor data fusion based on reservoir computing publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-160372 – volume: 15 start-page: 2059 year: 2015 end-page: 2085 ident: CR11 article-title: A survey of online activity recognition using mobile phones publication-title: Sensors doi: 10.3390/s150102059 – ident: CR49 – volume: 2014 start-page: 338 year: 2014 end-page: 342 ident: CR27 article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling publication-title: INTERSPEECH – volume: 29 start-page: 8 issue: 3 year: 2012 end-page: 12 ident: CR1 article-title: Wireless sensors relay medical insight to patients and caregivers [special reports] publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2183489 – volume: 20 start-page: 38 issue: 4 year: 2013 end-page: 49 ident: CR3 article-title: Integration of wearable devices in a wireless sensor network for an E-health application publication-title: IEEE Wireless Commun. doi: 10.1109/MWC.2013.6590049 – ident: CR16 – volume: 3 start-page: 115 year: 2003 end-page: 143 ident: CR26 article-title: Learning precise timing with LSTM recurrent networks publication-title: J. Mach. Learn. Res. – ident: CR35 – ident: CR29 – volume: 19 start-page: 670 issue: 6 year: 2011 end-page: 676 ident: CR4 article-title: An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2162250 – ident: CR25 – ident: CR46 – ident: CR15 – volume: 42 start-page: 790 year: 2012 end-page: 808 ident: CR13 article-title: Sensor-based activity recognition publication-title: IEEE Trans. Syst. Man. Cybern. C Appl. Rev. doi: 10.1109/TSMCC.2012.2198883 – year: 2020 ident: CR19 article-title: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare publication-title: Inf. Fus. doi: 10.1016/j.inffus.2019.08.004 – volume: 12 start-page: 658 issue: 3 year: 2012 end-page: 670 ident: CR6 article-title: Sensors based wearable systems for monitoring of human movement and falls publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2011.2146246 – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: CR14 article-title: Can we open the black box of AI? publication-title: Nat. News doi: 10.1038/538020a – ident: CR32 – ident: CR36 – ident: CR5 – volume: 14(S2:S6) start-page: 1 year: 2015 end-page: 20 ident: CR37 article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications publication-title: BioMed. Eng Online – ident: CR18 – ident: CR43 – ident: CR47 – volume: 63 start-page: 664 issue: 3 year: 2016 end-page: 675 ident: CR20 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 30 start-page: 1 year: 2009 end-page: 33 ident: CR8 article-title: Activity identification using body-mounted sensors-a review of classification techniques publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/4/R01 – ident: CR30 – ident: CR10 – ident: CR33 – volume: 2 start-page: 490 issue: 4 year: 1990 end-page: 501 ident: CR28 article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories publication-title: Neural Comput. doi: 10.1162/neco.1990.2.4.490 – ident: CR40 – volume: 12 start-page: 423 issue: 3 year: 2012 end-page: 430 ident: CR2 article-title: A Zigbee-based wearable physiological parameters monitoring system publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2010.2091719 – ident: CR23 – volume: 10 start-page: 1527 issue: 9 year: 2010 end-page: 1534 ident: CR38 article-title: Shimmer: A wireless sensor platform for noninvasive biomedical research publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2010.2045498 – volume: 5 start-page: 153 issue: 2 year: 2017 end-page: 163 ident: CR42 article-title: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments publication-title: Big Data doi: 10.1089/big.2016.0047 – ident: CR44 – ident: CR48 – volume: 4 start-page: 17 issue: 2 year: 2016 ident: CR39 article-title: Application of machine learning in healthcare: Analysis on MHEALTH dataset publication-title: Southeast Eur. J. Soft Comput. – ident: CR17 – ident: CR31 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 ident: CR24 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: CR34 – ident: CR7 – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR21 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: CR41 – volume: 19 start-page: 670 issue: 6 year: 2011 ident: 95947_CR4 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2011.2162250 – volume: 538 start-page: 20 issue: 7623 year: 2016 ident: 95947_CR14 publication-title: Nat. News doi: 10.1038/538020a – ident: 95947_CR18 doi: 10.1109/CIG.2018.8490433 – ident: 95947_CR47 – ident: 95947_CR40 – ident: 95947_CR22 doi: 10.1109/CIG.2016.7860414 – volume: 2 start-page: 490 issue: 4 year: 1990 ident: 95947_CR28 publication-title: Neural Comput. doi: 10.1162/neco.1990.2.4.490 – volume: 63 start-page: 664 issue: 3 year: 2016 ident: 95947_CR20 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 8 start-page: 87 issue: 2 year: 2016 ident: 95947_CR50 publication-title: J. Ambient Intell. Smart Environ. doi: 10.3233/AIS-160372 – ident: 95947_CR48 doi: 10.1007/978-3-030-01219-9_47 – ident: 95947_CR33 – ident: 95947_CR5 – volume: 12 start-page: 658 issue: 3 year: 2012 ident: 95947_CR6 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2011.2146246 – ident: 95947_CR10 doi: 10.4018/978-1-4666-3986-7.ch017 – volume: 29 start-page: 8 issue: 3 year: 2012 ident: 95947_CR1 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2012.2183489 – volume: 14(S2:S6) start-page: 1 year: 2015 ident: 95947_CR37 publication-title: BioMed. Eng Online – ident: 95947_CR23 doi: 10.1109/ICASSP.2013.6638947 – ident: 95947_CR29 – ident: 95947_CR46 – volume: 42 start-page: 790 year: 2012 ident: 95947_CR13 publication-title: IEEE Trans. Syst. Man. Cybern. C Appl. Rev. doi: 10.1109/TSMCC.2012.2198883 – ident: 95947_CR25 – ident: 95947_CR43 – volume: 30 start-page: 1 year: 2009 ident: 95947_CR8 publication-title: Physiol. Meas. doi: 10.1088/0967-3334/30/4/R01 – volume: 2014 start-page: 338 year: 2014 ident: 95947_CR27 publication-title: INTERSPEECH – ident: 95947_CR35 doi: 10.1145/2939672.2939778 – ident: 95947_CR15 – volume: 5 start-page: 153 issue: 2 year: 2017 ident: 95947_CR42 publication-title: Big Data doi: 10.1089/big.2016.0047 – volume: 20 start-page: 38 issue: 4 year: 2013 ident: 95947_CR3 publication-title: IEEE Wireless Commun. doi: 10.1109/MWC.2013.6590049 – volume: 4 start-page: 17 issue: 2 year: 2016 ident: 95947_CR39 publication-title: Southeast Eur. J. Soft Comput. – ident: 95947_CR44 doi: 10.1145/3278721.3278725 – year: 2020 ident: 95947_CR19 publication-title: Inf. Fus. doi: 10.1016/j.inffus.2019.08.004 – ident: 95947_CR49 – ident: 95947_CR45 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 95947_CR24 publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 15 start-page: 2059 year: 2015 ident: 95947_CR11 publication-title: Sensors doi: 10.3390/s150102059 – ident: 95947_CR32 doi: 10.1109/TNNLS.2020.3027314 – volume: 12 start-page: 423 issue: 3 year: 2012 ident: 95947_CR2 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2010.2091719 – ident: 95947_CR30 doi: 10.1145/3159652.3159731 – ident: 95947_CR16 – volume: 52 start-page: 271 year: 2014 ident: 95947_CR9 publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.07.009 – volume: 29 start-page: 983 year: 2013 ident: 95947_CR12 publication-title: Vis. Comput. doi: 10.1007/s00371-012-0752-6 – volume: 3 start-page: 115 year: 2003 ident: 95947_CR26 publication-title: J. Mach. Learn. Res. – ident: 95947_CR7 – volume: 10 start-page: 1527 issue: 9 year: 2010 ident: 95947_CR38 publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2010.2045498 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 95947_CR21 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: 95947_CR41 – ident: 95947_CR36 doi: 10.1007/978-3-319-13105-4_14 – ident: 95947_CR31 doi: 10.5220/0006123702260234 – ident: 95947_CR17 – ident: 95947_CR34 |
SSID | ssj0000529419 |
Score | 2.594154 |
Snippet | Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as... Abstract Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 16455 |
SubjectTerms | 639/705/1042 639/705/117 639/705/258 Algorithms Artificial intelligence Deep learning Discriminant Analysis Health care Health risks Humanities and Social Sciences Humans Learning algorithms Long short-term memory Machine Learning multidisciplinary Neural networks Neural Networks, Computer Science Science (multidisciplinary) Sensors Wearable Electronic Devices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv62uEsGbr2zbSdLmqOKyCHpyYW8haZJdYW2X7Vvk_QH-384kfXWfnxdvpU1hmPmlM9PM_Iaxl04iEHyEskLniAmKDqVT0JZWhbpXVvUxUqPwh4_q6Fi8P5En10Z9UU1YpgfOijuIFhQGIb1qBAiP-OpUq6L0ygIoEKnNF33etWQqs3o3WtR67pKpoDuY0FNRNxlVJEgt2nKz44kSYf_vosxfiyV_OjFNjujwDrs9R5D8dZb8LrsRhnvsZp4pubnPvqXf8pz6FWgsBF8qhMaBU5H7Kf-K4KaGKT5hCjteTitOrbl5vNew5namKVnhlefnI74xnWGQXtJHnH-hytxNSc7PcyLDRFEyB-3VJd6Zh1CcPmDHh-8-vT0q51kLZY8x27rUuhexFyGiz-ykaoUU0You-Bo_QLH3qPtKt0EFiBYzFCkbH1rpPBqh6hzU8JDtDeMQHjPeaBsEZn1OOydsX9voWwCI0YWmi8IXrN7q3fQzETnNwzg36UAcOpNtZdBWJtnKbAr2annnItNw_HX1GzLnspIotNMNBJaZgWX-BayC7W_BYOZ9PRkKEAU6dF0V7MXyGHckHbPYIYxXaQ3mmBiXiYI9ythZJAEBqDvZFKzdQdWOqLtPhs9nifW7A4WhGhRstcXfD7H-rIon_0MVT9mthjYOlTHKfbaHqArPMBZbu-dp230H05Exqw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxY60m8Ss5IUBUFRKcqLQ3y_Fji1SSstkK7Q_gfzPjeFMtj96ixJFsz3genplvCHndSWAEHzkrQTmCg9IG1imumVWhcsoqFyMWCn_-ok5OxaelXOYLtzGnVe5kYhLUfnB4R36EqlmAKG3Ltxc_GHaNwuhqbqFxk9xC6DJ0vvRSz3csGMUSVZtrZUreHI2gr7CmDPMSZCs02-7powTb_y9b8--UyT_ipkkdHd8jd7MdSd9NhL9PboT-Abk9dZbcPiS_0uU8xaoFbA5B5zyhoaeY6r6iP4HFsWyKjuDIDutxQbFAd2ry1W-ozWAlC3jy9HyAP8YzMNUZinL6HfNztwxVoKcIiQlTmZBoL9fwJreiWD0ip8cfv344YbnjAnNguW1Y2zoRnQgRNGcjlRZSRCua4CsQQ9F5LnzZ6qACjxb8FClrH7TsPOeqbDpe8cfkoB_68JTQurVBgO_XtV0nrKts9JpzHmMX6iYKX5Bqt-_GZThy7IpxblJYnDdmopUBWplEK7MtyJv5n4sJjOPa0e-RnPNIBNJOL4b1yuRzaaLlCmxcp2oBiwPx1SitovTKwpq4aApyuGMGk0_3aK54sSCv5s9wLjHYYvswXKYx4GmCdSYK8mTinXkmXHDYO1kXRO9x1d5U97_0384S9nfDFRhsvCCLHf9dTev_W_Hs-lU8J3dqPBKI9FsfkgPgl_ACbK1N9zIdqN-pdSrR priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGEBIXxDeFgYLEjVfR1knaHuGJaUKCE5N2i9Im2ZBGO60PofcH7P-enX6gBwOJW9U4kpM4sZ3YPwO8aRQJgguYZqQcyUGpfdpoLFOrfd5qq9sQOFH48xd9dCw_naiTPSjmXJgYtB8hLeMxPUeHvRtI0XAyGAcUqFqW6fYW3Gbodg7jW-v1cq_CL1cyr6f8mAyrG7ru6KAI1X-TfflnmORvb6VRBR3eh3uT7Sjej9w-gD3fPYQ7YzXJ7SO4ihfygjMVuCCEWGKD-k5wePup-ElizalSYiDntb8cVoKTcsfCXt1G2AmgZEVfTpz31GM4I_M85eNbfOeY3G3Kas8JhsEkVkb0WZpGIp_uWB7D8eHHr-ujdKqykLZkrW3Sum5laKUPpC0rpUupZLCy8i6noye0DqXL6tJrj8GSb6JU4XypGoeos6rBHJ_Aftd3_hmIorZekr_X1E0jbZvb4EpEDKHxRRWkSyCf5920EwQ5V8I4N_EpHCszrpWhtTJxrcw2gbdLn4sRgOOf1B94ORdKBs-OP_rLUzMJkwkWNdm1rS4kDY6OrEqXOiinLY0JZZXAwSwMZtrRg2HTUJIqr7MEXi_NtBf5gcV2vv8Raci7JItMJvB0lJ2FE5RIc6eKBModqdphdbel-3YW8b4r1GSkYQKrWf5-sfX3qXj-f-Qv4G7BW4TRfosD2Cf58S_J3to0r-IGuwYqeCk9 priority: 102 providerName: Springer Nature |
Title | Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning |
URI | https://link.springer.com/article/10.1038/s41598-021-95947-y https://www.ncbi.nlm.nih.gov/pubmed/34385552 https://www.proquest.com/docview/2560484790 https://www.proquest.com/docview/2561483174 https://pubmed.ncbi.nlm.nih.gov/PMC8361103 https://doaj.org/article/fa36923c62434d5788676f5d6a336348 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL7JGJWReKOBNnbs5AGhrto0VdqEgEp9i5zY7iaVhLWdoH8A_zd3zgcqFCSeGjlO5ZzPvrv47vcDeJXHqAjG8XCAxhEDlNSGueQq1NIOC6ll4RwVCl9cyvOpmMzi2R60dEeNAFc7Qzvik5ouF2--32ze44J_V5eMJ29XaISoUIySDeJUqHCzD4domRRROVw07n6N9R2lwnN9EAh7iM5E1NTR7P6bLVvlIf13-aF_plP-dqbqTdXZfbjX-JhsVCvFA9iz5UO4U7NObh7BD__hnlFFAxFHsC6HqCoZpcHP2TdUfyqpYisMcqvlqs-oeLcmACvXTDdAJn28MmxR4ROrK5RgSNs8-0K5u5uQzKNhBJeJQ6lRam-X2NLQVMwfw_Ts9PP4PGzYGMICvbp1mKaFcIWwDq1qEkslYuG0SKwZ4hblCsOFGaTKSsudxhgmjiNjVZwbzuUgyfmQP4GDsirtM2BRqq3AuDBP81zoYqidUZxz53IbJU6YAIat3LOigSonxoxF5o_MeZLVc5XhXGV-rrJNAK-7Z77WQB3_7H1C09n1JJBt31At51mzZjOnuUT_t5CRwJfDrS2RSrrYSI3vxEUSwHGrDFmruBm5kAJNfjoI4GV3G9csHcTo0la3vg9Goei5iQCe1rrTjYQLjrKLowDUllZtDXX7Tnl95XHBEy7RmeMB9Fv9-zWsv4vi6L8E9xzuRrRCCBQ4OoYDVB_7At2ydd6DfTVTPTgcjSafJvh7cnr54SO2juW45z919Pxq_AmDkjoc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJxo1iR0nOSBEodWWtiuEWqk314ntLVJJymaran8Af4ffyExe1fLorbdN4qxsz3gemccH8DqPkRGM436AyhEdlMz6ueSJr6UNC6ll4RwVCu9P5PhQfD6Kj1bgV18LQ2mVvUxsBLWpCvpGvkGqWaAozYL3Zz98Qo2i6GoPodGyxa5dXKDLVr_b-YT0fRNF21sHH8d-hyrgF2idzP0sK4QrhHWoHdJYJiIWTovUmhCPmisMFybIEistdxpt8TiOjE3i3HAugzTnIcf_vQGrAi-DEaxubk2-fB2-6lDcTIRZV50T8HSjRg1JVWyUCRFnIvEXSxqwAQr4l3X7d5LmH5HaRgFu34U7neXKPrSsdg9WbHkfbrZYlosH8LMJBzCqkyA4CjZkJlUlo-T6KbvA3aNCLVaj61zN6nVGJcEtrFg5Z7prj7KOvww7rfCN-gSdA5-UB_tOGcELn5SuYdSEE6fS9r49n-GdDvxi-hAOr4Uaj2BUVqV9AizKtBXobeZZngtdhNqZhHPuXG6j1AnjQdjvuyq6BuiEw3GqmkA8T1VLK4W0Ug2t1MKDt8M7Z237jytHbxI5h5HUuru5Uc2mqpMEymku0aouZCRwcSgwU5lIFxupcU1cpB6s9cygOnlSq0vu9-DV8BglAYV3dGmr82YM-rZoDwoPHre8M8yEC457F0ceJEtctTTV5Sflt5Om23jKJZqI3IP1nv8up_X_rXh69Spewq3xwf6e2tuZ7D6D2xEdD-ozHK3BCHnHPkdLb56_6I4Xg-PrPtG_AVSCaXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUgbgg1hIoYCQ4MdFMYsdODggBZdRSqDhQaW7Gie0pUknKZKpqPoCf4ut4L1s1LL31FtlOZPvteRvA8zxBRLCehxMUjmigZC7MJVehkS4qpJGF95Qo_OlA7h6KD7NktgG_-lwYCqvseWLDqG1V0D_yMYlmgaw0m4x9FxbxeWf6-uRHSB2kyNPat9NoUWTfrc7QfKtf7e0grF_E8fT9l3e7YddhICxQU1mGWVYIXwjnUVKkiVQiEd6I1NkIyc4Xlgs7yZSTjnuDenmSxNapJLecy0ma84jjd6_AVcVRbCItqZka_u-QB01EWZenM-HpuEZZSflsFBORZEKFqzVZ2LQM-Jee-3e45h8-20YUTm_BzU6HZW9apLsNG668A9farparu_CzcQwwypigxhRsiFGqSkZh9nN2hndHKVusRiO6WtQjRsnBbYOxcslMVyhlhE-WHVf4Rn2EZkJIYoR9p9jgVUji1zIqx4lbaavgni5wpGuDMb8Hh5cCi_uwWValewAszowTaHfmWZ4LU0TGW8U59z53ceqFDSDq710XXSl06shxrBuXPE91CyuNsNINrPQqgJfDOydtIZALV78lcA4rqYh3M1At5rrjCdobLlG_LmQs8HDIOlOppE-sNHgmLtIAtntk0B1nqfU5HQTwbJhGnkCOHlO66rRZg1YuaoYigK0Wd4adcMHx7pI4ALWGVWtbXZ8pvx01dcdTLlFZ5AGMevw739b_r-Lhxad4CteRjvXHvYP9R3AjJuqggsPxNmwi6rjHqPIt8ycNbTH4etnE_BvzSWxM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+activity+recognition+using+wearable+sensors%2C+discriminant+analysis%2C+and+long+short-term+memory-based+neural+structured+learning&rft.jtitle=Scientific+reports&rft.au=Uddin%2C+Md+Zia&rft.au=Soylu%2C+Ahmet&rft.date=2021-08-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-95947-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_95947_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |