COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images
The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging become...
Saved in:
Published in | Interdisciplinary sciences : computational life sciences Vol. 12; no. 4; pp. 555 - 565 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released.
Graphic abstract
COVID19XrayNet, a two-step transfer learning framework designed for biomedical images. |
---|---|
AbstractList | The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released.
Graphic abstract
COVID19XrayNet, a two-step transfer learning framework designed for biomedical images. The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. COVID19XrayNet, a two-step transfer learning framework designed for biomedical images.The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. COVID19XrayNet, a two-step transfer learning framework designed for biomedical images. The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released. COVID19XrayNet, a two-step transfer learning framework designed for biomedical images. The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic technologies have been under active development. The novel coronavirus disease (COVID-19) may induce pulmonary failures, and chest X-ray imaging becomes one of the major confirmed diagnostic technologies. The very limited number of publicly available samples has rendered the training of the deep neural networks unstable and inaccurate. This study proposed a two-step transfer learning pipeline and a deep residual network framework COVID19XrayNet for the COVID-19 detection problem based on chest X-ray images. COVID19XrayNet firstly tunes the transferred model on a large dataset of chest X-ray images, which is further tuned using a small dataset of annotated chest X-ray images. The final model achieved 0.9108 accuracy. The experimental data also suggested that the model may be improved with more training samples being released.Graphic abstractCOVID19XrayNet, a two-step transfer learning framework designed for biomedical images. |
Author | Lu, Qi Sun, Yue Xu, Zijian Duan, Meiyu Liu, Shuai Huang, Lan Yao, Zhaomin Guo, Zhehao Ren, Yanjiao Zhou, Fengfeng Zhang, Ruochi |
Author_xml | – sequence: 1 givenname: Ruochi surname: Zhang fullname: Zhang, Ruochi organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 2 givenname: Zhehao surname: Guo fullname: Guo, Zhehao organization: School of Computing and Information, University of Pittsburgh – sequence: 3 givenname: Yue surname: Sun fullname: Sun, Yue organization: School of Computing and Information, University of Pittsburgh – sequence: 4 givenname: Qi surname: Lu fullname: Lu, Qi organization: School of Computing and Information, University of Pittsburgh – sequence: 5 givenname: Zijian surname: Xu fullname: Xu, Zijian organization: School of Computing and Information, University of Pittsburgh – sequence: 6 givenname: Zhaomin surname: Yao fullname: Yao, Zhaomin organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 7 givenname: Meiyu surname: Duan fullname: Duan, Meiyu organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 8 givenname: Shuai surname: Liu fullname: Liu, Shuai organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 9 givenname: Yanjiao surname: Ren fullname: Ren, Yanjiao organization: College of Information Technology, Jilin Agricultural University – sequence: 10 givenname: Lan surname: Huang fullname: Huang, Lan organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University – sequence: 11 givenname: Fengfeng orcidid: 0000-0002-8108-6007 surname: Zhou fullname: Zhou, Fengfeng email: FengfengZhou@gmail.com, ffzhou@jlu.edu.cn organization: BioKnow Health Informatics Lab, College of Computer Science and Technology, Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32959234$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstuEzEUhkeoiF7gBVggS2zYGHyZGdsskErKJVJoEUSoO8uZHCeuZuxge0B5AN4bpykFuujKtvz9x-f3-Y-rAx88VNVTSl5SQsSrRFnDFSaMYEK44rh5UB1R2QpM65YdlL2iHDPR0MPqOKUrQtpacvKoOuRMNYrx-qj6Nbn4Nj2j6jKa7Tnk1-gUzX8G_DXDBs2j8clCRDMw0Tu_Qp_CEnpkQ0R5DehaiqlCZ5ChyzvgcwyLHgb01iRYouCRQTM3uFwO5-OwKLWCRZM1pIwu8RezRdPBrCA9rh5a0yd4crOeVPP37-aTj3h28WE6OZ3hrqlJxtI23bJlnBHb0lqImhglDRDDQRarrWKMGtIZJhdK2mJSWGmKT7XsbNsKflK92ZfdjIsBlh34HE2vN9ENJm51ME7_f-PdWq_CDy0a0pSvKwVe3BSI4ftYXOjBpQ763ngIY9Ksrmspy3Dqgj6_g16FMfrirlCCC8kVk4V69m9Ht638GVAB2B7oYkgpgr1FKNG7FOh9CnRJgb5OgW6KSN4RdS6b7MLOlevvl_K9NJV3_Ari37bvUf0GRXnDWg |
CitedBy_id | crossref_primary_10_3390_app132312725 crossref_primary_10_3390_diagnostics11061080 crossref_primary_10_1109_TETCI_2024_3371222 crossref_primary_10_1038_s41598_021_00524_y crossref_primary_10_1109_TEM_2021_3103334 crossref_primary_10_1142_S0218001422520103 crossref_primary_10_1016_j_wfumbo_2024_100050 crossref_primary_10_17798_bitlisfen_1346730 crossref_primary_10_1007_s11517_020_02299_2 crossref_primary_10_1111_1754_9485_13273 crossref_primary_10_1016_j_cmpb_2022_106651 crossref_primary_10_1016_j_compbiomed_2021_105047 crossref_primary_10_1016_j_compbiomed_2023_106877 crossref_primary_10_1002_mp_15419 crossref_primary_10_1007_s00521_023_08997_w crossref_primary_10_1155_2021_9942873 crossref_primary_10_1038_s42256_021_00307_0 crossref_primary_10_1088_2632_2153_abf22c crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_3390_diagnostics13030574 crossref_primary_10_37990_medr_1031866 crossref_primary_10_1007_s00521_021_05741_0 crossref_primary_10_1007_s00521_021_06737_6 crossref_primary_10_3389_fpsyg_2023_1226470 crossref_primary_10_1007_s11517_022_02553_9 crossref_primary_10_3390_s23010527 crossref_primary_10_1142_S0218348X21502558 crossref_primary_10_1007_s11042_024_18924_3 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1007_s12539_021_00420_z |
Cites_doi | 10.1109/TIP.2013.2264677 10.1016/S0140-6736(20)30633-4 10.1038/s41597-019-0322-0 10.1093/clinchem/hvaa029 10.2217/epi-2019-0230 10.1109/72.554195 10.1148/radiol.2020200343 10.1016/j.compbiomed.2019.103394 10.11613/BM.2012.031 10.1002/jmv.25727 10.1016/j.cell.2018.02.010 10.1111/tmi.13383 10.1109/ACCESS.2018.2817593 10.1109/TMI.2019.2948026 10.1001/jama.2020.4683 10.1016/j.ijantimicag.2020.105955 10.1038/s41586-020-2012-7 10.1016/j.compbiomed.2018.06.006 10.1186/s12859-018-2477-7 10.1109/ISCAS.2010.5537907 10.1109/CVPR.2016.90 10.1145/3394171.3414537 10.1109/ICWAPR.2008.4635807 10.1007/978-3-319-11758-4_31 10.1145/2818346.2830593 10.1109/CVPR.2017.369 10.1609/aaai.v33i01.3301590 |
ContentType | Journal Article |
Copyright | International Association of Scientists in the Interdisciplinary Areas 2020 International Association of Scientists in the Interdisciplinary Areas 2020. |
Copyright_xml | – notice: International Association of Scientists in the Interdisciplinary Areas 2020 – notice: International Association of Scientists in the Interdisciplinary Areas 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 7X8 5PM |
DOI | 10.1007/s12539-020-00393-5 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE Biotechnology Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1867-1462 |
EndPage | 565 |
ExternalDocumentID | PMC7505483 32959234 10_1007_s12539_020_00393_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Jilin Provincial Key Laboratory of Big Data Intelligent Computing grantid: 20180622002JC – fundername: Fundamental Research Funds for the Central Universities grantid: JLU funderid: http://dx.doi.org/10.13039/501100012226 – fundername: Jilin University grantid: startup; High Performance Computing Center – fundername: Education Department of Jilin Province grantid: JJKH20180145KJ funderid: http://dx.doi.org/10.13039/501100010211 – fundername: Bioknow MedAI Institute grantid: BMCPP-2018-001 – fundername: Education Department of Jilin Province grantid: JJKH20180145KJ – fundername: Jilin University grantid: startup – fundername: Jilin University grantid: High Performance Computing Center – fundername: Fundamental Research Funds for the Central Universities grantid: JLU – fundername: ; grantid: startup; High Performance Computing Center – fundername: ; grantid: JLU – fundername: ; grantid: BMCPP-2018-001 – fundername: ; grantid: 20180622002JC – fundername: ; grantid: JJKH20180145KJ |
GroupedDBID | --- -56 -5G -BR -EM -~C 06C 06D 0R~ 0VY 1N0 29~ 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 67N 6NX 7X2 7X7 7XC 88E 8CJ 8FE 8FG 8FH 8FI 8FJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG APEBS ARAPS ASPBG ATCPS AUKKA AVWKF AXYYD AZFZN BA0 BBNVY BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BVXVI CAG CCPQU COF D1J D1K DDRTE DNIVK DPUIP EBD EBLON EBS EIOEI EJD EMOBN ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI FYUFA G-Y G-Z GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG6 HLICF HMCUK HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IZIGR I~X J-C JBSCW JCJTX JZLTJ K6- KOV LK5 LK8 LLZTM M0K M1P M4Y M7P M7R NPVJJ NQJWS NU0 O9- O9J P62 PATMY PCBAR PQQKQ PROAC PSQYO PT4 PYCSY Q2X QOR QOS R89 RLLFE ROL RSV S1Z S27 S3A S3B SBL SCL SDH SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SV3 T13 TSG U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD ABRTQ FR3 JQ2 K9. L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c540t-8f5cd62320f6147740a98ae0a3e891369221a0ca28b98f3297f8a9239dcf6673 |
IEDL.DBID | U2A |
ISSN | 1913-2751 1867-1462 |
IngestDate | Thu Aug 21 13:49:21 EDT 2025 Thu Jul 10 17:43:43 EDT 2025 Fri Jul 25 12:19:08 EDT 2025 Thu Apr 03 07:08:32 EDT 2025 Thu Apr 24 22:58:43 EDT 2025 Tue Jul 01 02:19:19 EDT 2025 Fri Feb 21 02:33:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Keywords | Feature smoothing layer (FSL) ResNet34 Two-step transfer learning Feature extraction layer (FEL) COVID19XrayNet |
Language | English |
License | This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-8f5cd62320f6147740a98ae0a3e891369221a0ca28b98f3297f8a9239dcf6673 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8108-6007 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7505483 |
PMID | 32959234 |
PQID | 2473783928 |
PQPubID | 326319 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7505483 proquest_miscellaneous_2444881004 proquest_journals_2473783928 pubmed_primary_32959234 crossref_primary_10_1007_s12539_020_00393_5 crossref_citationtrail_10_1007_s12539_020_00393_5 springer_journals_10_1007_s12539_020_00393_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Bromont |
PublicationTitle | Interdisciplinary sciences : computational life sciences |
PublicationTitleAbbrev | Interdiscip Sci Comput Life Sci |
PublicationTitleAlternate | Interdiscip Sci |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Velavan, Meyer (CR5) 2020; 25 Chu, Pan, Cheng, Hui, Krishnan, Liu, Ng, Wan, Yang, Wang, Peiris, Poon (CR6) 2020; 66 Zhao, Zhang, Tang, Feng, Li, Liu, Zhu, Wang, Li, Zhou, Yang, Wang, Ba, Zhang, Liu, Zhou (CR11) 2018; 99 CR19 CR16 Kermany, Goldbaum, Cai, Valentim, Liang, Baxter, McKeown, Yang, Wu, Yan, Dong, Prasadha, Pei, Ting, Zhu, Li, Hewett, Dong, Ziyar, Shi, Zhang, Zheng, Hou, Shi, Fu, Duan, Huu, Wen, Zhang, Zhang, Li, Wang, Singer, Sun, Xu, Tafreshi, Lewis, Xia, Zhang (CR13) 2018; 172 CR15 CR14 Xie, Zhong, Zhao, Zheng, Wang, Liu (CR8) 2020 Zhou, Yang, Wang, Hu, Zhang, Zhang, Si, Zhu, Li, Huang, Chen, Chen, Luo, Guo, Jiang, Liu, Chen, Shen, Wang, Zheng, Zhao, Chen, Deng, Liu, Yan, Zhan, Wang, Xiao, Shi (CR2) 2020; 579 Liu, Kang, Zhang, Hou (CR21) 2018; 6 Lawrence, Giles, Tsoi, Back (CR18) 1997; 8 Satpathy, Jiang, Eng (CR10) 2013; 23 Li, Yi, Luo, Xiong, Liu, Li, Sun, Wang, Hu, Chen, Zhang, Wang, Huang, Lin, Yang, Cai, Wang, Cheng, Chen, Sun, Pan, Zhan, Chen, Ye (CR7) 2020 Zhai, Ding, Wu, Long, Zhong, Li (CR1) 2020 Onder, Rezza, Brusaferro (CR3) 2020; 323 CR9 CR25 CR24 CR23 CR22 McHugh (CR29) 2012; 22 CR20 Yang, Kim, Kim, Adhikari (CR26) 2019 Weiss, Murdoch (CR4) 2020; 395 Hao, Peng, Wang, Liu, Zhou, Zheng (CR28) 2019; 113 Johnson, Pollard, Berkowitz, Greenbaum, Lungren, Deng, Mark, Horng (CR17) 2019 Zhang, Chen, Duan, Liu, Huang, Zhou (CR27) 2019; 11 Zhang, Zhao, Zhao, Wu, Zheng, Feng, Zhou (CR12) 2018; 19 AE Johnson (393_CR17) 2019 393_CR14 393_CR15 K Liu (393_CR21) 2018; 6 R Zhang (393_CR12) 2018; 19 393_CR16 X Xie (393_CR8) 2020 393_CR19 A Satpathy (393_CR10) 2013; 23 ML McHugh (393_CR29) 2012; 22 H Yang (393_CR26) 2019 D Hao (393_CR28) 2019; 113 S Lawrence (393_CR18) 1997; 8 393_CR20 393_CR22 393_CR23 393_CR24 393_CR9 393_CR25 G Onder (393_CR3) 2020; 323 P Zhai (393_CR1) 2020 R Zhao (393_CR11) 2018; 99 Y Zhang (393_CR27) 2019; 11 DS Kermany (393_CR13) 2018; 172 P Zhou (393_CR2) 2020; 579 P Weiss (393_CR4) 2020; 395 Z Li (393_CR7) 2020 TP Velavan (393_CR5) 2020; 25 DKW Chu (393_CR6) 2020; 66 |
References_xml | – volume: 23 start-page: 287 issue: 1 year: 2013 end-page: 297 ident: CR10 article-title: Human detection by quadratic classification on subspace of extended histogram of gradients publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2264677 – ident: CR22 – volume: 395 start-page: 1014 issue: 10229 year: 2020 end-page: 1015 ident: CR4 article-title: Clinical course and mortality risk of severe COVID-19 publication-title: Lancet doi: 10.1016/S0140-6736(20)30633-4 – year: 2019 ident: CR17 article-title: MIMIC-CXR, a de-identified publicly available database of chest radiographs with free-text reports publication-title: Sci Data doi: 10.1038/s41597-019-0322-0 – volume: 66 start-page: 549 issue: 4 year: 2020 end-page: 555 ident: CR6 article-title: Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia publication-title: Clin Chem doi: 10.1093/clinchem/hvaa029 – ident: CR14 – ident: CR16 – volume: 11 start-page: 1717 issue: 15 year: 2019 end-page: 1732 ident: CR27 article-title: BioDog, biomarker detection for improving identification power of breast cancer histologic grade in methylomics publication-title: Epigenomics doi: 10.2217/epi-2019-0230 – volume: 8 start-page: 98 issue: 1 year: 1997 end-page: 113 ident: CR18 article-title: Face recognition: a convolutional neural-network approach publication-title: IEEE Trans Neural Netw doi: 10.1109/72.554195 – year: 2020 ident: CR8 article-title: Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing publication-title: Radiology doi: 10.1148/radiol.2020200343 – volume: 113 start-page: 103394 year: 2019 ident: CR28 article-title: Evaluation of convolutional neural network for recognizing uterine contractions with electrohysterogram publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103394 – volume: 22 start-page: 276 issue: 3 year: 2012 end-page: 282 ident: CR29 article-title: Interrater reliability: the kappa statistic publication-title: Biochem Med (Zagreb) doi: 10.11613/BM.2012.031 – year: 2020 ident: CR7 article-title: Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis publication-title: J Med Virol doi: 10.1002/jmv.25727 – volume: 172 start-page: 1122 issue: 5 year: 2018 end-page: 1131 ident: CR13 article-title: Identifying medical diagnoses and treatable diseases by image-based deep learning publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – ident: CR25 – ident: CR23 – ident: CR19 – volume: 25 start-page: 278 issue: 3 year: 2020 end-page: 280 ident: CR5 article-title: The COVID-19 epidemic publication-title: Trop Med Int Health doi: 10.1111/tmi.13383 – volume: 6 start-page: 23722 year: 2018 end-page: 23732 ident: CR21 article-title: Breast cancer classification based on fully-connected layer first convolutional neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817593 – year: 2019 ident: CR26 article-title: Guided soft attention network for classification of breast cancer histopathology images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2948026 – ident: CR15 – ident: CR9 – volume: 323 start-page: 1775 issue: 18 year: 2020 end-page: 1776 ident: CR3 article-title: Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy publication-title: JAMA doi: 10.1001/jama.2020.4683 – year: 2020 ident: CR1 article-title: The epidemiology, diagnosis and treatment of COVID-19 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2020.105955 – volume: 579 start-page: 270 issue: 7798 year: 2020 end-page: 273 ident: CR2 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 99 start-page: 182 year: 2018 end-page: 190 ident: CR11 article-title: TriZ-a rotation-tolerant image feature and its application in endoscope-based disease diagnosis publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.006 – ident: CR24 – volume: 19 start-page: 452 issue: 1 year: 2018 ident: CR12 article-title: pyHIVE, a health-related image visualization and engineering system using Python publication-title: BMC Bioinf doi: 10.1186/s12859-018-2477-7 – ident: CR20 – ident: 393_CR22 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 393_CR29 publication-title: Biochem Med (Zagreb) doi: 10.11613/BM.2012.031 – volume: 8 start-page: 98 issue: 1 year: 1997 ident: 393_CR18 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.554195 – volume: 113 start-page: 103394 year: 2019 ident: 393_CR28 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103394 – ident: 393_CR19 doi: 10.1109/ISCAS.2010.5537907 – ident: 393_CR23 doi: 10.1109/CVPR.2016.90 – ident: 393_CR25 doi: 10.1145/3394171.3414537 – volume: 323 start-page: 1775 issue: 18 year: 2020 ident: 393_CR3 publication-title: JAMA doi: 10.1001/jama.2020.4683 – year: 2020 ident: 393_CR8 publication-title: Radiology doi: 10.1148/radiol.2020200343 – year: 2019 ident: 393_CR26 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2019.2948026 – year: 2020 ident: 393_CR7 publication-title: J Med Virol doi: 10.1002/jmv.25727 – volume: 66 start-page: 549 issue: 4 year: 2020 ident: 393_CR6 publication-title: Clin Chem doi: 10.1093/clinchem/hvaa029 – volume: 579 start-page: 270 issue: 7798 year: 2020 ident: 393_CR2 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – ident: 393_CR9 doi: 10.1109/ICWAPR.2008.4635807 – volume: 23 start-page: 287 issue: 1 year: 2013 ident: 393_CR10 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2013.2264677 – volume: 172 start-page: 1122 issue: 5 year: 2018 ident: 393_CR13 publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – volume: 99 start-page: 182 year: 2018 ident: 393_CR11 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.06.006 – ident: 393_CR20 doi: 10.1007/978-3-319-11758-4_31 – ident: 393_CR24 doi: 10.1145/2818346.2830593 – volume: 25 start-page: 278 issue: 3 year: 2020 ident: 393_CR5 publication-title: Trop Med Int Health doi: 10.1111/tmi.13383 – volume: 19 start-page: 452 issue: 1 year: 2018 ident: 393_CR12 publication-title: BMC Bioinf doi: 10.1186/s12859-018-2477-7 – volume: 395 start-page: 1014 issue: 10229 year: 2020 ident: 393_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(20)30633-4 – volume: 6 start-page: 23722 year: 2018 ident: 393_CR21 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817593 – ident: 393_CR15 doi: 10.1109/CVPR.2017.369 – year: 2020 ident: 393_CR1 publication-title: Int J Antimicrob Agents doi: 10.1016/j.ijantimicag.2020.105955 – volume: 11 start-page: 1717 issue: 15 year: 2019 ident: 393_CR27 publication-title: Epigenomics doi: 10.2217/epi-2019-0230 – year: 2019 ident: 393_CR17 publication-title: Sci Data doi: 10.1038/s41597-019-0322-0 – ident: 393_CR16 doi: 10.1609/aaai.v33i01.3301590 – ident: 393_CR14 |
SSID | ssj0064830 |
Score | 2.418708 |
Snippet | The novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a major pandemic outbreak recently. Various diagnostic... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 555 |
SubjectTerms | Algorithms Artificial neural networks Betacoronavirus Biomedical and Life Sciences Chest Clinical Laboratory Techniques - methods Computational Biology/Bioinformatics Computational Science and Engineering Computer Appl. in Life Sciences Coronaviridae Coronavirus Coronavirus Infections - complications Coronavirus Infections - diagnosis Coronavirus Infections - diagnostic imaging Coronavirus Infections - virology Coronaviruses COVID-19 COVID-19 Testing Databases, Factual Datasets Datasets as Topic Deep Learning Diagnostic systems Health Sciences Humans Life Sciences Lung - diagnostic imaging Lung diseases Machine Learning Mathematical and Computational Physics Medical imaging Medicine Model accuracy Models, Biological Neural networks Neural Networks, Computer Pandemics Pneumonia - diagnosis Pneumonia - diagnostic imaging Pneumonia - etiology Pneumonia - virology Pneumonia, Viral - complications Pneumonia, Viral - diagnosis Pneumonia, Viral - diagnostic imaging Pneumonia, Viral - virology Radiography - methods Reference Values SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 Short Communication Statistics for Life Sciences Theoretical Theoretical and Computational Chemistry Tomography, X-Ray Computed - methods Training Transfer learning Viral diseases X ray imagery X-Rays |
Title | COVID19XrayNet: A Two-Step Transfer Learning Model for the COVID-19 Detecting Problem Based on a Limited Number of Chest X-Ray Images |
URI | https://link.springer.com/article/10.1007/s12539-020-00393-5 https://www.ncbi.nlm.nih.gov/pubmed/32959234 https://www.proquest.com/docview/2473783928 https://www.proquest.com/docview/2444881004 https://pubmed.ncbi.nlm.nih.gov/PMC7505483 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_BJhAvCAaMjDEdEm9gKbXzZd5Kt7GBVhDqUHmKnMQGpJFMbSfUP4D_mzsnaVUGSLzGlw_nzr7f6Xz3A3iurXTc9E5UiU5EVBgnCqOc4AxeYhJjtc-Yno2Tk_Po7TSedkVh8_60e5-S9Dv1uthNxkoLDnd8QamIb8J2zLE7WfG5HPb7bxJlnmGEAhElZBoPulKZPz9j0x1dw5jXj0r-li_1buj4Htzt8CMOW4Xfhxu23oFbLaPkcgdun3W58gfwc_T-0-nhQE9nZjm2i1c4xMmPRvCxLvQeytkZdu1VvyBzol0gIVgkRIj-VjHQeGg5ycACH1rmGXxNbq_CpkaDXXEUjj2rCDYOR8y-hVPx0Szx9DttVfOHMDk-moxOREe6IEoCbwuRubisCBPJ0JHnJnAYGp0ZGxplOaOZaCkHJiyNzAqdOSV16jJDKFFXpWMK0UewVTe1fQxIF0OpHRPKVJFOyGRLU2qlpHI2NWURwKD_9XnZNSRnXoyLfN1KmdWVk7pyr648DuDF6p7Lth3HP6X3e43m3dKc5zJKVcqwMAvg2WqYFhVnSkxtmyuWoag142Z6Aey2BrB6HU2Z7FjRSLphGisBbti9OVJ_--obdxM6owBRBfCyN6L1Z_19Fnv_J_4E7kg2cH_kZh-2FrMr-5SA06I4gO3hm8_vjg78evkFINAMeA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgESwXBMsrsMAgcQNLiZ2Hza10WbWwLQh1UW-Rk9iw0pKgtivUH8D_ZsZJWpUFJK7x5OHM2PNZ8_gYe6GtcNT0jlepTnlcGMcLIx2nCF5qUmO1j5hOpunoNH43T-ZdUdiyz3bvQ5J-p94Wu4lEak7HHV9QypOr7BqCAUWJXKdi0O-_aaw8wwgeRCQXWRJ1pTJ_fsauO7qEMS-nSv4WL_Vu6Pg2u9XhRxi0Cr_Drtj6gF1vGSXXB-zGpIuV32U_hx8-j48iPV-Y9dSuXsMAZj8aTmld4D2Uswvo2qt-AeJEOwdEsICIEPytPNJwZCnIQAIfW-YZeINur4KmBgNdcRRMPasINA6GxL4Fc_7JrGH8Dbeq5T02O347G454R7rASwRvK65cUlaIiUTo0HMjOAyNVsaGRlqKaKZaiMiEpRGq0MpJoTOnDKJEXZWOKETvs726qe1DBngxFNoRoUwV6xRNtjSlllJIZzNTFgGL-l-fl11DcuLFOM-3rZRJXTmqK_fqypOAvdzc871tx_FP6cNeo3m3NJe5iDOZESxUAXu-GcZFRZESU9vmgmTw1KqomV7AHrQGsHkdThntWOJItmMaGwFq2L07Up999Y27EZ3hAVEG7FVvRNvP-vssHv2f-DO2P5pNTvKT8fT9Y3ZTkLH79JtDtrdaXNgnCKJWxVO_Zn4BhBgN1w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwELZgiImXaYxfgQGHxBtYS-z8Mm9dS7UCKxPqUN8iJ7EBaSRTl2nqH8D_zZ2TtJQBEq_1JWlyZ99nne_7GHupjLBEesfLWMU8zLXluZaWUwUv1rE2ylVMj6fx0Wn4bh7Nf-nid6fd-5Jk29NALE1Vc3Be2oN145uIpOK09XHNpTy6yW7hchxQXJ-KQb8Wx2Hq1EZwUyK5SKKga5v58z02U9M1vHn92ORvtVOXksa7bKfDkjBonX-X3TDVHrvdqksu99j2cVc3v8d-DD9-nowCNV_o5dQ0b2AAs6ua0xEvcNnKmgV0VKtfgPTRzgDRLCA6BHcpDxSMDBUcyOCkVaGBQ0yBJdQVaOgapWDqFEagtjAkJS6Y8096CZPvuGxd3Gez8dvZ8Ih3Agy8QCDX8NRGRYn4SPgWszgCRV-rVBtfS0PVzVgJEWi_0CLNVWqlUIlNNSJGVRaW5EQfsK2qrswjBvijL5QlcZkyVDGGb6ELJaWQ1iS6yD0W9J8-KzpyctLIOMvWtMrkrgzdlTl3ZZHHXq2uOW-pOf5pvd97NOum6UUmwkQmBBFTj71YDeMEo6qJrkx9STa4g02JWM9jD9sAWD0OXxljWuJIshEaKwMi794cqb59dSTeiNRwsyg99roPovXf-vtbPP4_8-ds-2Q0zj5Mpu-fsDuCYt2dxNlnW83i0jxFPNXkz9yU-QkLQxIT |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID19XrayNet%3A+A+Two-Step+Transfer+Learning+Model+for+the+COVID-19+Detecting+Problem+Based+on+a+Limited+Number+of+Chest+X-Ray+Images&rft.jtitle=Interdisciplinary+sciences+%3A+computational+life+sciences&rft.au=Zhang%2C+Ruochi&rft.au=Guo%2C+Zhehao&rft.au=Sun%2C+Yue&rft.au=Lu%2C+Qi&rft.date=2020-12-01&rft.issn=1867-1462&rft.eissn=1867-1462&rft.volume=12&rft.issue=4&rft.spage=555&rft_id=info:doi/10.1007%2Fs12539-020-00393-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1913-2751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1913-2751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1913-2751&client=summon |