Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning

Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart elderca...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 16455 - 15
Main Authors Uddin, Md Zia, Soylu, Ahmet
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-021-95947-y

Cover

Loading…
Abstract Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.
AbstractList Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.
Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual's functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual's functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.
Abstract Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as smart health care systems. For instance, smart wearable sensor-based behavior recognition system can observe elderly people in a smart eldercare environment to improve their lifestyle and can also help them by warning about forthcoming unprecedented events such as falls or other health risk, to prolong their independent life. Although there are many ways of using distinguished sensors to observe behavior of people, wearable sensors mostly provide reliable data in this regard to monitor the individual’s functionality and lifestyle. In this paper, we propose a body sensor-based activity modeling and recognition system using time-sequential information-based deep Neural Structured Learning (NSL), a promising deep learning algorithm. First, we obtain data from multiple wearable sensors while the subjects conduct several daily activities. Once the data is collected, the time-sequential information then go through some statistical feature processing. Furthermore, kernel-based discriminant analysis (KDA) is applied to see the better clustering of the features from different activity classes by minimizing inner-class scatterings while maximizing inter-class scatterings of the samples. The robust time-sequential features are then applied with Neural Structured Learning (NSL) based on Long Short-Term Memory (LSTM), for activity modeling. The proposed approach achieved around 99% recall rate on a public dataset. It is also compared to existing different conventional machine learning methods such as typical Deep Belief Network (DBN), Convolutional Neural Network (CNN), and Recurrent Neural Network (RNN) where they yielded the maximum recall rate of 94%. Furthermore, a fast and efficient explainable Artificial Intelligence (XAI) algorithm, Local Interpretable Model-Agnostic Explanations (LIME) is used to explain and check the machine learning decisions. The robust activity recognition system can be adopted for understanding peoples' behavior in their daily life in different environments such as homes, clinics, and offices.
ArticleNumber 16455
Author Soylu, Ahmet
Uddin, Md Zia
Author_xml – sequence: 1
  givenname: Md Zia
  surname: Uddin
  fullname: Uddin, Md Zia
  email: zia.uddin@sintef.no
  organization: SINTEF Digital
– sequence: 2
  givenname: Ahmet
  surname: Soylu
  fullname: Soylu, Ahmet
  organization: Norwegian University of Science and Technology - NTNU, OsloMet - Oslo Metropolitan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34385552$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhSNUREvpC7BAkdiwIOD4L84GCVVAK1ViA2vL157c-iqxi-0U5QF4b6Y3LbRd1Btb43M-z3jmZXUQYoCqet2SDy1h6mPmrehVQ2jb9KLnXbM8q44o4aKhjNKDe-fD6iTnHcElaM_b_kV1yDhTQgh6VP05mycTamOLv_ZlqRPYuA2--BjqOfuwrX-DSWYzQp0h5Jjy-9r5bJOffDCh1CaYcckewya4eozoyJcxlaZAmuoJppiWZmMyuDrAnMxY55JmW-aEkRHZAR95VT0fzJjh5HY_rn5-_fLj9Ky5-P7t_PTzRWMFJ6Xpe8sHy2EAcErIjgs-GK7AtZ1kg3WMO9J3IIENppNYIXXQiY1jTBK1YS07rs5Xrotmp6-wCJMWHY3X-0BMW21S8XYEPRgme8qspByxolNKdnIQThqkMa6Q9WllXc2bCZyFULC6B9CHN8Ff6m281orJFluIgHe3gBR_zZCLnvBjYRxNgDhnTYVs8Z224yh9-0i6i3PCn9-rCFe86wmq3tzP6F8qd91GgVoFNsWcEwza-mJueo0J-lG3RN_Mll5nS-Ns6f1s6QWt9JH1jv6kia2mjOKwhfQ_7SdcfwHBGeSA
CitedBy_id crossref_primary_10_3390_info13080360
crossref_primary_10_3390_s23010478
crossref_primary_10_2196_53863
crossref_primary_10_1016_j_engappai_2024_109678
crossref_primary_10_3390_info14070404
crossref_primary_10_3390_info13060275
crossref_primary_10_3389_fneur_2023_1260445
crossref_primary_10_1038_s41598_022_19484_y
crossref_primary_10_3390_pr13010102
crossref_primary_10_1145_3565973
crossref_primary_10_3389_frobt_2024_1325296
crossref_primary_10_1109_ACCESS_2023_3318563
crossref_primary_10_48175_IJARSCT_22360
crossref_primary_10_1109_JSEN_2023_3319353
crossref_primary_10_1109_OJIM_2023_3301861
crossref_primary_10_5916_jamet_2023_47_3_131
crossref_primary_10_3390_jimaging11030091
crossref_primary_10_1186_s40537_024_00959_w
crossref_primary_10_3390_math10173053
crossref_primary_10_1109_ACCESS_2024_3357143
crossref_primary_10_1016_j_neunet_2023_01_048
crossref_primary_10_1016_j_iot_2023_100960
crossref_primary_10_1016_j_procs_2023_08_203
crossref_primary_10_1007_s11831_024_10103_9
crossref_primary_10_3390_s22062360
crossref_primary_10_1007_s11042_023_17609_7
crossref_primary_10_1016_j_compbiomed_2024_109531
crossref_primary_10_2174_2666782701666220805105655
crossref_primary_10_3390_s23125551
crossref_primary_10_1016_j_inffus_2024_102457
crossref_primary_10_1016_j_inffus_2024_102412
crossref_primary_10_1007_s41060_025_00715_0
crossref_primary_10_1007_s10462_024_10822_2
crossref_primary_10_3390_su16010139
crossref_primary_10_1016_j_ijmedinf_2025_105878
crossref_primary_10_1038_s41598_025_90768_9
crossref_primary_10_3390_app14198884
crossref_primary_10_1016_j_inffus_2023_101955
crossref_primary_10_1109_JSEN_2023_3263231
crossref_primary_10_1016_j_cmpb_2022_107161
crossref_primary_10_3390_s22197480
crossref_primary_10_1115_1_4063132
crossref_primary_10_1109_JSEN_2023_3312146
crossref_primary_10_3389_fninf_2024_1454583
crossref_primary_10_1109_ACCESS_2021_3138778
crossref_primary_10_1145_3699747
crossref_primary_10_4108_eetpht_9_4483
crossref_primary_10_3390_s23239339
crossref_primary_10_3390_jpm13121703
crossref_primary_10_1088_1361_665X_ad9717
crossref_primary_10_1038_s41598_025_88378_6
crossref_primary_10_2478_jsiot_2024_0003
crossref_primary_10_3390_app132413009
crossref_primary_10_1016_j_patcog_2024_110480
crossref_primary_10_1088_2631_8695_ad43b9
crossref_primary_10_3390_s23052593
crossref_primary_10_1109_COMST_2023_3256323
Cites_doi 10.1016/j.jbi.2014.07.009
10.1007/s00371-012-0752-6
10.3233/AIS-160372
10.3390/s150102059
10.1109/MSP.2012.2183489
10.1109/MWC.2013.6590049
10.1109/TNSRE.2011.2162250
10.1109/TSMCC.2012.2198883
10.1016/j.inffus.2019.08.004
10.1109/JSEN.2011.2146246
10.1038/538020a
10.1109/TBME.2015.2468589
10.1088/0967-3334/30/4/R01
10.1162/neco.1990.2.4.490
10.1109/JSEN.2010.2091719
10.1109/JSEN.2010.2045498
10.1089/big.2016.0047
10.1162/neco.1997.9.8.1735
10.1162/neco.2006.18.7.1527
10.1109/CIG.2018.8490433
10.1109/CIG.2016.7860414
10.1007/978-3-030-01219-9_47
10.4018/978-1-4666-3986-7.ch017
10.1109/ICASSP.2013.6638947
10.1145/2939672.2939778
10.1145/3278721.3278725
10.1109/TNNLS.2020.3027314
10.1145/3159652.3159731
10.1007/978-3-319-13105-4_14
10.5220/0006123702260234
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-95947-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic
MEDLINE


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (WRLC)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals (ODIN)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 15
ExternalDocumentID oai_doaj_org_article_fa36923c62434d5788676f5d6a336348
PMC8361103
34385552
10_1038_s41598_021_95947_y
Genre Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-99c4fc4efeed8567454fa48ed1763fcd34d097e6e3fa768552de75bd33608b313
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:33 EDT 2025
Thu Aug 21 18:13:19 EDT 2025
Fri Jul 11 05:34:10 EDT 2025
Wed Aug 13 07:02:32 EDT 2025
Mon Jul 21 05:46:01 EDT 2025
Tue Jul 01 03:49:08 EDT 2025
Thu Apr 24 22:59:40 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-99c4fc4efeed8567454fa48ed1763fcd34d097e6e3fa768552de75bd33608b313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/2560484790?pq-origsite=%requestingapplication%
PMID 34385552
PQID 2560484790
PQPubID 2041939
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_fa36923c62434d5788676f5d6a336348
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8361103
proquest_miscellaneous_2561483174
proquest_journals_2560484790
pubmed_primary_34385552
crossref_citationtrail_10_1038_s41598_021_95947_y
crossref_primary_10_1038_s41598_021_95947_y
springer_journals_10_1038_s41598_021_95947_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-12
PublicationDateYYYYMMDD 2021-08-12
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-12
  day: 12
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Preece, Goulermas, Kenney, Howard, Meijer, Crompton (CR8) 2009; 30
Palumbo, Gallicchio, Pucci, Micheli (CR50) 2016; 8
Vishwakarma, Agrawal (CR12) 2013; 29
Hinton, Osindero, Teh (CR21) 2006; 18
CR36
CR35
CR34
CR33
CR32
CR31
CR30
Guidoux, Duclos, Fleury, Lacomme, Lamaudiere, Maneng, Paris, Ren, Rousset (CR9) 2014; 52
Kutlay, Gagula-Palalic (CR39) 2016; 4
Williams, Peng (CR28) 1990; 2
CR5
Kiranyaz, Ince, Gabbouj (CR20) 2016; 63
CR7
Chouldechova (CR42) 2017; 5
CR49
CR48
Edwards (CR1) 2012; 29
CR47
CR46
CR45
CR44
CR43
CR41
Hochreiter, Schmidhuber (CR24) 1997; 9
CR40
Castelvecchi (CR14) 2016; 538
Malhi, Mukhopadhyay, Schnepper, Haefke, Ewald (CR2) 2012; 12
Sak, Senior, Beaufays (CR27) 2014; 2014
Chen, Hoey, Nugent, Cook, Yu (CR13) 2012; 42
Castillejo, Martínez, Rodríguez-Molina, Cuerva (CR3) 2013; 20
CR18
CR17
Shoaib, Bosch, Incel, Scholten, Havinga (CR11) 2015; 15
CR16
Aziz, Robinovitch (CR4) 2011; 19
CR15
Banos, Villalonga, Garcia, Saez, Damas, Holgado, Lee, Pomares, Rojas (CR37) 2015; 14(S2:S6)
Burns, Greene, McGrath, O’Shea, Kuris, Ayer, Stroiescu, Cionca (CR38) 2010; 10
CR10
Shany, Redmond, Narayanan, Lovell (CR6) 2012; 12
Uddin, Hassan, Alsanad, Savaglio (CR19) 2020
CR29
CR25
CR23
CR22
Gers, Schraudolph, Schmidhuber (CR26) 2003; 3
95947_CR41
T Shany (95947_CR6) 2012; 12
95947_CR40
J Edwards (95947_CR1) 2012; 29
S Kiranyaz (95947_CR20) 2016; 63
95947_CR43
95947_CR45
95947_CR44
95947_CR47
M Shoaib (95947_CR11) 2015; 15
95947_CR46
95947_CR49
95947_CR48
S Hochreiter (95947_CR24) 1997; 9
SJ Preece (95947_CR8) 2009; 30
H Sak (95947_CR27) 2014; 2014
95947_CR30
95947_CR32
95947_CR31
P Castillejo (95947_CR3) 2013; 20
95947_CR34
95947_CR33
95947_CR36
95947_CR35
O Banos (95947_CR37) 2015; 14(S2:S6)
R Guidoux (95947_CR9) 2014; 52
K Malhi (95947_CR2) 2012; 12
95947_CR7
F Palumbo (95947_CR50) 2016; 8
95947_CR5
95947_CR23
95947_CR22
95947_CR25
95947_CR29
S Vishwakarma (95947_CR12) 2013; 29
A Chouldechova (95947_CR42) 2017; 5
RJ Williams (95947_CR28) 1990; 2
L Chen (95947_CR13) 2012; 42
D Castelvecchi (95947_CR14) 2016; 538
MZ Uddin (95947_CR19) 2020
95947_CR10
FA Gers (95947_CR26) 2003; 3
95947_CR16
95947_CR15
95947_CR18
95947_CR17
MA Kutlay (95947_CR39) 2016; 4
O Aziz (95947_CR4) 2011; 19
GE Hinton (95947_CR21) 2006; 18
A Burns (95947_CR38) 2010; 10
References_xml – volume: 52
  start-page: 271
  year: 2014
  end-page: 278
  ident: CR9
  article-title: A smartphone-driven methodology for estimating physical activities and energy expenditure in free living conditions
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2014.07.009
– volume: 29
  start-page: 983
  year: 2013
  end-page: 1009
  ident: CR12
  article-title: A survey on activity recognition and behavior understanding in video surveillance
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-012-0752-6
– ident: CR45
– ident: CR22
– volume: 8
  start-page: 87
  issue: 2
  year: 2016
  end-page: 107
  ident: CR50
  article-title: Human activity recognition using multisensor data fusion based on reservoir computing
  publication-title: J. Ambient Intell. Smart Environ.
  doi: 10.3233/AIS-160372
– volume: 15
  start-page: 2059
  year: 2015
  end-page: 2085
  ident: CR11
  article-title: A survey of online activity recognition using mobile phones
  publication-title: Sensors
  doi: 10.3390/s150102059
– ident: CR49
– volume: 2014
  start-page: 338
  year: 2014
  end-page: 342
  ident: CR27
  article-title: Long short-term memory recurrent neural network architectures for large scale acoustic modeling
  publication-title: INTERSPEECH
– volume: 29
  start-page: 8
  issue: 3
  year: 2012
  end-page: 12
  ident: CR1
  article-title: Wireless sensors relay medical insight to patients and caregivers [special reports]
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2183489
– volume: 20
  start-page: 38
  issue: 4
  year: 2013
  end-page: 49
  ident: CR3
  article-title: Integration of wearable devices in a wireless sensor network for an E-health application
  publication-title: IEEE Wireless Commun.
  doi: 10.1109/MWC.2013.6590049
– ident: CR16
– volume: 3
  start-page: 115
  year: 2003
  end-page: 143
  ident: CR26
  article-title: Learning precise timing with LSTM recurrent networks
  publication-title: J. Mach. Learn. Res.
– ident: CR35
– ident: CR29
– volume: 19
  start-page: 670
  issue: 6
  year: 2011
  end-page: 676
  ident: CR4
  article-title: An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2162250
– ident: CR25
– ident: CR46
– ident: CR15
– volume: 42
  start-page: 790
  year: 2012
  end-page: 808
  ident: CR13
  article-title: Sensor-based activity recognition
  publication-title: IEEE Trans. Syst. Man. Cybern. C Appl. Rev.
  doi: 10.1109/TSMCC.2012.2198883
– year: 2020
  ident: CR19
  article-title: A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2019.08.004
– volume: 12
  start-page: 658
  issue: 3
  year: 2012
  end-page: 670
  ident: CR6
  article-title: Sensors based wearable systems for monitoring of human movement and falls
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2011.2146246
– volume: 538
  start-page: 20
  issue: 7623
  year: 2016
  ident: CR14
  article-title: Can we open the black box of AI?
  publication-title: Nat. News
  doi: 10.1038/538020a
– ident: CR32
– ident: CR36
– ident: CR5
– volume: 14(S2:S6)
  start-page: 1
  year: 2015
  end-page: 20
  ident: CR37
  article-title: Design, implementation and validation of a novel open framework for agile development of mobile health applications
  publication-title: BioMed. Eng Online
– ident: CR18
– ident: CR43
– ident: CR47
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  end-page: 675
  ident: CR20
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 30
  start-page: 1
  year: 2009
  end-page: 33
  ident: CR8
  article-title: Activity identification using body-mounted sensors-a review of classification techniques
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/4/R01
– ident: CR30
– ident: CR10
– ident: CR33
– volume: 2
  start-page: 490
  issue: 4
  year: 1990
  end-page: 501
  ident: CR28
  article-title: An efficient gradient-based algorithm for on-line training of recurrent network trajectories
  publication-title: Neural Comput.
  doi: 10.1162/neco.1990.2.4.490
– ident: CR40
– volume: 12
  start-page: 423
  issue: 3
  year: 2012
  end-page: 430
  ident: CR2
  article-title: A Zigbee-based wearable physiological parameters monitoring system
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2010.2091719
– ident: CR23
– volume: 10
  start-page: 1527
  issue: 9
  year: 2010
  end-page: 1534
  ident: CR38
  article-title: Shimmer: A wireless sensor platform for noninvasive biomedical research
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2010.2045498
– volume: 5
  start-page: 153
  issue: 2
  year: 2017
  end-page: 163
  ident: CR42
  article-title: Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
  publication-title: Big Data
  doi: 10.1089/big.2016.0047
– ident: CR44
– ident: CR48
– volume: 4
  start-page: 17
  issue: 2
  year: 2016
  ident: CR39
  article-title: Application of machine learning in healthcare: Analysis on MHEALTH dataset
  publication-title: Southeast Eur. J. Soft Comput.
– ident: CR17
– ident: CR31
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  ident: CR24
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: CR34
– ident: CR7
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: CR21
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: CR41
– volume: 19
  start-page: 670
  issue: 6
  year: 2011
  ident: 95947_CR4
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2011.2162250
– volume: 538
  start-page: 20
  issue: 7623
  year: 2016
  ident: 95947_CR14
  publication-title: Nat. News
  doi: 10.1038/538020a
– ident: 95947_CR18
  doi: 10.1109/CIG.2018.8490433
– ident: 95947_CR47
– ident: 95947_CR40
– ident: 95947_CR22
  doi: 10.1109/CIG.2016.7860414
– volume: 2
  start-page: 490
  issue: 4
  year: 1990
  ident: 95947_CR28
  publication-title: Neural Comput.
  doi: 10.1162/neco.1990.2.4.490
– volume: 63
  start-page: 664
  issue: 3
  year: 2016
  ident: 95947_CR20
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 8
  start-page: 87
  issue: 2
  year: 2016
  ident: 95947_CR50
  publication-title: J. Ambient Intell. Smart Environ.
  doi: 10.3233/AIS-160372
– ident: 95947_CR48
  doi: 10.1007/978-3-030-01219-9_47
– ident: 95947_CR33
– ident: 95947_CR5
– volume: 12
  start-page: 658
  issue: 3
  year: 2012
  ident: 95947_CR6
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2011.2146246
– ident: 95947_CR10
  doi: 10.4018/978-1-4666-3986-7.ch017
– volume: 29
  start-page: 8
  issue: 3
  year: 2012
  ident: 95947_CR1
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2012.2183489
– volume: 14(S2:S6)
  start-page: 1
  year: 2015
  ident: 95947_CR37
  publication-title: BioMed. Eng Online
– ident: 95947_CR23
  doi: 10.1109/ICASSP.2013.6638947
– ident: 95947_CR29
– ident: 95947_CR46
– volume: 42
  start-page: 790
  year: 2012
  ident: 95947_CR13
  publication-title: IEEE Trans. Syst. Man. Cybern. C Appl. Rev.
  doi: 10.1109/TSMCC.2012.2198883
– ident: 95947_CR25
– ident: 95947_CR43
– volume: 30
  start-page: 1
  year: 2009
  ident: 95947_CR8
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/30/4/R01
– volume: 2014
  start-page: 338
  year: 2014
  ident: 95947_CR27
  publication-title: INTERSPEECH
– ident: 95947_CR35
  doi: 10.1145/2939672.2939778
– ident: 95947_CR15
– volume: 5
  start-page: 153
  issue: 2
  year: 2017
  ident: 95947_CR42
  publication-title: Big Data
  doi: 10.1089/big.2016.0047
– volume: 20
  start-page: 38
  issue: 4
  year: 2013
  ident: 95947_CR3
  publication-title: IEEE Wireless Commun.
  doi: 10.1109/MWC.2013.6590049
– volume: 4
  start-page: 17
  issue: 2
  year: 2016
  ident: 95947_CR39
  publication-title: Southeast Eur. J. Soft Comput.
– ident: 95947_CR44
  doi: 10.1145/3278721.3278725
– year: 2020
  ident: 95947_CR19
  publication-title: Inf. Fus.
  doi: 10.1016/j.inffus.2019.08.004
– ident: 95947_CR49
– ident: 95947_CR45
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 95947_CR24
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 15
  start-page: 2059
  year: 2015
  ident: 95947_CR11
  publication-title: Sensors
  doi: 10.3390/s150102059
– ident: 95947_CR32
  doi: 10.1109/TNNLS.2020.3027314
– volume: 12
  start-page: 423
  issue: 3
  year: 2012
  ident: 95947_CR2
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2010.2091719
– ident: 95947_CR30
  doi: 10.1145/3159652.3159731
– ident: 95947_CR16
– volume: 52
  start-page: 271
  year: 2014
  ident: 95947_CR9
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2014.07.009
– volume: 29
  start-page: 983
  year: 2013
  ident: 95947_CR12
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-012-0752-6
– volume: 3
  start-page: 115
  year: 2003
  ident: 95947_CR26
  publication-title: J. Mach. Learn. Res.
– ident: 95947_CR7
– volume: 10
  start-page: 1527
  issue: 9
  year: 2010
  ident: 95947_CR38
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2010.2045498
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 95947_CR21
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 95947_CR41
– ident: 95947_CR36
  doi: 10.1007/978-3-319-13105-4_14
– ident: 95947_CR31
  doi: 10.5220/0006123702260234
– ident: 95947_CR17
– ident: 95947_CR34
SSID ssj0000529419
Score 2.594154
Snippet Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications such as...
Abstract Healthcare using body sensor data has been getting huge research attentions by a wide range of researchers because of its good practical applications...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 16455
SubjectTerms 639/705/1042
639/705/117
639/705/258
Algorithms
Artificial intelligence
Deep learning
Discriminant Analysis
Health care
Health risks
Humanities and Social Sciences
Humans
Learning algorithms
Long short-term memory
Machine Learning
multidisciplinary
Neural networks
Neural Networks, Computer
Science
Science (multidisciplinary)
Sensors
Wearable Electronic Devices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv62uEsGbr2zbSdLmqOKyCHpyYW8haZJdYW2X7Vvk_QH-384kfXWfnxdvpU1hmPmlM9PM_Iaxl04iEHyEskLniAmKDqVT0JZWhbpXVvUxUqPwh4_q6Fi8P5En10Z9UU1YpgfOijuIFhQGIb1qBAiP-OpUq6L0ygIoEKnNF33etWQqs3o3WtR67pKpoDuY0FNRNxlVJEgt2nKz44kSYf_vosxfiyV_OjFNjujwDrs9R5D8dZb8LrsRhnvsZp4pubnPvqXf8pz6FWgsBF8qhMaBU5H7Kf-K4KaGKT5hCjteTitOrbl5vNew5namKVnhlefnI74xnWGQXtJHnH-hytxNSc7PcyLDRFEyB-3VJd6Zh1CcPmDHh-8-vT0q51kLZY8x27rUuhexFyGiz-ykaoUU0You-Bo_QLH3qPtKt0EFiBYzFCkbH1rpPBqh6hzU8JDtDeMQHjPeaBsEZn1OOydsX9voWwCI0YWmi8IXrN7q3fQzETnNwzg36UAcOpNtZdBWJtnKbAr2annnItNw_HX1GzLnspIotNMNBJaZgWX-BayC7W_BYOZ9PRkKEAU6dF0V7MXyGHckHbPYIYxXaQ3mmBiXiYI9ythZJAEBqDvZFKzdQdWOqLtPhs9nifW7A4WhGhRstcXfD7H-rIon_0MVT9mthjYOlTHKfbaHqArPMBZbu-dp230H05Exqw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxY60m8Ss5IUBUFRKcqLQ3y_Fji1SSstkK7Q_gfzPjeFMtj96ixJFsz3genplvCHndSWAEHzkrQTmCg9IG1imumVWhcsoqFyMWCn_-ok5OxaelXOYLtzGnVe5kYhLUfnB4R36EqlmAKG3Ltxc_GHaNwuhqbqFxk9xC6DJ0vvRSz3csGMUSVZtrZUreHI2gr7CmDPMSZCs02-7powTb_y9b8--UyT_ipkkdHd8jd7MdSd9NhL9PboT-Abk9dZbcPiS_0uU8xaoFbA5B5zyhoaeY6r6iP4HFsWyKjuDIDutxQbFAd2ry1W-ozWAlC3jy9HyAP8YzMNUZinL6HfNztwxVoKcIiQlTmZBoL9fwJreiWD0ip8cfv344YbnjAnNguW1Y2zoRnQgRNGcjlRZSRCua4CsQQ9F5LnzZ6qACjxb8FClrH7TsPOeqbDpe8cfkoB_68JTQurVBgO_XtV0nrKts9JpzHmMX6iYKX5Bqt-_GZThy7IpxblJYnDdmopUBWplEK7MtyJv5n4sJjOPa0e-RnPNIBNJOL4b1yuRzaaLlCmxcp2oBiwPx1SitovTKwpq4aApyuGMGk0_3aK54sSCv5s9wLjHYYvswXKYx4GmCdSYK8mTinXkmXHDYO1kXRO9x1d5U97_0384S9nfDFRhsvCCLHf9dTev_W_Hs-lU8J3dqPBKI9FsfkgPgl_ACbK1N9zIdqN-pdSrR
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDLfGEBIXxDeFgYLEjVfR1knaHuGJaUKCE5N2i9Im2ZBGO60PofcH7P-enX6gBwOJW9U4kpM4sZ3YPwO8aRQJgguYZqQcyUGpfdpoLFOrfd5qq9sQOFH48xd9dCw_naiTPSjmXJgYtB8hLeMxPUeHvRtI0XAyGAcUqFqW6fYW3Gbodg7jW-v1cq_CL1cyr6f8mAyrG7ru6KAI1X-TfflnmORvb6VRBR3eh3uT7Sjej9w-gD3fPYQ7YzXJ7SO4ihfygjMVuCCEWGKD-k5wePup-ElizalSYiDntb8cVoKTcsfCXt1G2AmgZEVfTpz31GM4I_M85eNbfOeY3G3Kas8JhsEkVkb0WZpGIp_uWB7D8eHHr-ujdKqykLZkrW3Sum5laKUPpC0rpUupZLCy8i6noye0DqXL6tJrj8GSb6JU4XypGoeos6rBHJ_Aftd3_hmIorZekr_X1E0jbZvb4EpEDKHxRRWkSyCf5920EwQ5V8I4N_EpHCszrpWhtTJxrcw2gbdLn4sRgOOf1B94ORdKBs-OP_rLUzMJkwkWNdm1rS4kDY6OrEqXOiinLY0JZZXAwSwMZtrRg2HTUJIqr7MEXi_NtBf5gcV2vv8Raci7JItMJvB0lJ2FE5RIc6eKBModqdphdbel-3YW8b4r1GSkYQKrWf5-sfX3qXj-f-Qv4G7BW4TRfosD2Cf58S_J3to0r-IGuwYqeCk9
  priority: 102
  providerName: Springer Nature
Title Human activity recognition using wearable sensors, discriminant analysis, and long short-term memory-based neural structured learning
URI https://link.springer.com/article/10.1038/s41598-021-95947-y
https://www.ncbi.nlm.nih.gov/pubmed/34385552
https://www.proquest.com/docview/2560484790
https://www.proquest.com/docview/2561483174
https://pubmed.ncbi.nlm.nih.gov/PMC8361103
https://doaj.org/article/fa36923c62434d5788676f5d6a336348
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_tQ0i8IL7JGJWReKOBNnbs5AGhrto0VdqEgEp9i5zY7iaVhLWdoH8A_zd3zgcqFCSeGjlO5ZzPvrv47vcDeJXHqAjG8XCAxhEDlNSGueQq1NIOC6ll4RwVCl9cyvOpmMzi2R60dEeNAFc7Qzvik5ouF2--32ze44J_V5eMJ29XaISoUIySDeJUqHCzD4domRRROVw07n6N9R2lwnN9EAh7iM5E1NTR7P6bLVvlIf13-aF_plP-dqbqTdXZfbjX-JhsVCvFA9iz5UO4U7NObh7BD__hnlFFAxFHsC6HqCoZpcHP2TdUfyqpYisMcqvlqs-oeLcmACvXTDdAJn28MmxR4ROrK5RgSNs8-0K5u5uQzKNhBJeJQ6lRam-X2NLQVMwfw_Ts9PP4PGzYGMICvbp1mKaFcIWwDq1qEkslYuG0SKwZ4hblCsOFGaTKSsudxhgmjiNjVZwbzuUgyfmQP4GDsirtM2BRqq3AuDBP81zoYqidUZxz53IbJU6YAIat3LOigSonxoxF5o_MeZLVc5XhXGV-rrJNAK-7Z77WQB3_7H1C09n1JJBt31At51mzZjOnuUT_t5CRwJfDrS2RSrrYSI3vxEUSwHGrDFmruBm5kAJNfjoI4GV3G9csHcTo0la3vg9Goei5iQCe1rrTjYQLjrKLowDUllZtDXX7Tnl95XHBEy7RmeMB9Fv9-zWsv4vi6L8E9xzuRrRCCBQ4OoYDVB_7At2ydd6DfTVTPTgcjSafJvh7cnr54SO2juW45z919Pxq_AmDkjoc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG8CBYwEJxo1iR0nOSBEodWWtiuEWqk314ntLVJJymaran8Af4ffyExe1fLorbdN4qxsz3gemccH8DqPkRGM436AyhEdlMz6ueSJr6UNC6ll4RwVCu9P5PhQfD6Kj1bgV18LQ2mVvUxsBLWpCvpGvkGqWaAozYL3Zz98Qo2i6GoPodGyxa5dXKDLVr_b-YT0fRNF21sHH8d-hyrgF2idzP0sK4QrhHWoHdJYJiIWTovUmhCPmisMFybIEistdxpt8TiOjE3i3HAugzTnIcf_vQGrAi-DEaxubk2-fB2-6lDcTIRZV50T8HSjRg1JVWyUCRFnIvEXSxqwAQr4l3X7d5LmH5HaRgFu34U7neXKPrSsdg9WbHkfbrZYlosH8LMJBzCqkyA4CjZkJlUlo-T6KbvA3aNCLVaj61zN6nVGJcEtrFg5Z7prj7KOvww7rfCN-gSdA5-UB_tOGcELn5SuYdSEE6fS9r49n-GdDvxi-hAOr4Uaj2BUVqV9AizKtBXobeZZngtdhNqZhHPuXG6j1AnjQdjvuyq6BuiEw3GqmkA8T1VLK4W0Ug2t1MKDt8M7Z237jytHbxI5h5HUuru5Uc2mqpMEymku0aouZCRwcSgwU5lIFxupcU1cpB6s9cygOnlSq0vu9-DV8BglAYV3dGmr82YM-rZoDwoPHre8M8yEC457F0ceJEtctTTV5Sflt5Om23jKJZqI3IP1nv8up_X_rXh69Spewq3xwf6e2tuZ7D6D2xEdD-ozHK3BCHnHPkdLb56_6I4Xg-PrPtG_AVSCaXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KkUgbgg1hIoYCQ4MdFMYsdODggBZdRSqDhQaW7Gie0pUknKZKpqPoCf4ut4L1s1LL31FtlOZPvteRvA8zxBRLCehxMUjmigZC7MJVehkS4qpJGF95Qo_OlA7h6KD7NktgG_-lwYCqvseWLDqG1V0D_yMYlmgaw0m4x9FxbxeWf6-uRHSB2kyNPat9NoUWTfrc7QfKtf7e0grF_E8fT9l3e7YddhICxQU1mGWVYIXwjnUVKkiVQiEd6I1NkIyc4Xlgs7yZSTjnuDenmSxNapJLecy0ma84jjd6_AVcVRbCItqZka_u-QB01EWZenM-HpuEZZSflsFBORZEKFqzVZ2LQM-Jee-3e45h8-20YUTm_BzU6HZW9apLsNG668A9farparu_CzcQwwypigxhRsiFGqSkZh9nN2hndHKVusRiO6WtQjRsnBbYOxcslMVyhlhE-WHVf4Rn2EZkJIYoR9p9jgVUji1zIqx4lbaavgni5wpGuDMb8Hh5cCi_uwWValewAszowTaHfmWZ4LU0TGW8U59z53ceqFDSDq710XXSl06shxrBuXPE91CyuNsNINrPQqgJfDOydtIZALV78lcA4rqYh3M1At5rrjCdobLlG_LmQs8HDIOlOppE-sNHgmLtIAtntk0B1nqfU5HQTwbJhGnkCOHlO66rRZg1YuaoYigK0Wd4adcMHx7pI4ALWGVWtbXZ8pvx01dcdTLlFZ5AGMevw739b_r-Lhxad4CteRjvXHvYP9R3AjJuqggsPxNmwi6rjHqPIt8ycNbTH4etnE_BvzSWxM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+activity+recognition+using+wearable+sensors%2C+discriminant+analysis%2C+and+long+short-term+memory-based+neural+structured+learning&rft.jtitle=Scientific+reports&rft.au=Uddin%2C+Md+Zia&rft.au=Soylu%2C+Ahmet&rft.date=2021-08-12&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-95947-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41598_021_95947_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon