HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells

Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 36; no. 13; p. 109757
Main Authors Lu, Haiquan, Lyu, Yajing, Tran, Linh, Lan, Jie, Xie, Yangyiran, Yang, Yongkang, Murugan, Naveena L., Wang, Yueyang J., Semenza, Gregg L.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 28.09.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal. [Display omitted] •HIF-1α is required for NANOG-mediated breast cancer stem cell self-renewal•NANOG regulates TERT expression and telomere length as a HIF-1 coactivator•NANOG recruits deubiquitinase USP9X and stabilizes HIF-1α protein•NANOG stabilizes HIF-1α interaction with the coactivator p300 Lu et al. find that NANOG is necessary but not sufficient for breast cancer stem cell maintenance. NANOG functions as a HIF-1 coactivator to induce TERT expression in hypoxic breast cancer stem cells. These findings suggest a mechanism in which HIF-1 and NANOG cooperatively mediate breast cancer stem cell self-renewal.
AbstractList Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.
Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.
Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal. [Display omitted] •HIF-1α is required for NANOG-mediated breast cancer stem cell self-renewal•NANOG regulates TERT expression and telomere length as a HIF-1 coactivator•NANOG recruits deubiquitinase USP9X and stabilizes HIF-1α protein•NANOG stabilizes HIF-1α interaction with the coactivator p300 Lu et al. find that NANOG is necessary but not sufficient for breast cancer stem cell maintenance. NANOG functions as a HIF-1 coactivator to induce TERT expression in hypoxic breast cancer stem cells. These findings suggest a mechanism in which HIF-1 and NANOG cooperatively mediate breast cancer stem cell self-renewal.
ArticleNumber 109757
Author Wang, Yueyang J.
Semenza, Gregg L.
Xie, Yangyiran
Murugan, Naveena L.
Lu, Haiquan
Yang, Yongkang
Tran, Linh
Lyu, Yajing
Lan, Jie
Author_xml – sequence: 1
  givenname: Haiquan
  surname: Lu
  fullname: Lu, Haiquan
  email: hlu21@jhmi.edu
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 2
  givenname: Yajing
  orcidid: 0000-0002-8253-3470
  surname: Lyu
  fullname: Lyu, Yajing
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 3
  givenname: Linh
  orcidid: 0000-0002-8126-1258
  surname: Tran
  fullname: Tran, Linh
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 4
  givenname: Jie
  surname: Lan
  fullname: Lan, Jie
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 5
  givenname: Yangyiran
  orcidid: 0000-0001-9194-2439
  surname: Xie
  fullname: Xie, Yangyiran
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 6
  givenname: Yongkang
  surname: Yang
  fullname: Yang, Yongkang
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 7
  givenname: Naveena L.
  surname: Murugan
  fullname: Murugan, Naveena L.
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 8
  givenname: Yueyang J.
  surname: Wang
  fullname: Wang, Yueyang J.
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
– sequence: 9
  givenname: Gregg L.
  surname: Semenza
  fullname: Semenza, Gregg L.
  email: gsemenza@jhmi.edu
  organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34592152$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1rHCEUhqWkNJ__oBQvezNbddQZe1EIIR8LIYGyuRbHOaYus-NU3ZD8-7qdJJReJIIoh_d9j57nEO2NYQSEPlOyoITKb-uFhSHCtGCE0VJSjWg-oAPGKK0o483eP_d9dJLSmpQlCaWKf0L7NReKUcEOEFwtLyqKI9i49Tnhm9Ob20tsEjbYBmOzfzA5ROzKXp3_XOF7GAHnaMZko5-yDyP2I_71NIVHb3EXwaSMrRktRJwybHB555CO0UdnhgQnz-cRurs4X51dVde3l8uz0-vKCk5y1XaC2bqTgje8a1tpueilU7SRPROUsdZyR4RxElQHzpG-lwaslMy1tK1rVR-h5ZzbB7PWU_QbE590MF7_LYR4r03M3g6gpWI1tE4IxR1vJJjS11nGgSpiWkpL1tc5a4rh9xZS1hufdr8xI4Rt0kw0bVPcpCnSL8_SbbeB_rXxy5iLgM8CG0NKEdyrhBK9A6rXegaqd0D1DLTYvv9nsz6b3dALAT-8Z_4xm6EM_MFD1Ml6KGB6X2jnMhH_dsAfN-u7VA
CitedBy_id crossref_primary_10_1016_j_intimp_2023_110305
crossref_primary_10_1016_j_prp_2023_154402
crossref_primary_10_1016_j_prp_2023_154349
crossref_primary_10_3389_fnagi_2022_878278
crossref_primary_10_1038_s41467_021_27944_8
crossref_primary_10_1016_j_tranon_2023_101733
crossref_primary_10_1172_JCI159839
crossref_primary_10_1089_scd_2024_0035
crossref_primary_10_3892_ol_2023_14093
crossref_primary_10_1292_jvms_24_0161
crossref_primary_10_1016_j_gendis_2023_02_039
crossref_primary_10_1126_sciadv_abo5000
crossref_primary_10_3389_freae_2024_1424163
crossref_primary_10_3390_genes14030691
crossref_primary_10_3390_jpm12050715
crossref_primary_10_1016_j_semcancer_2022_11_001
crossref_primary_10_3390_ijms231810250
crossref_primary_10_1002_jcp_30776
crossref_primary_10_3390_cancers16173044
crossref_primary_10_1097_MD_0000000000040273
crossref_primary_10_3390_ijms25105177
crossref_primary_10_2147_SCCAA_S417842
crossref_primary_10_1016_j_trecan_2024_08_005
crossref_primary_10_1038_s41418_024_01419_x
crossref_primary_10_1016_j_bbcan_2024_189079
crossref_primary_10_1016_j_bbamcr_2024_119885
crossref_primary_10_1016_j_bbcan_2024_189099
crossref_primary_10_2174_011874091X307243240513092933
crossref_primary_10_3389_fonc_2023_1227884
crossref_primary_10_3389_fonc_2023_1222575
crossref_primary_10_1002_mc_23725
crossref_primary_10_3389_fphar_2024_1362675
crossref_primary_10_1007_s00204_023_03456_w
Cites_doi 10.1016/j.cell.2009.12.007
10.1073/pnas.1602883113
10.1158/0008-5472.CAN-10-3320
10.1038/nrc704
10.1074/jbc.272.31.19253
10.1073/pnas.0809763105
10.1074/jbc.271.51.32529
10.1158/0008-5472.CAN-10-2159
10.1242/bio.034181
10.1016/bs.acr.2018.11.001
10.1089/thy.2020.0023
10.1016/j.bbamcr.2015.05.036
10.1128/MCB.24.13.6076-6083.2004
10.1016/j.febslet.2010.05.026
10.18632/oncotarget.11139
10.1158/0008-5472.CAN-05-0626
10.1172/JCI89212
10.1038/onc.2011.656
10.1038/ng.127
10.1101/gad.1061803
10.1016/j.ebiom.2019.02.036
10.1073/pnas.1809695115
10.1073/pnas.1421438111
10.1111/jcmm.12004
10.1002/1873-3468.13084
10.1016/j.stem.2014.02.002
10.1073/pnas.1018866109
10.1016/j.ccell.2018.07.009
10.18632/oncotarget.20560
10.3389/fcell.2019.00020
10.1016/j.celrep.2017.02.001
10.18632/oncotarget.11743
10.1038/onc.2011.338
10.1172/JCI64057
10.1016/j.cell.2018.03.034
10.1016/S0959-8049(97)00062-2
10.1038/nsmb.1777
10.3390/cancers7030851
10.1007/s40778-018-0127-7
10.1073/pnas.1513433112
10.1038/ng.3781
10.3390/ijms20081823
10.1158/0008-5472.CAN-18-0270
10.1146/annurev-physiol-030212-183653
10.1073/pnas.0913834107
10.1016/j.semcdb.2010.09.004
10.1152/physrev.00026.2007
10.1038/sj.onc.1207460
10.1038/ncb2717
10.2174/1568026616666160212122425
10.1158/0008-5472.CAN-08-2741
10.1016/j.stem.2007.08.014
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2021.109757
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
ExternalDocumentID oai_doaj_org_article_6923e8f5594f476ea3b6fc24e190a811
34592152
10_1016_j_celrep_2021_109757
S2211124721012110
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c540t-8b52c3b65474b886c45d6f9176d251228c4f05af6e9beff0dd6aec662f8183393
IEDL.DBID IXB
ISSN 2211-1247
IngestDate Wed Aug 27 01:30:31 EDT 2025
Thu Jul 10 23:40:40 EDT 2025
Thu Jan 02 22:55:33 EST 2025
Tue Jul 01 02:59:22 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Tue Jul 25 20:58:43 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords hypoxia
proteasome
aldehyde dehydrogenase
ubiquitination
pluripotency factor
telomere
tumor-initiating cells
mammosphere
Language English
License This is an open access article under the CC BY license.
Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-8b52c3b65474b886c45d6f9176d251228c4f05af6e9beff0dd6aec662f8183393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9194-2439
0000-0002-8253-3470
0000-0002-8126-1258
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124721012110
PMID 34592152
PQID 2578759407
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_6923e8f5594f476ea3b6fc24e190a811
proquest_miscellaneous_2578759407
pubmed_primary_34592152
crossref_primary_10_1016_j_celrep_2021_109757
crossref_citationtrail_10_1016_j_celrep_2021_109757
elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109757
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-28
PublicationDateYYYYMMDD 2021-09-28
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-28
  day: 28
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2021
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mitchell, Gillis, Futahashi, Fujiwara, Skordalakes (bib32) 2010; 17
Zhang, Samanta, Lu, Bullen, Zhang, Chen, He, Semenza (bib49) 2016; 113
Semenza (bib40) 2016; 1863
Shay, Wright (bib42) 2010; 584
El-Badawy, Ghoneim, Nasr, Elkhenany, Ahmed, Ahmed, El-Badri (bib10) 2018; 7
Mizukoshi, Kaneko (bib33) 2019; 20
Nishi, Nakada, Kyo, Inoue, Shay, Isaka (bib34) 2004; 24
Pece, Disalvatore, Tosoni, Vecchi, Confalonieri, Bertalot, Viale, Colleoni, Veronesi, Galimberti, Di Fiore (bib38) 2019; 42
Lin, Meng, Li, Tsai (bib22) 2010; 70
Pece, Tosoni, Confalonieri, Mazzarol, Vecchi, Ronzoni, Bernard, Viale, Pelicci, Di Fiore (bib37) 2010; 140
Cochrane, Szczepny, Watkins, Cain (bib6) 2015; 7
Lu, Tran, Park, Chen, Lan, Xie, Semenza (bib25) 2018; 78
Mimeault, Batra (bib31) 2013; 17
Oskarsson, Batlle, Massagué (bib36) 2014; 14
Lu, Samanta, Xiang, Zhang, Hu, Chen, Bullen, Semenza (bib23) 2015; 112
Samanta, Gilkes, Chaturvedi, Xiang, Semenza (bib52) 2014; 111
Jiang, Zheng, Leung, Roe, Semenza (bib17) 1997; 272
Yatabe, Kyo, Maida, Nishi, Nakamura, Kanaya, Tanaka, Isaka, Ogawa, Inoue (bib46) 2004; 23
Campisi (bib4) 2013; 75
Gay-Bellile, Véronèse, Combes, Eymard-Pierre, Kwiatkowski, Dauplat, Cayre, Privat, Abrial, Bignon (bib11) 2017; 8
Aubert, Lansdorp (bib1) 2008; 88
Dontu, Abdallah, Foley, Jackson, Clarke, Kawamura, Wicha (bib9) 2003; 17
Meurette, Mehlen (bib30) 2018; 34
Conley, Gheordunescu, Kakarala, Newman, Korkaya, Heath, Clouthier, Wicha (bib7) 2012; 109
Song, Chen, Jiao, Qiu, Shen, Zhang, Sun, Zhang, Luo (bib43) 2021; 31
Zhang, Zhi, Lu, Samanta, Chen, Gabrielson, Semenza (bib50) 2016; 7
Lai, Li, Wang, Huang, Croce, Sun, Lyu, Kang, Chiu, Hung (bib19) 2018; 128
Xiang, Semenza (bib45) 2019; 141
Lan, Lu, Samanta, Salman, Lu, Semenza (bib20) 2018; 115
Zhang, Peng, Zhu, Wang, Du, Li, Liu, Jin, McNutt, Yin (bib48) 2016; 7
Kumar, Liu, Lu, Zhang, Zhang, Gimotty, Guerra, Guo, Xu (bib18) 2012; 31
Malta, Sokolov, Gentles, Burzykowski, Poisson, Weinstein, Kamińska, Huelsken, Omberg, Gevaert (bib26) 2018; 173
Zhang, Qian, Tan, Lee, Gao, Ren, Rey, Hammers, Chang, Pili (bib47) 2008; 105
Gomez, Armando, Cerrudo, Ghiringhelli, Gomez (bib13) 2016; 16
Charafe-Jauffret, Ginestier, Iovino, Wicinski, Cervera, Finetti, Hur, Diebel, Monville, Dutcher (bib5) 2009; 69
Noh, Kim, Song, Cho, Lee, Kim, Chung, Kim, Hewitt, Seong (bib35) 2012; 122
Harris (bib15) 2002; 2
Hannen, Bartsch (bib14) 2018; 592
Leis, Eguiara, Lopez-Arribillaga, Alberdi, Hernandez-Garcia, Elorriaga, Pandiella, Rezola, Martin (bib21) 2012; 31
Barthel, Wei, Tang, Martinez-Ledesma, Hu, Amin, Akdemir, Seth, Song, Wang (bib2) 2017; 49
Ben-Porath, Thomson, Carey, Ge, Bell, Regev, Weinberg (bib3) 2008; 40
Mathieu, Zhang, Zhou, Wang, Heddleston, Pinna, Hubaud, Stadler, Choi, Bar (bib28) 2011; 71
Semenza, Jiang, Leung, Passantino, Concordet, Maire, Giallongo (bib51) 1996; 271
Manzo (bib27) 2019; 7
Lu, Chen, Shimoda, Park, Zhang, Tran, Zhang, Semenza (bib24) 2017; 18
Shay, Bacchetti (bib41) 1997; 33
Medema (bib29) 2013; 15
Ginestier, Hur, Charafe-Jauffret, Monville, Dutcher, Brown, Jacquemier, Viens, Kleer, Liu (bib12) 2007; 1
Coussens, Davy, Brown, Foster, Andrews, Nagata, Allsopp (bib8) 2010; 107
Huang, Trinh, Aljoufi, Broxmeyer (bib16) 2018; 4
Ponti, Costa, Zaffaroni, Pratesi, Petrangolini, Coradini, Pilotti, Pierotti, Daidone (bib39) 2005; 65
Wend, Holland, Ziebold, Birchmeier (bib44) 2010; 21
Xiang (10.1016/j.celrep.2021.109757_bib45) 2019; 141
Shay (10.1016/j.celrep.2021.109757_bib42) 2010; 584
Meurette (10.1016/j.celrep.2021.109757_bib30) 2018; 34
Wend (10.1016/j.celrep.2021.109757_bib44) 2010; 21
El-Badawy (10.1016/j.celrep.2021.109757_bib10) 2018; 7
Gay-Bellile (10.1016/j.celrep.2021.109757_bib11) 2017; 8
Aubert (10.1016/j.celrep.2021.109757_bib1) 2008; 88
Zhang (10.1016/j.celrep.2021.109757_bib50) 2016; 7
Medema (10.1016/j.celrep.2021.109757_bib29) 2013; 15
Lan (10.1016/j.celrep.2021.109757_bib20) 2018; 115
Semenza (10.1016/j.celrep.2021.109757_bib40) 2016; 1863
Dontu (10.1016/j.celrep.2021.109757_bib9) 2003; 17
Zhang (10.1016/j.celrep.2021.109757_bib47) 2008; 105
Samanta (10.1016/j.celrep.2021.109757_bib52) 2014; 111
Yatabe (10.1016/j.celrep.2021.109757_bib46) 2004; 23
Zhang (10.1016/j.celrep.2021.109757_bib49) 2016; 113
Mizukoshi (10.1016/j.celrep.2021.109757_bib33) 2019; 20
Conley (10.1016/j.celrep.2021.109757_bib7) 2012; 109
Harris (10.1016/j.celrep.2021.109757_bib15) 2002; 2
Oskarsson (10.1016/j.celrep.2021.109757_bib36) 2014; 14
Hannen (10.1016/j.celrep.2021.109757_bib14) 2018; 592
Shay (10.1016/j.celrep.2021.109757_bib41) 1997; 33
Coussens (10.1016/j.celrep.2021.109757_bib8) 2010; 107
Noh (10.1016/j.celrep.2021.109757_bib35) 2012; 122
Mathieu (10.1016/j.celrep.2021.109757_bib28) 2011; 71
Mitchell (10.1016/j.celrep.2021.109757_bib32) 2010; 17
Campisi (10.1016/j.celrep.2021.109757_bib4) 2013; 75
Lu (10.1016/j.celrep.2021.109757_bib25) 2018; 78
Manzo (10.1016/j.celrep.2021.109757_bib27) 2019; 7
Pece (10.1016/j.celrep.2021.109757_bib38) 2019; 42
Pece (10.1016/j.celrep.2021.109757_bib37) 2010; 140
Gomez (10.1016/j.celrep.2021.109757_bib13) 2016; 16
Cochrane (10.1016/j.celrep.2021.109757_bib6) 2015; 7
Leis (10.1016/j.celrep.2021.109757_bib21) 2012; 31
Ginestier (10.1016/j.celrep.2021.109757_bib12) 2007; 1
Lu (10.1016/j.celrep.2021.109757_bib24) 2017; 18
Mimeault (10.1016/j.celrep.2021.109757_bib31) 2013; 17
Barthel (10.1016/j.celrep.2021.109757_bib2) 2017; 49
Lin (10.1016/j.celrep.2021.109757_bib22) 2010; 70
Ponti (10.1016/j.celrep.2021.109757_bib39) 2005; 65
Huang (10.1016/j.celrep.2021.109757_bib16) 2018; 4
Jiang (10.1016/j.celrep.2021.109757_bib17) 1997; 272
Nishi (10.1016/j.celrep.2021.109757_bib34) 2004; 24
Semenza (10.1016/j.celrep.2021.109757_bib51) 1996; 271
Zhang (10.1016/j.celrep.2021.109757_bib48) 2016; 7
Kumar (10.1016/j.celrep.2021.109757_bib18) 2012; 31
Song (10.1016/j.celrep.2021.109757_bib43) 2021; 31
Malta (10.1016/j.celrep.2021.109757_bib26) 2018; 173
Ben-Porath (10.1016/j.celrep.2021.109757_bib3) 2008; 40
Charafe-Jauffret (10.1016/j.celrep.2021.109757_bib5) 2009; 69
Lai (10.1016/j.celrep.2021.109757_bib19) 2018; 128
Lu (10.1016/j.celrep.2021.109757_bib23) 2015; 112
References_xml – volume: 7
  start-page: 64527
  year: 2016
  end-page: 64542
  ident: bib50
  article-title: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells
  publication-title: Oncotarget
– volume: 21
  start-page: 855
  year: 2010
  end-page: 863
  ident: bib44
  article-title: Wnt signaling in stem and cancer stem cells
  publication-title: Semin. Cell Dev. Biol.
– volume: 140
  start-page: 62
  year: 2010
  end-page: 73
  ident: bib37
  article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content
  publication-title: Cell
– volume: 40
  start-page: 499
  year: 2008
  end-page: 507
  ident: bib3
  article-title: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors
  publication-title: Nat. Genet.
– volume: 31
  start-page: 233
  year: 2021
  end-page: 246
  ident: bib43
  article-title: HIF-1α-mediated telomerase reverse transcriptase activation inducing autophagy through mammalian target of rapamycin promotes papillary thyroid carcinoma progression during hypoxia stress
  publication-title: Thyroid
– volume: 14
  start-page: 306
  year: 2014
  end-page: 321
  ident: bib36
  article-title: Metastatic stem cells: sources, niches, and vital pathways
  publication-title: Cell Stem Cell
– volume: 20
  start-page: 1823
  year: 2019
  ident: bib33
  article-title: Telomerase-targeted cancer immunotherapy
  publication-title: Int. J. Mol. Sci.
– volume: 272
  start-page: 19253
  year: 1997
  end-page: 19260
  ident: bib17
  article-title: Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension
  publication-title: J. Biol. Chem.
– volume: 271
  start-page: 32529
  year: 1996
  end-page: 32537
  ident: bib51
  article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
  publication-title: J. Biol. Chem.
– volume: 65
  start-page: 5506
  year: 2005
  end-page: 5511
  ident: bib39
  article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties
  publication-title: Cancer Res.
– volume: 112
  start-page: E4600
  year: 2015
  end-page: E4609
  ident: bib23
  article-title: Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 4640
  year: 2011
  end-page: 4652
  ident: bib28
  article-title: HIF induces human embryonic stem cell markers in cancer cells
  publication-title: Cancer Res.
– volume: 7
  start-page: 1554
  year: 2015
  end-page: 1585
  ident: bib6
  article-title: Hedgehog signaling in the maintenance of cancer stem cells
  publication-title: Cancers (Basel)
– volume: 141
  start-page: 175
  year: 2019
  end-page: 212
  ident: bib45
  article-title: Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy
  publication-title: Adv. Cancer Res.
– volume: 17
  start-page: 513
  year: 2010
  end-page: 518
  ident: bib32
  article-title: Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA
  publication-title: Nat. Struct. Mol. Biol.
– volume: 107
  start-page: 13842
  year: 2010
  end-page: 13847
  ident: bib8
  article-title: RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1α as critical for telomerase function in murine embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 69
  start-page: 1302
  year: 2009
  end-page: 1313
  ident: bib5
  article-title: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature
  publication-title: Cancer Res.
– volume: 128
  start-page: 625
  year: 2018
  end-page: 643
  ident: bib19
  article-title: HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis
  publication-title: J. Clin. Invest.
– volume: 34
  start-page: 536
  year: 2018
  end-page: 548
  ident: bib30
  article-title: Notch signaling in the tumor microenvironment
  publication-title: Cancer Cell
– volume: 15
  start-page: 338
  year: 2013
  end-page: 344
  ident: bib29
  article-title: Cancer stem cells: the challenges ahead
  publication-title: Nat. Cell Biol.
– volume: 105
  start-page: 19579
  year: 2008
  end-page: 19586
  ident: bib47
  article-title: Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 7
  start-page: 60519
  year: 2016
  end-page: 60534
  ident: bib48
  article-title: USP9X destabilizes pVHL and promotes cell proliferation
  publication-title: Oncotarget
– volume: 1863
  start-page: 382
  year: 2016
  end-page: 391
  ident: bib40
  article-title: The hypoxic tumor microenvironment: A driving force for breast cancer progression
  publication-title: Biochim. Biophys. Acta
– volume: 31
  start-page: 1354
  year: 2012
  end-page: 1365
  ident: bib21
  article-title: Sox2 expression in breast tumours and activation in breast cancer stem cells
  publication-title: Oncogene
– volume: 584
  start-page: 3819
  year: 2010
  end-page: 3825
  ident: bib42
  article-title: Telomeres and telomerase in normal and cancer stem cells
  publication-title: FEBS Lett.
– volume: 173
  start-page: 338
  year: 2018
  end-page: 354.e15
  ident: bib26
  article-title: Machine learning identifies stemness features associated with oncogenic dedifferentiation
  publication-title: Cell
– volume: 592
  start-page: 2023
  year: 2018
  end-page: 2031
  ident: bib14
  article-title: Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis
  publication-title: FEBS Lett.
– volume: 1
  start-page: 555
  year: 2007
  end-page: 567
  ident: bib12
  article-title: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome
  publication-title: Cell Stem Cell
– volume: 7
  start-page: 20
  year: 2019
  ident: bib27
  article-title: Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view
  publication-title: Front. Cell Dev. Biol.
– volume: 2
  start-page: 38
  year: 2002
  end-page: 47
  ident: bib15
  article-title: Hypoxia--a key regulatory factor in tumour growth
  publication-title: Nat. Rev. Cancer
– volume: 49
  start-page: 349
  year: 2017
  end-page: 357
  ident: bib2
  article-title: Systematic analysis of telomere length and somatic alterations in 31 cancer types
  publication-title: Nat. Genet.
– volume: 113
  start-page: E2047
  year: 2016
  end-page: E2056
  ident: bib49
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 111
  start-page: E5429
  year: 2014
  end-page: E5438
  ident: bib52
  article-title: Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 42
  start-page: 352
  year: 2019
  end-page: 362
  ident: bib38
  article-title: Identification and clinical validation of a multigene assay that interrogates the biology of cancer stem cells and predicts metastasis in breast cancer: A retrospective consecutive study
  publication-title: EBioMedicine
– volume: 33
  start-page: 787
  year: 1997
  end-page: 791
  ident: bib41
  article-title: A survey of telomerase activity in human cancer
  publication-title: Eur. J. Cancer
– volume: 4
  start-page: 149
  year: 2018
  end-page: 157
  ident: bib16
  article-title: Hypoxia signaling pathway in stem cell regulation: good and evil
  publication-title: Curr. Stem Cell Rep.
– volume: 78
  start-page: 4191
  year: 2018
  end-page: 4202
  ident: bib25
  article-title: Reciprocal regulation of DUSP9 and DUSP16 expression by HIF1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment
  publication-title: Cancer Res.
– volume: 109
  start-page: 2784
  year: 2012
  end-page: 2789
  ident: bib7
  article-title: Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 70
  start-page: 9444
  year: 2010
  end-page: 9452
  ident: bib22
  article-title: Tumor-initiating function of nucleostemin-enriched mammary tumor cells
  publication-title: Cancer Res.
– volume: 122
  start-page: 4077
  year: 2012
  end-page: 4093
  ident: bib35
  article-title: Nanog signaling in cancer promotes stem-like phenotype and immune evasion
  publication-title: J. Clin. Invest.
– volume: 23
  start-page: 3708
  year: 2004
  end-page: 3715
  ident: bib46
  article-title: HIF-1-mediated activation of telomerase in cervical cancer cells
  publication-title: Oncogene
– volume: 17
  start-page: 30
  year: 2013
  end-page: 54
  ident: bib31
  article-title: Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells
  publication-title: J. Cell. Mol. Med.
– volume: 31
  start-page: 4898
  year: 2012
  end-page: 4911
  ident: bib18
  article-title: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation
  publication-title: Oncogene
– volume: 75
  start-page: 685
  year: 2013
  end-page: 705
  ident: bib4
  article-title: Aging, cellular senescence, and cancer
  publication-title: Annu. Rev. Physiol.
– volume: 16
  start-page: 2432
  year: 2016
  end-page: 2440
  ident: bib13
  article-title: Telomerase as a cancer target. Development of new molecules
  publication-title: Curr. Top. Med. Chem.
– volume: 7
  start-page: bio034181
  year: 2018
  ident: bib10
  article-title: Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells
  publication-title: Biol. Open
– volume: 24
  start-page: 6076
  year: 2004
  end-page: 6083
  ident: bib34
  article-title: Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT)
  publication-title: Mol. Cell. Biol.
– volume: 17
  start-page: 1253
  year: 2003
  end-page: 1270
  ident: bib9
  article-title: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells
  publication-title: Genes Dev.
– volume: 115
  start-page: E9640
  year: 2018
  end-page: E9648
  ident: bib20
  article-title: Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 18
  start-page: 1946
  year: 2017
  end-page: 1957
  ident: bib24
  article-title: Chemotherapy-induced Ca
  publication-title: Cell Rep.
– volume: 88
  start-page: 557
  year: 2008
  end-page: 579
  ident: bib1
  article-title: Telomeres and aging
  publication-title: Physiol. Rev.
– volume: 8
  start-page: 77540
  year: 2017
  end-page: 77551
  ident: bib11
  article-title: promoter status and gene copy number gains: effect on
  publication-title: Oncotarget
– volume: 140
  start-page: 62
  year: 2010
  ident: 10.1016/j.celrep.2021.109757_bib37
  article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.007
– volume: 113
  start-page: E2047
  year: 2016
  ident: 10.1016/j.celrep.2021.109757_bib49
  article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1602883113
– volume: 71
  start-page: 4640
  year: 2011
  ident: 10.1016/j.celrep.2021.109757_bib28
  article-title: HIF induces human embryonic stem cell markers in cancer cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-3320
– volume: 2
  start-page: 38
  year: 2002
  ident: 10.1016/j.celrep.2021.109757_bib15
  article-title: Hypoxia--a key regulatory factor in tumour growth
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc704
– volume: 272
  start-page: 19253
  year: 1997
  ident: 10.1016/j.celrep.2021.109757_bib17
  article-title: Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.272.31.19253
– volume: 105
  start-page: 19579
  year: 2008
  ident: 10.1016/j.celrep.2021.109757_bib47
  article-title: Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0809763105
– volume: 271
  start-page: 32529
  year: 1996
  ident: 10.1016/j.celrep.2021.109757_bib51
  article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.271.51.32529
– volume: 70
  start-page: 9444
  year: 2010
  ident: 10.1016/j.celrep.2021.109757_bib22
  article-title: Tumor-initiating function of nucleostemin-enriched mammary tumor cells
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-2159
– volume: 7
  start-page: bio034181
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib10
  article-title: Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells
  publication-title: Biol. Open
  doi: 10.1242/bio.034181
– volume: 141
  start-page: 175
  year: 2019
  ident: 10.1016/j.celrep.2021.109757_bib45
  article-title: Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy
  publication-title: Adv. Cancer Res.
  doi: 10.1016/bs.acr.2018.11.001
– volume: 31
  start-page: 233
  year: 2021
  ident: 10.1016/j.celrep.2021.109757_bib43
  article-title: HIF-1α-mediated telomerase reverse transcriptase activation inducing autophagy through mammalian target of rapamycin promotes papillary thyroid carcinoma progression during hypoxia stress
  publication-title: Thyroid
  doi: 10.1089/thy.2020.0023
– volume: 1863
  start-page: 382
  year: 2016
  ident: 10.1016/j.celrep.2021.109757_bib40
  article-title: The hypoxic tumor microenvironment: A driving force for breast cancer progression
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/j.bbamcr.2015.05.036
– volume: 24
  start-page: 6076
  year: 2004
  ident: 10.1016/j.celrep.2021.109757_bib34
  article-title: Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT)
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.24.13.6076-6083.2004
– volume: 584
  start-page: 3819
  year: 2010
  ident: 10.1016/j.celrep.2021.109757_bib42
  article-title: Telomeres and telomerase in normal and cancer stem cells
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2010.05.026
– volume: 7
  start-page: 60519
  year: 2016
  ident: 10.1016/j.celrep.2021.109757_bib48
  article-title: USP9X destabilizes pVHL and promotes cell proliferation
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11139
– volume: 65
  start-page: 5506
  year: 2005
  ident: 10.1016/j.celrep.2021.109757_bib39
  article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0626
– volume: 128
  start-page: 625
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib19
  article-title: HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI89212
– volume: 31
  start-page: 4898
  year: 2012
  ident: 10.1016/j.celrep.2021.109757_bib18
  article-title: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation
  publication-title: Oncogene
  doi: 10.1038/onc.2011.656
– volume: 40
  start-page: 499
  year: 2008
  ident: 10.1016/j.celrep.2021.109757_bib3
  article-title: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors
  publication-title: Nat. Genet.
  doi: 10.1038/ng.127
– volume: 17
  start-page: 1253
  year: 2003
  ident: 10.1016/j.celrep.2021.109757_bib9
  article-title: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells
  publication-title: Genes Dev.
  doi: 10.1101/gad.1061803
– volume: 42
  start-page: 352
  year: 2019
  ident: 10.1016/j.celrep.2021.109757_bib38
  article-title: Identification and clinical validation of a multigene assay that interrogates the biology of cancer stem cells and predicts metastasis in breast cancer: A retrospective consecutive study
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.02.036
– volume: 115
  start-page: E9640
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib20
  article-title: Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1809695115
– volume: 111
  start-page: E5429
  year: 2014
  ident: 10.1016/j.celrep.2021.109757_bib52
  article-title: Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1421438111
– volume: 17
  start-page: 30
  year: 2013
  ident: 10.1016/j.celrep.2021.109757_bib31
  article-title: Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells
  publication-title: J. Cell. Mol. Med.
  doi: 10.1111/jcmm.12004
– volume: 592
  start-page: 2023
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib14
  article-title: Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.13084
– volume: 14
  start-page: 306
  year: 2014
  ident: 10.1016/j.celrep.2021.109757_bib36
  article-title: Metastatic stem cells: sources, niches, and vital pathways
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2014.02.002
– volume: 109
  start-page: 2784
  year: 2012
  ident: 10.1016/j.celrep.2021.109757_bib7
  article-title: Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1018866109
– volume: 34
  start-page: 536
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib30
  article-title: Notch signaling in the tumor microenvironment
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.07.009
– volume: 8
  start-page: 77540
  year: 2017
  ident: 10.1016/j.celrep.2021.109757_bib11
  article-title: TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.20560
– volume: 7
  start-page: 20
  year: 2019
  ident: 10.1016/j.celrep.2021.109757_bib27
  article-title: Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2019.00020
– volume: 18
  start-page: 1946
  year: 2017
  ident: 10.1016/j.celrep.2021.109757_bib24
  article-title: Chemotherapy-induced Ca2+ release stimulates breast cancer stem cell enrichment
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.02.001
– volume: 7
  start-page: 64527
  year: 2016
  ident: 10.1016/j.celrep.2021.109757_bib50
  article-title: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.11743
– volume: 31
  start-page: 1354
  year: 2012
  ident: 10.1016/j.celrep.2021.109757_bib21
  article-title: Sox2 expression in breast tumours and activation in breast cancer stem cells
  publication-title: Oncogene
  doi: 10.1038/onc.2011.338
– volume: 122
  start-page: 4077
  year: 2012
  ident: 10.1016/j.celrep.2021.109757_bib35
  article-title: Nanog signaling in cancer promotes stem-like phenotype and immune evasion
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI64057
– volume: 173
  start-page: 338
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib26
  article-title: Machine learning identifies stemness features associated with oncogenic dedifferentiation
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.034
– volume: 33
  start-page: 787
  year: 1997
  ident: 10.1016/j.celrep.2021.109757_bib41
  article-title: A survey of telomerase activity in human cancer
  publication-title: Eur. J. Cancer
  doi: 10.1016/S0959-8049(97)00062-2
– volume: 17
  start-page: 513
  year: 2010
  ident: 10.1016/j.celrep.2021.109757_bib32
  article-title: Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.1777
– volume: 7
  start-page: 1554
  year: 2015
  ident: 10.1016/j.celrep.2021.109757_bib6
  article-title: Hedgehog signaling in the maintenance of cancer stem cells
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers7030851
– volume: 4
  start-page: 149
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib16
  article-title: Hypoxia signaling pathway in stem cell regulation: good and evil
  publication-title: Curr. Stem Cell Rep.
  doi: 10.1007/s40778-018-0127-7
– volume: 112
  start-page: E4600
  year: 2015
  ident: 10.1016/j.celrep.2021.109757_bib23
  article-title: Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1513433112
– volume: 49
  start-page: 349
  year: 2017
  ident: 10.1016/j.celrep.2021.109757_bib2
  article-title: Systematic analysis of telomere length and somatic alterations in 31 cancer types
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3781
– volume: 20
  start-page: 1823
  year: 2019
  ident: 10.1016/j.celrep.2021.109757_bib33
  article-title: Telomerase-targeted cancer immunotherapy
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20081823
– volume: 78
  start-page: 4191
  year: 2018
  ident: 10.1016/j.celrep.2021.109757_bib25
  article-title: Reciprocal regulation of DUSP9 and DUSP16 expression by HIF1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-18-0270
– volume: 75
  start-page: 685
  year: 2013
  ident: 10.1016/j.celrep.2021.109757_bib4
  article-title: Aging, cellular senescence, and cancer
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-030212-183653
– volume: 107
  start-page: 13842
  year: 2010
  ident: 10.1016/j.celrep.2021.109757_bib8
  article-title: RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1α as critical for telomerase function in murine embryonic stem cells
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0913834107
– volume: 21
  start-page: 855
  year: 2010
  ident: 10.1016/j.celrep.2021.109757_bib44
  article-title: Wnt signaling in stem and cancer stem cells
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2010.09.004
– volume: 88
  start-page: 557
  year: 2008
  ident: 10.1016/j.celrep.2021.109757_bib1
  article-title: Telomeres and aging
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00026.2007
– volume: 23
  start-page: 3708
  year: 2004
  ident: 10.1016/j.celrep.2021.109757_bib46
  article-title: HIF-1-mediated activation of telomerase in cervical cancer cells
  publication-title: Oncogene
  doi: 10.1038/sj.onc.1207460
– volume: 15
  start-page: 338
  year: 2013
  ident: 10.1016/j.celrep.2021.109757_bib29
  article-title: Cancer stem cells: the challenges ahead
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb2717
– volume: 16
  start-page: 2432
  year: 2016
  ident: 10.1016/j.celrep.2021.109757_bib13
  article-title: Telomerase as a cancer target. Development of new molecules
  publication-title: Curr. Top. Med. Chem.
  doi: 10.2174/1568026616666160212122425
– volume: 69
  start-page: 1302
  year: 2009
  ident: 10.1016/j.celrep.2021.109757_bib5
  article-title: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-2741
– volume: 1
  start-page: 555
  year: 2007
  ident: 10.1016/j.celrep.2021.109757_bib12
  article-title: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2007.08.014
SSID ssj0000601194
Score 2.4759576
Snippet Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 109757
SubjectTerms aldehyde dehydrogenase
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
Cell Hypoxia - physiology
Gene Expression Regulation, Neoplastic - genetics
Humans
hypoxia
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
mammosphere
Nanog Homeobox Protein - metabolism
Neoplasm Recurrence, Local - metabolism
Neoplasm Recurrence, Local - pathology
Neoplastic Stem Cells - metabolism
pluripotency factor
proteasome
Telomerase - metabolism
telomere
tumor-initiating cells
ubiquitination
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOglJOlrmwcT6FXUliXZPiYhm00h20sCuQlZluiG4A273pL8-8xY9rI9hL3kasbWMBppvrFG3zD2M9VBWZkn3CG45VILy60oK64cwnEr6qzu-pDdTPXkTv6-V_cbrb6oJizSA0fD_dKIQHwREPjKIHPtbUbXU4T0GMlsEW_1YszbSKbiHkxcZnSkLATVbAmZD_fmuuIu5x8XnugqRdqROFJ02ohLHX3_f-HpLfjZhaHxHtvt8SOcRb332QffHLCPsaPky2fmJ9djngJuY4vVrF3C9Gz65wrsEiy4Od1h-EdJNiBSBcSxt4Du46GleDXsHjBr4O_L0_x55qCiivUWHHnGAojyGehH__ILuxtf3l5MeN9JgTtEZC0vKiUcGk7JXFZFoZ1UtQ6Yqema8I0onAyJskH7svIhJHWtrXdai4DxPMvK7CvbaeaN_85Ak1iq6qKsUlnTOWOJ-XjuM58kTjo7YtlgR-N6mnHqdvFohnqyBxOtb8j6Jlp_xPj6radIs7FF_pymaC1LJNndA3Qd07uO2eY6I5YPE2x6vBFxBH5qtmX408EfDC5HMr1t_Hy1NN0OiAMmKPMtOspayUyqktoI_3gP5Q_ZJ1KISldEccR22sXKHyM-aquTbim8ArJpCAM
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSqGX0vS5aRJU6FXF1sv2IYSkdLspZHvJQm5ClqV2w2Kntrdk_31m_NgSaAj0aDOWzGg08w0azUfIp1gHZWUSMQfglknNLbM8y5lyAMctL0TR8ZBdzPVsIb9fqasdMnK2Dgps_pnaIZ_Uol59vv29OYENf_y3Vsv5Ve2x-ySPu56MKnlCnkJsSpDT4GIA_L1vxh5neNTMOdZycZmM9-keGOhevOra-t8LWw_B0i48TV-SFwOupKe9IeyRHV--Is96psnNa-Jn51MWU3Bv9XrZNnR-Ov_xjdqGWuoqvNvwB5NvCgiWAr69pGBWnrYYx0avQpcl_bW5qW6XjuZYyd5ShxZTU2wFTfEAoHlDFtOvl19mbGBYYA6QWsvSXHEnciQglnmaaidVoQNkcLpA3MNTJ0OkbNA-y30IUVFo653WPECcFyITb8luWZX-PaEaxWJVpFkeywLPHzPI0xMvfBQ56eyEiFGPxg3tx5EFY2XGOrNr02vfoPZNr_0JYduvbvr2G4_In-ESbWWxeXb3oqp_mmEvGg2g1qcBcikZZKK9FXjjiUsP4MimcTwhybjAZsAhPb6AoZaPTP9xtAcD2xRVb0tfrRvTeUaYMAKZd72hbH9SSJUhvfD-f8_7gTzHJ6xj4ekB2W3rtT8EsNTmR5393wGf6Q46
  priority: 102
  providerName: Scholars Portal
Title HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells
URI https://dx.doi.org/10.1016/j.celrep.2021.109757
https://www.ncbi.nlm.nih.gov/pubmed/34592152
https://www.proquest.com/docview/2578759407
https://doaj.org/article/6923e8f5594f476ea3b6fc24e190a811
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalUOjL2NZuy34UDfoqYkuyIj-2ZVlWaPbQFvImZFnaPIodHGe0_33vZDu0D6Owl0DMOXLO57vv5LvvCDlNVcisnCXMAbhlUnHLLM8LljmA45aXooxzyK6WanErL1fZao9cjL0wWFY5-P7ep0dvPRyZDtqcrqtqes0hd4HoBClM5CnDvF1IHZv4Vue7fRbkG0njPESUZ3jC2EEXy7ycv2s9ElfyNNI5Ypx6EqEikf-zQPUvIBoD0vw1eTUgSXrWX-wbsufrt-Sgny35cET84secpRT-XLutug1dni1_fqd2Qy11DXYz_MV0mwJmpYBobygYkqcdRq7Rj9Cqpr8f1s195WiBtesddWgjLUXyZ4pb_ptjcjv_dnOxYMNMBeYAm3VMFxl3osCRw7LQWjmZlSpAzqZKRDpcOxmSzAbl88KHkJSlst4pxQNEdiFy8Y7s103tPxCqUCzNSp0XqSzxjWMOmfnMC58kTjo7IWLUo3ED4TjOvbgzY2XZH9Nr36D2Ta_9CWG7s9Y94cYL8ud4i3aySJcdDzTtLzPYi1EAY70OkD3JIGfKW4E9Tlx6gENWp-mEzMYbbJ5ZH_xU9cLyX0d7MPBgoupt7ZvtxkRfCAsmIPO-N5TdRQqZ5ThQ-ON_r_uJHOI3rFzh-jPZ79qt_wLwqCtO4rbCSXwK4PNK6kcbOwta
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIgSXim-2fBkJjtYmjuMkBw4tsOzSdjmwlfZmHMehqapklWSB_V39g51xkhU9oEpIvSbe2HqezLzZjN8Q8s6XeahF5DED5JYJyTXTPElZaICOa54FmetDdjKX01PxdRkud8jlcBYGyyp739_5dOet-yvjHs3xqijG3znkLhCdIIVxOmVeX1l5ZDe_IW9rPsw-wSa_53zyefFxyvrWAswARWlZnIbcBCl23hVpHEsjwkzmkLrIDAM-j43IvVDn0iapzXMvy6S2RkqeQ4ALAlRgAr9_B9hHhN5gtjzc_rGDAie-a8CIC2S4wuHInqsrM_aitqiUyX2nH4mB8a-Q6DoHXIuM_2K-LgJOHpC9nrrSgw6dh2THlo_I3a6Z5eYxsdPZhPkU0KzXRdvQ-cH82xeqG6qpqfD4xC_M7ymQZAoUekHBci1tMVQOjosWJT3brKo_haEpFsu31KBR1hTVpil-Y2iekNNbQfop2S2r0j4nVOIwP8ziJPVFhp84E5sGkQ2s5xlh9IgEA47K9Arn2GjjQg2lbOeqQ18h-qpDf0TY9lerTuHjhvGHuEXbsajP7S5U9U_VG6iSwJttnEO6JnIRSasDPFTFhQX-pWPfH5Fo2GB1zdzhUcUN078d7EGBJ0DodWmrdaOc84UJPRjzrDOU7SIDESbYwXj_v-d9Q-5NFyfH6ng2P3pB7uMdLJvh8Uuy29Zr-wq4WZu-du8CJT9u--W7Ave1RlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIF-1+recruits+NANOG+as+a+coactivator+for+TERT+gene+transcription+in+hypoxic+breast+cancer+stem+cells&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Lu%2C+Haiquan&rft.au=Lyu%2C+Yajing&rft.au=Tran%2C+Linh&rft.au=Lan%2C+Jie&rft.date=2021-09-28&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=36&rft.issue=13&rft_id=info:doi/10.1016%2Fj.celrep.2021.109757&rft.externalDocID=S2211124721012110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon