COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images

The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging become...

Full description

Saved in:
Bibliographic Details
Published inInterdisciplinary sciences : computational life sciences Vol. 12; no. 4; pp. 555 - 565
Main Authors Zhang, Ruochi, Guo, Zhehao, Sun, Yue, Lu, Qi, Xu, Zijian, Yao, Zhaomin, Duan, Meiyu, Liu, Shuai, Ren, Yanjiao, Huang, Lan, Zhou, Fengfeng
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. Graphic abstract COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.
AbstractList The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. Graphic abstract COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released.
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released.Graphic abstractCOVID19XrayNet, a two-step transfer learning framework designed for biomedical images.
Author Lu, Qi
Sun, Yue
Xu, Zijian
Duan, Meiyu
Liu, Shuai
Huang, Lan
Yao, Zhaomin
Guo, Zhehao
Ren, Yanjiao
Zhou, Fengfeng
Zhang, Ruochi
Author_xml – sequence: 1
  givenname: Ruochi
  surname: Zhang
  fullname: Zhang, Ruochi
  organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 2
  givenname: Zhehao
  surname: Guo
  fullname: Guo, Zhehao
  organization: School of Computing and Information, University of Pittsburgh
– sequence: 3
  givenname: Yue
  surname: Sun
  fullname: Sun, Yue
  organization: School of Computing and Information, University of Pittsburgh
– sequence: 4
  givenname: Qi
  surname: Lu
  fullname: Lu, Qi
  organization: School of Computing and Information, University of Pittsburgh
– sequence: 5
  givenname: Zijian
  surname: Xu
  fullname: Xu, Zijian
  organization: School of Computing and Information, University of Pittsburgh
– sequence: 6
  givenname: Zhaomin
  surname: Yao
  fullname: Yao, Zhaomin
  organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 7
  givenname: Meiyu
  surname: Duan
  fullname: Duan, Meiyu
  organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 8
  givenname: Shuai
  surname: Liu
  fullname: Liu, Shuai
  organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 9
  givenname: Yanjiao
  surname: Ren
  fullname: Ren, Yanjiao
  organization: College of Information Technology, Jilin Agricultural University
– sequence: 10
  givenname: Lan
  surname: Huang
  fullname: Huang, Lan
  organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
– sequence: 11
  givenname: Fengfeng
  orcidid: 0000-0002-8108-6007
  surname: Zhou
  fullname: Zhou, Fengfeng
  email: FengfengZhou@gmail.com, ffzhou@jlu.edu.cn
  organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32959234$$D View this record in MEDLINE/PubMed
BookMark eNp9kstuEzEUhkeoiF7gBVggS2zYGHyZGdsskErKJVJoEUSoO8uZHCeuZuxge0B5AN4bpykFuujKtvz9x-f3-Y-rAx88VNVTSl5SQsSrRFnDFSaMYEK44rh5UB1R2QpM65YdlL2iHDPR0MPqOKUrQtpacvKoOuRMNYrx-qj6Nbn4Nj2j6jKa7Tnk1-gUzX8G_DXDBs2j8clCRDMw0Tu_Qp_CEnpkQ0R5DehaiqlCZ5ChyzvgcwyLHgb01iRYouCRQTM3uFwO5-OwKLWCRZM1pIwu8RezRdPBrCA9rh5a0yd4crOeVPP37-aTj3h28WE6OZ3hrqlJxtI23bJlnBHb0lqImhglDRDDQRarrWKMGtIZJhdK2mJSWGmKT7XsbNsKflK92ZfdjIsBlh34HE2vN9ENJm51ME7_f-PdWq_CDy0a0pSvKwVe3BSI4ftYXOjBpQ763ngIY9Ksrmspy3Dqgj6_g16FMfrirlCCC8kVk4V69m9Ht638GVAB2B7oYkgpgr1FKNG7FOh9CnRJgb5OgW6KSN4RdS6b7MLOlevvl_K9NJV3_Ari37bvUf0GRXnDWg
CitedBy_id crossref_primary_10_3390_app132312725
crossref_primary_10_3390_diagnostics11061080
crossref_primary_10_1109_TETCI_2024_3371222
crossref_primary_10_1038_s41598_021_00524_y
crossref_primary_10_1109_TEM_2021_3103334
crossref_primary_10_1142_S0218001422520103
crossref_primary_10_1016_j_wfumbo_2024_100050
crossref_primary_10_17798_bitlisfen_1346730
crossref_primary_10_1007_s11517_020_02299_2
crossref_primary_10_1111_1754_9485_13273
crossref_primary_10_1016_j_cmpb_2022_106651
crossref_primary_10_1016_j_compbiomed_2021_105047
crossref_primary_10_1016_j_compbiomed_2023_106877
crossref_primary_10_1002_mp_15419
crossref_primary_10_1007_s00521_023_08997_w
crossref_primary_10_1155_2021_9942873
crossref_primary_10_1038_s42256_021_00307_0
crossref_primary_10_1088_2632_2153_abf22c
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_3390_diagnostics13030574
crossref_primary_10_37990_medr_1031866
crossref_primary_10_1007_s00521_021_05741_0
crossref_primary_10_1007_s00521_021_06737_6
crossref_primary_10_3389_fpsyg_2023_1226470
crossref_primary_10_1007_s11517_022_02553_9
crossref_primary_10_3390_s23010527
crossref_primary_10_1142_S0218348X21502558
crossref_primary_10_1007_s11042_024_18924_3
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1007_s12539_021_00420_z
Cites_doi 10.1109/TIP.2013.2264677
10.1016/S0140-6736(20)30633-4
10.1038/s41597-019-0322-0
10.1093/clinchem/hvaa029
10.2217/epi-2019-0230
10.1109/72.554195
10.1148/radiol.2020200343
10.1016/j.compbiomed.2019.103394
10.11613/BM.2012.031
10.1002/jmv.25727
10.1016/j.cell.2018.02.010
10.1111/tmi.13383
10.1109/ACCESS.2018.2817593
10.1109/TMI.2019.2948026
10.1001/jama.2020.4683
10.1016/j.ijantimicag.2020.105955
10.1038/s41586-020-2012-7
10.1016/j.compbiomed.2018.06.006
10.1186/s12859-018-2477-7
10.1109/ISCAS.2010.5537907
10.1109/CVPR.2016.90
10.1145/3394171.3414537
10.1109/ICWAPR.2008.4635807
10.1007/978-3-319-11758-4_31
10.1145/2818346.2830593
10.1109/CVPR.2017.369
10.1609/aaai.v33i01.3301590
ContentType Journal Article
Copyright International Association of Scientists in the Interdisciplinary Areas 2020
International Association of Scientists in the Interdisciplinary Areas 2020.
Copyright_xml – notice: International Association of Scientists in the Interdisciplinary Areas 2020
– notice: International Association of Scientists in the Interdisciplinary Areas 2020.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1007/s12539-020-00393-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Biotechnology Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1867-1462
EndPage 565
ExternalDocumentID PMC7505483
32959234
10_1007_s12539_020_00393_5
Genre Journal Article
GrantInformation_xml – fundername: Jilin Provincial Key Laboratory of Big Data Intelligent Computing
  grantid: 20180622002JC
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JLU
  funderid: http://dx.doi.org/10.13039/501100012226
– fundername: Jilin University
  grantid: startup; High Performance Computing Center
– fundername: Education Department of Jilin Province
  grantid: JJKH20180145KJ
  funderid: http://dx.doi.org/10.13039/501100010211
– fundername: Bioknow MedAI Institute
  grantid: BMCPP-2018-001
– fundername: Education Department of Jilin Province
  grantid: JJKH20180145KJ
– fundername: Jilin University
  grantid: startup
– fundername: Jilin University
  grantid: High Performance Computing Center
– fundername: Fundamental Research Funds for the Central Universities
  grantid: JLU
– fundername: ;
  grantid: startup; High Performance Computing Center
– fundername: ;
  grantid: JLU
– fundername: ;
  grantid: BMCPP-2018-001
– fundername: ;
  grantid: 20180622002JC
– fundername: ;
  grantid: JJKH20180145KJ
GroupedDBID ---
-56
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
1N0
29~
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
67N
6NX
7X2
7X7
7XC
88E
8CJ
8FE
8FG
8FH
8FI
8FJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
APEBS
ARAPS
ASPBG
ATCPS
AUKKA
AVWKF
AXYYD
AZFZN
BA0
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BVXVI
CAG
CCPQU
COF
D1J
D1K
DDRTE
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IZIGR
I~X
J-C
JBSCW
JCJTX
JZLTJ
K6-
KOV
LK5
LK8
LLZTM
M0K
M1P
M4Y
M7P
M7R
NPVJJ
NQJWS
NU0
O9-
O9J
P62
PATMY
PCBAR
PQQKQ
PROAC
PSQYO
PT4
PYCSY
Q2X
QOR
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3A
S3B
SBL
SCL
SDH
SHX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SV3
T13
TSG
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
ABRTQ
FR3
JQ2
K9.
L7M
L~C
L~D
P64
7X8
5PM
ID FETCH-LOGICAL-c540t-8f5cd62320f6147740a98ae0a3e891369221a0ca28b98f3297f8a9239dcf6673
IEDL.DBID U2A
ISSN 1913-2751
1867-1462
IngestDate Thu Aug 21 13:49:21 EDT 2025
Thu Jul 10 17:43:43 EDT 2025
Fri Jul 25 12:19:08 EDT 2025
Thu Apr 03 07:08:32 EDT 2025
Thu Apr 24 22:58:43 EDT 2025
Tue Jul 01 02:19:19 EDT 2025
Fri Feb 21 02:33:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Feature smoothing layer (FSL)
ResNet34
Two-step transfer learning
Feature extraction layer (FEL)
COVID19XrayNet
Language English
License This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-8f5cd62320f6147740a98ae0a3e891369221a0ca28b98f3297f8a9239dcf6673
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8108-6007
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7505483
PMID 32959234
PQID 2473783928
PQPubID 326319
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7505483
proquest_miscellaneous_2444881004
proquest_journals_2473783928
pubmed_primary_32959234
crossref_primary_10_1007_s12539_020_00393_5
crossref_citationtrail_10_1007_s12539_020_00393_5
springer_journals_10_1007_s12539_020_00393_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Bromont
PublicationTitle Interdisciplinary sciences : computational life sciences
PublicationTitleAbbrev Interdiscip Sci Comput Life Sci
PublicationTitleAlternate Interdiscip Sci
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Velavan, Meyer (CR5) 2020; 25
Chu, Pan, Cheng, Hui, Krishnan, Liu, Ng, Wan, Yang, Wang, Peiris, Poon (CR6) 2020; 66
Zhao, Zhang, Tang, Feng, Li, Liu, Zhu, Wang, Li, Zhou, Yang, Wang, Ba, Zhang, Liu, Zhou (CR11) 2018; 99
CR19
CR16
Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan, Dong, Prasadha, Pei, Ting, Zhu, Li, Hewett, Dong, Ziyar, Shi, Zhang, Zheng, Hou, Shi, Fu, Duan, Huu, Wen, Zhang, Zhang, Li, Wang, Singer, Sun, Xu, Tafreshi, Lewis, Xia, Zhang (CR13) 2018; 172
CR15
CR14
Xie, Zhong, Zhao, Zheng, Wang, Liu (CR8) 2020
Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang, Chen, Chen, Luo, Guo, Jiang, Liu, Chen, Shen, Wang, Zheng, Zhao, Chen, Deng, Liu, Yan, Zhan, Wang, Xiao, Shi (CR2) 2020; 579
Liu, Kang, Zhang, Hou (CR21) 2018; 6
Lawrence, Giles, Tsoi, Back (CR18) 1997; 8
Satpathy, Jiang, Eng (CR10) 2013; 23
Li, Yi, Luo, Xiong, Liu, Li, Sun, Wang, Hu, Chen, Zhang, Wang, Huang, Lin, Yang, Cai, Wang, Cheng, Chen, Sun, Pan, Zhan, Chen, Ye (CR7) 2020
Zhai, Ding, Wu, Long, Zhong, Li (CR1) 2020
Onder, Rezza, Brusaferro (CR3) 2020; 323
CR9
CR25
CR24
CR23
CR22
McHugh (CR29) 2012; 22
CR20
Yang, Kim, Kim, Adhikari (CR26) 2019
Weiss, Murdoch (CR4) 2020; 395
Hao, Peng, Wang, Liu, Zhou, Zheng (CR28) 2019; 113
Johnson, Pollard, Berkowitz, Greenbaum, Lungren, Deng, Mark, Horng (CR17) 2019
Zhang, Chen, Duan, Liu, Huang, Zhou (CR27) 2019; 11
Zhang, Zhao, Zhao, Wu, Zheng, Feng, Zhou (CR12) 2018; 19
AE Johnson (393_CR17) 2019
393_CR14
393_CR15
K Liu (393_CR21) 2018; 6
R Zhang (393_CR12) 2018; 19
393_CR16
X Xie (393_CR8) 2020
393_CR19
A Satpathy (393_CR10) 2013; 23
ML McHugh (393_CR29) 2012; 22
H Yang (393_CR26) 2019
D Hao (393_CR28) 2019; 113
S Lawrence (393_CR18) 1997; 8
393_CR20
393_CR22
393_CR23
393_CR24
393_CR9
393_CR25
G Onder (393_CR3) 2020; 323
P Zhai (393_CR1) 2020
R Zhao (393_CR11) 2018; 99
Y Zhang (393_CR27) 2019; 11
DS Kermany (393_CR13) 2018; 172
P Zhou (393_CR2) 2020; 579
P Weiss (393_CR4) 2020; 395
Z Li (393_CR7) 2020
TP Velavan (393_CR5) 2020; 25
DKW Chu (393_CR6) 2020; 66
References_xml – volume: 23
  start-page: 287
  issue: 1
  year: 2013
  end-page: 297
  ident: CR10
  article-title: Human detection by quadratic classification on subspace of extended histogram of gradients
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2264677
– ident: CR22
– volume: 395
  start-page: 1014
  issue: 10229
  year: 2020
  end-page: 1015
  ident: CR4
  article-title: Clinical course and mortality risk of severe COVID-19
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30633-4
– year: 2019
  ident: CR17
  article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0322-0
– volume: 66
  start-page: 549
  issue: 4
  year: 2020
  end-page: 555
  ident: CR6
  article-title: Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia
  publication-title: Clin Chem
  doi: 10.1093/clinchem/hvaa029
– ident: CR14
– ident: CR16
– volume: 11
  start-page: 1717
  issue: 15
  year: 2019
  end-page: 1732
  ident: CR27
  article-title: BioDog, biomarker detection for improving identification power of breast cancer histologic grade in methylomics
  publication-title: Epigenomics
  doi: 10.2217/epi-2019-0230
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  end-page: 113
  ident: CR18
  article-title: Face recognition: a convolutional neural-network approach
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– year: 2020
  ident: CR8
  article-title: Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– volume: 113
  start-page: 103394
  year: 2019
  ident: CR28
  article-title: Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103394
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  end-page: 282
  ident: CR29
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem Med (Zagreb)
  doi: 10.11613/BM.2012.031
– year: 2020
  ident: CR7
  article-title: Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis
  publication-title: J Med Virol
  doi: 10.1002/jmv.25727
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  end-page: 1131
  ident: CR13
  article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– ident: CR25
– ident: CR23
– ident: CR19
– volume: 25
  start-page: 278
  issue: 3
  year: 2020
  end-page: 280
  ident: CR5
  article-title: The COVID-19 epidemic
  publication-title: Trop Med Int Health
  doi: 10.1111/tmi.13383
– volume: 6
  start-page: 23722
  year: 2018
  end-page: 23732
  ident: CR21
  article-title: Breast cancer classification based on fully-connected layer first convolutional neural networks
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817593
– year: 2019
  ident: CR26
  article-title: Guided soft attention network for classification of breast cancer histopathology images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2948026
– ident: CR15
– ident: CR9
– volume: 323
  start-page: 1775
  issue: 18
  year: 2020
  end-page: 1776
  ident: CR3
  article-title: Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy
  publication-title: JAMA
  doi: 10.1001/jama.2020.4683
– year: 2020
  ident: CR1
  article-title: The epidemiology, diagnosis and treatment of COVID-19
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2020.105955
– volume: 579
  start-page: 270
  issue: 7798
  year: 2020
  end-page: 273
  ident: CR2
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 99
  start-page: 182
  year: 2018
  end-page: 190
  ident: CR11
  article-title: TriZ-a rotation-tolerant image feature and its application in endoscope-based disease diagnosis
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.006
– ident: CR24
– volume: 19
  start-page: 452
  issue: 1
  year: 2018
  ident: CR12
  article-title: pyHIVE, a health-related image visualization and engineering system using Python
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-018-2477-7
– ident: CR20
– ident: 393_CR22
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 393_CR29
  publication-title: Biochem Med (Zagreb)
  doi: 10.11613/BM.2012.031
– volume: 8
  start-page: 98
  issue: 1
  year: 1997
  ident: 393_CR18
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.554195
– volume: 113
  start-page: 103394
  year: 2019
  ident: 393_CR28
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103394
– ident: 393_CR19
  doi: 10.1109/ISCAS.2010.5537907
– ident: 393_CR23
  doi: 10.1109/CVPR.2016.90
– ident: 393_CR25
  doi: 10.1145/3394171.3414537
– volume: 323
  start-page: 1775
  issue: 18
  year: 2020
  ident: 393_CR3
  publication-title: JAMA
  doi: 10.1001/jama.2020.4683
– year: 2020
  ident: 393_CR8
  publication-title: Radiology
  doi: 10.1148/radiol.2020200343
– year: 2019
  ident: 393_CR26
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2019.2948026
– year: 2020
  ident: 393_CR7
  publication-title: J Med Virol
  doi: 10.1002/jmv.25727
– volume: 66
  start-page: 549
  issue: 4
  year: 2020
  ident: 393_CR6
  publication-title: Clin Chem
  doi: 10.1093/clinchem/hvaa029
– volume: 579
  start-page: 270
  issue: 7798
  year: 2020
  ident: 393_CR2
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– ident: 393_CR9
  doi: 10.1109/ICWAPR.2008.4635807
– volume: 23
  start-page: 287
  issue: 1
  year: 2013
  ident: 393_CR10
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2013.2264677
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 393_CR13
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– volume: 99
  start-page: 182
  year: 2018
  ident: 393_CR11
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.06.006
– ident: 393_CR20
  doi: 10.1007/978-3-319-11758-4_31
– ident: 393_CR24
  doi: 10.1145/2818346.2830593
– volume: 25
  start-page: 278
  issue: 3
  year: 2020
  ident: 393_CR5
  publication-title: Trop Med Int Health
  doi: 10.1111/tmi.13383
– volume: 19
  start-page: 452
  issue: 1
  year: 2018
  ident: 393_CR12
  publication-title: BMC Bioinf
  doi: 10.1186/s12859-018-2477-7
– volume: 395
  start-page: 1014
  issue: 10229
  year: 2020
  ident: 393_CR4
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30633-4
– volume: 6
  start-page: 23722
  year: 2018
  ident: 393_CR21
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817593
– ident: 393_CR15
  doi: 10.1109/CVPR.2017.369
– year: 2020
  ident: 393_CR1
  publication-title: Int J Antimicrob Agents
  doi: 10.1016/j.ijantimicag.2020.105955
– volume: 11
  start-page: 1717
  issue: 15
  year: 2019
  ident: 393_CR27
  publication-title: Epigenomics
  doi: 10.2217/epi-2019-0230
– year: 2019
  ident: 393_CR17
  publication-title: Sci Data
  doi: 10.1038/s41597-019-0322-0
– ident: 393_CR16
  doi: 10.1609/aaai.v33i01.3301590
– ident: 393_CR14
SSID ssj0064830
Score 2.418708
Snippet The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 555
SubjectTerms Algorithms
Artificial neural networks
Betacoronavirus
Biomedical and Life Sciences
Chest
Clinical Laboratory Techniques - methods
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Appl. in Life Sciences
Coronaviridae
Coronavirus
Coronavirus Infections - complications
Coronavirus Infections - diagnosis
Coronavirus Infections - diagnostic imaging
Coronavirus Infections - virology
Coronaviruses
COVID-19
COVID-19 Testing
Databases, Factual
Datasets
Datasets as Topic
Deep Learning
Diagnostic systems
Health Sciences
Humans
Life Sciences
Lung - diagnostic imaging
Lung diseases
Machine Learning
Mathematical and Computational Physics
Medical imaging
Medicine
Model accuracy
Models, Biological
Neural networks
Neural Networks, Computer
Pandemics
Pneumonia - diagnosis
Pneumonia - diagnostic imaging
Pneumonia - etiology
Pneumonia - virology
Pneumonia, Viral - complications
Pneumonia, Viral - diagnosis
Pneumonia, Viral - diagnostic imaging
Pneumonia, Viral - virology
Radiography - methods
Reference Values
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Short Communication
Statistics for Life Sciences
Theoretical
Theoretical and Computational Chemistry
Tomography, X-Ray Computed - methods
Training
Transfer learning
Viral diseases
X ray imagery
X-Rays
Title COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images
URI https://link.springer.com/article/10.1007/s12539-020-00393-5
https://www.ncbi.nlm.nih.gov/pubmed/32959234
https://www.proquest.com/docview/2473783928
https://www.proquest.com/docview/2444881004
https://pubmed.ncbi.nlm.nih.gov/PMC7505483
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJhAvCAaMjDEdEm9gKbXzZd5Kt7GBVhDqUHmKnMQGpJFMbSfUP4D_mzsnaVUGSLzGlw_nzr7f6Xz3A3iurXTc9E5UiU5EVBgnCqOc4AxeYhJjtc-Yno2Tk_Po7TSedkVh8_60e5-S9Dv1uthNxkoLDnd8QamIb8J2zLE7WfG5HPb7bxJlnmGEAhElZBoPulKZPz9j0x1dw5jXj0r-li_1buj4Htzt8CMOW4Xfhxu23oFbLaPkcgdun3W58gfwc_T-0-nhQE9nZjm2i1c4xMmPRvCxLvQeytkZdu1VvyBzol0gIVgkRIj-VjHQeGg5ycACH1rmGXxNbq_CpkaDXXEUjj2rCDYOR8y-hVPx0Szx9DttVfOHMDk-moxOREe6IEoCbwuRubisCBPJ0JHnJnAYGp0ZGxplOaOZaCkHJiyNzAqdOSV16jJDKFFXpWMK0UewVTe1fQxIF0OpHRPKVJFOyGRLU2qlpHI2NWURwKD_9XnZNSRnXoyLfN1KmdWVk7pyr648DuDF6p7Lth3HP6X3e43m3dKc5zJKVcqwMAvg2WqYFhVnSkxtmyuWoag142Z6Aey2BrB6HU2Z7FjRSLphGisBbti9OVJ_--obdxM6owBRBfCyN6L1Z_19Fnv_J_4E7kg2cH_kZh-2FrMr-5SA06I4gO3hm8_vjg78evkFINAMeA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgESwXBMsrsMAgcQNLiZ2Hza10WbWwLQh1UW-Rk9iw0pKgtivUH8D_ZsZJWpUFJK7x5OHM2PNZ8_gYe6GtcNT0jlepTnlcGMcLIx2nCF5qUmO1j5hOpunoNH43T-ZdUdiyz3bvQ5J-p94Wu4lEak7HHV9QypOr7BqCAUWJXKdi0O-_aaw8wwgeRCQXWRJ1pTJ_fsauO7qEMS-nSv4WL_Vu6Pg2u9XhRxi0Cr_Drtj6gF1vGSXXB-zGpIuV32U_hx8-j48iPV-Y9dSuXsMAZj8aTmld4D2Uswvo2qt-AeJEOwdEsICIEPytPNJwZCnIQAIfW-YZeINur4KmBgNdcRRMPasINA6GxL4Fc_7JrGH8Dbeq5T02O347G454R7rASwRvK65cUlaIiUTo0HMjOAyNVsaGRlqKaKZaiMiEpRGq0MpJoTOnDKJEXZWOKETvs726qe1DBngxFNoRoUwV6xRNtjSlllJIZzNTFgGL-l-fl11DcuLFOM-3rZRJXTmqK_fqypOAvdzc871tx_FP6cNeo3m3NJe5iDOZESxUAXu-GcZFRZESU9vmgmTw1KqomV7AHrQGsHkdThntWOJItmMaGwFq2L07Up999Y27EZ3hAVEG7FVvRNvP-vssHv2f-DO2P5pNTvKT8fT9Y3ZTkLH79JtDtrdaXNgnCKJWxVO_Zn4BhBgN1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgiImXaYxfgQGHxBtYS-z8Mm9dS7UCKxPqUN8iJ7EBaSRTl2nqH8D_zZ2TtJQBEq_1JWlyZ99nne_7GHupjLBEesfLWMU8zLXluZaWUwUv1rE2ylVMj6fx0Wn4bh7Nf-nid6fd-5Jk29NALE1Vc3Be2oN145uIpOK09XHNpTy6yW7hchxQXJ-KQb8Wx2Hq1EZwUyK5SKKga5v58z02U9M1vHn92ORvtVOXksa7bKfDkjBonX-X3TDVHrvdqksu99j2cVc3v8d-DD9-nowCNV_o5dQ0b2AAs6ua0xEvcNnKmgV0VKtfgPTRzgDRLCA6BHcpDxSMDBUcyOCkVaGBQ0yBJdQVaOgapWDqFEagtjAkJS6Y8096CZPvuGxd3Gez8dvZ8Ih3Agy8QCDX8NRGRYn4SPgWszgCRV-rVBtfS0PVzVgJEWi_0CLNVWqlUIlNNSJGVRaW5EQfsK2qrswjBvijL5QlcZkyVDGGb6ELJaWQ1iS6yD0W9J8-KzpyctLIOMvWtMrkrgzdlTl3ZZHHXq2uOW-pOf5pvd97NOum6UUmwkQmBBFTj71YDeMEo6qJrkx9STa4g02JWM9jD9sAWD0OXxljWuJIshEaKwMi794cqb59dSTeiNRwsyg99roPovXf-vtbPP4_8-ds-2Q0zj5Mpu-fsDuCYt2dxNlnW83i0jxFPNXkz9yU-QkLQxIT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID19XrayNet%3A+A+Two-Step+Transfer+Learning+Model+for+the+COVID-19+Detecting+Problem+Based+on+a+Limited+Number+of+Chest+X-Ray+Images&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Zhang%2C+Ruochi&rft.au=Guo%2C+Zhehao&rft.au=Sun%2C+Yue&rft.au=Lu%2C+Qi&rft.date=2020-12-01&rft.issn=1867-1462&rft.eissn=1867-1462&rft.volume=12&rft.issue=4&rft.spage=555&rft_id=info:doi/10.1007%2Fs12539-020-00393-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon