Detection of eye contact with deep neural networks is as accurate as human experts

Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject’s looking direction is a challenging task, but eye contac...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 6386 - 10
Main Authors Chong, Eunji, Clark-Whitney, Elysha, Southerland, Audrey, Stubbs, Elizabeth, Miller, Chanel, Ajodan, Eliana L., Silverman, Melanie R., Lord, Catherine, Rozga, Agata, Jones, Rebecca M., Rehg, James M.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.12.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject’s looking direction is a challenging task, but eye contact can be effectively captured by a wearable point-of-view camera which provides a unique viewpoint. While moments of eye contact from this viewpoint can be hand-coded, such a process tends to be laborious and subjective. In this work, we develop a deep neural network model to automatically detect eye contact in egocentric video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep convolutional network using a dataset of 4,339,879 annotated images, consisting of 103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18 validation subjects, and its performance is on par with 10 trained human coders with a mean precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis by serving as a scalable, objective, and accessible tool for clinicians and researchers. Eye contact is a key social behavior and its measurement could facilitate the diagnosis and treatment of autism. Here the authors show that a deep neural network model can detect eye contact as accurately has human experts.
AbstractList Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject’s looking direction is a challenging task, but eye contact can be effectively captured by a wearable point-of-view camera which provides a unique viewpoint. While moments of eye contact from this viewpoint can be hand-coded, such a process tends to be laborious and subjective. In this work, we develop a deep neural network model to automatically detect eye contact in egocentric video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep convolutional network using a dataset of 4,339,879 annotated images, consisting of 103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18 validation subjects, and its performance is on par with 10 trained human coders with a mean precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis by serving as a scalable, objective, and accessible tool for clinicians and researchers. Eye contact is a key social behavior and its measurement could facilitate the diagnosis and treatment of autism. Here the authors show that a deep neural network model can detect eye contact as accurately has human experts.
Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject's looking direction is a challenging task, but eye contact can be effectively captured by a wearable point-of-view camera which provides a unique viewpoint. While moments of eye contact from this viewpoint can be hand-coded, such a process tends to be laborious and subjective. In this work, we develop a deep neural network model to automatically detect eye contact in egocentric video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep convolutional network using a dataset of 4,339,879 annotated images, consisting of 103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18 validation subjects, and its performance is on par with 10 trained human coders with a mean precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis by serving as a scalable, objective, and accessible tool for clinicians and researchers.Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject's looking direction is a challenging task, but eye contact can be effectively captured by a wearable point-of-view camera which provides a unique viewpoint. While moments of eye contact from this viewpoint can be hand-coded, such a process tends to be laborious and subjective. In this work, we develop a deep neural network model to automatically detect eye contact in egocentric video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep convolutional network using a dataset of 4,339,879 annotated images, consisting of 103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18 validation subjects, and its performance is on par with 10 trained human coders with a mean precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis by serving as a scalable, objective, and accessible tool for clinicians and researchers.
Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject’s looking direction is a challenging task, but eye contact can be effectively captured by a wearable point-of-view camera which provides a unique viewpoint. While moments of eye contact from this viewpoint can be hand-coded, such a process tends to be laborious and subjective. In this work, we develop a deep neural network model to automatically detect eye contact in egocentric video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep convolutional network using a dataset of 4,339,879 annotated images, consisting of 103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18 validation subjects, and its performance is on par with 10 trained human coders with a mean precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis by serving as a scalable, objective, and accessible tool for clinicians and researchers.Eye contact is a key social behavior and its measurement could facilitate the diagnosis and treatment of autism. Here the authors show that a deep neural network model can detect eye contact as accurately has human experts.
Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of social roles and communication skills, and for clinical screening. Estimating a subject’s looking direction is a challenging task, but eye contact can be effectively captured by a wearable point-of-view camera which provides a unique viewpoint. While moments of eye contact from this viewpoint can be hand-coded, such a process tends to be laborious and subjective. In this work, we develop a deep neural network model to automatically detect eye contact in egocentric video. It is the first to achieve accuracy equivalent to that of human experts. We train a deep convolutional network using a dataset of 4,339,879 annotated images, consisting of 103 subjects with diverse demographic backgrounds. 57 subjects have a diagnosis of Autism Spectrum Disorder. The network achieves overall precision of 0.936 and recall of 0.943 on 18 validation subjects, and its performance is on par with 10 trained human coders with a mean precision 0.918 and recall 0.946. Our method will be instrumental in gaze behavior analysis by serving as a scalable, objective, and accessible tool for clinicians and researchers.
Eye contact is a key social behavior and its measurement could facilitate the diagnosis and treatment of autism. Here the authors show that a deep neural network model can detect eye contact as accurately has human experts.
ArticleNumber 6386
Author Southerland, Audrey
Rozga, Agata
Clark-Whitney, Elysha
Rehg, James M.
Ajodan, Eliana L.
Chong, Eunji
Lord, Catherine
Jones, Rebecca M.
Miller, Chanel
Stubbs, Elizabeth
Silverman, Melanie R.
Author_xml – sequence: 1
  givenname: Eunji
  orcidid: 0000-0002-5235-202X
  surname: Chong
  fullname: Chong, Eunji
  email: eunjichong@gatech.edu
  organization: School of Interactive Computing, Georgia Institute of Technology
– sequence: 2
  givenname: Elysha
  surname: Clark-Whitney
  fullname: Clark-Whitney, Elysha
  organization: Center for Autism and the Developing Brain, Weill Cornell Medicine
– sequence: 3
  givenname: Audrey
  surname: Southerland
  fullname: Southerland, Audrey
  organization: School of Interactive Computing, Georgia Institute of Technology
– sequence: 4
  givenname: Elizabeth
  surname: Stubbs
  fullname: Stubbs, Elizabeth
  organization: School of Interactive Computing, Georgia Institute of Technology
– sequence: 5
  givenname: Chanel
  surname: Miller
  fullname: Miller, Chanel
  organization: School of Interactive Computing, Georgia Institute of Technology
– sequence: 6
  givenname: Eliana L.
  surname: Ajodan
  fullname: Ajodan, Eliana L.
  organization: Center for Autism and the Developing Brain, Weill Cornell Medicine
– sequence: 7
  givenname: Melanie R.
  surname: Silverman
  fullname: Silverman, Melanie R.
  organization: Center for Autism and the Developing Brain, Weill Cornell Medicine
– sequence: 8
  givenname: Catherine
  surname: Lord
  fullname: Lord, Catherine
  organization: School of Medicine, University of California
– sequence: 9
  givenname: Agata
  orcidid: 0000-0002-5558-9786
  surname: Rozga
  fullname: Rozga, Agata
  organization: School of Interactive Computing, Georgia Institute of Technology
– sequence: 10
  givenname: Rebecca M.
  surname: Jones
  fullname: Jones, Rebecca M.
  organization: Center for Autism and the Developing Brain, Weill Cornell Medicine
– sequence: 11
  givenname: James M.
  surname: Rehg
  fullname: Rehg, James M.
  organization: School of Interactive Computing, Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33318484$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQtVARLUv_AAcUiQuXgD_j5IKEylelSkgIzpbjjHe9ZO3Fduj23-M0pbQ91LLk0fi9N2_seY6OfPCA0EuC3xLM2neJE97IGlNck04SWh-eoBOKOamJpOzoTnyMTlPa4rJYR1rOn6FjxliJWn6Cvn-EDCa74KtgK7iCygSftcnVpcubagDYVx6mqMdy5MsQf6XKpUqXbUxJZ5jjzbTTvoLDHmJOL9BTq8cEpzfnCv38_OnH2df64tuX87MPF7URHOe6o0xKi5npikcji6EBYysxMG44ZcNghQY7dMwYYUlPRG86S7S0DbR9Y4Ct0PmiOwS9VfvodjpeqaCduk6EuFY6ZmdGULbUEmKuQgVvrWh7K6QdDB2o7BiWRev9orWf-h0MBnwuLd8TvX_j3Uatwx8lJWuEZEXgzY1ADL8nSFntXDIwjtpDmJKiXGLaYsG6An39ALoNU_TlqWYUIx1pSv8r9Oquo1sr_76uAOgCMDGkFMHeQghW84ioZURUGRF1PSLqUEjtA5JxWc_fX7py4-NUtlBTqePXEP_bfoT1Fy9M0EY
CitedBy_id crossref_primary_10_2196_33771
crossref_primary_10_3389_frobt_2022_770165
crossref_primary_10_1016_j_engappai_2022_105743
crossref_primary_10_1007_s11263_024_02095_7
crossref_primary_10_2196_35406
crossref_primary_10_1109_TBME_2022_3223736
crossref_primary_10_1002_aur_3087
crossref_primary_10_1007_s10803_023_05990_z
crossref_primary_10_3390_s23249619
crossref_primary_10_1007_s11548_023_02901_6
crossref_primary_10_1038_s41467_023_38901_y
crossref_primary_10_3390_a17120560
crossref_primary_10_1038_s41398_025_03233_6
crossref_primary_10_3389_frobt_2021_650906
Cites_doi 10.1016/j.cub.2017.05.044
10.1371/journal.pone.0139346
10.1145/3131902
10.1073/pnas.1806905115
10.1007/s10803-016-2782-9
10.1177/001316446002000104
10.1002/ajmg.1320380223
10.1111/j.1467-8624.2011.01670.x
10.1016/j.patrec.2014.10.002
10.1016/j.neucom.2017.05.013
10.1177/08830738060210021901
10.1111/j.1469-7610.1986.tb00190.x
10.1037/0012-1649.16.5.454
10.1023/A:1010738829569
10.1038/s41591-018-0268-3
10.1038/nature21056
10.5898/JHRI.6.1.Admoni
10.1001/jama.2016.17216
10.1109/TKDE.2009.191
10.1007/s10803-012-1719-1
10.1007/s10803-016-3002-3
10.1016/j.media.2017.07.005
10.1017/S0954579419000427
10.1111/cdev.12730
10.1016/j.media.2016.07.007
10.1016/j.neuropsychologia.2008.05.003
10.1109/TPAMI.2017.2778103
10.1016/j.biopsych.2012.11.022
10.1109/TAFFC.2015.2422702
10.1038/s41598-018-22726-7
10.1037/0033-2909.100.1.78
10.1080/13506289508401722
10.1073/pnas.0502205102
10.1111/j.1467-8721.2007.00518.x
10.1016/j.cviu.2015.03.015
10.1177/1362361318766247
10.1007/BF01068419
10.1007/s10803-016-2981-4
10.1109/TAFFC.2018.2868196
10.31234/osf.io/syp5a
10.1037/t11529-000
10.1145/3172944.3173010
10.1007/978-3-319-32552-1_72
10.1109/CVPR.2016.239
10.1155/2014/935686
10.2307/2786027
10.1109/CVPRW.2018.00281
10.1145/2818346.2820760
10.1109/CVPR.2017.167
10.1145/2578153.2578190
10.1109/CVPR.2018.00230
10.1145/2370216.2370264
10.1109/CVPR.2016.90
10.1007/978-3-030-18114-7_18
10.1109/FG.2015.7163127
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-19712-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Publicly Available Content Database
CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_f237553c732548f58bf57fdc2d279307
PMC7736573
33318484
10_1038_s41467_020_19712_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | National Institutes of Health (NIH)
  grantid: R01 MH114999
  funderid: https://doi.org/10.13039/100000002
– fundername: Simons Foundation
  grantid: 336363; 383667
  funderid: https://doi.org/10.13039/100000893
– fundername: NIMH NIH HHS
  grantid: R01 MH114999
– fundername: ;
  grantid: 336363; 383667
– fundername: ;
  grantid: R01 MH114999
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-92377f03c9723c7318d00f70e34c423ddf5aefd93cc5f1b15bc9f1a7f6e8b6ce3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:07:29 EDT 2025
Thu Aug 21 18:30:33 EDT 2025
Thu Jul 10 20:49:17 EDT 2025
Wed Aug 13 04:32:50 EDT 2025
Wed Feb 19 02:09:48 EST 2025
Tue Jul 01 04:17:11 EDT 2025
Thu Apr 24 22:58:56 EDT 2025
Fri Feb 21 02:40:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-92377f03c9723c7318d00f70e34c423ddf5aefd93cc5f1b15bc9f1a7f6e8b6ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5235-202X
0000-0002-5558-9786
OpenAccessLink https://doaj.org/article/f237553c732548f58bf57fdc2d279307
PMID 33318484
PQID 2473191642
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_f237553c732548f58bf57fdc2d279307
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7736573
proquest_miscellaneous_2470280539
proquest_journals_2473191642
pubmed_primary_33318484
crossref_primary_10_1038_s41467_020_19712_x
crossref_citationtrail_10_1038_s41467_020_19712_x
springer_journals_10_1038_s41467_020_19712_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-14
PublicationDateYYYYMMDD 2020-12-14
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-14
  day: 14
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hus, Gotham, Lord (CR64) 2014; 44
Holler, Kendrick (CR16) 2015; 6
Rogers, Speelman, Guidetti, Longmuir (CR18) 2018; 8
CR39
Hammal, Cohn, Messinger (CR42) 2015; 6
Campbell (CR44) 2019; 23
Reid (CR4) 2017; 27
Kleinke (CR6) 1986; 100
Chong (CR24) 2017; 1
CR32
CR31
Hannun (CR38) 2019; 25
CR30
Pan, Yang (CR28) 2009; 22
Chawarska, Macari, Shic (CR9) 2013; 74
Sheikhi, Odobez (CR52) 2015; 66
CR5
Mundy, Newell (CR7) 2007; 16
CR49
CR48
CR46
CR45
Hashemi (CR43) 2018; 1
Zhang, Sugano, Fritz, Bulling (CR47) 2019; 41
CR41
CR40
Esteva (CR35) 2017; 542
Zafeiriou, Zhang, Zhang (CR25) 2015; 138
Lindsey (CR37) 2018; 115
Kaye, Fogel (CR1) 1980; 16
Grzadzinski (CR54) 2016; 46
Ho, Foulsham, Kingstone (CR17) 2015; 10
Litjens (CR33) 2017; 42
Cohen (CR62) 1960; 20
CR15
CR59
Kooi (CR36) 2017; 35
CR58
Ezpeleta, Granero, de la Osa, Domènech (CR14) 2015; 10
CR56
CR55
Gulshan (CR34) 2016; 316
CR53
Hagerman, Amiri, Cronister (CR10) 1991; 38
CR51
Vecera, Johnson (CR2) 1995; 2
Robins, Fein, Barton, Green (CR57) 2001; 31
Wang, Gao, Tao, Yang, Li (CR26) 2018; 275
Jones (CR23) 2017; 47
Farroni (CR3) 2005; 102
Fu, Nelson, Borge, Buss, Pérez-Edgar (CR13) 2019; 31
CR29
CR27
Riby, Hancock (CR12) 2008; 46
Schuirmann (CR63) 1987; 15
CR21
Miller, Miller, Bloom, Hynd, Craggs (CR11) 2006; 21
Franchak, Kretch, Soska, Adolph (CR19) 2011; 82
CR61
CR60
Yu, Smith (CR20) 2017; 88
Admoni, Scassellati (CR50) 2017; 6
Mundy, Sigman, Ungerer, Sherman (CR8) 1986; 27
Edmunds (CR22) 2017; 47
P Mundy (19712_CR7) 2007; 16
K Chawarska (19712_CR9) 2013; 74
S Ho (19712_CR17) 2015; 10
SL Rogers (19712_CR18) 2018; 8
SR Edmunds (19712_CR22) 2017; 47
19712_CR27
DL Robins (19712_CR57) 2001; 31
RM Jones (19712_CR23) 2017; 47
CL Kleinke (19712_CR6) 1986; 100
P Mundy (19712_CR8) 1986; 27
Z Hammal (19712_CR42) 2015; 6
RJ Hagerman (19712_CR10) 1991; 38
19712_CR29
19712_CR30
R Grzadzinski (19712_CR54) 2016; 46
X Fu (19712_CR13) 2019; 31
19712_CR31
19712_CR32
SR Miller (19712_CR11) 2006; 21
S Sheikhi (19712_CR52) 2015; 66
VM Reid (19712_CR4) 2017; 27
19712_CR15
19712_CR59
K Campbell (19712_CR44) 2019; 23
19712_CR58
G Litjens (19712_CR33) 2017; 42
19712_CR60
J Cohen (19712_CR62) 1960; 20
19712_CR61
SP Vecera (19712_CR2) 1995; 2
19712_CR21
H Admoni (19712_CR50) 2017; 6
AY Hannun (19712_CR38) 2019; 25
L Ezpeleta (19712_CR14) 2015; 10
V Hus (19712_CR64) 2014; 44
JM Franchak (19712_CR19) 2011; 82
X Zhang (19712_CR47) 2019; 41
SJ Pan (19712_CR28) 2009; 22
E Chong (19712_CR24) 2017; 1
19712_CR48
19712_CR49
19712_CR46
A Esteva (19712_CR35) 2017; 542
R Lindsey (19712_CR37) 2018; 115
19712_CR51
J Holler (19712_CR16) 2015; 6
19712_CR55
S Zafeiriou (19712_CR25) 2015; 138
19712_CR56
19712_CR53
T Kooi (19712_CR36) 2017; 35
V Gulshan (19712_CR34) 2016; 316
C Yu (19712_CR20) 2017; 88
N Wang (19712_CR26) 2018; 275
19712_CR5
DM Riby (19712_CR12) 2008; 46
19712_CR39
19712_CR40
19712_CR41
J Hashemi (19712_CR43) 2018; 1
DJ Schuirmann (19712_CR63) 1987; 15
19712_CR45
K Kaye (19712_CR1) 1980; 16
T Farroni (19712_CR3) 2005; 102
References_xml – ident: CR45
– volume: 10
  start-page: 1
  year: 2015
  end-page: 18
  ident: CR17
  article-title: Speaking and listening with the eyes: gaze signaling during dyadic interactions
  publication-title: PLoS ONE
– volume: 27
  start-page: 1825
  year: 2017
  end-page: 1828
  ident: CR4
  article-title: The human fetus preferentially engages with face-like visual stimuli
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.05.044
– ident: CR49
– volume: 10
  start-page: e0139346
  year: 2015
  ident: CR14
  article-title: Clinical characteristics of preschool children with oppositional defiant disorder and callous-unemotional traits
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139346
– ident: CR39
– ident: CR51
– volume: 1
  start-page: 43
  year: 2017
  ident: CR24
  article-title: Detecting gaze towards eyes in natural social interactions and its use in child assessment
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3131902
– volume: 115
  start-page: 11591
  year: 2018
  end-page: 11596
  ident: CR37
  article-title: Deep neural network improves fracture detection by clinicians
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806905115
– volume: 46
  start-page: 2464
  year: 2016
  end-page: 2479
  ident: CR54
  article-title: Measuring changes in social communication behaviors: preliminary development of the brief observation of social communication change (boscc)
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-016-2782-9
– volume: 20
  start-page: 37
  year: 1960
  end-page: 46
  ident: CR62
  article-title: A coefficient of agreement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 38
  start-page: 283
  year: 1991
  end-page: 287
  ident: CR10
  article-title: Fragile x checklist
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.1320380223
– volume: 82
  start-page: 1738
  year: 2011
  end-page: 1750
  ident: CR19
  article-title: Head-mounted eye-tracking: a new method to describe infant looking
  publication-title: Child Dev.
  doi: 10.1111/j.1467-8624.2011.01670.x
– ident: CR29
– ident: CR61
– ident: CR58
– volume: 66
  start-page: 81
  year: 2015
  end-page: 90
  ident: CR52
  article-title: Combining dynamic head pose–gaze mapping with the robot conversational state for attention recognition in human–robot interactions
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.10.002
– volume: 275
  start-page: 50
  year: 2018
  end-page: 65
  ident: CR26
  article-title: Facial feature point detection: a comprehensive survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.013
– volume: 21
  start-page: 139
  year: 2006
  end-page: 144
  ident: CR11
  article-title: Right hemisphere brain morphology, attention-deficit hyperactivity disorder (adhd) subtype, and social comprehension
  publication-title: J. Child Neurol.
  doi: 10.1177/08830738060210021901
– ident: CR21
– ident: CR46
– volume: 27
  start-page: 657
  year: 1986
  end-page: 669
  ident: CR8
  article-title: Defining the social deficits of autism: the contribution of non-verbal communication measures
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/j.1469-7610.1986.tb00190.x
– ident: CR15
– volume: 16
  start-page: 454
  year: 1980
  ident: CR1
  article-title: The temporal structure of face-to-face communication between mothers and infants
  publication-title: Dev. Psychol.
  doi: 10.1037/0012-1649.16.5.454
– volume: 31
  start-page: 131
  year: 2001
  end-page: 144
  ident: CR57
  article-title: The modified checklist for autism in toddlers: an initial study investigating the early detection of autism and pervasive developmental disorders
  publication-title: J. Autism Dev. Disord.
  doi: 10.1023/A:1010738829569
– volume: 25
  start-page: 65
  year: 2019
  ident: CR38
  article-title: Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– volume: 542
  start-page: 115
  year: 2017
  ident: CR35
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– ident: CR32
– ident: CR60
– ident: CR5
– volume: 6
  start-page: 25
  year: 2017
  end-page: 63
  ident: CR50
  article-title: Social eye gaze in human-robot interaction: a review
  publication-title: J. Hum. Robot Interact.
  doi: 10.5898/JHRI.6.1.Admoni
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: CR34
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 22
  start-page: 1345
  year: 2009
  end-page: 1359
  ident: CR28
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– volume: 6
  start-page: 1
  year: 2015
  end-page: 14
  ident: CR16
  article-title: Unaddressed participants’ gaze in multi-person interaction: optimizing recipiency
  publication-title: Front. Psychol.
– volume: 44
  start-page: 2400
  year: 2014
  end-page: 2412
  ident: CR64
  article-title: Standardizing ados domain scores: separating severity of social affect and restricted and repetitive behaviors
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-012-1719-1
– ident: CR53
– ident: CR30
– volume: 47
  start-page: 898
  year: 2017
  end-page: 904
  ident: CR22
  article-title: Brief report: using a point-of-view camera to measure eye gaze in young children with autism spectrum disorder during naturalistic social interactions: a pilot study
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-016-3002-3
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR33
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– ident: CR56
– ident: CR40
– ident: CR27
– volume: 31
  start-page: 971
  year: 2019
  end-page: 988
  ident: CR13
  article-title: Stationary and ambulatory attention patterns are differentially associated with early temperamental risk for socioemotional problems: preliminary evidence from a multimodal eye-tracking investigation
  publication-title: Dev. Psychopathol.
  doi: 10.1017/S0954579419000427
– volume: 88
  start-page: 2060
  year: 2017
  end-page: 2078
  ident: CR20
  article-title: Hand-eye coordination predicts joint attention
  publication-title: Child Dev.
  doi: 10.1111/cdev.12730
– volume: 35
  start-page: 303
  year: 2017
  end-page: 312
  ident: CR36
  article-title: Large scale deep learning for computer aided detection of mammographic lesions
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.007
– ident: CR48
– volume: 46
  start-page: 2855
  year: 2008
  end-page: 2860
  ident: CR12
  article-title: Viewing it differently: social scene perception in williams syndrome and autism
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.05.003
– volume: 41
  start-page: 162
  year: 2019
  end-page: 175
  ident: CR47
  article-title: Mpiigaze: Real-world dataset and deep appearance-based gaze estimation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2778103
– volume: 74
  start-page: 195
  year: 2013
  end-page: 203
  ident: CR9
  article-title: Decreased spontaneous attention to social scenes in 6-month-old infants later diagnosed with autism spectrum disorders
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.11.022
– volume: 6
  start-page: 361
  year: 2015
  end-page: 370
  ident: CR42
  article-title: Head movement dynamics during play and perturbed mother-infant interaction
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2422702
– volume: 8
  start-page: 4271
  year: 2018
  ident: CR18
  article-title: Using dual eye tracking to uncover personal gaze patterns during social interaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22726-7
– ident: CR31
– volume: 100
  start-page: 78
  year: 1986
  ident: CR6
  article-title: Gaze and eye contact: a research review
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.100.1.78
– volume: 2
  start-page: 59
  year: 1995
  end-page: 87
  ident: CR2
  article-title: Gaze detection and the cortical processing of faces: evidence from infants and adults
  publication-title: Vis. Cogn.
  doi: 10.1080/13506289508401722
– volume: 102
  start-page: 17245
  year: 2005
  end-page: 17250
  ident: CR3
  article-title: Newborns’ preference for face-relevant stimuli: effects of contrast polarity
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502205102
– volume: 16
  start-page: 269
  year: 2007
  end-page: 274
  ident: CR7
  article-title: Attention, joint attention, and social cognition
  publication-title: Curr. Dir. Psychol. Sci.
  doi: 10.1111/j.1467-8721.2007.00518.x
– ident: CR55
– volume: 138
  start-page: 1
  year: 2015
  end-page: 24
  ident: CR25
  article-title: A survey on face detection in the wild: past, present and future
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.03.015
– ident: CR59
– volume: 23
  start-page: 619
  year: 2019
  end-page: 628
  ident: CR44
  article-title: Computer vision analysis captures atypical attention in toddlers with autism
  publication-title: Autism
  doi: 10.1177/1362361318766247
– ident: CR41
– volume: 15
  start-page: 657
  year: 1987
  end-page: 680
  ident: CR63
  article-title: A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability
  publication-title: J. Pharmacokinet. Biopharm.
  doi: 10.1007/BF01068419
– volume: 47
  start-page: 607
  year: 2017
  end-page: 614
  ident: CR23
  article-title: Increased eye contact during conversation compared to play in children with autism
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-016-2981-4
– volume: 1
  start-page: 1
  year: 2018
  ident: CR43
  article-title: Computer vision analysis for quantification of autism risk behaviors
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2868196
– volume: 23
  start-page: 619
  year: 2019
  ident: 19712_CR44
  publication-title: Autism
  doi: 10.1177/1362361318766247
– volume: 100
  start-page: 78
  year: 1986
  ident: 19712_CR6
  publication-title: Psychol. Bull.
  doi: 10.1037/0033-2909.100.1.78
– ident: 19712_CR29
  doi: 10.31234/osf.io/syp5a
– volume: 27
  start-page: 657
  year: 1986
  ident: 19712_CR8
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/j.1469-7610.1986.tb00190.x
– volume: 275
  start-page: 50
  year: 2018
  ident: 19712_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.05.013
– volume: 2
  start-page: 59
  year: 1995
  ident: 19712_CR2
  publication-title: Vis. Cogn.
  doi: 10.1080/13506289508401722
– ident: 19712_CR56
  doi: 10.1037/t11529-000
– volume: 1
  start-page: 1
  year: 2018
  ident: 19712_CR43
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2868196
– volume: 6
  start-page: 25
  year: 2017
  ident: 19712_CR50
  publication-title: J. Hum. Robot Interact.
  doi: 10.5898/JHRI.6.1.Admoni
– volume: 6
  start-page: 1
  year: 2015
  ident: 19712_CR16
  publication-title: Front. Psychol.
– volume: 82
  start-page: 1738
  year: 2011
  ident: 19712_CR19
  publication-title: Child Dev.
  doi: 10.1111/j.1467-8624.2011.01670.x
– volume: 46
  start-page: 2464
  year: 2016
  ident: 19712_CR54
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-016-2782-9
– volume: 66
  start-page: 81
  year: 2015
  ident: 19712_CR52
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2014.10.002
– volume: 31
  start-page: 971
  year: 2019
  ident: 19712_CR13
  publication-title: Dev. Psychopathol.
  doi: 10.1017/S0954579419000427
– ident: 19712_CR49
  doi: 10.1145/3172944.3173010
– volume: 10
  start-page: 1
  year: 2015
  ident: 19712_CR17
  publication-title: PLoS ONE
– volume: 42
  start-page: 60
  year: 2017
  ident: 19712_CR33
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 10
  start-page: e0139346
  year: 2015
  ident: 19712_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0139346
– ident: 19712_CR51
  doi: 10.1007/978-3-319-32552-1_72
– volume: 47
  start-page: 607
  year: 2017
  ident: 19712_CR23
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-016-2981-4
– volume: 16
  start-page: 454
  year: 1980
  ident: 19712_CR1
  publication-title: Dev. Psychol.
  doi: 10.1037/0012-1649.16.5.454
– volume: 102
  start-page: 17245
  year: 2005
  ident: 19712_CR3
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0502205102
– ident: 19712_CR30
– volume: 8
  start-page: 4271
  year: 2018
  ident: 19712_CR18
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-22726-7
– ident: 19712_CR46
  doi: 10.1109/CVPR.2016.239
– volume: 31
  start-page: 131
  year: 2001
  ident: 19712_CR57
  publication-title: J. Autism Dev. Disord.
  doi: 10.1023/A:1010738829569
– volume: 316
  start-page: 2402
  year: 2016
  ident: 19712_CR34
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 46
  start-page: 2855
  year: 2008
  ident: 19712_CR12
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2008.05.003
– volume: 88
  start-page: 2060
  year: 2017
  ident: 19712_CR20
  publication-title: Child Dev.
  doi: 10.1111/cdev.12730
– volume: 25
  start-page: 65
  year: 2019
  ident: 19712_CR38
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0268-3
– ident: 19712_CR41
  doi: 10.1155/2014/935686
– volume: 16
  start-page: 269
  year: 2007
  ident: 19712_CR7
  publication-title: Curr. Dir. Psychol. Sci.
  doi: 10.1111/j.1467-8721.2007.00518.x
– volume: 27
  start-page: 1825
  year: 2017
  ident: 19712_CR4
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2017.05.044
– volume: 542
  start-page: 115
  year: 2017
  ident: 19712_CR35
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 115
  start-page: 11591
  year: 2018
  ident: 19712_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1806905115
– ident: 19712_CR5
  doi: 10.2307/2786027
– ident: 19712_CR61
  doi: 10.1109/CVPRW.2018.00281
– ident: 19712_CR55
– volume: 22
  start-page: 1345
  year: 2009
  ident: 19712_CR28
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– ident: 19712_CR31
  doi: 10.1145/2818346.2820760
– volume: 47
  start-page: 898
  year: 2017
  ident: 19712_CR22
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-016-3002-3
– volume: 21
  start-page: 139
  year: 2006
  ident: 19712_CR11
  publication-title: J. Child Neurol.
  doi: 10.1177/08830738060210021901
– ident: 19712_CR48
– volume: 15
  start-page: 657
  year: 1987
  ident: 19712_CR63
  publication-title: J. Pharmacokinet. Biopharm.
  doi: 10.1007/BF01068419
– volume: 6
  start-page: 361
  year: 2015
  ident: 19712_CR42
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2015.2422702
– ident: 19712_CR40
– ident: 19712_CR21
– ident: 19712_CR60
  doi: 10.1109/CVPR.2017.167
– ident: 19712_CR59
  doi: 10.1145/2578153.2578190
– volume: 138
  start-page: 1
  year: 2015
  ident: 19712_CR25
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.03.015
– volume: 44
  start-page: 2400
  year: 2014
  ident: 19712_CR64
  publication-title: J. Autism Dev. Disord.
  doi: 10.1007/s10803-012-1719-1
– ident: 19712_CR45
  doi: 10.1109/CVPR.2018.00230
– volume: 41
  start-page: 162
  year: 2019
  ident: 19712_CR47
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2778103
– ident: 19712_CR39
  doi: 10.1145/2370216.2370264
– ident: 19712_CR58
  doi: 10.1109/CVPR.2016.90
– ident: 19712_CR27
  doi: 10.1007/978-3-030-18114-7_18
– volume: 1
  start-page: 43
  year: 2017
  ident: 19712_CR24
  publication-title: Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.
  doi: 10.1145/3131902
– volume: 35
  start-page: 303
  year: 2017
  ident: 19712_CR36
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.07.007
– ident: 19712_CR15
– volume: 20
  start-page: 37
  year: 1960
  ident: 19712_CR62
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– volume: 38
  start-page: 283
  year: 1991
  ident: 19712_CR10
  publication-title: Am. J. Med. Genet.
  doi: 10.1002/ajmg.1320380223
– volume: 74
  start-page: 195
  year: 2013
  ident: 19712_CR9
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2012.11.022
– ident: 19712_CR53
– ident: 19712_CR32
  doi: 10.1109/FG.2015.7163127
SSID ssj0000391844
Score 2.4966044
Snippet Eye contact is among the most primary means of social communication used by humans. Quantification of eye contact is valuable as a part of the analysis of...
Eye contact is a key social behavior and its measurement could facilitate the diagnosis and treatment of autism. Here the authors show that a deep neural...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6386
SubjectTerms 639/705/117
706/689/477
Artificial neural networks
Autism
Autism Spectrum Disorder
Child, Preschool
Coders
Communication
Communication skills
Deep Learning
Diagnosis
Eye
Eye contact
Female
Hand
Humanities and Social Sciences
Humans
Infant
Machine Learning
Male
Models, Theoretical
multidisciplinary
Neural networks
Neural Networks, Computer
Recall
Science
Science (multidisciplinary)
Social behavior
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEB5kQfBFXK_VVSL4pmFzbdrH9bIsgj6IC_sW0kmCC9Kz2B7Y_ffm0nPc4_VF6ENp0hK-zCQzzcw3AC8k10EOLaPOY0-V05w67g0NfcTk42aTPecOf_jYnpyq92f67FqprxwTVumBK3CHUUijtUQjkyvTRd0NUZvoUXiRRKvmkac975ozVdZg2SfXRS1ZMkx2h5Mqa0L2lnhvuKCXOztRIez_nZX5a7DkTyemZSM6vgO3FwuSHNWR78ONMN6Fm7Wm5NU9-PQ2zCW8aiSrSMJVIDka3eFM8i9X4kO4IJnEMn1irCHgEzmfiEsX4joTR-T7UrqPFPr_eboPp8fvPr85oUvhBIrJAJtpMtqMiUxiLimWkOOdZywaFqTCZD55H7UL0fcSUUc-cD1gH7kzsQ3d0GKQD2BvXI3hERDBlOtyhqqOqJwIjjM_qN5xjCgdiw3wDYgWF1bxXNziqy2n27KzFXibgLcFeHvZwMvtOxeVU-OvvV_nudn2zHzY5UGSErtIif2XlDRwsJlZuyjpZIVK0CTzWIkGnm-bk3rlMxM3htW69MmHz1r2DTysgrAdiZQJWdWpBsyOiOwMdbdlPP9SKLyNka02soFXG2H6Maw_Q_H4f0DxBG6JogWCcnUAe_O3dXiaDKt5eFZ06Dvyzx11
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEB50RfBFvNt1lQi-adikSZr2Sbwti6AP4sJ5C2kuuiDtcdsDu_9-M2lPl-NloQ-lSUsymZlOZibfALwSXAXRVoxa7xoqreLUcq9paKJLe1w02fHs8Jev1fGJ_LxSq9nhNsxplVudmBW17x36yA9LqRO3JOO-fLv-TbFqFEZX5xIaN-EWQpdhSpde6cXHgujntZTzWRkm6sNBZs2AeybeaF7S853_UYbt_5et-XfK5B9x0_w7OroHd2c7krybFv4-3AjdA7g9VZa8eAjfPoYxJ1l1pI8kXASCOenWjQQdr8SHsCYIZZk-0U2J4AM5HYhNl3MbhI_A-1zAj-QiAOPwCE6OPn3_cEzn8gnUJTNspMl00zoy4bCwmEvUqz1jUbMgpEtGlPdR2RB9I5xTkbdcta6J3OpYhbqtXBCPYa_ru_AUSMmkrfGcqopO2jJYznwrG8tddMKyWADfEtG4GVscS1z8MjnGLWozEd4kwptMeHNewOvlnfWErHFt7_e4NktPRMXOD_qzH2YWMhPTjJXCuaZtbx1V3Ualo3elL5MaYrqAg-3KmllUB3PFWAW8XJqTkGHkxHah3-Q-GIJWoingycQIy0iESJSVtSxA77DIzlB3W7rTnxnIW2tRKS0KeLNlpqth_Z8U-9fP4hncKTN_l5TLA9gbzzbheTKcxvZFlo5Le94V1A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5KRfBFtN7WXojgmy7mutl91KOlCPogFvoWsrloQfaU7h5o_30z2YucWgVhH5ZNsiSTmeRLMvkG4LVgKoi2oqX1rimlVay0zOsyNNGlNS5Cdrw7_OVrdXIqP5-psx3g812Y7LSfKS3zMD17h73rZTZpXOywRjNeJtx4D6nbUatX1WrZV0HG81rK6X4MFfUdRbfmoEzVfxe-_NNN8tZZaZ6Cjh_Bwwk7kvdjbR_DTuj24P4YTfL6CXz7GIbsWNWRdSThOhD0Q7duILjZSnwIFwTpK9MvutH5uyfnPbHpcW6DlBH4noP2kUz8P_RP4fT40_fVSTmFTChdgl5DmeCa1pEKh8HEnE4G6ymNmgYhXQJO3kdlQ_SNcE5F1jLVuiYyq2MV6rZyQTyD3W7dhRdAOJW2xrupKjppebCM-lY2lrnohKWxADYL0biJTxzDWvwy-Vxb1GYUvEmCN1nw5qqAN0uZi5FN45-5P2DfLDmRCTt_WF_-MJNmmJharBS2NS1166jqNiodveOep6GH6gIO5p41k3n2hsskmgSMJS_g1ZKcDAtPS2wX1pucB4-dlWgKeD4qwlITIZJkZS0L0FsqslXV7ZTu_Gcm79ZaVEqLAt7OyvS7Wn8Xxcv_y74PD3jWd14yeQC7w-UmHCbwNLRH2VpuALP2FCI
  priority: 102
  providerName: Springer Nature
Title Detection of eye contact with deep neural networks is as accurate as human experts
URI https://link.springer.com/article/10.1038/s41467-020-19712-x
https://www.ncbi.nlm.nih.gov/pubmed/33318484
https://www.proquest.com/docview/2473191642
https://www.proquest.com/docview/2470280539
https://pubmed.ncbi.nlm.nih.gov/PMC7736573
https://doaj.org/article/f237553c732548f58bf57fdc2d279307
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED-6lsFexr7nrgsa7G3zZlmSZT-MkWbNSqBldAvkzcj62ArFaWMHmv9-J9nJyJaNgbGNLQv55zvpdz7pDuA1o8KyKktiZXQRcyVorKiRsS2cRhvXU3a_dvjsPDud8slMzPZgne6oB7DZadr5fFLTxdW725vVR1T4D92S8fx9w4O6e0OIFpKmMXLKAxyZpFfUs57uh56ZFWjQeEdzmnAa49jN-nU0u6vZGqtCSP9dPPTP6ZS_-VTDUDV-APd7jkmGnVA8hD1bP4K7XdbJ1WO4-GTbMAGrJnNH7MoSP19d6Zb4n7LEWHtNfJhLrKLuJok35LIhCjetlz60hD8Pyf1ISBDQNk9gOj75NjqN-9QKsUaK1sZI66R0CdM-6ZiWqNgmSZxMLOMaCZYxTijrTMG0Fo5WVFS6cFRJl9m8yrRlT2G_ntf2ORCEUuV-DatwmqvUKpqYiheKaqeZSlwEdA1iqfu44z79xVUZ_N8sLzvgSwS-DMCXtxG82Txz3UXd-GfpY_9tNiV9xOxwYb74XvYKWDp8YyH8u6JJnDuRV05IZ3RqUuyiEhnB0frLlmspLFOO0CCB5mkErza3UQG9V0XVdr4MZbx7WrAigmedIGxawhgiy3MegdwSka2mbt-pL3-EIN9SskxIFsHbtTD9atbfoTj8j2a-gHtpEPI0pvwI9tvF0r5EZtVWA7gjZxL3-fjzAA6Gw8nXCR6PT86_XODVUTYahH8Wg6BWPwFtdyPi
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxJtAASPBCaL6uU4OCAGl2tLHAbXS3ozjB1SqskuTFd0_xW_E4yRbLY_eKuUQxY5lj2fGY894PoRecio9r0YkN86WuTCS5oY6lfsy2LjHBZMd7g4fHI7Gx-LzRE7W0K_hLgyEVQ46MSlqN7VwRr7FhIrcEo179m72IwfUKPCuDhAaHVvs-cXPuGVr3u5ux_l9xdjOp6OP47xHFchttE7aPFo0SgXCLeBt2dho4QgJingubLQtnAvS-OBKbq0MtKKysmWgRoWRL6qR9Ty2ew1djwsvAYlSE7U804Fs64UQ_d0cwoutRiRNBHs0WirK8vOV9S_BBPzLtv07RPMPP21a_nZuo1u93Yrfd4x2B635-i660SFZLu6hL9u-TUFdNZ4G7BceQwy8sS2Gg17svJ9hSJ0Zm6i7wPMGnzTYxMfaOaSrgPcEGIgT6EDb3EfHV0LYB2i9ntb-EcKMCFPAvVgZrDDMG0pcJUpDbbDckJAhOhBR2z6XOUBqnOrkU-eF7givI-F1Irw-z9Dr5T-zLpPHpbU_wNwsa0IW7vRhevZN90KtQxyxlDDWuM0ugiyqIFVwljkW1R5RGdocZlb3qqHRF4ycoRfL4ijU4KkxtZ_OUx1weUteZuhhxwjLnnAeKSsKkSG1wiIrXV0tqU--p8ThSvGRVDxDbwZmuujW_0nx-PJRPEc3x0cH-3p_93DvCdpgiddZTsUmWm_P5v5pNNra6lmSFIy-XrVo_gYF8VOZ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIhAXxJtAASPBCaKNY3udHBACllVLoUKISnszjh9QCWWXJiu6f41fh8dJtloevVXKIYqdxB7PjMee8XwATxgVjlXjLNXWlCnXgqaaWpm60puwxkWTHc8OfzgY7x7ydzMx24Jfw1kYDKscdGJU1HZucI98lHMZuCUY9_nI92ERHyfTl4sfKSJIoad1gNPoWGTfrX6G5VvzYm8Sxvppnk_ffn6zm_YIA6kJlkqbButGSp8xg9hbJvygsFnmZeYYN8HOsNYL7bwtmTHC04qKypSeaunHrqjGxrHw3QtwUTJBUcbkTK73dzDzesF5f04nY8Wo4VEr4XqNlpLm6cnGXBghA_5l5_4drvmHzzZOhdNrcLW3Ycmrjumuw5arb8ClDtVydRM-TVwbA7xqMvfErRzBeHhtWoKbvsQ6tyCYRjN8ou6C0Bty1BAdLmOWmLoC7yN4IIkABG1zCw7PhbC3Ybue1-4ukDzjusAzssIbrnOnaWYrXmpqvGE68wnQgYjK9HnNEV7ju4r-dVaojvAqEF5FwquTBJ6t31l0WT3OrP0ax2ZdEzNyxwfz46-qF3DlQ4-FwL6GJXfhRVF5Ib01uc2DCsxkAjvDyKpeTTTqlKkTeLwuDgKOXhtdu_ky1kH3t2BlAnc6Rli3hLFAWV7wBOQGi2w0dbOkPvoWk4hLycZCsgSeD8x02qz_k-Le2b14BJeDUKr3ewf79-FKHlk9Tynfge32eOkeBPutrR5GQSHw5bwl8zfcU1fP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detection+of+eye+contact+with+deep+neural+networks+is+as+accurate+as+human+experts&rft.jtitle=Nature+communications&rft.au=Chong%2C+Eunji&rft.au=Clark-Whitney%2C+Elysha&rft.au=Southerland%2C+Audrey&rft.au=Stubbs%2C+Elizabeth&rft.date=2020-12-14&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=6386&rft_id=info:doi/10.1038%2Fs41467-020-19712-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon