Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse
Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyr...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 105; no. 3; pp. 1003 - 1008 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
22.01.2008
National Acad Sciences |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms. |
---|---|
AbstractList | Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms. Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms.Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms. Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA -encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori -associated neoplasms. bacterial oncoprotein transgenic mouse Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA-encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori-associated neoplasms. [PUBLICATION ABSTRACT] Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B cell origin. The cagA -encoded CagA protein is delivered into gastric epithelial cells via the bacterial type IV secretion system and, upon tyrosine phosphorylation by Src family kinases, specifically binds to and aberrantly activates SHP-2 tyrosine phosphatase, a bona fide oncoprotein in human malignancies. CagA also elicits junctional and polarity defects in epithelial cells by interacting with and inhibiting partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) independently of CagA tyrosine phosphorylation. Despite these CagA activities that contribute to neoplastic transformation, a causal link between CagA and in vivo oncogenesis remains unknown. Here, we generated transgenic mice expressing wild-type or phosphorylation-resistant CagA throughout the body or predominantly in the stomach. Wild-type CagA transgenic mice showed gastric epithelial hyperplasia and some of the mice developed gastric polyps and adenocarcinomas of the stomach and small intestine. Systemic expression of wild-type CagA further induced leukocytosis with IL-3/GM-CSF hypersensitivity and some mice developed myeloid leukemias and B cell lymphomas, the hematological malignancies also caused by gain-of-function SHP-2 mutations. Such pathological abnormalities were not observed in transgenic mice expressing phosphorylation-resistant CagA. These results provide first direct evidence for the role of CagA as a bacterium-derived oncoprotein (bacterial oncoprotein) that acts in mammals and further indicate the importance of CagA tyrosine phosphorylation, which enables CagA to deregulate SHP-2, in the development of H. pylori -associated neoplasms. |
Author | Miura, Motohiro Hatakeyama, Masanori Matsui, Atsushi Higashi, Hideaki Iwabuchi, Kazuya Yuasa, Hitomi Musashi, Manabu Azuma, Takeshi Sawa, Hirofumi Tanaka, Shinya Suzuki, Misao Ohnishi, Naomi Yamada, Gen |
Author_xml | – sequence: 1 fullname: Ohnishi, Naomi – sequence: 2 fullname: Yuasa, Hitomi – sequence: 3 fullname: Tanaka, Shinya – sequence: 4 fullname: Sawa, Hirofumi – sequence: 5 fullname: Miura, Motohiro – sequence: 6 fullname: Matsui, Atsushi – sequence: 7 fullname: Higashi, Hideaki – sequence: 8 fullname: Musashi, Manabu – sequence: 9 fullname: Iwabuchi, Kazuya – sequence: 10 fullname: Suzuki, Misao – sequence: 11 fullname: Yamada, Gen – sequence: 12 fullname: Azuma, Takeshi – sequence: 13 fullname: Hatakeyama, Masanori |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18192401$$D View this record in MEDLINE/PubMed |
BookMark | eNqFks1vEzEQxVeoiKaFMydgxQFOaWf8sR8XpCoCilSJA-3Z8jqzqaONvdhe1P73OEqbQiWoLNmH-b1nv_EcFQfOOyqK1wgnCDU_HZ2OJ1AjYsMR5LNihtDivBItHBQzAFbPG8HEYXEU4xoAWtnAi-IQG2yZAJwV_jJoF1fkrCnpZgwUo_Wu9H15ToM1vtMmUSjH28EHWy706qy0bjkZiuVKxxS8dYlisk4PpXbL8po2OvnRW0rZ0ZEfBx03MYvKjZ8ivSye93qI9OruPC6uvny-XJzPL75__bY4u5gbKSDNW0ldYwzVhAQd11D1vNa6Eh2CFsCh7Qxhz6kzvJJyqStcVkIL7BvTA2f8uPi08x2nbkNLQy4FPagx2I0Ot8prq_6uOHutVv6XYkywmlXZ4MOdQfA_pxxRbWw0NAw6h5qiqoHxWrbiSVDUEnkDTzsyBGzzyuD7R-DaTyF3ODOAAqHC7bVv_wy4T3b_tRmQO8AEH2OgXhmbdMq_m_PaQSGo7Qip7QiphxHKutNHur31PxX3T9kWHmipeN6BZ-DjfwHVT8OQ6CZl8s2OXMfkwx5lUkhkuA31blfvtVd6FWxUVz9yUzhAI6Guav4bpWv1mw |
CitedBy_id | crossref_primary_10_1016_j_jpha_2012_02_007 crossref_primary_10_1111_hel_12567 crossref_primary_10_3748_wjg_v20_i36_12767 crossref_primary_10_1371_journal_pone_0030786 crossref_primary_10_3892_ol_2016_5506 crossref_primary_10_1053_j_gastro_2010_06_047 crossref_primary_10_1155_2015_164840 crossref_primary_10_1111_j_1523_5378_2009_00697_x crossref_primary_10_3389_fonc_2022_836004 crossref_primary_10_3390_ijms20112622 crossref_primary_10_1371_journal_ppat_1000544 crossref_primary_10_21926_obm_genet_2404272 crossref_primary_10_1080_1040841X_2020_1760786 crossref_primary_10_1111_j_1523_5378_2008_00633_x crossref_primary_10_1111_eva_70070 crossref_primary_10_1038_s41598_018_37095_4 crossref_primary_10_3389_fmicb_2020_01592 crossref_primary_10_1146_annurev_cancerbio_062722_013740 crossref_primary_10_1038_s41467_023_36218_4 crossref_primary_10_1371_journal_ppat_1000407 crossref_primary_10_1186_s12964_019_0323_9 crossref_primary_10_1590_s0004_2803_24612023_139 crossref_primary_10_1093_femspd_ftx103 crossref_primary_10_1017_erm_2017_4 crossref_primary_10_3390_v6010301 crossref_primary_10_18632_oncotarget_12486 crossref_primary_10_3389_fimmu_2021_760451 crossref_primary_10_3748_wjg_v21_i45_12742 crossref_primary_10_1038_onc_2012_358 crossref_primary_10_1128_mBio_03147_20 crossref_primary_10_1172_JCI38605 crossref_primary_10_1158_1940_6207_CAPR_13_0067 crossref_primary_10_2217_17455111_2_5_539 crossref_primary_10_1111_j_1574_695X_2010_00750_x crossref_primary_10_1074_jbc_M109_001008 crossref_primary_10_1016_j_canlet_2016_02_032 crossref_primary_10_3390_cancers11060843 crossref_primary_10_1111_cas_15357 crossref_primary_10_1152_physrev_00039_2009 crossref_primary_10_1128_spectrum_00015_24 crossref_primary_10_1093_infdis_jiu805 crossref_primary_10_1111_cmi_12040 crossref_primary_10_1371_journal_ppat_1005099 crossref_primary_10_1016_j_bpg_2021_101743 crossref_primary_10_1053_j_gastro_2010_06_018 crossref_primary_10_3390_ijms19051353 crossref_primary_10_1371_journal_pone_0087425 crossref_primary_10_1128_IAI_00349_16 crossref_primary_10_3390_toxins10040163 crossref_primary_10_3390_ijms21207439 crossref_primary_10_3390_microorganisms11051312 crossref_primary_10_1111_cmi_12039 crossref_primary_10_1016_S1773_035X_13_72225_1 crossref_primary_10_1038_onc_2013_380 crossref_primary_10_1128_mSphere_00751_21 crossref_primary_10_1517_14728222_2012_709238 crossref_primary_10_1080_1062936X_2023_2230876 crossref_primary_10_1159_000365310 crossref_primary_10_1186_s41043_021_00280_9 crossref_primary_10_14309_ctg_0000000000000201 crossref_primary_10_1097_PAS_0000000000000437 crossref_primary_10_1101_cshperspect_a027953 crossref_primary_10_1111_cmi_12464 crossref_primary_10_1186_1478_811X_6_2 crossref_primary_10_1111_j_1349_7006_2008_00950_x crossref_primary_10_1093_nar_gku1271 crossref_primary_10_1155_2013_682418 crossref_primary_10_1038_onc_2014_187 crossref_primary_10_1016_j_canlet_2010_07_014 crossref_primary_10_1371_journal_pone_0050069 crossref_primary_10_1172_JCI61578 crossref_primary_10_1016_j_tim_2019_04_010 crossref_primary_10_1007_s12551_017_0345_8 crossref_primary_10_1155_2015_761501 crossref_primary_10_1016_j_ajpath_2014_01_027 crossref_primary_10_1007_s00428_019_02670_1 crossref_primary_10_1053_j_gastro_2011_07_045 crossref_primary_10_1016_j_jcmgh_2019_05_008 crossref_primary_10_1038_onc_2010_304 crossref_primary_10_1073_pnas_1320631111 crossref_primary_10_1097_QCO_0b013e3283531f7c crossref_primary_10_1111_hel_12300 crossref_primary_10_1016_j_meegid_2013_03_048 crossref_primary_10_1038_s41598_017_14102_8 crossref_primary_10_1371_journal_ppat_1007359 crossref_primary_10_3748_wjg_v27_i7_545 crossref_primary_10_1080_15384101_2018_1560121 crossref_primary_10_1016_j_canlet_2013_03_035 crossref_primary_10_1053_j_gastro_2017_03_010 crossref_primary_10_1084_jem_20100602 crossref_primary_10_1038_nrgastro_2014_99 crossref_primary_10_3892_or_2016_4572 crossref_primary_10_2147_IDR_S309051 crossref_primary_10_1097_MOH_0000000000000051 crossref_primary_10_1007_s00432_018_2816_0 crossref_primary_10_1155_2011_340157 crossref_primary_10_1016_j_bios_2023_115345 crossref_primary_10_1186_1478_811X_11_77 crossref_primary_10_1371_journal_pgen_1001069 crossref_primary_10_1136_bmjopen_2023_083157 crossref_primary_10_1080_15548627_2016_1252890 crossref_primary_10_1007_s00292_009_1269_2 crossref_primary_10_3389_fimmu_2023_1113478 crossref_primary_10_3390_ijms18102063 crossref_primary_10_1080_1040841X_2021_1944052 crossref_primary_10_1371_journal_ppat_1010628 crossref_primary_10_1007_s00535_009_0015_0 crossref_primary_10_1051_medsci_2013291011 crossref_primary_10_1111_2049_632X_12045 crossref_primary_10_37349_etat_2023_00132 crossref_primary_10_1128_mBio_01869_15 crossref_primary_10_1080_15476286_2015_1132141 crossref_primary_10_3390_ijms21186586 crossref_primary_10_1038_ncomms5423 crossref_primary_10_1111_mmi_14784 crossref_primary_10_1016_j_febslet_2009_06_043 crossref_primary_10_1371_journal_pone_0017856 crossref_primary_10_1093_glycob_cwp004 crossref_primary_10_1111_cas_12342 crossref_primary_10_1016_j_parint_2024_102995 crossref_primary_10_2217_fon_15_87 crossref_primary_10_1242_dmm_011163 crossref_primary_10_1007_s11894_012_0296_y crossref_primary_10_3390_pathogens12020234 crossref_primary_10_1186_s13099_016_0137_x crossref_primary_10_1371_journal_pone_0154643 crossref_primary_10_1038_srep15749 crossref_primary_10_1016_j_chom_2014_02_008 crossref_primary_10_2220_biomedres_37_21 crossref_primary_10_3389_fimmu_2024_1282680 crossref_primary_10_1038_nrmicro3016 crossref_primary_10_1182_blood_2016_04_713719 crossref_primary_10_1371_journal_pone_0004754 crossref_primary_10_1007_s00535_009_0014_1 crossref_primary_10_1016_j_meegid_2011_12_002 crossref_primary_10_1128_IAI_05845_11 crossref_primary_10_1111_hel_12987 crossref_primary_10_1155_2017_3456264 crossref_primary_10_1111_j_1365_2958_2011_07910_x crossref_primary_10_2217_fmb_15_72 crossref_primary_10_1172_JCI61143 crossref_primary_10_3390_toxins11110618 crossref_primary_10_1186_1757_4749_4_18 crossref_primary_10_1016_j_hoc_2017_01_002 crossref_primary_10_3390_microbiolres15030123 crossref_primary_10_1111_j_1523_5378_2008_00630_x crossref_primary_10_1182_asheducation_2013_1_109 crossref_primary_10_1053_j_gastro_2011_10_040 crossref_primary_10_4161_gmic_23797 crossref_primary_10_1186_s41021_016_0055_7 crossref_primary_10_1242_dmm_027649 crossref_primary_10_1007_s10552_012_0106_8 crossref_primary_10_1002_path_4940 crossref_primary_10_1053_j_gastro_2015_02_049 crossref_primary_10_1053_j_gastro_2011_10_036 crossref_primary_10_1128_JB_00063_10 crossref_primary_10_1136_gutjnl_2014_307295 crossref_primary_10_1128_mBio_00955_19 crossref_primary_10_1016_j_micpath_2018_01_040 crossref_primary_10_1016_j_lpm_2010_04_004 crossref_primary_10_1186_s13046_018_0962_5 crossref_primary_10_1016_j_jcmgh_2015_11_001 crossref_primary_10_1371_journal_pone_0023499 crossref_primary_10_1007_s13277_012_0448_6 crossref_primary_10_1016_j_bcp_2016_06_003 crossref_primary_10_1073_pnas_1814497116 crossref_primary_10_1002_JLB_MR0618_225R crossref_primary_10_3390_cancers13081878 crossref_primary_10_1038_srep10024 crossref_primary_10_1099_jmm_0_021816_0 crossref_primary_10_1007_s10620_013_2589_x crossref_primary_10_1016_j_tim_2013_09_004 crossref_primary_10_1016_j_ajg_2016_04_001 crossref_primary_10_1111_1751_2980_12056 crossref_primary_10_1053_j_gastro_2010_03_036 crossref_primary_10_1200_JCO_2014_60_1799 crossref_primary_10_3390_cancers5010092 crossref_primary_10_1242_dmm_000364 crossref_primary_10_3389_fcimb_2023_1062803 crossref_primary_10_1111_apt_12666 crossref_primary_10_2174_1574885518666230809121536 crossref_primary_10_1002_prca_201400176 crossref_primary_10_1074_jbc_M111_258673 crossref_primary_10_7704_kjhugr_2017_17_4_175 crossref_primary_10_1128_IAI_00692_18 crossref_primary_10_3390_biom12050691 crossref_primary_10_1371_journal_pone_0055120 crossref_primary_10_1080_14737140_2021_1844007 crossref_primary_10_1002_prot_25748 crossref_primary_10_1038_bcj_2013_22 crossref_primary_10_1093_femspd_ftaa049 crossref_primary_10_1517_14728222_2015_1073261 crossref_primary_10_1186_s12935_024_03552_6 crossref_primary_10_1128_JB_06340_11 crossref_primary_10_2217_fmb_15_32 crossref_primary_10_3892_wasj_2018_6 crossref_primary_10_7705_biomedica_v32i1_453 crossref_primary_10_1159_000380893 crossref_primary_10_3892_or_2016_5145 crossref_primary_10_18632_oncotarget_2828 crossref_primary_10_1038_s41388_020_1241_4 crossref_primary_10_1016_j_chom_2017_09_014 crossref_primary_10_2217_fon_2021_1546 crossref_primary_10_1002_path_4866 crossref_primary_10_1016_j_canlet_2010_10_012 crossref_primary_10_5352_JLS_2016_26_10_1214 crossref_primary_10_1007_s00430_020_00688_w crossref_primary_10_1007_s11912_013_0341_5 crossref_primary_10_1111_j_1365_2559_2012_04190_x crossref_primary_10_4291_wjgp_v7_i1_97 crossref_primary_10_1074_jbc_M110_121319 crossref_primary_10_3390_cancers12040803 crossref_primary_10_1111_j_1349_7006_2010_01743_x crossref_primary_10_1128_mBio_00221_16 crossref_primary_10_1097_MS9_0000000000001802 crossref_primary_10_1128_JCM_00504_09 crossref_primary_10_2217_fon_14_29 crossref_primary_10_3389_fonc_2019_00075 crossref_primary_10_3892_ijo_2019_4775 crossref_primary_10_1128_CMR_00012_10 crossref_primary_10_3390_cancers11040547 crossref_primary_10_1080_07391102_2018_1537895 crossref_primary_10_1128_mBio_02321_16 crossref_primary_10_3389_fmicb_2017_00615 crossref_primary_10_1038_s41388_018_0343_8 crossref_primary_10_15252_embj_201798664 crossref_primary_10_2217_imt_12_50 crossref_primary_10_4161_cam_21936 crossref_primary_10_1099_jmm_0_000049 crossref_primary_10_1002_ijc_24740 crossref_primary_10_1111_cas_12962 crossref_primary_10_1111_j_1600_0463_2009_02548_x crossref_primary_10_1186_s12967_022_03492_7 crossref_primary_10_1126_scisignal_abp9020 crossref_primary_10_1186_1471_2407_10_374 crossref_primary_10_1371_journal_ppat_1006514 crossref_primary_10_1038_nrc2857 crossref_primary_10_2183_pjab_93_013 crossref_primary_10_1177_1756283X08093567 crossref_primary_10_3748_wjg_v23_i26_4712 crossref_primary_10_2169_naika_102_600 crossref_primary_10_1016_j_celrep_2017_08_080 crossref_primary_10_18632_oncotarget_10528 crossref_primary_10_4049_jimmunol_2000234 crossref_primary_10_1172_JCI64373 crossref_primary_10_4161_gmic_19345 crossref_primary_10_1111_j_1742_4658_2011_08035_x crossref_primary_10_1016_j_jfma_2019_01_002 crossref_primary_10_1016_j_smim_2017_09_006 crossref_primary_10_1371_journal_pone_0079367 crossref_primary_10_1038_nmicrobiol_2016_26 crossref_primary_10_1016_j_bbamcr_2009_07_009 crossref_primary_10_1016_j_micinf_2011_03_011 crossref_primary_10_1371_journal_pone_0035341 crossref_primary_10_3390_toxins9040115 crossref_primary_10_3390_toxins9040136 crossref_primary_10_1007_s15010_023_02159_9 crossref_primary_10_1007_s12539_016_0142_2 crossref_primary_10_1038_nmicrobiol_2016_188 crossref_primary_10_3390_toxins9040132 crossref_primary_10_1038_nrc3610 crossref_primary_10_1038_s41598_017_11382_y crossref_primary_10_3390_biomedicines13010061 crossref_primary_10_1038_bcj_2014_40 crossref_primary_10_1074_jbc_M110_166504 crossref_primary_10_1186_1750_9378_9_43 crossref_primary_10_1080_19490976_2024_2314201 crossref_primary_10_1016_j_micinf_2017_06_005 crossref_primary_10_3390_pathogens10101321 crossref_primary_10_32604_oncologie_2022_024161 crossref_primary_10_1371_journal_pone_0105306 crossref_primary_10_4236_ojmm_2019_94018 crossref_primary_10_1016_j_tim_2020_02_004 crossref_primary_10_1111_mmi_13707 crossref_primary_10_1158_0008_5472_CAN_16_1680 crossref_primary_10_1128_IAI_00790_19 crossref_primary_10_3748_wjg_v22_i2_501 crossref_primary_10_1016_j_cmi_2015_06_004 crossref_primary_10_1111_1750_3841_14372 crossref_primary_10_1371_journal_pone_0062850 crossref_primary_10_1371_journal_pone_0197695 crossref_primary_10_1111_mmi_13896 crossref_primary_10_1016_j_humimm_2022_08_002 crossref_primary_10_1016_j_chom_2021_04_006 crossref_primary_10_4236_jbm_2023_1110017 crossref_primary_10_1073_pnas_1206098109 crossref_primary_10_1099_mic_0_001539 crossref_primary_10_1016_j_abb_2010_03_021 crossref_primary_10_1038_s41598_018_34425_4 crossref_primary_10_29252_ismj_20_2_170 crossref_primary_10_1186_s12876_016_0429_0 crossref_primary_10_1186_s12964_015_0111_0 crossref_primary_10_1111_j_1523_5378_2011_00927_x crossref_primary_10_1007_s00535_018_1453_3 crossref_primary_10_1053_j_gastro_2015_05_059 crossref_primary_10_1111_j_1440_1746_2008_05659_x crossref_primary_10_1093_carcin_bgt114 crossref_primary_10_2217_fmb_2018_0038 crossref_primary_10_1155_2015_490531 crossref_primary_10_1053_j_gastro_2009_01_073 crossref_primary_10_1128_IAI_01271_12 crossref_primary_10_1371_journal_pone_0035147 crossref_primary_10_1053_j_gastro_2015_09_004 crossref_primary_10_1016_j_chom_2010_04_005 crossref_primary_10_1016_j_yjmcc_2019_07_011 crossref_primary_10_1158_0008_5472_CAN_09_4690 crossref_primary_10_3412_jsb_70_319 crossref_primary_10_1128_mBio_01296_20 crossref_primary_10_1038_s41598_019_50054_x crossref_primary_10_3390_pathogens9020104 crossref_primary_10_1002_cam4_2892 crossref_primary_10_1128_CMR_00011_10 crossref_primary_10_3390_toxins11100591 crossref_primary_10_1111_j_1523_5378_2010_00759_x crossref_primary_10_1074_mcp_RA118_001181 crossref_primary_10_1186_s12964_017_0171_4 crossref_primary_10_1016_j_micinf_2011_12_003 crossref_primary_10_1097_MD_0000000000014124 crossref_primary_10_1007_s10238_012_0217_2 crossref_primary_10_1242_jcs_145029 crossref_primary_10_1186_s12866_020_01859_8 crossref_primary_10_1111_j_1751_2980_2009_00380_x crossref_primary_10_1002_path_5568 crossref_primary_10_4049_jimmunol_1400594 crossref_primary_10_1002_path_4351 crossref_primary_10_1038_srep18346 crossref_primary_10_1186_s12943_024_01934_y crossref_primary_10_1371_journal_ppat_1004621 crossref_primary_10_3389_fcimb_2024_1353094 crossref_primary_10_1016_j_chom_2012_10_014 crossref_primary_10_1016_j_tim_2008_05_005 crossref_primary_10_1200_JCO_2008_19_8341 crossref_primary_10_1158_1940_6207_CAPR_13_0235 crossref_primary_10_1136_gutjnl_2014_307949 crossref_primary_10_3164_jcbn_24_109 crossref_primary_10_1186_s13027_019_0233_x crossref_primary_10_3412_jsb_69_565 crossref_primary_10_1080_00365521_2019_1577483 crossref_primary_10_1038_s41419_020_02894_z crossref_primary_10_1111_j_1365_3083_2009_02237_x crossref_primary_10_1111_j_1349_7006_2008_00888_x crossref_primary_10_1016_j_micpath_2023_106063 crossref_primary_10_1099_jmm_0_001786 crossref_primary_10_3390_diseases2020187 crossref_primary_10_1007_s00108_013_3381_x crossref_primary_10_7314_APJCP_2016_17_2_733 crossref_primary_10_1016_j_mib_2021_08_007 crossref_primary_10_1016_j_bpg_2014_09_004 crossref_primary_10_1080_09737766_2020_1716645 crossref_primary_10_1007_s00011_021_01501_x crossref_primary_10_1016_j_canlet_2008_11_016 crossref_primary_10_1186_1478_811X_9_27 crossref_primary_10_1111_j_1349_7006_2009_01257_x crossref_primary_10_1111_j_1469_0691_2009_02965_x crossref_primary_10_1111_hel_12057 crossref_primary_10_1016_j_gtc_2015_05_011 crossref_primary_10_1038_s12276_024_01167_5 crossref_primary_10_1038_s41423_019_0339_5 crossref_primary_10_3390_ijms19102891 crossref_primary_10_1007_s12223_023_01091_7 crossref_primary_10_3748_wjg_v26_i10_995 crossref_primary_10_1128_IAI_00094_17 crossref_primary_10_1016_j_bjm_2016_12_004 crossref_primary_10_1111_febs_13592 crossref_primary_10_5306_wjco_v13_i11_866 crossref_primary_10_1080_15548627_2018_1515530 crossref_primary_10_1007_s12558_010_0123_z crossref_primary_10_1007_s10620_010_1316_0 crossref_primary_10_1016_j_cbi_2019_02_010 crossref_primary_10_1038_onc_2008_353 crossref_primary_10_23736_S1121_421X_18_02494_7 crossref_primary_10_1128_spectrum_02163_24 crossref_primary_10_1136_gutjnl_2011_301625 crossref_primary_10_1172_JCI130015 crossref_primary_10_1128_msystems_01098_23 crossref_primary_10_1136_jclinpath_2016_203641 crossref_primary_10_1038_bjc_2015_175 crossref_primary_10_1016_j_semcancer_2021_08_007 crossref_primary_10_4049_jimmunol_1003472 crossref_primary_10_4161_gmic_26262 crossref_primary_10_1074_jbc_M109_035766 crossref_primary_10_3389_fcvm_2022_992011 crossref_primary_10_3390_ijms23052492 crossref_primary_10_1038_nrgastro_2010_154 crossref_primary_10_1111_j_1462_5822_2008_01156_x crossref_primary_10_2177_jsci_31_132 crossref_primary_10_1111_j_1574_695X_2010_00722_x crossref_primary_10_2217_fon_10_37 crossref_primary_10_1007_s40139_013_0009_8 crossref_primary_10_1371_journal_pone_0146432 crossref_primary_10_1038_ctg_2015_16 crossref_primary_10_1371_journal_pone_0098416 crossref_primary_10_1152_ajpgi_00099_2015 crossref_primary_10_1186_1742_4682_11_40 crossref_primary_10_1016_j_micpath_2020_104653 crossref_primary_10_1111_hel_13119 crossref_primary_10_1016_j_giec_2021_03_003 crossref_primary_10_1038_srep38101 crossref_primary_10_1007_s10238_022_00793_5 crossref_primary_10_1136_gutjnl_2021_325630 crossref_primary_10_1186_s12929_018_0466_9 crossref_primary_10_3389_fcimb_2017_00050 crossref_primary_10_1128_IAI_01350_10 crossref_primary_10_1016_j_chom_2012_05_010 crossref_primary_10_4166_kjg_2015_66_6_303 crossref_primary_10_1093_femspd_ftv105 crossref_primary_10_1002_ardp_201400438 crossref_primary_10_1093_femspd_ftu021 crossref_primary_10_1186_s12929_014_0096_9 crossref_primary_10_3748_wjg_v21_i41_11654 crossref_primary_10_1007_s00535_023_02055_x crossref_primary_10_3390_jcm11113141 |
Cites_doi | 10.1016/j.ejmg.2005.03.001 10.1038/nrc1433 10.1038/nm1084 10.1093/ajcp/106.5.670 10.1038/nrc703 10.1016/S0021-9258(19)74349-X 10.1126/science.1067147 10.1084/jem.20051027 10.1074/jbc.C100754200 10.1128/MCB.17.9.5499 10.1053/j.gastro.2005.12.038 10.1073/pnas.96.25.14559 10.1136/gut.40.3.297 10.1182/blood.V97.4.911 10.1158/0008-5472.CAN-04-1923 10.1002/bies.10286 10.1182/blood-2004-11-4207 10.1016/S1470-2045(01)00486-7 10.1073/pnas.92.1.160 10.1038/nature05765 10.1053/j.gastro.2005.02.064 10.1016/S1097-2765(02)00681-0 10.1146/annurev.biochem.75.103004.142702 10.1083/jcb.200208039 10.1101/gad.1211604 10.1074/jbc.M309964200 10.1038/sj.onc.1210251 10.1016/S0016-5085(98)70143-X 10.1038/ng1156 10.1016/S0022-3565(24)36411-0 10.1038/sj.onc.1210139 10.1128/MCB.26.1.261-276.2006 10.1093/jnci/87.23.1777 10.1111/j.1572-0241.1998.00375.x 10.1056/NEJM199405053301803 10.1073/pnas.222375399 10.1016/0168-9525(96)10016-0 |
ContentType | Journal Article |
Copyright | Copyright 2008 The National Academy of Sciences of the United States of America Copyright National Academy of Sciences Jan 22, 2008 2008 by The National Academy of Sciences of the USA 2008 |
Copyright_xml | – notice: Copyright 2008 The National Academy of Sciences of the United States of America – notice: Copyright National Academy of Sciences Jan 22, 2008 – notice: 2008 by The National Academy of Sciences of the USA 2008 |
DBID | FBQ AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7S9 L.6 7X8 5PM |
DOI | 10.1073/pnas.0711183105 |
DatabaseName | AGRIS CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Biotechnology Research Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Biotechnology Research Abstracts AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic AGRICOLA Virology and AIDS Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 1008 |
ExternalDocumentID | PMC2242726 1419575341 18192401 10_1073_pnas_0711183105 105_3_1003 25451211 US201300850767 |
Genre | Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29P 2AX 2FS 2WC 3O- 4.4 53G 5RE 5VS 692 6TJ 79B 85S AACGO AAFWJ AANCE AAYJJ ABBHK ABOCM ABPLY ABPPZ ABPTK ABTLG ABZEH ACGOD ACIWK ACKIV ACNCT ACPRK ADULT ADZLD AENEX AEUPB AEXZC AFDAS AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS ASUFR AS~ BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS EJD F20 F5P FBQ FRP GX1 HGD HH5 HQ3 HTVGU HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JSODD JST KQ8 L7B LU7 MVM N9A NEJ NHB N~3 O9- OK1 P-O PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VOH VQA W8F WH7 WHG WOQ WOW X7M XFK XSW Y6R YBH YKV YSK ZA5 ZCA ZCG ~02 ~KM ABXSQ ACHIC ADQXQ ADXHL AQVQM H13 IPSME - 02 0R 1AW 55 AAPBV ABFLS ADACO AJYGW AS DZ KM PQEST X XHC AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7QO 7S9 L.6 7X8 5PM |
ID | FETCH-LOGICAL-c540t-95eb8cce7e1e0b3a06f37aa64b10a40309bce1f3ebc3655da61d64a41f8cf0323 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:27:47 EDT 2025 Thu Jul 10 22:12:56 EDT 2025 Fri Jul 11 02:16:03 EDT 2025 Sun Aug 24 03:41:53 EDT 2025 Mon Jun 30 10:25:08 EDT 2025 Thu Apr 03 06:56:52 EDT 2025 Thu Apr 24 22:55:39 EDT 2025 Tue Jul 01 02:38:51 EDT 2025 Wed Nov 11 00:29:14 EST 2020 Thu May 30 08:49:35 EDT 2019 Thu May 29 08:42:54 EDT 2025 Wed Dec 27 19:09:47 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c540t-95eb8cce7e1e0b3a06f37aa64b10a40309bce1f3ebc3655da61d64a41f8cf0323 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 Author contributions: M.H. designed research; N.O., H.Y., M. Miura, A.M., H.H., M. Musashi, and K.I. performed research; M.S., G.Y., and T.A. contributed new reagents/analytic tools; S.T. and H.S. analyzed data; and N.O., H.Y., M. Miura, A.M., H.H., and M.H. wrote the paper. Communicated by Tadatsugu Taniguchi, University of Tokyo, Tokyo, Japan, November 27, 2007 |
PMID | 18192401 |
PQID | 201410614 |
PQPubID | 42026 |
PageCount | 6 |
ParticipantIDs | pubmed_primary_18192401 fao_agris_US201300850767 crossref_citationtrail_10_1073_pnas_0711183105 pnas_primary_105_3_1003 proquest_miscellaneous_47513806 jstor_primary_25451211 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2242726 proquest_journals_201410614 proquest_miscellaneous_70237594 proquest_miscellaneous_21019191 pnas_primary_105_3_1003_fulltext crossref_primary_10_1073_pnas_0711183105 |
ProviderPackageCode | RNA PNE CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-01-22 |
PublicationDateYYYYMMDD | 2008-01-22 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-22 day: 22 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2008 |
Publisher | National Academy of Sciences National Acad Sciences |
Publisher_xml | – name: National Academy of Sciences – name: National Acad Sciences |
References | e_1_3_3_17_2 e_1_3_3_16_2 Musashi M (e_1_3_3_40_2) 1991; 280 e_1_3_3_19_2 e_1_3_3_38_2 Blaser MJ (e_1_3_3_6_2) 1995; 55 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 Honda S (e_1_3_3_23_2) 1998; 58 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 Correa P (e_1_3_3_30_2) 1992; 52 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_1_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 12719469 - J Cell Biol. 2003 Apr 28;161(2):249-55 16354697 - Mol Cell Biol. 2006 Jan;26(1):261-76 9766647 - Cancer Res. 1998 Oct 1;58(19):4255-9 8984731 - Trends Genet. 1996 May;12(5):171-5 14963045 - J Biol Chem. 2004 Apr 23;279(17):17205-16 8996200 - J Pharmacol Exp Ther. 1997 Jan;280(1):225-31 11902583 - Nat Rev Cancer. 2002 Jan;2(1):28-37 15273746 - Nat Med. 2004 Aug;10(8):849-57 9517643 - Am J Gastroenterol. 1998 Mar;93(3):375-9 9271425 - Mol Cell Biol. 1997 Sep;17(9):5499-507 15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20 1458460 - Cancer Res. 1992 Dec 15;52(24):6735-40 7743510 - Cancer Res. 1995 May 15;55(10):2111-5 11743164 - Science. 2002 Jan 25;295(5555):683-6 11905707 - Lancet Oncol. 2001 Sep;2(9):533-43 8253786 - J Biol Chem. 1993 Dec 15;268(35):26559-70 7816809 - Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):160-4 12419219 - Mol Cell. 2002 Oct;10(4):745-55 16756488 - Annu Rev Biochem. 2006;75:137-63 12766944 - Bioessays. 2003 Jun;25(6):542-53 12391297 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14428-33 15314019 - Genes Dev. 2004 Aug 15;18(16):1909-25 16618412 - Gastroenterology. 2006 Apr;130(4):1181-90 8929480 - Am J Clin Pathol. 1996 Nov;106(5):670-5 17507984 - Nature. 2007 May 17;447(7142):330-3 16275761 - J Exp Med. 2005 Nov 7;202(9):1235-47 16053901 - Eur J Med Genet. 2005 Apr-Jun;48(2):81-96 17237808 - Oncogene. 2007 Jul 12;26(32):4617-26 11159516 - Blood. 2001 Feb 15;97(4):911-4 7473834 - J Natl Cancer Inst. 1995 Dec 6;87(23):1777-80 15887107 - Gastroenterology. 2005 May;128(5):1229-42 12717436 - Nat Genet. 2003 Jun;34(2):148-50 15761018 - Blood. 2005 Jul 1;106(1):311-7 15343275 - Nat Rev Cancer. 2004 Sep;4(9):688-94 9721161 - Gastroenterology. 1998 Sep;115(3):642-8 11788577 - J Biol Chem. 2002 Mar 1;277(9):6775-8 9135515 - Gut. 1997 Mar;40(3):297-301 10588744 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14559-64 17160020 - Oncogene. 2007 May 24;26(24):3462-72 8145781 - N Engl J Med. 1994 May 5;330(18):1267-71 |
References_xml | – ident: e_1_3_3_13_2 doi: 10.1016/j.ejmg.2005.03.001 – ident: e_1_3_3_14_2 doi: 10.1038/nrc1433 – ident: e_1_3_3_35_2 doi: 10.1038/nm1084 – ident: e_1_3_3_36_2 doi: 10.1093/ajcp/106.5.670 – ident: e_1_3_3_2_2 doi: 10.1038/nrc703 – ident: e_1_3_3_29_2 doi: 10.1016/S0021-9258(19)74349-X – volume: 52 start-page: 6735 year: 1992 ident: e_1_3_3_30_2 article-title: Human gastric carcinogenesis: a multistep and multifactorial process–First American Cancer Society Award Lecture on Cancer Epidemiology and Prevention. publication-title: Cancer Res – ident: e_1_3_3_9_2 doi: 10.1126/science.1067147 – ident: e_1_3_3_19_2 doi: 10.1084/jem.20051027 – ident: e_1_3_3_11_2 doi: 10.1074/jbc.C100754200 – ident: e_1_3_3_32_2 doi: 10.1128/MCB.17.9.5499 – ident: e_1_3_3_26_2 doi: 10.1053/j.gastro.2005.12.038 – ident: e_1_3_3_8_2 doi: 10.1073/pnas.96.25.14559 – volume: 58 start-page: 4255 year: 1998 ident: e_1_3_3_23_2 article-title: Development of Helicobacter pylori-induced gastric carcinoma in Mongolian gerbils. publication-title: Cancer Res – ident: e_1_3_3_7_2 doi: 10.1136/gut.40.3.297 – ident: e_1_3_3_33_2 doi: 10.1182/blood.V97.4.911 – ident: e_1_3_3_37_2 doi: 10.1158/0008-5472.CAN-04-1923 – ident: e_1_3_3_38_2 doi: 10.1002/bies.10286 – ident: e_1_3_3_31_2 doi: 10.1182/blood-2004-11-4207 – ident: e_1_3_3_1_2 doi: 10.1016/S1470-2045(01)00486-7 – ident: e_1_3_3_28_2 doi: 10.1073/pnas.92.1.160 – ident: e_1_3_3_20_2 doi: 10.1038/nature05765 – ident: e_1_3_3_25_2 doi: 10.1053/j.gastro.2005.02.064 – ident: e_1_3_3_18_2 doi: 10.1016/S1097-2765(02)00681-0 – ident: e_1_3_3_39_2 doi: 10.1146/annurev.biochem.75.103004.142702 – ident: e_1_3_3_17_2 doi: 10.1083/jcb.200208039 – ident: e_1_3_3_22_2 doi: 10.1101/gad.1211604 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M309964200 – ident: e_1_3_3_21_2 doi: 10.1038/sj.onc.1210251 – ident: e_1_3_3_24_2 doi: 10.1016/S0016-5085(98)70143-X – ident: e_1_3_3_34_2 doi: 10.1038/ng1156 – volume: 280 start-page: 225 year: 1991 ident: e_1_3_3_40_2 article-title: Phorbol ester enhancement of IL-3-dependent proliferation of primitive hematopoietic progenitors of mice. publication-title: J Pharmacol Exp Ther doi: 10.1016/S0022-3565(24)36411-0 – ident: e_1_3_3_12_2 doi: 10.1038/sj.onc.1210139 – ident: e_1_3_3_16_2 doi: 10.1128/MCB.26.1.261-276.2006 – volume: 55 start-page: 2111 year: 1995 ident: e_1_3_3_6_2 article-title: Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. publication-title: Cancer Res – ident: e_1_3_3_4_2 doi: 10.1093/jnci/87.23.1777 – ident: e_1_3_3_5_2 doi: 10.1111/j.1572-0241.1998.00375.x – ident: e_1_3_3_3_2 doi: 10.1056/NEJM199405053301803 – ident: e_1_3_3_10_2 doi: 10.1073/pnas.222375399 – ident: e_1_3_3_27_2 doi: 10.1016/0168-9525(96)10016-0 – reference: 16275761 - J Exp Med. 2005 Nov 7;202(9):1235-47 – reference: 8145781 - N Engl J Med. 1994 May 5;330(18):1267-71 – reference: 12719469 - J Cell Biol. 2003 Apr 28;161(2):249-55 – reference: 15604238 - Cancer Res. 2004 Dec 15;64(24):8816-20 – reference: 7473834 - J Natl Cancer Inst. 1995 Dec 6;87(23):1777-80 – reference: 15887107 - Gastroenterology. 2005 May;128(5):1229-42 – reference: 1458460 - Cancer Res. 1992 Dec 15;52(24):6735-40 – reference: 15314019 - Genes Dev. 2004 Aug 15;18(16):1909-25 – reference: 11902583 - Nat Rev Cancer. 2002 Jan;2(1):28-37 – reference: 16756488 - Annu Rev Biochem. 2006;75:137-63 – reference: 8253786 - J Biol Chem. 1993 Dec 15;268(35):26559-70 – reference: 11743164 - Science. 2002 Jan 25;295(5555):683-6 – reference: 11788577 - J Biol Chem. 2002 Mar 1;277(9):6775-8 – reference: 12391297 - Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14428-33 – reference: 7816809 - Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):160-4 – reference: 17507984 - Nature. 2007 May 17;447(7142):330-3 – reference: 8984731 - Trends Genet. 1996 May;12(5):171-5 – reference: 10588744 - Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14559-64 – reference: 16053901 - Eur J Med Genet. 2005 Apr-Jun;48(2):81-96 – reference: 15343275 - Nat Rev Cancer. 2004 Sep;4(9):688-94 – reference: 11905707 - Lancet Oncol. 2001 Sep;2(9):533-43 – reference: 16354697 - Mol Cell Biol. 2006 Jan;26(1):261-76 – reference: 9135515 - Gut. 1997 Mar;40(3):297-301 – reference: 17237808 - Oncogene. 2007 Jul 12;26(32):4617-26 – reference: 12717436 - Nat Genet. 2003 Jun;34(2):148-50 – reference: 9721161 - Gastroenterology. 1998 Sep;115(3):642-8 – reference: 9766647 - Cancer Res. 1998 Oct 1;58(19):4255-9 – reference: 12419219 - Mol Cell. 2002 Oct;10(4):745-55 – reference: 14963045 - J Biol Chem. 2004 Apr 23;279(17):17205-16 – reference: 15273746 - Nat Med. 2004 Aug;10(8):849-57 – reference: 8996200 - J Pharmacol Exp Ther. 1997 Jan;280(1):225-31 – reference: 9517643 - Am J Gastroenterol. 1998 Mar;93(3):375-9 – reference: 16618412 - Gastroenterology. 2006 Apr;130(4):1181-90 – reference: 15761018 - Blood. 2005 Jul 1;106(1):311-7 – reference: 12766944 - Bioessays. 2003 Jun;25(6):542-53 – reference: 7743510 - Cancer Res. 1995 May 15;55(10):2111-5 – reference: 8929480 - Am J Clin Pathol. 1996 Nov;106(5):670-5 – reference: 9271425 - Mol Cell Biol. 1997 Sep;17(9):5499-507 – reference: 11159516 - Blood. 2001 Feb 15;97(4):911-4 – reference: 17160020 - Oncogene. 2007 May 24;26(24):3462-72 |
SSID | ssj0009580 |
Score | 2.459961 |
Snippet | Infection with cagA-positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B... Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B... Infection with cagA -positive Helicobacter pylori is associated with gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue (MALT) lymphoma of B... |
SourceID | pubmedcentral proquest pubmed crossref pnas jstor fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1003 |
SubjectTerms | Adenocarcinoma Animals Antigens, Bacterial - genetics Antigens, Bacterial - metabolism Bacteria Bacterial proteins Bacterial Proteins - genetics Bacterial Proteins - metabolism Biological Sciences Bone marrow cells carcinogenesis Cell Transformation, Neoplastic - genetics Cell Transformation, Neoplastic - metabolism Cell Transformation, Neoplastic - pathology Epithelial cells Gastrointestinal Neoplasms - genetics Gastrointestinal Neoplasms - metabolism Gastrointestinal Neoplasms - pathology Gene expression Gene Expression Regulation, Neoplastic Helicobacter pylori Helicobacter pylori - genetics Helicobacter pylori - metabolism Helicobacter pylori - pathogenicity Hematologic Neoplasms - genetics Hematologic Neoplasms - metabolism Hematologic Neoplasms - pathology humans hyperplasia Hypersensitivity Infections Kinases Leukocytes Lymphoma Mice Mice, Transgenic Mutation oncogene proteins Phosphorylation phosphotransferases (kinases) Phosphotyrosine - metabolism polyps (pathological conditions) Rodents small intestine Stomach Transgenic animals Tumors type IV secretion system tyrosine |
Title | Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse |
URI | https://www.jstor.org/stable/25451211 http://www.pnas.org/content/105/3/1003.abstract https://www.ncbi.nlm.nih.gov/pubmed/18192401 https://www.proquest.com/docview/201410614 https://www.proquest.com/docview/21019191 https://www.proquest.com/docview/47513806 https://www.proquest.com/docview/70237594 https://pubmed.ncbi.nlm.nih.gov/PMC2242726 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68cILYsBYGB9-4GGoSkn8EaeP0wSakCiTukl7i-zU2SpYUi2tEPx7_GPcOd_TigBViir74qa-X-589vlnQt7GRoepSLkvbSZ9Ibjyp8HU-JEwsTHxNDUM9w5_nkWnF-LTpbwcjX71spY2azNJf967r-R_tAploFfcJfsPmm0bhQL4DvqFK2gYrn-nY3Q0ULtMkam_ymh1wz9wJqBh45iYxyuMyZfjE311PIYIfIM5WFe6XN8WyBUBr3he8wU4_tZiVSxxY-M4x9xyXd64hFmcIBgkDZ21jq9s0gxmzbzicbdLpTYd5dgfn826M4-_XOc491WZ9-Jm2dqejS7daPYUDE1XfK5z_dWVz6-X-Y_Wk8z191oavMmmlm-mMDB7zmddwPunx-vbbgb-VFQ7rie2Mtcw2gFYVQeOtvY8kD3g8p51DoOA9zw98hrd60XA7OHRx7kukb8RQjDetDmk5r6YM1z4RdY_Fakd8oBBrMKcd-gzP8fVPqj68Rt-KcXf3_mFwdBoJ9NFkyOLxLsgel8QdDeXtzc4On9MHtVRDT2uILpHRjZ_Qvaa3qVHNbn5u6ek6DBLO8zSIqN9zNIKsxQxS2vM0ruYpYBZOsAsbTELN1GH2Wfk4uOH85NTvz70w08heFj7U2lNnKZW2dAGhusgyrjSGmxHGGiBC4ImtWHGrUl5JOVCR-EiElqEWZxmAWd8n-zmRW4PCNUM4xdpuVpoIUMFvW_jWLIYmsrMgnlk0vR3ktaM-Hgwy7fEZWYonmCvJ52CPHLU3rCqyGC2ix6AAhN9Ba46GeLEI_tOq20TDKIYZFr0yHPXSte0TDiSinOP0C01SVbniHnksAFHUpuoMmEujRtG4B5509aC_8BFQQ0q2YAI-OQpfLZLCCVDHgfRdgkFA38lpwL_gANj96DItygCaF0NYNoKILv9sCZfXjuWe4gtmGLRi-0deUgedtbkJdld327sKwgR1ua1ewV_A7KzEzQ |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transgenic+expression+of+Helicobacter+pylori+CagA+induces+gastrointestinal+and+hematopoietic+neoplasms+in+mouse&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Ohnishi%2C+Naomi&rft.au=Yuasa%2C+Hitomi&rft.au=Tanaka%2C+Shinya&rft.au=Sawa%2C+Hirofumi&rft.date=2008-01-22&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=105&rft.issue=3&rft.spage=1003&rft.epage=1008&rft_id=info:doi/10.1073%2Fpnas.0711183105&rft.externalDocID=US201300850767 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F3.cover.gif |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F105%2F3.cover.gif |