Establishing metrics and control laws for the learning process: ball and beam balancing
Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation. Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point of a beam by manipulating the angular position of the b...
Saved in:
Published in | Biological cybernetics Vol. 114; no. 1; pp. 83 - 93 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation. Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point of a beam by manipulating the angular position of the beam. Stabilizability analysis of different biomechanical models for the ball and beam task with time-delayed proportional-derivative feedback identified the angular position of the beam as the manipulated variable. Consequently, we monitored the changes in the dynamics with learning by measuring changes in the control parameters. Two types of stable motion are possible: node type (nonoscillatory) and spiral type (oscillatory). Both types of motion are observed experimentally and correspond to well-defined regions in the parameter space of the control gains. With practice the control gains for each subject move close to or on the portion of the boundary which separates the node-type and spiral-type solutions and which is associated with the rightmost characteristic exponent of smallest real part. These observations suggest that with learning the control gains for ball and beam balancing change in such a way that minimizes overshoot and the settling time. This study provides an example of how mathematical analysis together with careful experimental observations can shed light onto the early stages of skill acquisition. Since the difficulty of this task depends on the length of the beam, ball and beam balancing tasks may be useful for the rehabilitation of children with dyspraxia and those recovering from a stroke. |
---|---|
AbstractList | Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation. Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point of a beam by manipulating the angular position of the beam. Stabilizability analysis of different biomechanical models for the ball and beam task with time-delayed proportional-derivative feedback identified the angular position of the beam as the manipulated variable. Consequently, we monitored the changes in the dynamics with learning by measuring changes in the control parameters. Two types of stable motion are possible: node type (nonoscillatory) and spiral type (oscillatory). Both types of motion are observed experimentally and correspond to well-defined regions in the parameter space of the control gains. With practice the control gains for each subject move close to or on the portion of the boundary which separates the node-type and spiral-type solutions and which is associated with the rightmost characteristic exponent of smallest real part. These observations suggest that with learning the control gains for ball and beam balancing change in such a way that minimizes overshoot and the settling time. This study provides an example of how mathematical analysis together with careful experimental observations can shed light onto the early stages of skill acquisition. Since the difficulty of this task depends on the length of the beam, ball and beam balancing tasks may be useful for the rehabilitation of children with dyspraxia and those recovering from a stroke. Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation. Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point of a beam by manipulating the angular position of the beam. Stabilizability analysis of different biomechanical models for the ball and beam task with time-delayed proportional-derivative feedback identified the angular position of the beam as the manipulated variable. Consequently, we monitored the changes in the dynamics with learning by measuring changes in the control parameters. Two types of stable motion are possible: node type (nonoscillatory) and spiral type (oscillatory). Both types of motion are observed experimentally and correspond to well-defined regions in the parameter space of the control gains. With practice the control gains for each subject move close to or on the portion of the boundary which separates the node-type and spiral-type solutions and which is associated with the rightmost characteristic exponent of smallest real part. These observations suggest that with learning the control gains for ball and beam balancing change in such a way that minimizes overshoot and the settling time. This study provides an example of how mathematical analysis together with careful experimental observations can shed light onto the early stages of skill acquisition. Since the difficulty of this task depends on the length of the beam, ball and beam balancing tasks may be useful for the rehabilitation of children with dyspraxia and those recovering from a stroke.Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation. Here we investigate a ball and beam implementation of a dexterity puzzle in which subjects stabilize a ball at the mid-point of a beam by manipulating the angular position of the beam. Stabilizability analysis of different biomechanical models for the ball and beam task with time-delayed proportional-derivative feedback identified the angular position of the beam as the manipulated variable. Consequently, we monitored the changes in the dynamics with learning by measuring changes in the control parameters. Two types of stable motion are possible: node type (nonoscillatory) and spiral type (oscillatory). Both types of motion are observed experimentally and correspond to well-defined regions in the parameter space of the control gains. With practice the control gains for each subject move close to or on the portion of the boundary which separates the node-type and spiral-type solutions and which is associated with the rightmost characteristic exponent of smallest real part. These observations suggest that with learning the control gains for ball and beam balancing change in such a way that minimizes overshoot and the settling time. This study provides an example of how mathematical analysis together with careful experimental observations can shed light onto the early stages of skill acquisition. Since the difficulty of this task depends on the length of the beam, ball and beam balancing tasks may be useful for the rehabilitation of children with dyspraxia and those recovering from a stroke. |
Author | Bencsik, Laszlo Buza, Gergely Insperger, Tamas Milton, John |
Author_xml | – sequence: 1 givenname: Gergely surname: Buza fullname: Buza, Gergely organization: Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, MTA-BME Lendület Human Balancing Research Group – sequence: 2 givenname: John surname: Milton fullname: Milton, John organization: W. M. Keck Science Center, Claremont Colleges – sequence: 3 givenname: Laszlo surname: Bencsik fullname: Bencsik, Laszlo organization: MTA-BME Research Group on Dynamics of Machines and Vehicles – sequence: 4 givenname: Tamas orcidid: 0000-0001-7518-9774 surname: Insperger fullname: Insperger, Tamas email: insperger@mm.bme.hu organization: Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, MTA-BME Lendület Human Balancing Research Group |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31955261$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1vFSEUxYmpsa_Vf8CFmcSNm9ELDAO4MDFN_UiauNG4JAzvzns0DDxhXo3962X6Wj-66IoAv3Ny7j0n5CimiIQ8p_CaAsg3BaBjrAUGLYCior1-RFa04_VJSjgiK-AdtJQBHJOTUi4BQDOhn5BjTrUQrKcr8v28zHYIvmx93DQTztm70ti4blyKc06hCfZnacaUm3mLTUCb40LucnJYyttmsCHc8APaabnZ6CrwlDwebSj47PY8Jd8-nH89-9RefPn4-ez9RetEB3OrHIJSFtfAAamW0AGFXlrZc4tydOAEgh65ZdIq7IXuNSI6NljtUHUDPyXvDr67_TDh2mENbYPZZT_Z_Msk683_P9FvzSZdGQk9U0JXg1e3Bjn92GOZzeSLw1DnwLQvhvGOcSH6bkFf3kMv0z7HOl6lpGCK0V5V6sW_if5Eudt5BdQBcDmVknE0zs929su-rQ-GglnqNYd6Ta3X3NRrrquU3ZPeuT8o4gdRqXDcYP4b-wHVb5r8uKk |
CitedBy_id | crossref_primary_10_1016_j_asoc_2022_108904 crossref_primary_10_1098_rsif_2020_0956 crossref_primary_10_1371_journal_pcbi_1012599 crossref_primary_10_1038_s41598_021_90305_4 crossref_primary_10_1098_rsos_220581 crossref_primary_10_1063_5_0022319 crossref_primary_10_1002_rnc_5698 crossref_primary_10_1098_rsif_2023_0685 crossref_primary_10_1109_ACCESS_2023_3339879 crossref_primary_10_24193_rm_2023_2_9 |
Cites_doi | 10.1063/1.3141429 10.1016/j.neuron.2011.10.006 10.1017/S0140525X08003804 10.1371/journal.pcbi.1004737 10.1007/978-1-4614-0335-7 10.1152/jn.00600.2009 10.1152/jn.2002.88.2.942 10.1007/s00422-013-0582-2 10.1007/978-0-8176-4877-0 10.1016/j.neuroimage.2007.01.003 10.1016/B978-0-12-814928-7.00010-X 10.1523/JNEUROSCI.3866-04.2005 10.1038/35106566 10.1080/00207720310001609057 10.1103/PhysRevLett.89.158702 10.1098/rsta.2008.0270 10.1080/00222895.1996.9941739 10.1121/1.5092807 10.1063/1.1785453 10.1016/j.ifacol.2018.07.238 10.1016/j.jbiomech.2012.11.058 10.1109/RBME.2009.2034981 10.1093/geronj/16.4.370 10.1037/0096-1523.26.4.1281 10.1007/s00422-014-0587-5 10.1017/9781316026847 10.1080/00222899709600017 10.1016/j.jbiomech.2018.07.014 10.1111/sms.12162 10.1080/00222895.1996.9941743 10.1098/rsif.2016.0212 10.1111/j.1749-6632.1988.tb32958.x 10.1016/S0959-4388(99)00028-8 10.1016/j.jbiomech.2013.08.012 10.1016/j.jbiomech.2007.01.022 10.1016/j.jbiomech.2017.06.018 10.1007/s00422-010-0416-4 10.1016/S0960-9822(03)00007-1 10.1098/rsta.2008.0278 10.1109/TNSRE.2016.2521404 10.1146/annurev-neuro-060909-153135 10.1063/1.5042090 10.1038/35037588 10.3389/fpsyg.2014.00414 10.1152/jn.1981.46.4.725 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 Biological Cybernetics is a copyright of Springer, (2020). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: Biological Cybernetics is a copyright of Springer, (2020). All Rights Reserved. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7TK 7X7 7XB 88A 88E 88I 8AL 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H8D HCIFZ JQ2 K7- K9. L7M LK8 M0N M0S M1P M2P M7P P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s00422-020-00815-z |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Biological Sciences Computing Database ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Aerospace Database ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Computing ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Computer Science Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-0770 |
EndPage | 93 |
ExternalDocumentID | PMC7062859 31955261 10_1007_s00422_020_00815_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill (US) grantid: None – fundername: Higher Education Excellence Program of the Ministry of Human Capacities grantid: BME FIKP-BIO – fundername: William R Kenan, Jr Charitable trust – fundername: ; – fundername: ; grantid: None – fundername: ; grantid: BME FIKP-BIO |
GroupedDBID | -4W -56 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .GJ .VR 06C 06D 0R~ 0VY 1N0 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 4P2 53G 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 88I 8AO 8FE 8FG 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBC EBD EBLON EBS ECS EDH EDO EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV KOW KPH LAS LK8 LLZTM M0L M0N M1P M2P M4Y M7P MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8R Z8T Z8W Z92 ZMTXR ZOVNA ZXP ~8M ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QO 7TK 7XB 8AL 8FD 8FK ABRTQ FR3 H8D JQ2 K9. L7M P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c540t-8ce088aed030e1970401067a763ae7fc0c5e09f3a27a8e65969eeec2ba9ce84b3 |
IEDL.DBID | 7X7 |
ISSN | 0340-1200 1432-0770 |
IngestDate | Thu Aug 21 18:16:38 EDT 2025 Fri Jul 11 04:51:08 EDT 2025 Fri Jul 25 18:58:25 EDT 2025 Wed Feb 19 02:30:10 EST 2025 Thu Apr 24 23:10:40 EDT 2025 Tue Jul 01 04:21:55 EDT 2025 Fri Feb 21 02:36:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Learning Reaction time Human balancing Visual feedback Motor control |
Language | English |
License | Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-8ce088aed030e1970401067a763ae7fc0c5e09f3a27a8e65969eeec2ba9ce84b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Communicated by Benjamin Lindner. |
ORCID | 0000-0001-7518-9774 |
OpenAccessLink | https://link.springer.com/10.1007/s00422-020-00815-z |
PMID | 31955261 |
PQID | 2375282168 |
PQPubID | 54056 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7062859 proquest_miscellaneous_2342355649 proquest_journals_2375282168 pubmed_primary_31955261 crossref_citationtrail_10_1007_s00422_020_00815_z crossref_primary_10_1007_s00422_020_00815_z springer_journals_10_1007_s00422_020_00815_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationSubtitle | Advances in Computational Neuroscience |
PublicationTitle | Biological cybernetics |
PublicationTitleAbbrev | Biol Cybern |
PublicationTitleAlternate | Biol Cybern |
PublicationYear | 2020 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | MyersRHClassical and modern regression with applications1990BostonPws-Kent WelfordATReaction time, speed of performance, and ageAnn New York Acad Sci19885151171:STN:280:DyaL1c3gvVWntA%3D%3D GawthropPJLoramIGolleeHLakieMIntermittent control models of human standing: similarities and differencesBiol Cybern2014108159168245006163962584 TallandGACairnieJAging effects on simple, disjunctive, and alerted finger reaction timeJ Gerontol1961163703741:STN:280:DyaF387htV2mug%3D%3D13919346 GawthropPJLoramILakieMGolleeHIntermittent control: a computational theory of human controlBiol Cybern2011104315121327829 MetcalfCDIrvineTASimsJLWangYLSuAWYNorrisDOComplex hand dexterity: a review of biomechanical methods for measuring musical performanceFront Psychol20145414248605314026728 Lehotzky D (2017) Numerical methods for the stability and stabilizability analysis of delayed dynamical systems. Ph.D. thesis, Budapest University of Technology and Economics Valero-CuevasFJHoffmannHKurseMUKutchJJTheodorouEAComputational models for neuromuscular functionIEEE Rev Biomed Eng20092110135216877793116649 ParrellBLammertACCiccarelliGQuatieriTFCurrent models of speech motor control: a control-theoretic overview of architectures and propertiesJ Acoust Soc Am201914531456148131067944 PalmorZJTime-delay compensation-Smith predictor and its modificationsThe control handbook2000Boca RatonCRC and IEEE Press224237 BuzaGInspergerTMathematical models for balancing tasks on a see-saw with reaction time delayIFC PapersOnLine20185114288293 RowleyKMGordonJKuligKCharacterizing the balance-dexterity task as a concurrent bipedal task to investigate trunk control during dynamic balanceJ Biomech20187721121730037579 StepanGDelay effects in the human sensory system during balancingPhil Trans R Soc A20093671195121219218159 InouyeJMValero-CuevasFJMuscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumptionPLoS Comput Biol2016122124 VenkadesanMGuckenheimerJValero-CuevasFJManipulating the edge of stabilityJ Biomech20074016531661174002312666355 MiltonJCabreraJLOhiraTTajimaSTonosakiYEurichCWCampbellSAThe time-delayed inverted pendulum: implications for human balance controlChaos: Interdiscip J Nonlinear Sci2009192026110 YoshikawaNSuzukiYKiyonoKNomuraTIntermittent feedback-control strategy for stabilizing inverted pendulum on manually controlled cart as analogy to human stick balancingFront Comp Neurosci20161034 CabreraJLMiltonJGOn–off intermittency in a human balancing taskPhys Rev Lett20028915870212366030 AstromKJWittenmarkBComputer controlled systems: theory and design1984Englewood CliffsPrentice Hall FlanaganJVetterPJohanssonRSWolpertDMPrediction precedes control in motor learningCurr Biol20031321461501:CAS:528:DC%2BD3sXmsFeqsA%3D%3D12546789 CruiseDChagdesJLiddyJRietdykSHaddadJMZelaznikHRamanAAn active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stabilityJ Biomech201760485628668186 GeorgopoulosAPKalaskaJFMasseyJTSpatial trajectories and reaction times of aimed movements: effects of practice, uncertainty and change in target locationJ Neurophysiol1981467257431:STN:280:DyaL38%2Fjt1CgtQ%3D%3D7288461 InspergerTStepanGSemi-discretization method for time-delay systems2011New YorkSpringer RonsseRWeiKSternadDOptimal control of a hybrid rhythmic-discrete task: the bouncing ball revisitedJ Neurophysiol2010103524822493201300422867585 MiallRCTask-dependent changes in visual feedback control: a frequency analysis of human manual trackingJ Mot Behav1996281251351:STN:280:DC%2BD1Mjjs1SmsQ%3D%3D12529214 WellsteadPEIntroduction to physical system modelling1979LondonAcademic Press MiltonJSolodkinAHlustikPSmallSLThe mind of expert motor performance is cool and focusedNeuroImage20073580481317317223 CabreraJLMiltonJGHuman stick balancing: tuning Lévy flights to improve balance controlChaos20041469169815446980 FooPKelsoJASde GuzmanGCFunctional stabilization of unstable fixed points: human pole balancing using time-to-balance informationJ Exp Psychol Hum Percept Perform2000264128112971:STN:280:DC%2BD3M%2Fks1Cjsg%3D%3D10946715 BazziSEbertJHoganNSternadDStability and predictability in human control of complex objectsChaos: An Interdiscip J Nonlinear Sci20182810103103 LyleMAValero-CuevasFJGregorRJPowersCMLower extremity dexterity is associated with agility in adolescent soccer athletesScand J Med Sci Sports201525181881:STN:280:DC%2BC2c3lt1Kkug%3D%3D24325628 ChagdesJRRietdykSJeffreyMHHowardNZRamanADynamic stability of a human standing on a balance boardJ Biomech201346152593260224041491 InspergerTMiltonJSensory uncertainty and stick balancing at the fingertipBiol Cybern20141088510124463637 MiallRCWeirDJSteinJFManual tracking of visual targets by trained monkeysExp Brain Res1986201852011:STN:280:DyaL283mvFCitw%3D%3D ShadmehrRSmithMAKrakauerJWError correction, sensory prediction, and adaptation in motor controlAnnu Rev Neurosci2010331891081:CAS:528:DC%2BC3cXhsFartrzK20367317 SchaalSAtkesonCGSternadDOne-handed juggling: a dynamical approach to a rhythmic movement taskJ Mot Behav199628216518312529218 BrennerESmeetsJFast responses of the human hand to changes in target positionJ Mot Behav1997292973101:STN:280:DC%2BC28vmtFyqtA%3D%3D12453772 MolnarTGHajduDInspergerTKarimiHGaoQThe Smith predictor, the modified Smith predictor, and the finite spectrum assignment a comparative studyStability, control and application of time-delay systems2019OxfordButterworth-Heinemann209226 HatfieldBDHillmanCHJanelleMThe psychophysiology of sport: a mechanistic understanding of the psychology of superior performanceHandbook of Sport Psychology20012New YorkWiley362386 MiltonJMeyerRZhvanetskyMRidgeSInspergerTControl at stability’s edge minimizes energetic costs: expert stick balancingJ R Soc Interface20161320160212272783614938085 NijhawanRWuSCompensating time delays with neural predictions: are predictions sensory or motor?Philos Trans R Soc A: Math, Phys Eng Sci2009367189110631078 KawatoMInternal models for motor control and trajectory planningCurr Opin Neurobiol199997187271:CAS:528:DC%2BD3cXhtFCrug%3D%3D10607637 LyleMAValero-CuevasFJGregorRJPowersCMThe lower extremity dexterity test as a measure of lower extremity dynamical capabilityJ Biomech2013465998100223357699 BilalicMThe neuroscience of expertise2017New YorkCambridge University Press NijhawanRVisual prediction: psychophysics and neurophysiology of compensation for time delaysBehav Brain Sci200831217919818479557 MiltonJGFuerteABélairCLippaiJKamimuraAOhiraTDelayed pursuit-escape as a model for virtual stick balancingNonlinear Theory Appl20134129137 MichielsWNiculescuSIOn the delay sensitivity of smith predictorsInt J Syst Sci2003348–9543551 FranklinDWWolpertDMComputational mechanisms of sensorimotor controlNeuron20117234254421:CAS:528:DC%2BC3MXhsVKiu7fI22078503 ChuVWParkSWSangerTDSternadDChildren with dystonia can learn a novel motor skill: strategies that are tolerant to high variabilityIEEE Trans Neural Sys Rehab Eng201624847858 MehtaBSchaalSForward models in visuomotor controlJ Neurophysiol20028894295312163543 BurdetEOsuRFranklinDWMillerTEKawatoMThe central nervous system stabilizes unstable dynamics by learning optimal impedanceNature20014144464491:CAS:528:DC%2BD3MXovFamsLY%3D11719805 PuttemansVWenderothNSwinnenSPChanges in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticityJ Neurosci200525427042781:CAS:528:DC%2BD2MXktFKgt78%3D158580536725124 StepanGRetarded dynamical systems1989HarlowLongman WoodsDLWymaJMYundEWHerronTJReedBFactors influencing the latency of the simple reaction timeFront Hum Neurosci20159131258591984374455 ThoroughmanKAShadmehrRLearning of action through adaptive combination of motor primitivesNature20004077427471:CAS:528:DC%2BD3cXnsFWlu7g%3D110487202556237 KrsticMDelay compensation for nonlinear, adaptive, and PDE systems2009BostonBirkhauser PJ Gawthrop (815_CR16) 2014; 108 R Nijhawan (815_CR39) 2009; 367 MA Lyle (815_CR26) 2015; 25 ZJ Palmor (815_CR40) 2000 DL Woods (815_CR55) 2015; 9 D Cruise (815_CR11) 2017; 60 CD Metcalf (815_CR28) 2014; 5 T Insperger (815_CR20) 2014; 108 E Brenner (815_CR4) 1997; 29 JM Inouye (815_CR19) 2016; 12 TG Molnar (815_CR36) 2019 B Parrell (815_CR41) 2019; 145 G Stepan (815_CR47) 1989 P Foo (815_CR13) 2000; 26 GA Talland (815_CR49) 1961; 16 PJ Gawthrop (815_CR15) 2011; 104 MA Lyle (815_CR25) 2013; 46 M Bilalic (815_CR3) 2017 RH Myers (815_CR37) 1990 JL Cabrera (815_CR8) 2004; 14 M Kawato (815_CR22) 1999; 9 T Insperger (815_CR21) 2011 JR Chagdes (815_CR9) 2013; 46 AT Welford (815_CR53) 1988; 515 R Nijhawan (815_CR38) 2008; 31 RC Miall (815_CR30) 1986; 20 E Burdet (815_CR5) 2001; 414 V Puttemans (815_CR42) 2005; 25 R Ronsse (815_CR43) 2010; 103 G Buza (815_CR6) 2018; 51 JG Milton (815_CR35) 2013; 4 S Bazzi (815_CR2) 2018; 28 AP Georgopoulos (815_CR17) 1981; 46 B Mehta (815_CR27) 2002; 88 J Flanagan (815_CR12) 2003; 13 JL Cabrera (815_CR7) 2002; 89 VW Chu (815_CR10) 2016; 24 KA Thoroughman (815_CR50) 2000; 407 M Venkadesan (815_CR52) 2007; 40 FJ Valero-Cuevas (815_CR51) 2009; 2 J Milton (815_CR34) 2016; 13 J Milton (815_CR33) 2009; 19 RC Miall (815_CR29) 1996; 28 N Yoshikawa (815_CR56) 2016; 10 J Milton (815_CR32) 2007; 35 KM Rowley (815_CR44) 2018; 77 PE Wellstead (815_CR54) 1979 G Stepan (815_CR48) 2009; 367 BD Hatfield (815_CR18) 2001 S Schaal (815_CR45) 1996; 28 R Shadmehr (815_CR46) 2010; 33 815_CR24 W Michiels (815_CR31) 2003; 34 M Krstic (815_CR23) 2009 DW Franklin (815_CR14) 2011; 72 KJ Astrom (815_CR1) 1984 |
References_xml | – reference: ParrellBLammertACCiccarelliGQuatieriTFCurrent models of speech motor control: a control-theoretic overview of architectures and propertiesJ Acoust Soc Am201914531456148131067944 – reference: GawthropPJLoramIGolleeHLakieMIntermittent control models of human standing: similarities and differencesBiol Cybern2014108159168245006163962584 – reference: MetcalfCDIrvineTASimsJLWangYLSuAWYNorrisDOComplex hand dexterity: a review of biomechanical methods for measuring musical performanceFront Psychol20145414248605314026728 – reference: MiltonJMeyerRZhvanetskyMRidgeSInspergerTControl at stability’s edge minimizes energetic costs: expert stick balancingJ R Soc Interface20161320160212272783614938085 – reference: InouyeJMValero-CuevasFJMuscle synergies heavily influence the neural control of arm endpoint stiffness and energy consumptionPLoS Comput Biol2016122124 – reference: MiltonJSolodkinAHlustikPSmallSLThe mind of expert motor performance is cool and focusedNeuroImage20073580481317317223 – reference: BrennerESmeetsJFast responses of the human hand to changes in target positionJ Mot Behav1997292973101:STN:280:DC%2BC28vmtFyqtA%3D%3D12453772 – reference: NijhawanRVisual prediction: psychophysics and neurophysiology of compensation for time delaysBehav Brain Sci200831217919818479557 – reference: MehtaBSchaalSForward models in visuomotor controlJ Neurophysiol20028894295312163543 – reference: StepanGRetarded dynamical systems1989HarlowLongman – reference: YoshikawaNSuzukiYKiyonoKNomuraTIntermittent feedback-control strategy for stabilizing inverted pendulum on manually controlled cart as analogy to human stick balancingFront Comp Neurosci20161034 – reference: GeorgopoulosAPKalaskaJFMasseyJTSpatial trajectories and reaction times of aimed movements: effects of practice, uncertainty and change in target locationJ Neurophysiol1981467257431:STN:280:DyaL38%2Fjt1CgtQ%3D%3D7288461 – reference: WoodsDLWymaJMYundEWHerronTJReedBFactors influencing the latency of the simple reaction timeFront Hum Neurosci20159131258591984374455 – reference: GawthropPJLoramILakieMGolleeHIntermittent control: a computational theory of human controlBiol Cybern2011104315121327829 – reference: InspergerTMiltonJSensory uncertainty and stick balancing at the fingertipBiol Cybern20141088510124463637 – reference: StepanGDelay effects in the human sensory system during balancingPhil Trans R Soc A20093671195121219218159 – reference: RowleyKMGordonJKuligKCharacterizing the balance-dexterity task as a concurrent bipedal task to investigate trunk control during dynamic balanceJ Biomech20187721121730037579 – reference: LyleMAValero-CuevasFJGregorRJPowersCMThe lower extremity dexterity test as a measure of lower extremity dynamical capabilityJ Biomech2013465998100223357699 – reference: WellsteadPEIntroduction to physical system modelling1979LondonAcademic Press – reference: LyleMAValero-CuevasFJGregorRJPowersCMLower extremity dexterity is associated with agility in adolescent soccer athletesScand J Med Sci Sports201525181881:STN:280:DC%2BC2c3lt1Kkug%3D%3D24325628 – reference: Lehotzky D (2017) Numerical methods for the stability and stabilizability analysis of delayed dynamical systems. Ph.D. thesis, Budapest University of Technology and Economics – reference: MiltonJCabreraJLOhiraTTajimaSTonosakiYEurichCWCampbellSAThe time-delayed inverted pendulum: implications for human balance controlChaos: Interdiscip J Nonlinear Sci2009192026110 – reference: ThoroughmanKAShadmehrRLearning of action through adaptive combination of motor primitivesNature20004077427471:CAS:528:DC%2BD3cXnsFWlu7g%3D110487202556237 – reference: FlanaganJVetterPJohanssonRSWolpertDMPrediction precedes control in motor learningCurr Biol20031321461501:CAS:528:DC%2BD3sXmsFeqsA%3D%3D12546789 – reference: RonsseRWeiKSternadDOptimal control of a hybrid rhythmic-discrete task: the bouncing ball revisitedJ Neurophysiol2010103524822493201300422867585 – reference: ShadmehrRSmithMAKrakauerJWError correction, sensory prediction, and adaptation in motor controlAnnu Rev Neurosci2010331891081:CAS:528:DC%2BC3cXhsFartrzK20367317 – reference: WelfordATReaction time, speed of performance, and ageAnn New York Acad Sci19885151171:STN:280:DyaL1c3gvVWntA%3D%3D – reference: MiltonJGFuerteABélairCLippaiJKamimuraAOhiraTDelayed pursuit-escape as a model for virtual stick balancingNonlinear Theory Appl20134129137 – reference: FooPKelsoJASde GuzmanGCFunctional stabilization of unstable fixed points: human pole balancing using time-to-balance informationJ Exp Psychol Hum Percept Perform2000264128112971:STN:280:DC%2BD3M%2Fks1Cjsg%3D%3D10946715 – reference: BurdetEOsuRFranklinDWMillerTEKawatoMThe central nervous system stabilizes unstable dynamics by learning optimal impedanceNature20014144464491:CAS:528:DC%2BD3MXovFamsLY%3D11719805 – reference: FranklinDWWolpertDMComputational mechanisms of sensorimotor controlNeuron20117234254421:CAS:528:DC%2BC3MXhsVKiu7fI22078503 – reference: MolnarTGHajduDInspergerTKarimiHGaoQThe Smith predictor, the modified Smith predictor, and the finite spectrum assignment a comparative studyStability, control and application of time-delay systems2019OxfordButterworth-Heinemann209226 – reference: MiallRCWeirDJSteinJFManual tracking of visual targets by trained monkeysExp Brain Res1986201852011:STN:280:DyaL283mvFCitw%3D%3D – reference: BuzaGInspergerTMathematical models for balancing tasks on a see-saw with reaction time delayIFC PapersOnLine20185114288293 – reference: NijhawanRWuSCompensating time delays with neural predictions: are predictions sensory or motor?Philos Trans R Soc A: Math, Phys Eng Sci2009367189110631078 – reference: AstromKJWittenmarkBComputer controlled systems: theory and design1984Englewood CliffsPrentice Hall – reference: KawatoMInternal models for motor control and trajectory planningCurr Opin Neurobiol199997187271:CAS:528:DC%2BD3cXhtFCrug%3D%3D10607637 – reference: PalmorZJTime-delay compensation-Smith predictor and its modificationsThe control handbook2000Boca RatonCRC and IEEE Press224237 – reference: BazziSEbertJHoganNSternadDStability and predictability in human control of complex objectsChaos: An Interdiscip J Nonlinear Sci20182810103103 – reference: CabreraJLMiltonJGHuman stick balancing: tuning Lévy flights to improve balance controlChaos20041469169815446980 – reference: SchaalSAtkesonCGSternadDOne-handed juggling: a dynamical approach to a rhythmic movement taskJ Mot Behav199628216518312529218 – reference: CabreraJLMiltonJGOn–off intermittency in a human balancing taskPhys Rev Lett20028915870212366030 – reference: VenkadesanMGuckenheimerJValero-CuevasFJManipulating the edge of stabilityJ Biomech20074016531661174002312666355 – reference: TallandGACairnieJAging effects on simple, disjunctive, and alerted finger reaction timeJ Gerontol1961163703741:STN:280:DyaF387htV2mug%3D%3D13919346 – reference: MiallRCTask-dependent changes in visual feedback control: a frequency analysis of human manual trackingJ Mot Behav1996281251351:STN:280:DC%2BD1Mjjs1SmsQ%3D%3D12529214 – reference: MyersRHClassical and modern regression with applications1990BostonPws-Kent – reference: PuttemansVWenderothNSwinnenSPChanges in brain activation during the acquisition of a multifrequency bimanual coordination task: from the cognitive stage to advanced levels of automaticityJ Neurosci200525427042781:CAS:528:DC%2BD2MXktFKgt78%3D158580536725124 – reference: ChuVWParkSWSangerTDSternadDChildren with dystonia can learn a novel motor skill: strategies that are tolerant to high variabilityIEEE Trans Neural Sys Rehab Eng201624847858 – reference: MichielsWNiculescuSIOn the delay sensitivity of smith predictorsInt J Syst Sci2003348–9543551 – reference: HatfieldBDHillmanCHJanelleMThe psychophysiology of sport: a mechanistic understanding of the psychology of superior performanceHandbook of Sport Psychology20012New YorkWiley362386 – reference: BilalicMThe neuroscience of expertise2017New YorkCambridge University Press – reference: ChagdesJRRietdykSJeffreyMHHowardNZRamanADynamic stability of a human standing on a balance boardJ Biomech201346152593260224041491 – reference: KrsticMDelay compensation for nonlinear, adaptive, and PDE systems2009BostonBirkhauser – reference: CruiseDChagdesJLiddyJRietdykSHaddadJMZelaznikHRamanAAn active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stabilityJ Biomech201760485628668186 – reference: InspergerTStepanGSemi-discretization method for time-delay systems2011New YorkSpringer – reference: Valero-CuevasFJHoffmannHKurseMUKutchJJTheodorouEAComputational models for neuromuscular functionIEEE Rev Biomed Eng20092110135216877793116649 – volume-title: Computer controlled systems: theory and design year: 1984 ident: 815_CR1 – volume: 19 start-page: 026110 issue: 2 year: 2009 ident: 815_CR33 publication-title: Chaos: Interdiscip J Nonlinear Sci doi: 10.1063/1.3141429 – volume-title: Classical and modern regression with applications year: 1990 ident: 815_CR37 – volume: 72 start-page: 425 issue: 3 year: 2011 ident: 815_CR14 publication-title: Neuron doi: 10.1016/j.neuron.2011.10.006 – volume: 4 start-page: 129 year: 2013 ident: 815_CR35 publication-title: Nonlinear Theory Appl – volume: 31 start-page: 179 issue: 2 year: 2008 ident: 815_CR38 publication-title: Behav Brain Sci doi: 10.1017/S0140525X08003804 – volume: 12 start-page: 1 issue: 2 year: 2016 ident: 815_CR19 publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1004737 – volume-title: Semi-discretization method for time-delay systems year: 2011 ident: 815_CR21 doi: 10.1007/978-1-4614-0335-7 – volume: 103 start-page: 2482 issue: 5 year: 2010 ident: 815_CR43 publication-title: J Neurophysiol doi: 10.1152/jn.00600.2009 – ident: 815_CR24 – volume: 88 start-page: 942 year: 2002 ident: 815_CR27 publication-title: J Neurophysiol doi: 10.1152/jn.2002.88.2.942 – volume: 108 start-page: 85 year: 2014 ident: 815_CR20 publication-title: Biol Cybern doi: 10.1007/s00422-013-0582-2 – volume-title: Delay compensation for nonlinear, adaptive, and PDE systems year: 2009 ident: 815_CR23 doi: 10.1007/978-0-8176-4877-0 – volume: 35 start-page: 804 year: 2007 ident: 815_CR32 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.01.003 – start-page: 209 volume-title: Stability, control and application of time-delay systems year: 2019 ident: 815_CR36 doi: 10.1016/B978-0-12-814928-7.00010-X – volume: 25 start-page: 4270 year: 2005 ident: 815_CR42 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3866-04.2005 – volume-title: Introduction to physical system modelling year: 1979 ident: 815_CR54 – volume: 414 start-page: 446 year: 2001 ident: 815_CR5 publication-title: Nature doi: 10.1038/35106566 – volume: 34 start-page: 543 issue: 8–9 year: 2003 ident: 815_CR31 publication-title: Int J Syst Sci doi: 10.1080/00207720310001609057 – volume: 89 start-page: 158702 year: 2002 ident: 815_CR7 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.89.158702 – volume: 367 start-page: 1063 issue: 1891 year: 2009 ident: 815_CR39 publication-title: Philos Trans R Soc A: Math, Phys Eng Sci doi: 10.1098/rsta.2008.0270 – volume: 28 start-page: 125 year: 1996 ident: 815_CR29 publication-title: J Mot Behav doi: 10.1080/00222895.1996.9941739 – volume: 145 start-page: 1456 issue: 3 year: 2019 ident: 815_CR41 publication-title: J Acoust Soc Am doi: 10.1121/1.5092807 – volume: 14 start-page: 691 year: 2004 ident: 815_CR8 publication-title: Chaos doi: 10.1063/1.1785453 – volume: 51 start-page: 288 issue: 14 year: 2018 ident: 815_CR6 publication-title: IFC PapersOnLine doi: 10.1016/j.ifacol.2018.07.238 – volume: 46 start-page: 998 issue: 5 year: 2013 ident: 815_CR25 publication-title: J Biomech doi: 10.1016/j.jbiomech.2012.11.058 – volume: 2 start-page: 110 year: 2009 ident: 815_CR51 publication-title: IEEE Rev Biomed Eng doi: 10.1109/RBME.2009.2034981 – start-page: 224 volume-title: The control handbook year: 2000 ident: 815_CR40 – volume: 16 start-page: 370 year: 1961 ident: 815_CR49 publication-title: J Gerontol doi: 10.1093/geronj/16.4.370 – volume: 26 start-page: 1281 issue: 4 year: 2000 ident: 815_CR13 publication-title: J Exp Psychol Hum Percept Perform doi: 10.1037/0096-1523.26.4.1281 – volume: 108 start-page: 159 year: 2014 ident: 815_CR16 publication-title: Biol Cybern doi: 10.1007/s00422-014-0587-5 – volume-title: The neuroscience of expertise year: 2017 ident: 815_CR3 doi: 10.1017/9781316026847 – volume: 29 start-page: 297 year: 1997 ident: 815_CR4 publication-title: J Mot Behav doi: 10.1080/00222899709600017 – volume: 77 start-page: 211 year: 2018 ident: 815_CR44 publication-title: J Biomech doi: 10.1016/j.jbiomech.2018.07.014 – volume: 9 start-page: 131 year: 2015 ident: 815_CR55 publication-title: Front Hum Neurosci – volume: 25 start-page: 81 issue: 1 year: 2015 ident: 815_CR26 publication-title: Scand J Med Sci Sports doi: 10.1111/sms.12162 – volume: 28 start-page: 165 issue: 2 year: 1996 ident: 815_CR45 publication-title: J Mot Behav doi: 10.1080/00222895.1996.9941743 – start-page: 362 volume-title: Handbook of Sport Psychology year: 2001 ident: 815_CR18 – volume: 13 start-page: 20160212 year: 2016 ident: 815_CR34 publication-title: J R Soc Interface doi: 10.1098/rsif.2016.0212 – volume: 515 start-page: 1 year: 1988 ident: 815_CR53 publication-title: Ann New York Acad Sci doi: 10.1111/j.1749-6632.1988.tb32958.x – volume: 9 start-page: 718 year: 1999 ident: 815_CR22 publication-title: Curr Opin Neurobiol doi: 10.1016/S0959-4388(99)00028-8 – volume: 46 start-page: 2593 issue: 15 year: 2013 ident: 815_CR9 publication-title: J Biomech doi: 10.1016/j.jbiomech.2013.08.012 – volume: 20 start-page: 185 year: 1986 ident: 815_CR30 publication-title: Exp Brain Res – volume: 40 start-page: 1653 year: 2007 ident: 815_CR52 publication-title: J Biomech doi: 10.1016/j.jbiomech.2007.01.022 – volume: 60 start-page: 48 year: 2017 ident: 815_CR11 publication-title: J Biomech doi: 10.1016/j.jbiomech.2017.06.018 – volume: 104 start-page: 31 year: 2011 ident: 815_CR15 publication-title: Biol Cybern doi: 10.1007/s00422-010-0416-4 – volume: 13 start-page: 146 issue: 2 year: 2003 ident: 815_CR12 publication-title: Curr Biol doi: 10.1016/S0960-9822(03)00007-1 – volume: 367 start-page: 1195 year: 2009 ident: 815_CR48 publication-title: Phil Trans R Soc A doi: 10.1098/rsta.2008.0278 – volume-title: Retarded dynamical systems year: 1989 ident: 815_CR47 – volume: 24 start-page: 847 year: 2016 ident: 815_CR10 publication-title: IEEE Trans Neural Sys Rehab Eng doi: 10.1109/TNSRE.2016.2521404 – volume: 33 start-page: 89 issue: 1 year: 2010 ident: 815_CR46 publication-title: Annu Rev Neurosci doi: 10.1146/annurev-neuro-060909-153135 – volume: 10 start-page: 34 year: 2016 ident: 815_CR56 publication-title: Front Comp Neurosci – volume: 28 start-page: 103103 issue: 10 year: 2018 ident: 815_CR2 publication-title: Chaos: An Interdiscip J Nonlinear Sci doi: 10.1063/1.5042090 – volume: 407 start-page: 742 year: 2000 ident: 815_CR50 publication-title: Nature doi: 10.1038/35037588 – volume: 5 start-page: 414 year: 2014 ident: 815_CR28 publication-title: Front Psychol doi: 10.3389/fpsyg.2014.00414 – volume: 46 start-page: 725 year: 1981 ident: 815_CR17 publication-title: J Neurophysiol doi: 10.1152/jn.1981.46.4.725 |
SSID | ssj0009259 |
Score | 2.3453977 |
Snippet | Understanding how dexterity improves with practice is a fundamental challenge of motor control and neurorehabilitation. Here we investigate a ball and beam... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 83 |
SubjectTerms | Adult Angular position Balancing Bioinformatics Biomechanical engineering Biomechanics Biomedical and Life Sciences Biomedicine Complex Systems Computer Appl. in Life Sciences Control theory Feedback, Physiological - physiology Female Humans Learning Learning - physiology Male Mathematical models Motor skill learning Motor task performance Movement - physiology Neurobiology Neurology Neurosciences Original Original Article Parameters Proportional derivative Psychomotor Performance - physiology Rehabilitation Young Adult |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60Xrz4fsQXK3jTQLrJJllvRZQi6Mmit7DZTFRo02Irgr_e2c0mUl_gsWSStDuvb7o73wCcyCAqkKKcH8aSCpS45L5CVH6kKd1SeipkaZqTb27j_iC6fhAPrils2px2b7YkbaRum90sXZVvyh2Tx4T_vghLwtTuZMUD3vuk2uV2RFoQml1LMgLXKvPzM-bT0TeM-f2o5Jf9UpuGrtZgxeFH1qsVvg4LWG3AajObgTlX3YT7S4J9zT9MbGTmZukpU1XB3OF0NlRvU0aQlREEZG54xCOb1I0D5yxXw6GVz1GNzCdDzFE9bsHg6vLuou-7IQq-JjA281ONFEgUFuTN2JUJOa1hjVMUVxQmpQ60wECWoeKJSjEWMpaIqHmupMY0ysNt6FTjCneBpSomjXJRGk4ZUeQqLUrNtTQorohE4kG3WctMO4ZxM-himLXcyHb9M1r_zK5_9u7BaXvPpObX-FP6oFFR5nxtmvEwEVQ4duPUg-P2MnmJ2fpQFY5fjQzBRiHiSHqwU2u0fR0FISGokPQgmdN1K2AYuOevVM9Plok7sR2o9Myzxio-v9bvv2Lvf-L7sMytxZozNAfQmb284iEhoVl-ZA3_AwtCABQ priority: 102 providerName: Springer Nature |
Title | Establishing metrics and control laws for the learning process: ball and beam balancing |
URI | https://link.springer.com/article/10.1007/s00422-020-00815-z https://www.ncbi.nlm.nih.gov/pubmed/31955261 https://www.proquest.com/docview/2375282168 https://www.proquest.com/docview/2342355649 https://pubmed.ncbi.nlm.nih.gov/PMC7062859 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdge-GF74-MMRmJN7BondiOeUGltJuATQioKE-R41wGUpd2tBPS_nruXCdVmdhLosjOl-_T9t3vGHthe1kFqOVEqi1OUHQthQNwIvNobtE8Vbam5OTjE300yT5M1TQuuC1jWGWrE4Oiruae1shfy9QonB70df52cS6oahTtrsYSGjfZLkGXUUiXmZoN6K4MxdJ6Ke1fIjvEpJmQOhfArwRNnsgqKnG5bZiueJtXgyb_2TkNBml8l92OniQfrEl_j92A5j6701Zp4FFoH7DvI3QA27UmfkYVtPySu6biMUydz9yfJUfnlaMzyGMZiVO-WKcQvOGlm81C_xLcGV0RREdz-pBNxqNvwyMRyykIj27ZSuQeUKU4qFCuoW8Nii_hxznUMA5M7XteQc_WqZPG5aCV1RYAvCyd9ZBnZfqI7TTzBp4wnjuNtJWqJnQZVZUur2ovvSV_rsqUSVi_HcvCR6xxKnkxKzqU5DD-BY5_Eca_uEzYy-6exRpp49re-y2Jiih1y2LDIwl73jWjvNAmiGtgfkF90IFUSmc2YY_XFO1eh-pIKZxSJsxs0brrQFjc2y3Nr58Bk9uEXFR85quWKzaf9f-_2Lv-L56yWzJwKEXP7LOd1e8LeIY-0Ko8CIyOx3x8eMB2B--PP32l8-GPjyM8vxudfP6CrUM9xONEDv4ClE0KNQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3rShBYwEJ7DYdeIkRkII0S5b-ji1orfgOJOCtM0u3a2q9kf1NzLjPFZLRW89RnFe429esecbgDemFxVIVk6GsaEEJS6VtIhWRo7cLbmnwpRcnLy3Hw8Po-9H-mgJrtpaGN5W2dpEb6iLseN_5B9UmGhKD_px-nnyR3LXKF5dbVto1LDYwYtzStmmn7Y3aX7fKjXYOvg6lE1XAekoOpnJ1CFplsWC4I19kxCKmUbNkqJZTErXcxp7pgytSmyKsTaxQUSncmscplEe0n3vwEoUhoY1Kh18m5P8Kt-crRfyeinBrynS8aV6nmxLcrLGXljLy0VHeC26vb5J85-VWu8ABw_hfhO5ii811B7BElaP4UHbFUI0RuIJ_NiigLP9tyVOuGOXmwpbFaLZFi9G9nwqKFgWFHyKpm3FsZjUJQsfRW5HIz8-R3vCR0wJUh0_hcNbEfQzWK7GFa6BSG1MWFK6ZDYbXeQ2LUqnnOH4sYh0EkC_lWXmGm5zbrExyjpWZi__jOSfeflnlwG8666Z1MweN47eaKcoa7R8ms0xGcDr7jTpJy-62ArHZzyGAlat48gEsFrPaPc4Mn9aUwobQLIw190A5v5ePFP9_uU5wBNf-0r3fN-iYv5a__-K5zd_xSu4OzzY2812t_d31uGe8mjlnTsbsDw7PcMXFH_N8pce9AJ-3raW_QWXTUA3 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIiEuvB-GAosEJ1g1WXu9XiSEEG3UUqg4UJGbu16PC1LqBJKqoj-NX8fM-hGFit56jLxx4tlvXt6ZbwBe2EFSIlk5GaeWEpS0UtIhOpl4crfknkpbcXPy5_105yD5ONbjNfjT9cJwWWVnE4OhLqee35FvqthoSg-GabZZtWURX7ZG72Y_JU-Q4pPWbpxGA5E9_H1K6dv87e4W7fVLpUbbXz_syHbCgPQUqSxk5pG0zGFJUMehNYRoplRzpHQOTeUHXuPAVrFTxmWYaptaRPSqcNZjlhQx3fcKXDWxHrKOmbFZEv6qMKhtEPPZKUGxbdgJbXuBeEty4sYeWcuzVad4LtI9X7D5z6ltcIajW3CjjWLF-wZ2t2EN6ztws5sQIVqDcRe-bVPw2b3nEsc8vcvPhatL0ZbIi4k7nQsKnAUFoqIdYXEkZk37whtRuMkkrC_QHfMnpgepj-7BwaUI-j6s19MaH4LIXEq4UrpiZhtdFi4rK6-85ViyTLSJYNjJMvctzzmP25jkPUNzkH9O8s-D_POzCF7135k1LB8Xrt7otihvNX6eL_EZwfP-MukqH8C4GqcnvIaCV63TxEbwoNnR_ufIFGpN6WwEZmWv-wXMA756pf7xPfCBm9AHS_d83aFi-bf-_xSPLn6KZ3CN9Cv_tLu_9xiuqwBWLuLZgPXFrxN8QqHYongaMC_g8LKV7C9r80Rk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Establishing+metrics+and+control+laws+for+the+learning+process%3A+ball+and+beam+balancing&rft.jtitle=Biological+cybernetics&rft.au=Buza+Gergely&rft.au=Milton%2C+John&rft.au=Bencsik+Laszlo&rft.au=Insperger+Tamas&rft.date=2020-02-01&rft.pub=Springer+Nature+B.V&rft.issn=0340-1200&rft.eissn=1432-0770&rft.volume=114&rft.issue=1&rft.spage=83&rft.epage=93&rft_id=info:doi/10.1007%2Fs00422-020-00815-z&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0340-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0340-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0340-1200&client=summon |