Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse

Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyr...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 105; no. 3; pp. 1003 - 1008
Main Authors Ohnishi, Naomi, Yuasa, Hitomi, Tanaka, Shinya, Sawa, Hirofumi, Miura, Motohiro, Matsui, Atsushi, Higashi, Hideaki, Musashi, Manabu, Iwabuchi, Kazuya, Suzuki, Misao, Yamada, Gen, Azuma, Takeshi, Hatakeyama, Masanori
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 22.01.2008
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms.
AbstractList Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms.
Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms.Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms.
Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA -encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori -associated neoplasms. bacterial oncoprotein transgenic mouse
Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms. [PUBLICATION ABSTRACT]
Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA -encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori -associated neoplasms.
Author Miura, Motohiro
Hatakeyama, Masanori
Matsui, Atsushi
Higashi, Hideaki
Iwabuchi, Kazuya
Yuasa, Hitomi
Musashi, Manabu
Azuma, Takeshi
Sawa, Hirofumi
Tanaka, Shinya
Suzuki, Misao
Ohnishi, Naomi
Yamada, Gen
Author_xml – sequence: 1
  fullname: Ohnishi, Naomi
– sequence: 2
  fullname: Yuasa, Hitomi
– sequence: 3
  fullname: Tanaka, Shinya
– sequence: 4
  fullname: Sawa, Hirofumi
– sequence: 5
  fullname: Miura, Motohiro
– sequence: 6
  fullname: Matsui, Atsushi
– sequence: 7
  fullname: Higashi, Hideaki
– sequence: 8
  fullname: Musashi, Manabu
– sequence: 9
  fullname: Iwabuchi, Kazuya
– sequence: 10
  fullname: Suzuki, Misao
– sequence: 11
  fullname: Yamada, Gen
– sequence: 12
  fullname: Azuma, Takeshi
– sequence: 13
  fullname: Hatakeyama, Masanori
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18192401$$D View this record in MEDLINE/PubMed
BookMark eNqFks1vEzEQxVeoiKaFMydgxQFOaWf8sR8XpCoCilSJA-3Z8jqzqaONvdhe1P73OEqbQiWoLNmH-b1nv_EcFQfOOyqK1wgnCDU_HZ2OJ1AjYsMR5LNihtDivBItHBQzAFbPG8HEYXEU4xoAWtnAi-IQG2yZAJwV_jJoF1fkrCnpZgwUo_Wu9H15ToM1vtMmUSjH28EHWy706qy0bjkZiuVKxxS8dYlisk4PpXbL8po2OvnRW0rZ0ZEfBx03MYvKjZ8ivSye93qI9OruPC6uvny-XJzPL75__bY4u5gbKSDNW0ldYwzVhAQd11D1vNa6Eh2CFsCh7Qxhz6kzvJJyqStcVkIL7BvTA2f8uPi08x2nbkNLQy4FPagx2I0Ot8prq_6uOHutVv6XYkywmlXZ4MOdQfA_pxxRbWw0NAw6h5qiqoHxWrbiSVDUEnkDTzsyBGzzyuD7R-DaTyF3ODOAAqHC7bVv_wy4T3b_tRmQO8AEH2OgXhmbdMq_m_PaQSGo7Qip7QiphxHKutNHur31PxX3T9kWHmipeN6BZ-DjfwHVT8OQ6CZl8s2OXMfkwx5lUkhkuA31blfvtVd6FWxUVz9yUzhAI6Guav4bpWv1mw
CitedBy_id crossref_primary_10_1016_j_jpha_2012_02_007
crossref_primary_10_1111_hel_12567
crossref_primary_10_3748_wjg_v20_i36_12767
crossref_primary_10_1371_journal_pone_0030786
crossref_primary_10_3892_ol_2016_5506
crossref_primary_10_1053_j_gastro_2010_06_047
crossref_primary_10_1155_2015_164840
crossref_primary_10_1111_j_1523_5378_2009_00697_x
crossref_primary_10_3389_fonc_2022_836004
crossref_primary_10_3390_ijms20112622
crossref_primary_10_1371_journal_ppat_1000544
crossref_primary_10_21926_obm_genet_2404272
crossref_primary_10_1080_1040841X_2020_1760786
crossref_primary_10_1111_j_1523_5378_2008_00633_x
crossref_primary_10_1111_eva_70070
crossref_primary_10_1038_s41598_018_37095_4
crossref_primary_10_3389_fmicb_2020_01592
crossref_primary_10_1146_annurev_cancerbio_062722_013740
crossref_primary_10_1038_s41467_023_36218_4
crossref_primary_10_1371_journal_ppat_1000407
crossref_primary_10_1186_s12964_019_0323_9
crossref_primary_10_1590_s0004_2803_24612023_139
crossref_primary_10_1093_femspd_ftx103
crossref_primary_10_1017_erm_2017_4
crossref_primary_10_3390_v6010301
crossref_primary_10_18632_oncotarget_12486
crossref_primary_10_3389_fimmu_2021_760451
crossref_primary_10_3748_wjg_v21_i45_12742
crossref_primary_10_1038_onc_2012_358
crossref_primary_10_1128_mBio_03147_20
crossref_primary_10_1172_JCI38605
crossref_primary_10_1158_1940_6207_CAPR_13_0067
crossref_primary_10_2217_17455111_2_5_539
crossref_primary_10_1111_j_1574_695X_2010_00750_x
crossref_primary_10_1074_jbc_M109_001008
crossref_primary_10_1016_j_canlet_2016_02_032
crossref_primary_10_3390_cancers11060843
crossref_primary_10_1111_cas_15357
crossref_primary_10_1152_physrev_00039_2009
crossref_primary_10_1128_spectrum_00015_24
crossref_primary_10_1093_infdis_jiu805
crossref_primary_10_1111_cmi_12040
crossref_primary_10_1371_journal_ppat_1005099
crossref_primary_10_1016_j_bpg_2021_101743
crossref_primary_10_1053_j_gastro_2010_06_018
crossref_primary_10_3390_ijms19051353
crossref_primary_10_1371_journal_pone_0087425
crossref_primary_10_1128_IAI_00349_16
crossref_primary_10_3390_toxins10040163
crossref_primary_10_3390_ijms21207439
crossref_primary_10_3390_microorganisms11051312
crossref_primary_10_1111_cmi_12039
crossref_primary_10_1016_S1773_035X_13_72225_1
crossref_primary_10_1038_onc_2013_380
crossref_primary_10_1128_mSphere_00751_21
crossref_primary_10_1517_14728222_2012_709238
crossref_primary_10_1080_1062936X_2023_2230876
crossref_primary_10_1159_000365310
crossref_primary_10_1186_s41043_021_00280_9
crossref_primary_10_14309_ctg_0000000000000201
crossref_primary_10_1097_PAS_0000000000000437
crossref_primary_10_1101_cshperspect_a027953
crossref_primary_10_1111_cmi_12464
crossref_primary_10_1186_1478_811X_6_2
crossref_primary_10_1111_j_1349_7006_2008_00950_x
crossref_primary_10_1093_nar_gku1271
crossref_primary_10_1155_2013_682418
crossref_primary_10_1038_onc_2014_187
crossref_primary_10_1016_j_canlet_2010_07_014
crossref_primary_10_1371_journal_pone_0050069
crossref_primary_10_1172_JCI61578
crossref_primary_10_1016_j_tim_2019_04_010
crossref_primary_10_1007_s12551_017_0345_8
crossref_primary_10_1155_2015_761501
crossref_primary_10_1016_j_ajpath_2014_01_027
crossref_primary_10_1007_s00428_019_02670_1
crossref_primary_10_1053_j_gastro_2011_07_045
crossref_primary_10_1016_j_jcmgh_2019_05_008
crossref_primary_10_1038_onc_2010_304
crossref_primary_10_1073_pnas_1320631111
crossref_primary_10_1097_QCO_0b013e3283531f7c
crossref_primary_10_1111_hel_12300
crossref_primary_10_1016_j_meegid_2013_03_048
crossref_primary_10_1038_s41598_017_14102_8
crossref_primary_10_1371_journal_ppat_1007359
crossref_primary_10_3748_wjg_v27_i7_545
crossref_primary_10_1080_15384101_2018_1560121
crossref_primary_10_1016_j_canlet_2013_03_035
crossref_primary_10_1053_j_gastro_2017_03_010
crossref_primary_10_1084_jem_20100602
crossref_primary_10_1038_nrgastro_2014_99
crossref_primary_10_3892_or_2016_4572
crossref_primary_10_2147_IDR_S309051
crossref_primary_10_1097_MOH_0000000000000051
crossref_primary_10_1007_s00432_018_2816_0
crossref_primary_10_1155_2011_340157
crossref_primary_10_1016_j_bios_2023_115345
crossref_primary_10_1186_1478_811X_11_77
crossref_primary_10_1371_journal_pgen_1001069
crossref_primary_10_1136_bmjopen_2023_083157
crossref_primary_10_1080_15548627_2016_1252890
crossref_primary_10_1007_s00292_009_1269_2
crossref_primary_10_3389_fimmu_2023_1113478
crossref_primary_10_3390_ijms18102063
crossref_primary_10_1080_1040841X_2021_1944052
crossref_primary_10_1371_journal_ppat_1010628
crossref_primary_10_1007_s00535_009_0015_0
crossref_primary_10_1051_medsci_2013291011
crossref_primary_10_1111_2049_632X_12045
crossref_primary_10_37349_etat_2023_00132
crossref_primary_10_1128_mBio_01869_15
crossref_primary_10_1080_15476286_2015_1132141
crossref_primary_10_3390_ijms21186586
crossref_primary_10_1038_ncomms5423
crossref_primary_10_1111_mmi_14784
crossref_primary_10_1016_j_febslet_2009_06_043
crossref_primary_10_1371_journal_pone_0017856
crossref_primary_10_1093_glycob_cwp004
crossref_primary_10_1111_cas_12342
crossref_primary_10_1016_j_parint_2024_102995
crossref_primary_10_2217_fon_15_87
crossref_primary_10_1242_dmm_011163
crossref_primary_10_1007_s11894_012_0296_y
crossref_primary_10_3390_pathogens12020234
crossref_primary_10_1186_s13099_016_0137_x
crossref_primary_10_1371_journal_pone_0154643
crossref_primary_10_1038_srep15749
crossref_primary_10_1016_j_chom_2014_02_008
crossref_primary_10_2220_biomedres_37_21
crossref_primary_10_3389_fimmu_2024_1282680
crossref_primary_10_1038_nrmicro3016
crossref_primary_10_1182_blood_2016_04_713719
crossref_primary_10_1371_journal_pone_0004754
crossref_primary_10_1007_s00535_009_0014_1
crossref_primary_10_1016_j_meegid_2011_12_002
crossref_primary_10_1128_IAI_05845_11
crossref_primary_10_1111_hel_12987
crossref_primary_10_1155_2017_3456264
crossref_primary_10_1111_j_1365_2958_2011_07910_x
crossref_primary_10_2217_fmb_15_72
crossref_primary_10_1172_JCI61143
crossref_primary_10_3390_toxins11110618
crossref_primary_10_1186_1757_4749_4_18
crossref_primary_10_1016_j_hoc_2017_01_002
crossref_primary_10_3390_microbiolres15030123
crossref_primary_10_1111_j_1523_5378_2008_00630_x
crossref_primary_10_1182_asheducation_2013_1_109
crossref_primary_10_1053_j_gastro_2011_10_040
crossref_primary_10_4161_gmic_23797
crossref_primary_10_1186_s41021_016_0055_7
crossref_primary_10_1242_dmm_027649
crossref_primary_10_1007_s10552_012_0106_8
crossref_primary_10_1002_path_4940
crossref_primary_10_1053_j_gastro_2015_02_049
crossref_primary_10_1053_j_gastro_2011_10_036
crossref_primary_10_1128_JB_00063_10
crossref_primary_10_1136_gutjnl_2014_307295
crossref_primary_10_1128_mBio_00955_19
crossref_primary_10_1016_j_micpath_2018_01_040
crossref_primary_10_1016_j_lpm_2010_04_004
crossref_primary_10_1186_s13046_018_0962_5
crossref_primary_10_1016_j_jcmgh_2015_11_001
crossref_primary_10_1371_journal_pone_0023499
crossref_primary_10_1007_s13277_012_0448_6
crossref_primary_10_1016_j_bcp_2016_06_003
crossref_primary_10_1073_pnas_1814497116
crossref_primary_10_1002_JLB_MR0618_225R
crossref_primary_10_3390_cancers13081878
crossref_primary_10_1038_srep10024
crossref_primary_10_1099_jmm_0_021816_0
crossref_primary_10_1007_s10620_013_2589_x
crossref_primary_10_1016_j_tim_2013_09_004
crossref_primary_10_1016_j_ajg_2016_04_001
crossref_primary_10_1111_1751_2980_12056
crossref_primary_10_1053_j_gastro_2010_03_036
crossref_primary_10_1200_JCO_2014_60_1799
crossref_primary_10_3390_cancers5010092
crossref_primary_10_1242_dmm_000364
crossref_primary_10_3389_fcimb_2023_1062803
crossref_primary_10_1111_apt_12666
crossref_primary_10_2174_1574885518666230809121536
crossref_primary_10_1002_prca_201400176
crossref_primary_10_1074_jbc_M111_258673
crossref_primary_10_7704_kjhugr_2017_17_4_175
crossref_primary_10_1128_IAI_00692_18
crossref_primary_10_3390_biom12050691
crossref_primary_10_1371_journal_pone_0055120
crossref_primary_10_1080_14737140_2021_1844007
crossref_primary_10_1002_prot_25748
crossref_primary_10_1038_bcj_2013_22
crossref_primary_10_1093_femspd_ftaa049
crossref_primary_10_1517_14728222_2015_1073261
crossref_primary_10_1186_s12935_024_03552_6
crossref_primary_10_1128_JB_06340_11
crossref_primary_10_2217_fmb_15_32
crossref_primary_10_3892_wasj_2018_6
crossref_primary_10_7705_biomedica_v32i1_453
crossref_primary_10_1159_000380893
crossref_primary_10_3892_or_2016_5145
crossref_primary_10_18632_oncotarget_2828
crossref_primary_10_1038_s41388_020_1241_4
crossref_primary_10_1016_j_chom_2017_09_014
crossref_primary_10_2217_fon_2021_1546
crossref_primary_10_1002_path_4866
crossref_primary_10_1016_j_canlet_2010_10_012
crossref_primary_10_5352_JLS_2016_26_10_1214
crossref_primary_10_1007_s00430_020_00688_w
crossref_primary_10_1007_s11912_013_0341_5
crossref_primary_10_1111_j_1365_2559_2012_04190_x
crossref_primary_10_4291_wjgp_v7_i1_97
crossref_primary_10_1074_jbc_M110_121319
crossref_primary_10_3390_cancers12040803
crossref_primary_10_1111_j_1349_7006_2010_01743_x
crossref_primary_10_1128_mBio_00221_16
crossref_primary_10_1097_MS9_0000000000001802
crossref_primary_10_1128_JCM_00504_09
crossref_primary_10_2217_fon_14_29
crossref_primary_10_3389_fonc_2019_00075
crossref_primary_10_3892_ijo_2019_4775
crossref_primary_10_1128_CMR_00012_10
crossref_primary_10_3390_cancers11040547
crossref_primary_10_1080_07391102_2018_1537895
crossref_primary_10_1128_mBio_02321_16
crossref_primary_10_3389_fmicb_2017_00615
crossref_primary_10_1038_s41388_018_0343_8
crossref_primary_10_15252_embj_201798664
crossref_primary_10_2217_imt_12_50
crossref_primary_10_4161_cam_21936
crossref_primary_10_1099_jmm_0_000049
crossref_primary_10_1002_ijc_24740
crossref_primary_10_1111_cas_12962
crossref_primary_10_1111_j_1600_0463_2009_02548_x
crossref_primary_10_1186_s12967_022_03492_7
crossref_primary_10_1126_scisignal_abp9020
crossref_primary_10_1186_1471_2407_10_374
crossref_primary_10_1371_journal_ppat_1006514
crossref_primary_10_1038_nrc2857
crossref_primary_10_2183_pjab_93_013
crossref_primary_10_1177_1756283X08093567
crossref_primary_10_3748_wjg_v23_i26_4712
crossref_primary_10_2169_naika_102_600
crossref_primary_10_1016_j_celrep_2017_08_080
crossref_primary_10_18632_oncotarget_10528
crossref_primary_10_4049_jimmunol_2000234
crossref_primary_10_1172_JCI64373
crossref_primary_10_4161_gmic_19345
crossref_primary_10_1111_j_1742_4658_2011_08035_x
crossref_primary_10_1016_j_jfma_2019_01_002
crossref_primary_10_1016_j_smim_2017_09_006
crossref_primary_10_1371_journal_pone_0079367
crossref_primary_10_1038_nmicrobiol_2016_26
crossref_primary_10_1016_j_bbamcr_2009_07_009
crossref_primary_10_1016_j_micinf_2011_03_011
crossref_primary_10_1371_journal_pone_0035341
crossref_primary_10_3390_toxins9040115
crossref_primary_10_3390_toxins9040136
crossref_primary_10_1007_s15010_023_02159_9
crossref_primary_10_1007_s12539_016_0142_2
crossref_primary_10_1038_nmicrobiol_2016_188
crossref_primary_10_3390_toxins9040132
crossref_primary_10_1038_nrc3610
crossref_primary_10_1038_s41598_017_11382_y
crossref_primary_10_3390_biomedicines13010061
crossref_primary_10_1038_bcj_2014_40
crossref_primary_10_1074_jbc_M110_166504
crossref_primary_10_1186_1750_9378_9_43
crossref_primary_10_1080_19490976_2024_2314201
crossref_primary_10_1016_j_micinf_2017_06_005
crossref_primary_10_3390_pathogens10101321
crossref_primary_10_32604_oncologie_2022_024161
crossref_primary_10_1371_journal_pone_0105306
crossref_primary_10_4236_ojmm_2019_94018
crossref_primary_10_1016_j_tim_2020_02_004
crossref_primary_10_1111_mmi_13707
crossref_primary_10_1158_0008_5472_CAN_16_1680
crossref_primary_10_1128_IAI_00790_19
crossref_primary_10_3748_wjg_v22_i2_501
crossref_primary_10_1016_j_cmi_2015_06_004
crossref_primary_10_1111_1750_3841_14372
crossref_primary_10_1371_journal_pone_0062850
crossref_primary_10_1371_journal_pone_0197695
crossref_primary_10_1111_mmi_13896
crossref_primary_10_1016_j_humimm_2022_08_002
crossref_primary_10_1016_j_chom_2021_04_006
crossref_primary_10_4236_jbm_2023_1110017
crossref_primary_10_1073_pnas_1206098109
crossref_primary_10_1099_mic_0_001539
crossref_primary_10_1016_j_abb_2010_03_021
crossref_primary_10_1038_s41598_018_34425_4
crossref_primary_10_29252_ismj_20_2_170
crossref_primary_10_1186_s12876_016_0429_0
crossref_primary_10_1186_s12964_015_0111_0
crossref_primary_10_1111_j_1523_5378_2011_00927_x
crossref_primary_10_1007_s00535_018_1453_3
crossref_primary_10_1053_j_gastro_2015_05_059
crossref_primary_10_1111_j_1440_1746_2008_05659_x
crossref_primary_10_1093_carcin_bgt114
crossref_primary_10_2217_fmb_2018_0038
crossref_primary_10_1155_2015_490531
crossref_primary_10_1053_j_gastro_2009_01_073
crossref_primary_10_1128_IAI_01271_12
crossref_primary_10_1371_journal_pone_0035147
crossref_primary_10_1053_j_gastro_2015_09_004
crossref_primary_10_1016_j_chom_2010_04_005
crossref_primary_10_1016_j_yjmcc_2019_07_011
crossref_primary_10_1158_0008_5472_CAN_09_4690
crossref_primary_10_3412_jsb_70_319
crossref_primary_10_1128_mBio_01296_20
crossref_primary_10_1038_s41598_019_50054_x
crossref_primary_10_3390_pathogens9020104
crossref_primary_10_1002_cam4_2892
crossref_primary_10_1128_CMR_00011_10
crossref_primary_10_3390_toxins11100591
crossref_primary_10_1111_j_1523_5378_2010_00759_x
crossref_primary_10_1074_mcp_RA118_001181
crossref_primary_10_1186_s12964_017_0171_4
crossref_primary_10_1016_j_micinf_2011_12_003
crossref_primary_10_1097_MD_0000000000014124
crossref_primary_10_1007_s10238_012_0217_2
crossref_primary_10_1242_jcs_145029
crossref_primary_10_1186_s12866_020_01859_8
crossref_primary_10_1111_j_1751_2980_2009_00380_x
crossref_primary_10_1002_path_5568
crossref_primary_10_4049_jimmunol_1400594
crossref_primary_10_1002_path_4351
crossref_primary_10_1038_srep18346
crossref_primary_10_1186_s12943_024_01934_y
crossref_primary_10_1371_journal_ppat_1004621
crossref_primary_10_3389_fcimb_2024_1353094
crossref_primary_10_1016_j_chom_2012_10_014
crossref_primary_10_1016_j_tim_2008_05_005
crossref_primary_10_1200_JCO_2008_19_8341
crossref_primary_10_1158_1940_6207_CAPR_13_0235
crossref_primary_10_1136_gutjnl_2014_307949
crossref_primary_10_3164_jcbn_24_109
crossref_primary_10_1186_s13027_019_0233_x
crossref_primary_10_3412_jsb_69_565
crossref_primary_10_1080_00365521_2019_1577483
crossref_primary_10_1038_s41419_020_02894_z
crossref_primary_10_1111_j_1365_3083_2009_02237_x
crossref_primary_10_1111_j_1349_7006_2008_00888_x
crossref_primary_10_1016_j_micpath_2023_106063
crossref_primary_10_1099_jmm_0_001786
crossref_primary_10_3390_diseases2020187
crossref_primary_10_1007_s00108_013_3381_x
crossref_primary_10_7314_APJCP_2016_17_2_733
crossref_primary_10_1016_j_mib_2021_08_007
crossref_primary_10_1016_j_bpg_2014_09_004
crossref_primary_10_1080_09737766_2020_1716645
crossref_primary_10_1007_s00011_021_01501_x
crossref_primary_10_1016_j_canlet_2008_11_016
crossref_primary_10_1186_1478_811X_9_27
crossref_primary_10_1111_j_1349_7006_2009_01257_x
crossref_primary_10_1111_j_1469_0691_2009_02965_x
crossref_primary_10_1111_hel_12057
crossref_primary_10_1016_j_gtc_2015_05_011
crossref_primary_10_1038_s12276_024_01167_5
crossref_primary_10_1038_s41423_019_0339_5
crossref_primary_10_3390_ijms19102891
crossref_primary_10_1007_s12223_023_01091_7
crossref_primary_10_3748_wjg_v26_i10_995
crossref_primary_10_1128_IAI_00094_17
crossref_primary_10_1016_j_bjm_2016_12_004
crossref_primary_10_1111_febs_13592
crossref_primary_10_5306_wjco_v13_i11_866
crossref_primary_10_1080_15548627_2018_1515530
crossref_primary_10_1007_s12558_010_0123_z
crossref_primary_10_1007_s10620_010_1316_0
crossref_primary_10_1016_j_cbi_2019_02_010
crossref_primary_10_1038_onc_2008_353
crossref_primary_10_23736_S1121_421X_18_02494_7
crossref_primary_10_1128_spectrum_02163_24
crossref_primary_10_1136_gutjnl_2011_301625
crossref_primary_10_1172_JCI130015
crossref_primary_10_1128_msystems_01098_23
crossref_primary_10_1136_jclinpath_2016_203641
crossref_primary_10_1038_bjc_2015_175
crossref_primary_10_1016_j_semcancer_2021_08_007
crossref_primary_10_4049_jimmunol_1003472
crossref_primary_10_4161_gmic_26262
crossref_primary_10_1074_jbc_M109_035766
crossref_primary_10_3389_fcvm_2022_992011
crossref_primary_10_3390_ijms23052492
crossref_primary_10_1038_nrgastro_2010_154
crossref_primary_10_1111_j_1462_5822_2008_01156_x
crossref_primary_10_2177_jsci_31_132
crossref_primary_10_1111_j_1574_695X_2010_00722_x
crossref_primary_10_2217_fon_10_37
crossref_primary_10_1007_s40139_013_0009_8
crossref_primary_10_1371_journal_pone_0146432
crossref_primary_10_1038_ctg_2015_16
crossref_primary_10_1371_journal_pone_0098416
crossref_primary_10_1152_ajpgi_00099_2015
crossref_primary_10_1186_1742_4682_11_40
crossref_primary_10_1016_j_micpath_2020_104653
crossref_primary_10_1111_hel_13119
crossref_primary_10_1016_j_giec_2021_03_003
crossref_primary_10_1038_srep38101
crossref_primary_10_1007_s10238_022_00793_5
crossref_primary_10_1136_gutjnl_2021_325630
crossref_primary_10_1186_s12929_018_0466_9
crossref_primary_10_3389_fcimb_2017_00050
crossref_primary_10_1128_IAI_01350_10
crossref_primary_10_1016_j_chom_2012_05_010
crossref_primary_10_4166_kjg_2015_66_6_303
crossref_primary_10_1093_femspd_ftv105
crossref_primary_10_1002_ardp_201400438
crossref_primary_10_1093_femspd_ftu021
crossref_primary_10_1186_s12929_014_0096_9
crossref_primary_10_3748_wjg_v21_i41_11654
crossref_primary_10_1007_s00535_023_02055_x
crossref_primary_10_3390_jcm11113141
Cites_doi 10.1016/j.ejmg.2005.03.001
10.1038/nrc1433
10.1038/nm1084
10.1093/ajcp/106.5.670
10.1038/nrc703
10.1016/S0021-9258(19)74349-X
10.1126/science.1067147
10.1084/jem.20051027
10.1074/jbc.C100754200
10.1128/MCB.17.9.5499
10.1053/j.gastro.2005.12.038
10.1073/pnas.96.25.14559
10.1136/gut.40.3.297
10.1182/blood.V97.4.911
10.1158/0008-5472.CAN-04-1923
10.1002/bies.10286
10.1182/blood-2004-11-4207
10.1016/S1470-2045(01)00486-7
10.1073/pnas.92.1.160
10.1038/nature05765
10.1053/j.gastro.2005.02.064
10.1016/S1097-2765(02)00681-0
10.1146/annurev.biochem.75.103004.142702
10.1083/jcb.200208039
10.1101/gad.1211604
10.1074/jbc.M309964200
10.1038/sj.onc.1210251
10.1016/S0016-5085(98)70143-X
10.1038/ng1156
10.1016/S0022-3565(24)36411-0
10.1038/sj.onc.1210139
10.1128/MCB.26.1.261-276.2006
10.1093/jnci/87.23.1777
10.1111/j.1572-0241.1998.00375.x
10.1056/NEJM199405053301803
10.1073/pnas.222375399
10.1016/0168-9525(96)10016-0
ContentType Journal Article
Copyright Copyright 2008 The National Academy of Sciences of the United States of America
Copyright National Academy of Sciences Jan 22, 2008
2008 by The National Academy of Sciences of the USA 2008
Copyright_xml – notice: Copyright 2008 The National Academy of Sciences of the United States of America
– notice: Copyright National Academy of Sciences Jan 22, 2008
– notice: 2008 by The National Academy of Sciences of the USA 2008
DBID FBQ
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7S9
L.6
7X8
5PM
DOI 10.1073/pnas.0711183105
DatabaseName AGRIS
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Biotechnology Research Abstracts
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE
MEDLINE - Academic
AGRICOLA



Virology and AIDS Abstracts
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 1008
ExternalDocumentID PMC2242726
1419575341
18192401
10_1073_pnas_0711183105
105_3_1003
25451211
US201300850767
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29P
2AX
2FS
2WC
3O-
4.4
53G
5RE
5VS
692
6TJ
79B
85S
AACGO
AAFWJ
AANCE
AAYJJ
ABBHK
ABOCM
ABPLY
ABPPZ
ABPTK
ABTLG
ABZEH
ACGOD
ACIWK
ACKIV
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFDAS
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
AS~
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F20
F5P
FBQ
FRP
GX1
HGD
HH5
HQ3
HTVGU
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
MVM
N9A
NEJ
NHB
N~3
O9-
OK1
P-O
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
W8F
WH7
WHG
WOQ
WOW
X7M
XFK
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
ZCG
~02
~KM
ABXSQ
ACHIC
ADQXQ
ADXHL
AQVQM
H13
IPSME
-
02
0R
1AW
55
AAPBV
ABFLS
ADACO
AJYGW
AS
DZ
KM
PQEST
X
XHC
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7QO
7S9
L.6
7X8
5PM
ID FETCH-LOGICAL-c540t-95eb8cce7e1e0b3a06f37aa64b10a40309bce1f3ebc3655da61d64a41f8cf0323
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:27:47 EDT 2025
Thu Jul 10 22:12:56 EDT 2025
Fri Jul 11 02:16:03 EDT 2025
Sun Aug 24 03:41:53 EDT 2025
Mon Jun 30 10:25:08 EDT 2025
Thu Apr 03 06:56:52 EDT 2025
Thu Apr 24 22:55:39 EDT 2025
Tue Jul 01 02:38:51 EDT 2025
Wed Nov 11 00:29:14 EST 2020
Thu May 30 08:49:35 EDT 2019
Thu May 29 08:42:54 EDT 2025
Wed Dec 27 19:09:47 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c540t-95eb8cce7e1e0b3a06f37aa64b10a40309bce1f3ebc3655da61d64a41f8cf0323
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
Author contributions: M.H. designed research; N.O., H.Y., M. Miura, A.M., H.H., M. Musashi, and K.I. performed research; M.S., G.Y., and T.A. contributed new reagents/analytic tools; S.T. and H.S. analyzed data; and N.O., H.Y., M. Miura, A.M., H.H., and M.H. wrote the paper.
Communicated by Tadatsugu Taniguchi, University of Tokyo, Tokyo, Japan, November 27, 2007
PMID 18192401
PQID 201410614
PQPubID 42026
PageCount 6
ParticipantIDs pubmed_primary_18192401
fao_agris_US201300850767
crossref_citationtrail_10_1073_pnas_0711183105
pnas_primary_105_3_1003
proquest_miscellaneous_47513806
jstor_primary_25451211
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2242726
proquest_journals_201410614
proquest_miscellaneous_70237594
proquest_miscellaneous_21019191
pnas_primary_105_3_1003_fulltext
crossref_primary_10_1073_pnas_0711183105
ProviderPackageCode RNA
PNE
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-01-22
PublicationDateYYYYMMDD 2008-01-22
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-22
  day: 22
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2008
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
Musashi M (e_1_3_3_40_2) 1991; 280
e_1_3_3_19_2
e_1_3_3_38_2
Blaser MJ (e_1_3_3_6_2) 1995; 55
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
Honda S (e_1_3_3_23_2) 1998; 58
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
Correa P (e_1_3_3_30_2) 1992; 52
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
12719469 - J Cell Biol. 2003 Apr 28;161(2):249-55
16354697 - Mol Cell Biol. 2006 Jan;26(1):261-76
9766647 - Cancer Res. 1998 Oct 1;58(19):4255-9
8984731 - Trends Genet. 1996 May;12(5):171-5
14963045 - J Biol Chem. 2004 Apr 23;279(17):17205-16
8996200 - J Pharmacol Exp Ther. 1997 Jan;280(1):225-31
11902583 - Nat Rev Cancer. 2002 Jan;2(1):28-37
15273746 - Nat Med. 2004 Aug;10(8):849-57
9517643 - Am J Gastroenterol. 1998 Mar;93(3):375-9
9271425 - Mol Cell Biol. 1997 Sep;17(9):5499-507
15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20
1458460 - Cancer Res. 1992 Dec 15;52(24):6735-40
7743510 - Cancer Res. 1995 May 15;55(10):2111-5
11743164 - Science. 2002 Jan 25;295(5555):683-6
11905707 - Lancet Oncol. 2001 Sep;2(9):533-43
8253786 - J Biol Chem. 1993 Dec 15;268(35):26559-70
7816809 - Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):160-4
12419219 - Mol Cell. 2002 Oct;10(4):745-55
16756488 - Annu Rev Biochem. 2006;75:137-63
12766944 - Bioessays. 2003 Jun;25(6):542-53
12391297 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14428-33
15314019 - Genes Dev. 2004 Aug 15;18(16):1909-25
16618412 - Gastroenterology. 2006 Apr;130(4):1181-90
8929480 - Am J Clin Pathol. 1996 Nov;106(5):670-5
17507984 - Nature. 2007 May 17;447(7142):330-3
16275761 - J Exp Med. 2005 Nov 7;202(9):1235-47
16053901 - Eur J Med Genet. 2005 Apr-Jun;48(2):81-96
17237808 - Oncogene. 2007 Jul 12;26(32):4617-26
11159516 - Blood. 2001 Feb 15;97(4):911-4
7473834 - J Natl Cancer Inst. 1995 Dec 6;87(23):1777-80
15887107 - Gastroenterology. 2005 May;128(5):1229-42
12717436 - Nat Genet. 2003 Jun;34(2):148-50
15761018 - Blood. 2005 Jul 1;106(1):311-7
15343275 - Nat Rev Cancer. 2004 Sep;4(9):688-94
9721161 - Gastroenterology. 1998 Sep;115(3):642-8
11788577 - J Biol Chem. 2002 Mar 1;277(9):6775-8
9135515 - Gut. 1997 Mar;40(3):297-301
10588744 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14559-64
17160020 - Oncogene. 2007 May 24;26(24):3462-72
8145781 - N Engl J Med. 1994 May 5;330(18):1267-71
References_xml – ident: e_1_3_3_13_2
  doi: 10.1016/j.ejmg.2005.03.001
– ident: e_1_3_3_14_2
  doi: 10.1038/nrc1433
– ident: e_1_3_3_35_2
  doi: 10.1038/nm1084
– ident: e_1_3_3_36_2
  doi: 10.1093/ajcp/106.5.670
– ident: e_1_3_3_2_2
  doi: 10.1038/nrc703
– ident: e_1_3_3_29_2
  doi: 10.1016/S0021-9258(19)74349-X
– volume: 52
  start-page: 6735
  year: 1992
  ident: e_1_3_3_30_2
  article-title: Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention.
  publication-title: Cancer Res
– ident: e_1_3_3_9_2
  doi: 10.1126/science.1067147
– ident: e_1_3_3_19_2
  doi: 10.1084/jem.20051027
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.C100754200
– ident: e_1_3_3_32_2
  doi: 10.1128/MCB.17.9.5499
– ident: e_1_3_3_26_2
  doi: 10.1053/j.gastro.2005.12.038
– ident: e_1_3_3_8_2
  doi: 10.1073/pnas.96.25.14559
– volume: 58
  start-page: 4255
  year: 1998
  ident: e_1_3_3_23_2
  article-title: Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils.
  publication-title: Cancer Res
– ident: e_1_3_3_7_2
  doi: 10.1136/gut.40.3.297
– ident: e_1_3_3_33_2
  doi: 10.1182/blood.V97.4.911
– ident: e_1_3_3_37_2
  doi: 10.1158/0008-5472.CAN-04-1923
– ident: e_1_3_3_38_2
  doi: 10.1002/bies.10286
– ident: e_1_3_3_31_2
  doi: 10.1182/blood-2004-11-4207
– ident: e_1_3_3_1_2
  doi: 10.1016/S1470-2045(01)00486-7
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.92.1.160
– ident: e_1_3_3_20_2
  doi: 10.1038/nature05765
– ident: e_1_3_3_25_2
  doi: 10.1053/j.gastro.2005.02.064
– ident: e_1_3_3_18_2
  doi: 10.1016/S1097-2765(02)00681-0
– ident: e_1_3_3_39_2
  doi: 10.1146/annurev.biochem.75.103004.142702
– ident: e_1_3_3_17_2
  doi: 10.1083/jcb.200208039
– ident: e_1_3_3_22_2
  doi: 10.1101/gad.1211604
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M309964200
– ident: e_1_3_3_21_2
  doi: 10.1038/sj.onc.1210251
– ident: e_1_3_3_24_2
  doi: 10.1016/S0016-5085(98)70143-X
– ident: e_1_3_3_34_2
  doi: 10.1038/ng1156
– volume: 280
  start-page: 225
  year: 1991
  ident: e_1_3_3_40_2
  article-title: Phorbol ester enhancement of IL-3-dependent proliferation of primitive hematopoietic progenitors of mice.
  publication-title: J Pharmacol Exp Ther
  doi: 10.1016/S0022-3565(24)36411-0
– ident: e_1_3_3_12_2
  doi: 10.1038/sj.onc.1210139
– ident: e_1_3_3_16_2
  doi: 10.1128/MCB.26.1.261-276.2006
– volume: 55
  start-page: 2111
  year: 1995
  ident: e_1_3_3_6_2
  article-title: Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach.
  publication-title: Cancer Res
– ident: e_1_3_3_4_2
  doi: 10.1093/jnci/87.23.1777
– ident: e_1_3_3_5_2
  doi: 10.1111/j.1572-0241.1998.00375.x
– ident: e_1_3_3_3_2
  doi: 10.1056/NEJM199405053301803
– ident: e_1_3_3_10_2
  doi: 10.1073/pnas.222375399
– ident: e_1_3_3_27_2
  doi: 10.1016/0168-9525(96)10016-0
– reference: 16275761 - J Exp Med. 2005 Nov 7;202(9):1235-47
– reference: 8145781 - N Engl J Med. 1994 May 5;330(18):1267-71
– reference: 12719469 - J Cell Biol. 2003 Apr 28;161(2):249-55
– reference: 15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20
– reference: 7473834 - J Natl Cancer Inst. 1995 Dec 6;87(23):1777-80
– reference: 15887107 - Gastroenterology. 2005 May;128(5):1229-42
– reference: 1458460 - Cancer Res. 1992 Dec 15;52(24):6735-40
– reference: 15314019 - Genes Dev. 2004 Aug 15;18(16):1909-25
– reference: 11902583 - Nat Rev Cancer. 2002 Jan;2(1):28-37
– reference: 16756488 - Annu Rev Biochem. 2006;75:137-63
– reference: 8253786 - J Biol Chem. 1993 Dec 15;268(35):26559-70
– reference: 11743164 - Science. 2002 Jan 25;295(5555):683-6
– reference: 11788577 - J Biol Chem. 2002 Mar 1;277(9):6775-8
– reference: 12391297 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14428-33
– reference: 7816809 - Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):160-4
– reference: 17507984 - Nature. 2007 May 17;447(7142):330-3
– reference: 8984731 - Trends Genet. 1996 May;12(5):171-5
– reference: 10588744 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14559-64
– reference: 16053901 - Eur J Med Genet. 2005 Apr-Jun;48(2):81-96
– reference: 15343275 - Nat Rev Cancer. 2004 Sep;4(9):688-94
– reference: 11905707 - Lancet Oncol. 2001 Sep;2(9):533-43
– reference: 16354697 - Mol Cell Biol. 2006 Jan;26(1):261-76
– reference: 9135515 - Gut. 1997 Mar;40(3):297-301
– reference: 17237808 - Oncogene. 2007 Jul 12;26(32):4617-26
– reference: 12717436 - Nat Genet. 2003 Jun;34(2):148-50
– reference: 9721161 - Gastroenterology. 1998 Sep;115(3):642-8
– reference: 9766647 - Cancer Res. 1998 Oct 1;58(19):4255-9
– reference: 12419219 - Mol Cell. 2002 Oct;10(4):745-55
– reference: 14963045 - J Biol Chem. 2004 Apr 23;279(17):17205-16
– reference: 15273746 - Nat Med. 2004 Aug;10(8):849-57
– reference: 8996200 - J Pharmacol Exp Ther. 1997 Jan;280(1):225-31
– reference: 9517643 - Am J Gastroenterol. 1998 Mar;93(3):375-9
– reference: 16618412 - Gastroenterology. 2006 Apr;130(4):1181-90
– reference: 15761018 - Blood. 2005 Jul 1;106(1):311-7
– reference: 12766944 - Bioessays. 2003 Jun;25(6):542-53
– reference: 7743510 - Cancer Res. 1995 May 15;55(10):2111-5
– reference: 8929480 - Am J Clin Pathol. 1996 Nov;106(5):670-5
– reference: 9271425 - Mol Cell Biol. 1997 Sep;17(9):5499-507
– reference: 11159516 - Blood. 2001 Feb 15;97(4):911-4
– reference: 17160020 - Oncogene. 2007 May 24;26(24):3462-72
SSID ssj0009580
Score 2.459961
Snippet Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B...
Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B...
Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B...
SourceID pubmedcentral
proquest
pubmed
crossref
pnas
jstor
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1003
SubjectTerms Adenocarcinoma
Animals
Antigens, Bacterial - genetics
Antigens, Bacterial - metabolism
Bacteria
Bacterial proteins
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biological Sciences
Bone marrow cells
carcinogenesis
Cell Transformation, Neoplastic - genetics
Cell Transformation, Neoplastic - metabolism
Cell Transformation, Neoplastic - pathology
Epithelial cells
Gastrointestinal Neoplasms - genetics
Gastrointestinal Neoplasms - metabolism
Gastrointestinal Neoplasms - pathology
Gene expression
Gene Expression Regulation, Neoplastic
Helicobacter pylori
Helicobacter pylori - genetics
Helicobacter pylori - metabolism
Helicobacter pylori - pathogenicity
Hematologic Neoplasms - genetics
Hematologic Neoplasms - metabolism
Hematologic Neoplasms - pathology
humans
hyperplasia
Hypersensitivity
Infections
Kinases
Leukocytes
Lymphoma
Mice
Mice, Transgenic
Mutation
oncogene proteins
Phosphorylation
phosphotransferases (kinases)
Phosphotyrosine - metabolism
polyps (pathological conditions)
Rodents
small intestine
Stomach
Transgenic animals
Tumors
type IV secretion system
tyrosine
Title Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse
URI https://www.jstor.org/stable/25451211
http://www.pnas.org/content/105/3/1003.abstract
https://www.ncbi.nlm.nih.gov/pubmed/18192401
https://www.proquest.com/docview/201410614
https://www.proquest.com/docview/21019191
https://www.proquest.com/docview/47513806
https://www.proquest.com/docview/70237594
https://pubmed.ncbi.nlm.nih.gov/PMC2242726
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYGB9-4GGoSkn8EaeP0wSakCiTukl7i-zU2SpYUi2tEPx7_GPcOd_TigBViir74qa-X-589vlnQt7GRoepSLkvbSZ9Ibjyp8HU-JEwsTHxNDUM9w5_nkWnF-LTpbwcjX71spY2azNJf967r-R_tAploFfcJfsPmm0bhQL4DvqFK2gYrn-nY3Q0ULtMkam_ymh1wz9wJqBh45iYxyuMyZfjE311PIYIfIM5WFe6XN8WyBUBr3he8wU4_tZiVSxxY-M4x9xyXd64hFmcIBgkDZ21jq9s0gxmzbzicbdLpTYd5dgfn826M4-_XOc491WZ9-Jm2dqejS7daPYUDE1XfK5z_dWVz6-X-Y_Wk8z191oavMmmlm-mMDB7zmddwPunx-vbbgb-VFQ7rie2Mtcw2gFYVQeOtvY8kD3g8p51DoOA9zw98hrd60XA7OHRx7kukb8RQjDetDmk5r6YM1z4RdY_Fakd8oBBrMKcd-gzP8fVPqj68Rt-KcXf3_mFwdBoJ9NFkyOLxLsgel8QdDeXtzc4On9MHtVRDT2uILpHRjZ_Qvaa3qVHNbn5u6ek6DBLO8zSIqN9zNIKsxQxS2vM0ruYpYBZOsAsbTELN1GH2Wfk4uOH85NTvz70w08heFj7U2lNnKZW2dAGhusgyrjSGmxHGGiBC4ImtWHGrUl5JOVCR-EiElqEWZxmAWd8n-zmRW4PCNUM4xdpuVpoIUMFvW_jWLIYmsrMgnlk0vR3ktaM-Hgwy7fEZWYonmCvJ52CPHLU3rCqyGC2ix6AAhN9Ba46GeLEI_tOq20TDKIYZFr0yHPXSte0TDiSinOP0C01SVbniHnksAFHUpuoMmEujRtG4B5509aC_8BFQQ0q2YAI-OQpfLZLCCVDHgfRdgkFA38lpwL_gANj96DItygCaF0NYNoKILv9sCZfXjuWe4gtmGLRi-0deUgedtbkJdld327sKwgR1ua1ewV_A7KzEzQ
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+expression+of+Helicobacter+pylori+CagA+induces+gastrointestinal+and+hematopoietic+neoplasms+in+mouse&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ohnishi%2C+Naomi&rft.au=Yuasa%2C+Hitomi&rft.au=Tanaka%2C+Shinya&rft.au=Sawa%2C+Hirofumi&rft.date=2008-01-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=3&rft.spage=1003&rft.epage=1008&rft_id=info:doi/10.1073%2Fpnas.0711183105&rft.externalDocID=US201300850767
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F3.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F3.cover.gif