Imperceptible, designable, and scalable braided electronic cord
Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 7097 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.11.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future.
Inspired by the characteristics of textile-based flexible electronic sensors, the authors report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces with the features of user-friendliness, excellent durability and rich interaction mode. |
---|---|
AbstractList | Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future. Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future.Inspired by the characteristics of textile-based flexible electronic sensors, the authors report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces with the features of user-friendliness, excellent durability and rich interaction mode. Inspired by the characteristics of textile-based flexible electronic sensors, the authors report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces with the features of user-friendliness, excellent durability and rich interaction mode. Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future.Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future. Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future. Inspired by the characteristics of textile-based flexible electronic sensors, the authors report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces with the features of user-friendliness, excellent durability and rich interaction mode. |
ArticleNumber | 7097 |
Author | Gong, Yuchen Zhang, Dingyu Wang, Jiaxi Hu, Jiayu Wei, Lei Jian, Aijia Tao, Guangming Ouyang, Jingyu Hou, Chong Li, Pan Wang, Rui Zhang, Jing Hao, Yixue Zhou, Huamin Zhou, Jing Ouyang, Ju Hu, Long Chen, Min Liu, Jia Wang, Yuwei |
Author_xml | – sequence: 1 givenname: Min surname: Chen fullname: Chen, Min organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 2 givenname: Jingyu surname: Ouyang fullname: Ouyang, Jingyu organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 3 givenname: Aijia surname: Jian fullname: Jian, Aijia organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 4 givenname: Jia surname: Liu fullname: Liu, Jia organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 5 givenname: Pan surname: Li fullname: Li, Pan organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 6 givenname: Yixue surname: Hao fullname: Hao, Yixue organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 7 givenname: Yuchen surname: Gong fullname: Gong, Yuchen organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 8 givenname: Jiayu surname: Hu fullname: Hu, Jiayu organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 9 givenname: Jing surname: Zhou fullname: Zhou, Jing organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 10 givenname: Rui surname: Wang fullname: Wang, Rui organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 11 givenname: Jiaxi surname: Wang fullname: Wang, Jiaxi organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 12 givenname: Long surname: Hu fullname: Hu, Long organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 13 givenname: Yuwei surname: Wang fullname: Wang, Yuwei organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 14 givenname: Ju surname: Ouyang fullname: Ouyang, Ju organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology – sequence: 15 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: School of Mechanical Engineering and Electronic Information, China University of Geosciences (Wuhan) – sequence: 16 givenname: Chong orcidid: 0000-0002-1975-0747 surname: Hou fullname: Hou, Chong organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology, School of Optical and Electronic Information, Huazhong University of Science and Technology – sequence: 17 givenname: Lei orcidid: 0000-0003-0819-8325 surname: Wei fullname: Wei, Lei organization: School of Electrical and Electronic Engineering, Nanyang Technological University – sequence: 18 givenname: Huamin surname: Zhou fullname: Zhou, Huamin organization: State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology – sequence: 19 givenname: Dingyu orcidid: 0000-0002-9277-5705 surname: Zhang fullname: Zhang, Dingyu organization: Wuhan Jinyintan Hospital, Hubei Provincial Health and Health Committee – sequence: 20 givenname: Guangming orcidid: 0000-0002-1371-7735 surname: Tao fullname: Tao, Guangming email: tao@hust.edu.cn organization: Wuhan National Laboratory for Optoelectronics and School of Computer Science and Technology, Huazhong University of Science and Technology, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36402785$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9vFCEYxompsbX2C3gwm3jx4Cj_ZoCLxjRVN2niRc_kHXhnZTMLK8w29duX3Wm17aFceIHf8_AE3pfkKKaIhLxm9AOjQn8skslONZTzRkjDdHP9jJxwKlnDFBdH9-pjclbKmtYhKiflC3IsOkm50u0J-bzcbDE73E6hH_H9wmMJqwiHGqJfFAfjfrXoMwSPfoEjuimnGNzCpexfkecDjAXPbudT8uvrxc_z783lj2_L8y-XjWslnRoj0CmJvqWqNbTrje6MM4NAOXSCQ8-d7BllSjnQqgcAD8b73knvBsopF6dkOfv6BGu7zWED-a9NEOxhI-WVhTwFN6KVevCtHxhtQUlHW6M8cuyUFJp5jli9Ps1e212_Qe8wThnGB6YPT2L4bVfpyppOtUrTavDu1iCnPzssk92E4nAcIWLaFctVvUobLXVF3z5C12mXY32qPaU0Y8p0lXpzP9G_KHf_VAE9Ay6nUjIO1oUJppD2AcNoGbX7rrBzV9jaFfbQFfa6Svkj6Z37kyIxi0qF4wrz_9hPqG4AmPnJ_Q |
CitedBy_id | crossref_primary_10_1016_j_matt_2024_08_021 crossref_primary_10_1021_acssensors_4c01568 crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_3390_bdcc7040159 crossref_primary_10_1016_j_nanoen_2024_110118 crossref_primary_10_1126_science_adj8013 crossref_primary_10_1002_admt_202300297 crossref_primary_10_1002_adfm_202308120 crossref_primary_10_2196_57622 crossref_primary_10_1016_j_pmatsci_2023_101144 crossref_primary_10_1002_anie_202303616 crossref_primary_10_1016_j_ijbiomac_2024_138229 crossref_primary_10_1002_adma_202407329 crossref_primary_10_1016_j_cej_2023_146197 crossref_primary_10_1038_s41377_024_01383_8 crossref_primary_10_1016_j_cej_2024_148668 crossref_primary_10_1093_nsr_nwae480 crossref_primary_10_1002_advs_202412859 crossref_primary_10_1021_acsapm_3c01308 crossref_primary_10_1360_SST_2023_0347 crossref_primary_10_1007_s42765_024_00429_1 crossref_primary_10_3390_s24144753 crossref_primary_10_1093_nsr_nwae158 crossref_primary_10_1016_j_compositesb_2023_111152 crossref_primary_10_1021_acsami_3c13714 crossref_primary_10_3390_s25051615 crossref_primary_10_1002_ange_202303616 crossref_primary_10_1002_adma_202313518 crossref_primary_10_1002_adfm_202405099 crossref_primary_10_3788_LOP231453 crossref_primary_10_1016_j_sbsr_2025_100750 crossref_primary_10_1038_s41467_024_46516_0 crossref_primary_10_1002_smll_202311498 crossref_primary_10_1088_2631_7990_ace66a crossref_primary_10_1007_s11431_023_2442_9 crossref_primary_10_1016_j_cej_2023_147026 crossref_primary_10_1016_j_compstruct_2024_118041 crossref_primary_10_1039_D4NA00770K crossref_primary_10_1016_j_jmst_2024_12_058 crossref_primary_10_1021_acsami_4c15137 crossref_primary_10_1002_adfm_202414395 crossref_primary_10_1109_JIOT_2024_3380640 crossref_primary_10_1039_D3TC02970K crossref_primary_10_1039_D4GC05504G crossref_primary_10_1002_idm2_12154 crossref_primary_10_1016_j_cej_2025_159938 crossref_primary_10_1021_acsnano_3c06245 crossref_primary_10_1016_j_biomaterials_2024_122862 crossref_primary_10_1039_D4MH01310G crossref_primary_10_1002_advs_202401109 crossref_primary_10_1002_adfm_202414229 crossref_primary_10_1016_j_nanoen_2024_109821 crossref_primary_10_1002_idm2_12123 crossref_primary_10_1080_00405000_2024_2396161 crossref_primary_10_1016_j_device_2024_100366 crossref_primary_10_20517_ss_2023_26 crossref_primary_10_3390_bdcc7040161 crossref_primary_10_1016_j_jmst_2024_06_011 crossref_primary_10_1021_acsami_4c11976 crossref_primary_10_1021_acs_chemrev_4c00049 crossref_primary_10_1021_acsnano_3c03484 crossref_primary_10_1109_JSEN_2023_3347423 crossref_primary_10_1109_TMC_2024_3396612 crossref_primary_10_1007_s42765_025_00524_x crossref_primary_10_1016_j_joitmc_2024_100230 crossref_primary_10_1007_s42765_023_00338_9 crossref_primary_10_1021_acs_nanolett_3c03851 crossref_primary_10_1002_adfm_202413845 crossref_primary_10_1007_s40843_023_2720_6 crossref_primary_10_1016_j_mtener_2024_101698 crossref_primary_10_1038_s41528_025_00398_4 crossref_primary_10_1080_00405000_2024_2335703 |
Cites_doi | 10.1038/s41467-020-18471-z 10.1109/MNET.001.1900059 10.1016/j.xinn.2022.100340 10.1126/sciadv.abj9220 10.1038/s41598-022-05963-9 10.1360/nso/20220011 10.1002/adma.201504366 10.1002/adfm.202008936 10.1038/s41467-022-28459-6 10.1145/3266037.3271651 10.1016/j.carbpol.2018.07.076 10.1016/j.mattod.2019.11.006 10.1038/nmat2792 10.1021/acsnano.0c06063 10.1002/adma.201705759 10.1002/adfm.202107682 10.1002/adma.201504244 10.1002/smtd.202001041 10.1038/s41928-020-0415-y 10.1126/science.aaa7952 10.1002/admt.201900485 10.1038/s41467-021-25637-w 10.1126/scirobotics.abb6938 10.1021/acsnano.1c09792 10.1145/3310194 10.1021/acsnano.1c11321 10.3758/BF03213026 10.1021/acsami.0c03110 10.1002/adfm.202003276 10.1016/j.nanoen.2020.104932 10.1109/MNET.011.1900570 10.1111/ijag.12007 10.1038/s41586-022-04476-9 10.1038/s41586-019-1234-z 10.1002/adma.202107902 10.1002/adfm.202006679 10.1002/adfm.201500628 10.1038/s41928-021-00557-1 10.1002/adma.202104681 10.1038/s41928-021-00558-0 10.1038/s41528-020-00092-7 10.1109/35.968817 10.1016/j.nanoen.2021.105941 10.1002/adma.201902549 10.1002/adma.202003897 10.17489/biohun/2010/1/07 10.1002/adma.202005902 10.1002/adma.201500009 10.1038/s41586-019-1687-0 10.1002/adfm.201905808 10.1039/C8TA10964H 10.1109/TVT.2018.2879413 10.1002/adma.201903558 10.1002/adma.201302240 10.1002/adma.202200985 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-34918-x |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA/Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_48fd5df105a74c0597de2e674381d2ee PMC9675780 36402785 10_1038_s41467_022_34918_x |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-93ec74ed5075906b9869c9f3e4f632ab2c4b10177ca87baaada9ddbc4dcf02023 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:54 EDT 2025 Thu Aug 21 18:39:48 EDT 2025 Fri Jul 11 06:58:16 EDT 2025 Wed Aug 13 04:04:25 EDT 2025 Wed Feb 19 02:26:07 EST 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 00:58:33 EDT 2025 Fri Feb 21 02:38:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-93ec74ed5075906b9869c9f3e4f632ab2c4b10177ca87baaada9ddbc4dcf02023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1371-7735 0000-0002-1975-0747 0000-0002-9277-5705 0000-0003-0819-8325 |
OpenAccessLink | https://www.proquest.com/docview/2737811796?pq-origsite=%requestingapplication% |
PMID | 36402785 |
PQID | 2737811796 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_48fd5df105a74c0597de2e674381d2ee pubmedcentral_primary_oai_pubmedcentral_nih_gov_9675780 proquest_miscellaneous_2738189848 proquest_journals_2737811796 pubmed_primary_36402785 crossref_citationtrail_10_1038_s41467_022_34918_x crossref_primary_10_1038_s41467_022_34918_x springer_journals_10_1038_s41467_022_34918_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-19 |
PublicationDateYYYYMMDD | 2022-11-19 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | YanWThermally drawn advanced functional fibers: new frontier of flexible electronicsMater. Today20203516819410.1016/j.mattod.2019.11.0061:CAS:528:DC%2BC1MXitlynur3N Olwal, A., Moeller, J., Priest-Dorman, G., Starner, T. & Carroll, B. I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology 485–497 (Association for Computing Machinery, Berlin, Germany, 2018). Bretz, K., Jobbágy, Á. & Bretz, K. Force measurement of hand and fingers. Biomechanica Hungarica3, 61–66 (2010). Mokhtari, F., Foroughi, J., Zheng, T., Cheng, Z. & Spinks, G. Triaxial braided piezo fibers energy harvesters for self-powered wearable technologies. J.Mater. Chem. A7, 8245–8257 (2019). ParkH-LFlexible neuromorphic electronics for computing, soft robotics, and neuroprostheticsAdv. Mater.202032190355810.1002/adma.2019035581:CAS:528:DC%2BC1MXhvVGnsbrP LuoYLearning human–environment interactions using conformal tactile textilesNat. Electron.2021419320110.1038/s41928-021-00558-0 LeeJConductive fiber-based ultrasensitive textile pressure sensor for wearable electronicsAdv. Mater.201527243324392569257210.1002/adma.2015000091:CAS:528:DC%2BC2MXkvF2ns7k%3D Al-JarrahMAAl-DweikAKalilMIkkiSSDecision fusion in distributed cooperative wireless sensor networksIEEE Trans. Vehicular Technol.20196879781110.1109/TVT.2018.2879413 ZhangZDeep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applicationsnpj Flex. Electron.202042020epil.book.....Z10.1038/s41528-020-00092-71:CAS:528:DC%2BB3MXmvFWltrg%3D SundaramSLearning the signatures of the human grasp using a scalable tactile gloveNature20195696987022019Natur.569..698S3114285610.1038/s41586-019-1234-z1:CAS:528:DC%2BC1MXhtVOgtL3M YangJWearable 3.0: from smart clothing to wearable affective robotIEEE Netw.20193381410.1109/MNET.001.19000591:CAS:528:DC%2BB38XhtlaqtLfF AhnSWearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signalsNano Energy20207410493210.1016/j.nanoen.2020.1049321:CAS:528:DC%2BB3cXht1Wmt7%2FF NingCHelical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoringACS Nano202216281128213509871110.1021/acsnano.1c097921:CAS:528:DC%2BB38Xit1yksbk%3D HammockMLChortosATeeBCKTokJBHBaoZ25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progressAdv. Mater.201325599760382415118510.1002/adma.2013022401:CAS:528:DC%2BC3sXhs1KrtrvJ KhanSMGumusANassarJMHussainMMCMOS enabled microfluidic systems for healthcare based applicationsAdv. Mater.201830170575910.1002/adma.201705759 KhanYOstfeldAELochnerCMPierreAAriasACMonitoring of vital signs with flexible and wearable medical devicesAdv. Mater.201628437343952686769610.1002/adma.2015043661:CAS:528:DC%2BC28XisVejtL0%3D WangRMagnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricityAdv. Funct. Mater.202232210768210.1002/adfm.2021076821:CAS:528:DC%2BB3MXitFGrurjJ LeeJH3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human–machine interfacesACS Appl. Mater. Interfaces20201221424214322020smb3.book.....L3231975110.1021/acsami.0c031101:CAS:528:DC%2BB3cXns1ertr4%3D ChoiSConductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applicationsAdv. Funct. Mater.201929190580810.1002/adfm.2019058081:CAS:528:DC%2BC1MXhvFyhsLvL LiuZFHierarchically buckled sheath-core fibers for superelastic electronics, sensors, and musclesScience20153494004042015Sci...349..400L2620692910.1126/science.aaa79521:CAS:528:DC%2BC2MXhtF2mtr%2FN Chen, M. et al. Digital medical education empowered by intelligent fabric space. 28 National Science Open, 1, 20220011 (2022). YuXSkin-integrated wireless haptic interfaces for virtual and augmented realityNature20195754734792019Natur.575..473Y3174872210.1038/s41586-019-1687-01:CAS:528:DC%2BC1MXitF2qtL7I Ma, Y., Zhou, G. & Wang, S. WiFi sensing with channel state information: a survey. ACM Comput. Surveys52, 1–36 (2019). EgusaSMultimaterial piezoelectric fibresNat. Mater.201096436482010NatMa...9..643E2062286410.1038/nmat27921:CAS:528:DC%2BC3cXpt1Srsbw%3D Park, J. et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci. Adv.8, eabj9220 (2022). ZhangQTextile-only capacitive sensors for facile fabric integration without compromise of wearabilityAdv. Mater. Technol.20194190048510.1002/admt.201900485 BisdikianCAn overview of the Bluetooth wireless technologyIEEE Commun. Mag.200139869410.1109/35.968817 HeFRecent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applicationsSmall Methods20215200104110.1002/smtd.2020010411:CAS:528:DC%2BB3MXpsFWmsb0%3D YinRWangDZhaoSLouZShenGWearable sensors-enabled human–machine interaction systems: from design to applicationAdv. Funct. Mater.202131200893610.1002/adfm.2020089361:CAS:528:DC%2BB3cXislSgtbjE TrungTQLeeN-EFlexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcareAdv. Mater.201628433843722684038710.1002/adma.2015042441:CAS:528:DC%2BC28XitVOlu7o%3D PyoSLeeJBaeKSimSKimJRecent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applicationsAdv. Mater.202133200590210.1002/adma.2020059021:CAS:528:DC%2BB3MXpsFGqsrg%3D LeeSAg nanowire reinforced highly stretchable conductive fibers for wearable electronicsAdv. Funct. Mater.2015253114312110.1002/adfm.2015006281:CAS:528:DC%2BC2MXmslens78%3D ChenMLiving with I-fabric: smart living powered by intelligent fabric and deep analyticsIEEE Netw.20203415616310.1109/MNET.011.1900570 YanWSingle fibre enables acoustic fabrics via nanometre-scale vibrationsNature20226036166232022Natur.603..616Y3529686010.1038/s41586-022-04476-91:CAS:528:DC%2BB38XntlWnsLs%3D DongKPengXWangZLFiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligenceAdv. Mater.202032190254910.1002/adma.2019025491:CAS:528:DC%2BC1MXhsVGrsbjM Chen, M. et al. Fabric computing: concepts, opportunities and challenges. The Innovation3, 100340 (2022). MaLA machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescueAdv. Mater.202032200389710.1002/adma.2020038971:CAS:528:DC%2BB3cXhs1WrtrjL TaoGStolyarovAMAbouraddyAFMultimaterial FibersInt. J. Appl. Glass Sci.2012334936810.1111/ijag.120071:CAS:528:DC%2BC3sXjt1Squrs%3D WenFZhangZHeTLeeCAI enabled sign language recognition and VR space bidirectional communication using triboelectric smart gloveNat. Commun.2021122021NatCo..12.5378W34508076843330510.1038/s41467-021-25637-w1:CAS:528:DC%2BB3MXitVSrtLnE ChoiHWSmart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applicationsNat. Commun.2022132022NatCo..13..814C35145096883155310.1038/s41467-022-28459-61:CAS:528:DC%2BB38XjsVGjur4%3D BaekJYImplementation of an integrated home internet of things system for vulnerable older adults using a frailty-centered approachSci. Rep.2022122022NatSR..12.1922B35121795881702710.1038/s41598-022-05963-91:CAS:528:DC%2BB38XivV2ltro%3D MaYFlexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondoNano Energy20218510594110.1016/j.nanoen.2021.1059411:CAS:528:DC%2BB3MXmsVGjt7g%3D YangWSelf-powered interactive fiber electronics with visual–digital synergiesAdv. Mater.202133210468110.1002/adma.2021046811:CAS:528:DC%2BB3MXitFantb3N NingCFlexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensingAdv. Funct. Mater.202131200667910.1002/adfm.2020066791:CAS:528:DC%2BB3cXitVymt7vK NazFSynthesis and characterization of chitosan-based waterborne polyurethane for textile finishesCarbohydr. Polym.201820054623017719610.1016/j.carbpol.2018.07.0761:CAS:528:DC%2BC1cXhsVWqs73F ShiQDeep learning enabled smart mats as a scalable floor monitoring systemNat. Commun.2020112020NatCo..11.4609S32929087749037110.1038/s41467-020-18471-z1:CAS:528:DC%2BB3cXhvVOntbbL GuanFSilver nanowire–bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximityACS Nano20201415428154393303088710.1021/acsnano.0c06063 TownsendJTTheoretical analysis of an alphabetic confusion matrixPercept. Psychophys.19719405010.3758/BF03213026 Yang, P. et al. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano16, 4654–4665 (2022). Heng, W., Solomon, S. & Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater.34, 2107902 (2022). ChenMMultifunctional fiber-enabled intelligent health agentsAdv. Mater.2022n/a220098510.1002/adma.202200985 LeeJStretchable and suturable fibre sensors for wireless monitoring of connective tissue strainNat. Electron.2021429130110.1038/s41928-021-00557-11:CAS:528:DC%2BB3MXotVWks78%3D LeberASoft and stretchable liquid metal transmission lines as distributed probes of multimodal deformationsNat. Electron.202033163261961SSEle...3..316L10.1038/s41928-020-0415-y BhattaTA battery-less arbitrary motion sensing system using magnetic repulsion-based self-powered motion sensors and hybrid nanogeneratorAdv. Funct. Mater.202030200327610.1002/adfm.2020032761:CAS:528:DC%2BB3cXhtlyjt7zF ChenBA memristor-based hybrid analog-digital computing platform for mobile roboticsSci. Robot.20205eabb69383308748110.1126/scirobotics.abb6938 S Ahn (34918_CR38) 2020; 74 W Yan (34918_CR39) 2022; 603 34918_CR1 Y Ma (34918_CR10) 2021; 85 M Chen (34918_CR5) 2022; n/a 34918_CR9 MA Al-Jarrah (34918_CR53) 2019; 68 34918_CR37 S Sundaram (34918_CR45) 2019; 569 R Wang (34918_CR19) 2022; 32 C Ning (34918_CR42) 2022; 16 W Yan (34918_CR25) 2020; 35 S Pyo (34918_CR22) 2021; 33 X Yu (34918_CR26) 2019; 575 J Yang (34918_CR24) 2019; 33 C Ning (34918_CR41) 2021; 31 TQ Trung (34918_CR3) 2016; 28 C Bisdikian (34918_CR51) 2001; 39 SM Khan (34918_CR2) 2018; 30 34918_CR20 S Choi (34918_CR34) 2019; 29 F Wen (34918_CR44) 2021; 12 S Egusa (34918_CR36) 2010; 9 M Chen (34918_CR27) 2020; 34 F He (34918_CR21) 2021; 5 T Bhatta (34918_CR7) 2020; 30 F Naz (34918_CR49) 2018; 200 HW Choi (34918_CR17) 2022; 13 ZF Liu (34918_CR32) 2015; 349 H-L Park (34918_CR12) 2020; 32 S Lee (34918_CR33) 2015; 25 34918_CR55 34918_CR52 34918_CR50 B Chen (34918_CR14) 2020; 5 JH Lee (34918_CR6) 2020; 12 34918_CR13 K Dong (34918_CR40) 2020; 32 Q Shi (34918_CR15) 2020; 11 Y Luo (34918_CR47) 2021; 4 Q Zhang (34918_CR31) 2019; 4 L Ma (34918_CR46) 2020; 32 A Leber (34918_CR35) 2020; 3 JY Baek (34918_CR16) 2022; 12 W Yang (34918_CR43) 2021; 33 Y Khan (34918_CR4) 2016; 28 F Guan (34918_CR29) 2020; 14 JT Townsend (34918_CR54) 1971; 9 ML Hammock (34918_CR11) 2013; 25 34918_CR48 J Lee (34918_CR28) 2015; 27 J Lee (34918_CR30) 2021; 4 R Yin (34918_CR23) 2021; 31 Z Zhang (34918_CR8) 2020; 4 G Tao (34918_CR18) 2012; 3 |
References_xml | – reference: Al-JarrahMAAl-DweikAKalilMIkkiSSDecision fusion in distributed cooperative wireless sensor networksIEEE Trans. Vehicular Technol.20196879781110.1109/TVT.2018.2879413 – reference: SundaramSLearning the signatures of the human grasp using a scalable tactile gloveNature20195696987022019Natur.569..698S3114285610.1038/s41586-019-1234-z1:CAS:528:DC%2BC1MXhtVOgtL3M – reference: Ma, Y., Zhou, G. & Wang, S. WiFi sensing with channel state information: a survey. ACM Comput. Surveys52, 1–36 (2019). – reference: HammockMLChortosATeeBCKTokJBHBaoZ25th anniversary article: the evolution of electronic skin (E-Skin): a brief history, design considerations, and recent progressAdv. Mater.201325599760382415118510.1002/adma.2013022401:CAS:528:DC%2BC3sXhs1KrtrvJ – reference: YanWThermally drawn advanced functional fibers: new frontier of flexible electronicsMater. Today20203516819410.1016/j.mattod.2019.11.0061:CAS:528:DC%2BC1MXitlynur3N – reference: LeeJStretchable and suturable fibre sensors for wireless monitoring of connective tissue strainNat. Electron.2021429130110.1038/s41928-021-00557-11:CAS:528:DC%2BB3MXotVWks78%3D – reference: BhattaTA battery-less arbitrary motion sensing system using magnetic repulsion-based self-powered motion sensors and hybrid nanogeneratorAdv. Funct. Mater.202030200327610.1002/adfm.2020032761:CAS:528:DC%2BB3cXhtlyjt7zF – reference: Chen, M. et al. Fabric computing: concepts, opportunities and challenges. The Innovation3, 100340 (2022). – reference: YuXSkin-integrated wireless haptic interfaces for virtual and augmented realityNature20195754734792019Natur.575..473Y3174872210.1038/s41586-019-1687-01:CAS:528:DC%2BC1MXitF2qtL7I – reference: DongKPengXWangZLFiber/fabric-based piezoelectric and triboelectric nanogenerators for flexible/stretchable and wearable electronics and artificial intelligenceAdv. Mater.202032190254910.1002/adma.2019025491:CAS:528:DC%2BC1MXhsVGrsbjM – reference: YinRWangDZhaoSLouZShenGWearable sensors-enabled human–machine interaction systems: from design to applicationAdv. Funct. Mater.202131200893610.1002/adfm.2020089361:CAS:528:DC%2BB3cXislSgtbjE – reference: BisdikianCAn overview of the Bluetooth wireless technologyIEEE Commun. Mag.200139869410.1109/35.968817 – reference: LeeJH3D printed, customizable, and multifunctional smart electronic eyeglasses for wearable healthcare systems and human–machine interfacesACS Appl. Mater. Interfaces20201221424214322020smb3.book.....L3231975110.1021/acsami.0c031101:CAS:528:DC%2BB3cXns1ertr4%3D – reference: EgusaSMultimaterial piezoelectric fibresNat. Mater.201096436482010NatMa...9..643E2062286410.1038/nmat27921:CAS:528:DC%2BC3cXpt1Srsbw%3D – reference: NingCFlexible and stretchable fiber-shaped triboelectric nanogenerators for biomechanical monitoring and human-interactive sensingAdv. Funct. Mater.202131200667910.1002/adfm.2020066791:CAS:528:DC%2BB3cXitVymt7vK – reference: HeFRecent progress in flexible microstructural pressure sensors toward human–machine interaction and healthcare applicationsSmall Methods20215200104110.1002/smtd.2020010411:CAS:528:DC%2BB3MXpsFWmsb0%3D – reference: ChenMLiving with I-fabric: smart living powered by intelligent fabric and deep analyticsIEEE Netw.20203415616310.1109/MNET.011.1900570 – reference: ZhangQTextile-only capacitive sensors for facile fabric integration without compromise of wearabilityAdv. Mater. Technol.20194190048510.1002/admt.201900485 – reference: LeberASoft and stretchable liquid metal transmission lines as distributed probes of multimodal deformationsNat. Electron.202033163261961SSEle...3..316L10.1038/s41928-020-0415-y – reference: TrungTQLeeN-EFlexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcareAdv. Mater.201628433843722684038710.1002/adma.2015042441:CAS:528:DC%2BC28XitVOlu7o%3D – reference: ZhangZDeep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applicationsnpj Flex. Electron.202042020epil.book.....Z10.1038/s41528-020-00092-71:CAS:528:DC%2BB3MXmvFWltrg%3D – reference: ChenBA memristor-based hybrid analog-digital computing platform for mobile roboticsSci. Robot.20205eabb69383308748110.1126/scirobotics.abb6938 – reference: WenFZhangZHeTLeeCAI enabled sign language recognition and VR space bidirectional communication using triboelectric smart gloveNat. Commun.2021122021NatCo..12.5378W34508076843330510.1038/s41467-021-25637-w1:CAS:528:DC%2BB3MXitVSrtLnE – reference: Mokhtari, F., Foroughi, J., Zheng, T., Cheng, Z. & Spinks, G. Triaxial braided piezo fibers energy harvesters for self-powered wearable technologies. J.Mater. Chem. A7, 8245–8257 (2019). – reference: NazFSynthesis and characterization of chitosan-based waterborne polyurethane for textile finishesCarbohydr. Polym.201820054623017719610.1016/j.carbpol.2018.07.0761:CAS:528:DC%2BC1cXhsVWqs73F – reference: TaoGStolyarovAMAbouraddyAFMultimaterial FibersInt. J. Appl. Glass Sci.2012334936810.1111/ijag.120071:CAS:528:DC%2BC3sXjt1Squrs%3D – reference: ChoiHWSmart textile lighting/display system with multifunctional fibre devices for large scale smart home and IoT applicationsNat. Commun.2022132022NatCo..13..814C35145096883155310.1038/s41467-022-28459-61:CAS:528:DC%2BB38XjsVGjur4%3D – reference: Chen, M. et al. Digital medical education empowered by intelligent fabric space. 28 National Science Open, 1, 20220011 (2022). – reference: Bretz, K., Jobbágy, Á. & Bretz, K. Force measurement of hand and fingers. Biomechanica Hungarica3, 61–66 (2010). – reference: ParkH-LFlexible neuromorphic electronics for computing, soft robotics, and neuroprostheticsAdv. Mater.202032190355810.1002/adma.2019035581:CAS:528:DC%2BC1MXhvVGnsbrP – reference: YangJWearable 3.0: from smart clothing to wearable affective robotIEEE Netw.20193381410.1109/MNET.001.19000591:CAS:528:DC%2BB38XhtlaqtLfF – reference: KhanYOstfeldAELochnerCMPierreAAriasACMonitoring of vital signs with flexible and wearable medical devicesAdv. Mater.201628437343952686769610.1002/adma.2015043661:CAS:528:DC%2BC28XisVejtL0%3D – reference: MaYFlexible all-textile dual tactile-tension sensors for monitoring athletic motion during taekwondoNano Energy20218510594110.1016/j.nanoen.2021.1059411:CAS:528:DC%2BB3MXmsVGjt7g%3D – reference: WangRMagnetoelectrical clothing generator for high-performance transduction from biomechanical energy to electricityAdv. Funct. Mater.202232210768210.1002/adfm.2021076821:CAS:528:DC%2BB3MXitFGrurjJ – reference: LeeJConductive fiber-based ultrasensitive textile pressure sensor for wearable electronicsAdv. Mater.201527243324392569257210.1002/adma.2015000091:CAS:528:DC%2BC2MXkvF2ns7k%3D – reference: ChoiSConductive hierarchical hairy fibers for highly sensitive, stretchable, and water-resistant multimodal gesture-distinguishable sensor, VR applicationsAdv. Funct. Mater.201929190580810.1002/adfm.2019058081:CAS:528:DC%2BC1MXhvFyhsLvL – reference: LuoYLearning human–environment interactions using conformal tactile textilesNat. Electron.2021419320110.1038/s41928-021-00558-0 – reference: KhanSMGumusANassarJMHussainMMCMOS enabled microfluidic systems for healthcare based applicationsAdv. Mater.201830170575910.1002/adma.201705759 – reference: GuanFSilver nanowire–bacterial cellulose composite fiber-based sensor for highly sensitive detection of pressure and proximityACS Nano20201415428154393303088710.1021/acsnano.0c06063 – reference: YanWSingle fibre enables acoustic fabrics via nanometre-scale vibrationsNature20226036166232022Natur.603..616Y3529686010.1038/s41586-022-04476-91:CAS:528:DC%2BB38XntlWnsLs%3D – reference: MaLA machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescueAdv. Mater.202032200389710.1002/adma.2020038971:CAS:528:DC%2BB3cXhs1WrtrjL – reference: AhnSWearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signalsNano Energy20207410493210.1016/j.nanoen.2020.1049321:CAS:528:DC%2BB3cXht1Wmt7%2FF – reference: NingCHelical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoringACS Nano202216281128213509871110.1021/acsnano.1c097921:CAS:528:DC%2BB38Xit1yksbk%3D – reference: Park, J. et al. Frequency-selective acoustic and haptic smart skin for dual-mode dynamic/static human-machine interface. Sci. Adv.8, eabj9220 (2022). – reference: BaekJYImplementation of an integrated home internet of things system for vulnerable older adults using a frailty-centered approachSci. Rep.2022122022NatSR..12.1922B35121795881702710.1038/s41598-022-05963-91:CAS:528:DC%2BB38XivV2ltro%3D – reference: LiuZFHierarchically buckled sheath-core fibers for superelastic electronics, sensors, and musclesScience20153494004042015Sci...349..400L2620692910.1126/science.aaa79521:CAS:528:DC%2BC2MXhtF2mtr%2FN – reference: Yang, P. et al. Monitoring the degree of comfort of shoes in-motion using triboelectric pressure sensors with an ultrawide detection range. ACS Nano16, 4654–4665 (2022). – reference: YangWSelf-powered interactive fiber electronics with visual–digital synergiesAdv. Mater.202133210468110.1002/adma.2021046811:CAS:528:DC%2BB3MXitFantb3N – reference: PyoSLeeJBaeKSimSKimJRecent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applicationsAdv. Mater.202133200590210.1002/adma.2020059021:CAS:528:DC%2BB3MXpsFGqsrg%3D – reference: ChenMMultifunctional fiber-enabled intelligent health agentsAdv. Mater.2022n/a220098510.1002/adma.202200985 – reference: LeeSAg nanowire reinforced highly stretchable conductive fibers for wearable electronicsAdv. Funct. Mater.2015253114312110.1002/adfm.2015006281:CAS:528:DC%2BC2MXmslens78%3D – reference: ShiQDeep learning enabled smart mats as a scalable floor monitoring systemNat. Commun.2020112020NatCo..11.4609S32929087749037110.1038/s41467-020-18471-z1:CAS:528:DC%2BB3cXhvVOntbbL – reference: Heng, W., Solomon, S. & Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater.34, 2107902 (2022). – reference: TownsendJTTheoretical analysis of an alphabetic confusion matrixPercept. Psychophys.19719405010.3758/BF03213026 – reference: Olwal, A., Moeller, J., Priest-Dorman, G., Starner, T. & Carroll, B. I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology 485–497 (Association for Computing Machinery, Berlin, Germany, 2018). – volume: 11 year: 2020 ident: 34918_CR15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18471-z – volume: 33 start-page: 8 year: 2019 ident: 34918_CR24 publication-title: IEEE Netw. doi: 10.1109/MNET.001.1900059 – ident: 34918_CR1 doi: 10.1016/j.xinn.2022.100340 – ident: 34918_CR13 doi: 10.1126/sciadv.abj9220 – volume: 12 year: 2022 ident: 34918_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-022-05963-9 – ident: 34918_CR55 doi: 10.1360/nso/20220011 – volume: 28 start-page: 4373 year: 2016 ident: 34918_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201504366 – volume: 31 start-page: 2008936 year: 2021 ident: 34918_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202008936 – volume: 13 year: 2022 ident: 34918_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28459-6 – ident: 34918_CR48 doi: 10.1145/3266037.3271651 – volume: 200 start-page: 54 year: 2018 ident: 34918_CR49 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2018.07.076 – volume: 35 start-page: 168 year: 2020 ident: 34918_CR25 publication-title: Mater. Today doi: 10.1016/j.mattod.2019.11.006 – volume: 9 start-page: 643 year: 2010 ident: 34918_CR36 publication-title: Nat. Mater. doi: 10.1038/nmat2792 – volume: 14 start-page: 15428 year: 2020 ident: 34918_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.0c06063 – volume: 30 start-page: 1705759 year: 2018 ident: 34918_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.201705759 – volume: 32 start-page: 2107682 year: 2022 ident: 34918_CR19 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202107682 – volume: 28 start-page: 4338 year: 2016 ident: 34918_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201504244 – volume: 5 start-page: 2001041 year: 2021 ident: 34918_CR21 publication-title: Small Methods doi: 10.1002/smtd.202001041 – volume: 3 start-page: 316 year: 2020 ident: 34918_CR35 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0415-y – volume: 349 start-page: 400 year: 2015 ident: 34918_CR32 publication-title: Science doi: 10.1126/science.aaa7952 – volume: 4 start-page: 1900485 year: 2019 ident: 34918_CR31 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201900485 – volume: 12 year: 2021 ident: 34918_CR44 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25637-w – volume: 5 start-page: eabb6938 year: 2020 ident: 34918_CR14 publication-title: Sci. Robot. doi: 10.1126/scirobotics.abb6938 – volume: 16 start-page: 2811 year: 2022 ident: 34918_CR42 publication-title: ACS Nano doi: 10.1021/acsnano.1c09792 – ident: 34918_CR52 doi: 10.1145/3310194 – ident: 34918_CR9 doi: 10.1021/acsnano.1c11321 – volume: 9 start-page: 40 year: 1971 ident: 34918_CR54 publication-title: Percept. Psychophys. doi: 10.3758/BF03213026 – volume: 12 start-page: 21424 year: 2020 ident: 34918_CR6 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03110 – volume: 30 start-page: 2003276 year: 2020 ident: 34918_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003276 – volume: 74 start-page: 104932 year: 2020 ident: 34918_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104932 – volume: 34 start-page: 156 year: 2020 ident: 34918_CR27 publication-title: IEEE Netw. doi: 10.1109/MNET.011.1900570 – volume: 3 start-page: 349 year: 2012 ident: 34918_CR18 publication-title: Int. J. Appl. Glass Sci. doi: 10.1111/ijag.12007 – volume: 603 start-page: 616 year: 2022 ident: 34918_CR39 publication-title: Nature doi: 10.1038/s41586-022-04476-9 – volume: 569 start-page: 698 year: 2019 ident: 34918_CR45 publication-title: Nature doi: 10.1038/s41586-019-1234-z – ident: 34918_CR20 doi: 10.1002/adma.202107902 – volume: 31 start-page: 2006679 year: 2021 ident: 34918_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202006679 – volume: 25 start-page: 3114 year: 2015 ident: 34918_CR33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201500628 – volume: 4 start-page: 291 year: 2021 ident: 34918_CR30 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00557-1 – volume: 33 start-page: 2104681 year: 2021 ident: 34918_CR43 publication-title: Adv. Mater. doi: 10.1002/adma.202104681 – volume: 4 start-page: 193 year: 2021 ident: 34918_CR47 publication-title: Nat. Electron. doi: 10.1038/s41928-021-00558-0 – volume: 4 year: 2020 ident: 34918_CR8 publication-title: npj Flex. Electron. doi: 10.1038/s41528-020-00092-7 – volume: 39 start-page: 86 year: 2001 ident: 34918_CR51 publication-title: IEEE Commun. Mag. doi: 10.1109/35.968817 – volume: 85 start-page: 105941 year: 2021 ident: 34918_CR10 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105941 – volume: 32 start-page: 1902549 year: 2020 ident: 34918_CR40 publication-title: Adv. Mater. doi: 10.1002/adma.201902549 – volume: 32 start-page: 2003897 year: 2020 ident: 34918_CR46 publication-title: Adv. Mater. doi: 10.1002/adma.202003897 – ident: 34918_CR50 doi: 10.17489/biohun/2010/1/07 – volume: 33 start-page: 2005902 year: 2021 ident: 34918_CR22 publication-title: Adv. Mater. doi: 10.1002/adma.202005902 – volume: 27 start-page: 2433 year: 2015 ident: 34918_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201500009 – volume: 575 start-page: 473 year: 2019 ident: 34918_CR26 publication-title: Nature doi: 10.1038/s41586-019-1687-0 – volume: 29 start-page: 1905808 year: 2019 ident: 34918_CR34 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201905808 – ident: 34918_CR37 doi: 10.1039/C8TA10964H – volume: 68 start-page: 797 year: 2019 ident: 34918_CR53 publication-title: IEEE Trans. Vehicular Technol. doi: 10.1109/TVT.2018.2879413 – volume: 32 start-page: 1903558 year: 2020 ident: 34918_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201903558 – volume: 25 start-page: 5997 year: 2013 ident: 34918_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201302240 – volume: n/a start-page: 2200985 year: 2022 ident: 34918_CR5 publication-title: Adv. Mater. doi: 10.1002/adma.202200985 |
SSID | ssj0000391844 |
Score | 2.6329923 |
Snippet | Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of... Inspired by the characteristics of textile-based flexible electronic sensors, the authors report a braided electronic cord with a low-cost, and automated... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7097 |
SubjectTerms | 639/166/987 639/705/117 Algorithms Automation Braiding Computer terminals Durability Electronic devices Electronics Fabrication Flexible components Gestures Human-computer interface Humanities and Social Sciences Humans Interfaces Low cost multidisciplinary Science Science (multidisciplinary) Sensors Textiles User interface User interfaces |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KINBLaZo-3GyDA701Zr3WWJZOpQkNaaA9NZCb0GNEA8EJ3Q1s_31HsneT7SuX3mxLhmEemm-Y0QzA25pYa-WMKsa2sWKPRxXjZl-hcyo4bzXmWQSfv8jTczy7aC_ujfpKNWFDe-CBcVNUMbQhMgywHXoGA12ghlLpPCOthiidvuzz7gVT-QwWmkMXHG_J1EJN55jPhFy8jrxYLTc8UW7Y_yeU-Xux5C8Z0-yITp7CkxFBlh8GynfgEfXPYHuYKfljF95_YiA8FKu4KzosQy7RsPnZ9qGcs1DSW8lh8mWgUN4NwilTJPoczk8-fj0-rcYpCZVntLWotCDfIQUGdq2updNKaq-jIIxSNNY1Hl2yu85b1TlrbbA6sBgw-Fin4ekvYKu_7ukVlHUq6FItCq8adLVXPlKsMUS0QQqMBcxWHDN-bCGeJllcmZzKFsoMXDbMZZO5bJYFvFv_czM00Pjn7qMkiPXO1Pw6f2CVMKNKmIdUooDJSoxmtMi5YZiWL9VqWcDBepltKSVIbE_Xt3kP4xetUBXwcpD6mhIhMSVp2wK6DX3YIHVzpb_8lvt1a5mGBtQFHK40546sv7Pi9f9gxR48bpLKp7pFPYGtxfdbesMoauH2s8H8BKNWGDc priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9RAFD6UiuCL1HpLrSWCbzaaTU4mMw9SVCxVqE8u9G2YyxktLFnd3UL77z0zSbasrn1LMhOYnEvmG87lA3hdElutmFDB2DYUvONRwbjZFWit9NYZhYmL4PybOJvi14vmYgdGuqNBgMutR7vIJzVdzN5e_745YYd_35eMy3dLTO6e8tJRTWTBmPIe70xtdNTzAe6nP3PNo4hD7cz2Vzf2p9TGfxv2_DeF8q84atqeTvfg4YAr8w-9ITyCHer24X7PNHnzGE6-MDzuU1jsjI5znxI3TLo2nc-XrKp4l_Ph-dKTz2_pcfJ4Pn0C09PP3z-dFQN3QuEYg60KVZNrkTzDvUaVwioplFOhJgyiroytHNroja0zsrXGGG-UZ-Wgd6GMlOpPYbebd_Qc8jKmeckGaycrtKWTLlAo0Qc0XtQYMpiMEtNuaCwe-S1mOgW4a6l7KWuWsk5S1tcZvFm_86tvq3Hn7I9REeuZsSV2ejBf_NCDh2mUwTc-MF40LTpGja2nimKNBUPyiiiDw1GNejQzzeAtldoqkcGr9TB7WAybmI7mV2kOoxolUWbwrNf6eiW1wBi6bTJoN-xhY6mbI93lz9TFW4lIJVBmcDxazu2y_i-Kg7u_4gU8qKIxxzxFdQi7q8UVvWTUtLJHyRX-ADdIEwg priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9VAEB5KpeCL1LZqaisp-GaDOclks_skerBUoT5Z6NuyVy2UHOk5Bf33zmwu5bRV6FuSnYVhLtkvmRvA2zKQ1YpZKAjbxoJOvFAQbnYFWiu9dUZhmkVw9k2cnuPXi-ZiA6qxFiYl7aeWluk1PWaHvV9icumUe45qJgvCjU-4dTtb9VzMp_8q3PFcIg71MWUtH9i6dgalVv0P4cv7aZJ3YqXpCDrZhmcDdsw_9tw-h43Q7cBWP03yzy58-EIQuE9TsVfhOPcpOcOka9P5fEnq4LucPpAvffD57QicnL9B9-D85PP3-WkxzEcoHOGsVaHq4FoMniBdo0phlRTKqVgHjKKujK0cWva41hnZWmOMN8qTAtC7WPLY9Bew2S268AryklO5ZIO1kxXa0kkXQyzRRzRe1BgzmI0S025oHs4zLK50CmLXUvdS1iRlnaSsf2fwbtrzq2-d8V_qT6yIiZLbXqcHi-sfejADjTL6xkfChKZFR8iw9aEKXEdBsLsKIYODUY168MWlJoCWymmVyOBoWiYv4tCI6cLiJtEQclESZQYve61PnNQCOTzbZNCu2cMaq-sr3eXP1KlbCR4XUGZwPFrOLVv_FsX-48hfw9OKjZtzE9UBbK6ub8IhIaWVfZNc4y9Clw3k priority: 102 providerName: Springer Nature |
Title | Imperceptible, designable, and scalable braided electronic cord |
URI | https://link.springer.com/article/10.1038/s41467-022-34918-x https://www.ncbi.nlm.nih.gov/pubmed/36402785 https://www.proquest.com/docview/2737811796 https://www.proquest.com/docview/2738189848 https://pubmed.ncbi.nlm.nih.gov/PMC9675780 https://doaj.org/article/48fd5df105a74c0597de2e674381d2ee |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lsFexr7nrQse7G01de2zLD2VNDTrAi1jWyFvQtbHVihO16TQ_ve9k52E7KMvTmLJoNyH9LPudD-Aj7knqxX7PiNsGzJa8XxGuNlm2DTSNdYojFwEJ6fi-Awn02rab7jN-7TK5ZwYJ2o3s7xHvkfLbDwUqcTB5e-MWaM4utpTaDyEbS5dxild9bRe7bFw9XOJ2J-VyUu5N8c4M8QUdqTG7GZjPYpl-_-FNf9OmfwjbhqXo_FTeNLjyHTYKf4ZPPDtc3jUMUvevoCDLwSHu5SV5sLvpi4mapj43bQunZNq-FdKL8vnzrt0TYeT8vvoSzgbH_0YHWc9V0JmCXMtMlV6W6N3BO8qlYtGSaGsCqXHIMrCNIXFhr2vtkbWjTHGGeVIGehsyJlC_RVstbPWv4E057QuWWFpZYFNbqUNPuToAhonSgwJ7C8lpm1fSJz5LC50DGiXUndS1iRlHaWsbxL4tHrmsiujcW_vQ1bEqieXwI43Zlc_de9RGmVwlQuED02NllBi7Xzh-UwFQfDC-wR2lmrUvV_O9dqKEviwaiaP4jCJaf3sOvYhFKMkygRed1pfjaQUyKHaKoF6wx42hrrZ0p7_ilW7lWDqgDyB3aXlrIf1f1G8vf9fvIPHBRsz5yWqHdhaXF3794SSFs0gugJd5fjzALaHw8n3CX0eHp1-_UZ3R2I0iPsPdD1BeQcB3BZY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB5VRQheEDcpBYIETzSqm0wS-wFVXNUuPZ5aad-MT6hUZdvuVrR_it_I2DlWy9G3vu2uvZIznuNzZjwfwBvmSGurLZcRtvUZRTyXEW42GWrNrTZKYOQi2D-oRkf4dVJOVuBXfxcmlFX2PjE6ajs14R35JoXZeClSVNunZ1lgjQrZ1Z5Co1WLXXf1k45ss_fjz7S_b_N858vhp1HWsQpkhtDJPBOFMzU6S0CoFKzSglfCCF849FWRK50b1EFPa6N4rZVSVglLy0ZrPMtjowNy-bco8LJgUfWkHt7phG7rHLG7m8MKvjnD6IliyTzSYHa5FP8iTcC_sO3fJZp_5Glj-Nu5D_c63Jp-aBXtAay45iHcbpksrx7B9pjgd1sio0_cRmpjYYiKn1Vj0xmpQviW0uH82DqbLuh30nD-fQxHNyLFJ7DaTBv3DFIWysh4iYXhOWpmuPHOM7Qela0K9Als9RKTpmtcHvgzTmRMoBdctlKWJGUZpSwvE3g3_Oe0bdtx7eyPYSOGmaHldvxhev5ddhYskXtbWk94VNVoCJXW1uUu3OEgyJ87l8B6v42y8wMzudDaBF4Pw2TBIS2jGje9iHMINQmOPIGn7a4PKykqDKnhMoF6SR-Wlro80hz_iF3CRRWoClgCG73mLJb1f1GsXf8Ur-DO6HB_T-6ND3afw908KHaoiRTrsDo_v3AvCKHN9ctoFil8u2k7_A0TYk2t |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VrUBcUMurgRaCBCcabTaZJPYBVUBZdSlUHKi0N-MnVKqypbtV27_WX8fYeayWR2-9JbEjOeNvxp8z4xmAV6kl1JZDmxC3dQmteDYh3qwTVIoZpSXHUIvgy2G5f4SfJsVkBa67szA-rLKzicFQm6n2_8gHtMyGQ5G8HLg2LOLr3mj39FfiK0h5T2tXTqOByIG9uqDt2-zteI_m-nWWjT5--7CftBUGEk1MZZ7w3OoKrSFSVPC0VJyVXHOXW3RlnkmVaVQes5WWrFJSSiO5oU9Ao12ahaQHZP7XqrwYeh2rJlX_f8dnXmeI7TmdNGeDGQarFMLnkRqTy6W1MJQM-BfP_Ttc8w-fbVgKR-twv-Ww8bsGdBuwYusHcKepann1EHbHRMWbcBl1YndiE4JEZLiWtYlnBAt_F9NG_dhYEy9K8cR-L_wIjm5Fio9htZ7WdhPi1IeUsQJzzTJUqWbaWZeicShNmaOLYNhJTOg2ibmvpXEigjM9Z6KRsiApiyBlcRnBm_6d0yaFx4293_uJ6Hv69NvhwfTsh2i1WSBzpjCOuKmsUBNDrYzNrD_PQfQ_szaCrW4aRWsTZmKB4Ahe9s2kzd5FI2s7PQ99iEFxhiyCJ82s9yPJS_Ru4iKCagkPS0NdbqmPf4aM4bz0ZQvSCHY65CyG9X9RPL35K17AXdJA8Xl8ePAM7mUe1z48km_B6vzs3G4TWZur50ErYvh-22r4G5ecUeM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Imperceptible%2C+designable%2C+and+scalable+braided+electronic+cord&rft.jtitle=Nature+communications&rft.au=Chen%2C+Min&rft.au=Ouyang%2C+Jingyu&rft.au=Jian%2C+Aijia&rft.au=Liu%2C+Jia&rft.date=2022-11-19&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-34918-x&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |