HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells
Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF...
Saved in:
Published in | Cell reports (Cambridge) Vol. 36; no. 13; p. 109757 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
28.09.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.
[Display omitted]
•HIF-1α is required for NANOG-mediated breast cancer stem cell self-renewal•NANOG regulates TERT expression and telomere length as a HIF-1 coactivator•NANOG recruits deubiquitinase USP9X and stabilizes HIF-1α protein•NANOG stabilizes HIF-1α interaction with the coactivator p300
Lu et al. find that NANOG is necessary but not sufficient for breast cancer stem cell maintenance. NANOG functions as a HIF-1 coactivator to induce TERT expression in hypoxic breast cancer stem cells. These findings suggest a mechanism in which HIF-1 and NANOG cooperatively mediate breast cancer stem cell self-renewal. |
---|---|
AbstractList | Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal. Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal.Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal. Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell self-renewal, but the mechanisms by which it performs this function are poorly understood. Here, we show that hypoxia-inducible factor 1α (HIF-1α) is required for NANOG-mediated BCSC enrichment. Mechanistically, NANOG is recruited by HIF-1 to cooperatively activate transcription of the TERT gene encoding the telomerase reverse transcriptase that maintains telomere length, which is required for stem cell self-renewal. NANOG stimulates HIF-1 transcriptional activity by recruitment of the deubiquitinase USP9X, which inhibits HIF-1α protein degradation, and by stabilizing HIF-1α interaction with the coactivator p300, which mediates histone acetylation. Our results delineate a cooperative transcriptional mechanism by which HIF-1 and NANOG mediate BCSC self-renewal. [Display omitted] •HIF-1α is required for NANOG-mediated breast cancer stem cell self-renewal•NANOG regulates TERT expression and telomere length as a HIF-1 coactivator•NANOG recruits deubiquitinase USP9X and stabilizes HIF-1α protein•NANOG stabilizes HIF-1α interaction with the coactivator p300 Lu et al. find that NANOG is necessary but not sufficient for breast cancer stem cell maintenance. NANOG functions as a HIF-1 coactivator to induce TERT expression in hypoxic breast cancer stem cells. These findings suggest a mechanism in which HIF-1 and NANOG cooperatively mediate breast cancer stem cell self-renewal. |
ArticleNumber | 109757 |
Author | Wang, Yueyang J. Semenza, Gregg L. Xie, Yangyiran Murugan, Naveena L. Lu, Haiquan Yang, Yongkang Tran, Linh Lyu, Yajing Lan, Jie |
Author_xml | – sequence: 1 givenname: Haiquan surname: Lu fullname: Lu, Haiquan email: hlu21@jhmi.edu organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 2 givenname: Yajing orcidid: 0000-0002-8253-3470 surname: Lyu fullname: Lyu, Yajing organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 3 givenname: Linh orcidid: 0000-0002-8126-1258 surname: Tran fullname: Tran, Linh organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 4 givenname: Jie surname: Lan fullname: Lan, Jie organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 5 givenname: Yangyiran orcidid: 0000-0001-9194-2439 surname: Xie fullname: Xie, Yangyiran organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 6 givenname: Yongkang surname: Yang fullname: Yang, Yongkang organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 7 givenname: Naveena L. surname: Murugan fullname: Murugan, Naveena L. organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 8 givenname: Yueyang J. surname: Wang fullname: Wang, Yueyang J. organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA – sequence: 9 givenname: Gregg L. surname: Semenza fullname: Semenza, Gregg L. email: gsemenza@jhmi.edu organization: Vascular Program, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34592152$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV1rHCEUhqWkNJ__oBQvezNbddQZe1EIIR8LIYGyuRbHOaYus-NU3ZD8-7qdJJReJIIoh_d9j57nEO2NYQSEPlOyoITKb-uFhSHCtGCE0VJSjWg-oAPGKK0o483eP_d9dJLSmpQlCaWKf0L7NReKUcEOEFwtLyqKI9i49Tnhm9Ob20tsEjbYBmOzfzA5ROzKXp3_XOF7GAHnaMZko5-yDyP2I_71NIVHb3EXwaSMrRktRJwybHB555CO0UdnhgQnz-cRurs4X51dVde3l8uz0-vKCk5y1XaC2bqTgje8a1tpueilU7SRPROUsdZyR4RxElQHzpG-lwaslMy1tK1rVR-h5ZzbB7PWU_QbE590MF7_LYR4r03M3g6gpWI1tE4IxR1vJJjS11nGgSpiWkpL1tc5a4rh9xZS1hufdr8xI4Rt0kw0bVPcpCnSL8_SbbeB_rXxy5iLgM8CG0NKEdyrhBK9A6rXegaqd0D1DLTYvv9nsz6b3dALAT-8Z_4xm6EM_MFD1Ml6KGB6X2jnMhH_dsAfN-u7VA |
CitedBy_id | crossref_primary_10_1016_j_intimp_2023_110305 crossref_primary_10_1016_j_prp_2023_154402 crossref_primary_10_1016_j_prp_2023_154349 crossref_primary_10_3389_fnagi_2022_878278 crossref_primary_10_1038_s41467_021_27944_8 crossref_primary_10_1016_j_tranon_2023_101733 crossref_primary_10_1172_JCI159839 crossref_primary_10_1089_scd_2024_0035 crossref_primary_10_3892_ol_2023_14093 crossref_primary_10_1292_jvms_24_0161 crossref_primary_10_1016_j_gendis_2023_02_039 crossref_primary_10_1126_sciadv_abo5000 crossref_primary_10_3389_freae_2024_1424163 crossref_primary_10_3390_genes14030691 crossref_primary_10_3390_jpm12050715 crossref_primary_10_1016_j_semcancer_2022_11_001 crossref_primary_10_3390_ijms231810250 crossref_primary_10_1002_jcp_30776 crossref_primary_10_3390_cancers16173044 crossref_primary_10_1097_MD_0000000000040273 crossref_primary_10_3390_ijms25105177 crossref_primary_10_2147_SCCAA_S417842 crossref_primary_10_1016_j_trecan_2024_08_005 crossref_primary_10_1038_s41418_024_01419_x crossref_primary_10_1016_j_bbcan_2024_189079 crossref_primary_10_1016_j_bbamcr_2024_119885 crossref_primary_10_1016_j_bbcan_2024_189099 crossref_primary_10_2174_011874091X307243240513092933 crossref_primary_10_3389_fonc_2023_1227884 crossref_primary_10_3389_fonc_2023_1222575 crossref_primary_10_1002_mc_23725 crossref_primary_10_3389_fphar_2024_1362675 crossref_primary_10_1007_s00204_023_03456_w |
Cites_doi | 10.1016/j.cell.2009.12.007 10.1073/pnas.1602883113 10.1158/0008-5472.CAN-10-3320 10.1038/nrc704 10.1074/jbc.272.31.19253 10.1073/pnas.0809763105 10.1074/jbc.271.51.32529 10.1158/0008-5472.CAN-10-2159 10.1242/bio.034181 10.1016/bs.acr.2018.11.001 10.1089/thy.2020.0023 10.1016/j.bbamcr.2015.05.036 10.1128/MCB.24.13.6076-6083.2004 10.1016/j.febslet.2010.05.026 10.18632/oncotarget.11139 10.1158/0008-5472.CAN-05-0626 10.1172/JCI89212 10.1038/onc.2011.656 10.1038/ng.127 10.1101/gad.1061803 10.1016/j.ebiom.2019.02.036 10.1073/pnas.1809695115 10.1073/pnas.1421438111 10.1111/jcmm.12004 10.1002/1873-3468.13084 10.1016/j.stem.2014.02.002 10.1073/pnas.1018866109 10.1016/j.ccell.2018.07.009 10.18632/oncotarget.20560 10.3389/fcell.2019.00020 10.1016/j.celrep.2017.02.001 10.18632/oncotarget.11743 10.1038/onc.2011.338 10.1172/JCI64057 10.1016/j.cell.2018.03.034 10.1016/S0959-8049(97)00062-2 10.1038/nsmb.1777 10.3390/cancers7030851 10.1007/s40778-018-0127-7 10.1073/pnas.1513433112 10.1038/ng.3781 10.3390/ijms20081823 10.1158/0008-5472.CAN-18-0270 10.1146/annurev-physiol-030212-183653 10.1073/pnas.0913834107 10.1016/j.semcdb.2010.09.004 10.1152/physrev.00026.2007 10.1038/sj.onc.1207460 10.1038/ncb2717 10.2174/1568026616666160212122425 10.1158/0008-5472.CAN-08-2741 10.1016/j.stem.2007.08.014 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2021.109757 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_6923e8f5594f476ea3b6fc24e190a811 34592152 10_1016_j_celrep_2021_109757 S2211124721012110 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ RIG CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c540t-8b52c3b65474b886c45d6f9176d251228c4f05af6e9beff0dd6aec662f8183393 |
IEDL.DBID | IXB |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:30:31 EDT 2025 Thu Jul 10 23:40:40 EDT 2025 Thu Jan 02 22:55:33 EST 2025 Tue Jul 01 02:59:22 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Tue Jul 25 20:58:43 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | hypoxia proteasome aldehyde dehydrogenase ubiquitination pluripotency factor telomere tumor-initiating cells mammosphere |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-8b52c3b65474b886c45d6f9176d251228c4f05af6e9beff0dd6aec662f8183393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9194-2439 0000-0002-8253-3470 0000-0002-8126-1258 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124721012110 |
PMID | 34592152 |
PQID | 2578759407 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6923e8f5594f476ea3b6fc24e190a811 proquest_miscellaneous_2578759407 pubmed_primary_34592152 crossref_primary_10_1016_j_celrep_2021_109757 crossref_citationtrail_10_1016_j_celrep_2021_109757 elsevier_sciencedirect_doi_10_1016_j_celrep_2021_109757 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-28 |
PublicationDateYYYYMMDD | 2021-09-28 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2021 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Mitchell, Gillis, Futahashi, Fujiwara, Skordalakes (bib32) 2010; 17 Zhang, Samanta, Lu, Bullen, Zhang, Chen, He, Semenza (bib49) 2016; 113 Semenza (bib40) 2016; 1863 Shay, Wright (bib42) 2010; 584 El-Badawy, Ghoneim, Nasr, Elkhenany, Ahmed, Ahmed, El-Badri (bib10) 2018; 7 Mizukoshi, Kaneko (bib33) 2019; 20 Nishi, Nakada, Kyo, Inoue, Shay, Isaka (bib34) 2004; 24 Pece, Disalvatore, Tosoni, Vecchi, Confalonieri, Bertalot, Viale, Colleoni, Veronesi, Galimberti, Di Fiore (bib38) 2019; 42 Lin, Meng, Li, Tsai (bib22) 2010; 70 Pece, Tosoni, Confalonieri, Mazzarol, Vecchi, Ronzoni, Bernard, Viale, Pelicci, Di Fiore (bib37) 2010; 140 Cochrane, Szczepny, Watkins, Cain (bib6) 2015; 7 Lu, Tran, Park, Chen, Lan, Xie, Semenza (bib25) 2018; 78 Mimeault, Batra (bib31) 2013; 17 Oskarsson, Batlle, Massagué (bib36) 2014; 14 Lu, Samanta, Xiang, Zhang, Hu, Chen, Bullen, Semenza (bib23) 2015; 112 Samanta, Gilkes, Chaturvedi, Xiang, Semenza (bib52) 2014; 111 Jiang, Zheng, Leung, Roe, Semenza (bib17) 1997; 272 Yatabe, Kyo, Maida, Nishi, Nakamura, Kanaya, Tanaka, Isaka, Ogawa, Inoue (bib46) 2004; 23 Campisi (bib4) 2013; 75 Gay-Bellile, Véronèse, Combes, Eymard-Pierre, Kwiatkowski, Dauplat, Cayre, Privat, Abrial, Bignon (bib11) 2017; 8 Aubert, Lansdorp (bib1) 2008; 88 Dontu, Abdallah, Foley, Jackson, Clarke, Kawamura, Wicha (bib9) 2003; 17 Meurette, Mehlen (bib30) 2018; 34 Conley, Gheordunescu, Kakarala, Newman, Korkaya, Heath, Clouthier, Wicha (bib7) 2012; 109 Song, Chen, Jiao, Qiu, Shen, Zhang, Sun, Zhang, Luo (bib43) 2021; 31 Zhang, Zhi, Lu, Samanta, Chen, Gabrielson, Semenza (bib50) 2016; 7 Lai, Li, Wang, Huang, Croce, Sun, Lyu, Kang, Chiu, Hung (bib19) 2018; 128 Xiang, Semenza (bib45) 2019; 141 Lan, Lu, Samanta, Salman, Lu, Semenza (bib20) 2018; 115 Zhang, Peng, Zhu, Wang, Du, Li, Liu, Jin, McNutt, Yin (bib48) 2016; 7 Kumar, Liu, Lu, Zhang, Zhang, Gimotty, Guerra, Guo, Xu (bib18) 2012; 31 Malta, Sokolov, Gentles, Burzykowski, Poisson, Weinstein, Kamińska, Huelsken, Omberg, Gevaert (bib26) 2018; 173 Zhang, Qian, Tan, Lee, Gao, Ren, Rey, Hammers, Chang, Pili (bib47) 2008; 105 Gomez, Armando, Cerrudo, Ghiringhelli, Gomez (bib13) 2016; 16 Charafe-Jauffret, Ginestier, Iovino, Wicinski, Cervera, Finetti, Hur, Diebel, Monville, Dutcher (bib5) 2009; 69 Noh, Kim, Song, Cho, Lee, Kim, Chung, Kim, Hewitt, Seong (bib35) 2012; 122 Harris (bib15) 2002; 2 Hannen, Bartsch (bib14) 2018; 592 Leis, Eguiara, Lopez-Arribillaga, Alberdi, Hernandez-Garcia, Elorriaga, Pandiella, Rezola, Martin (bib21) 2012; 31 Barthel, Wei, Tang, Martinez-Ledesma, Hu, Amin, Akdemir, Seth, Song, Wang (bib2) 2017; 49 Ben-Porath, Thomson, Carey, Ge, Bell, Regev, Weinberg (bib3) 2008; 40 Mathieu, Zhang, Zhou, Wang, Heddleston, Pinna, Hubaud, Stadler, Choi, Bar (bib28) 2011; 71 Semenza, Jiang, Leung, Passantino, Concordet, Maire, Giallongo (bib51) 1996; 271 Manzo (bib27) 2019; 7 Lu, Chen, Shimoda, Park, Zhang, Tran, Zhang, Semenza (bib24) 2017; 18 Shay, Bacchetti (bib41) 1997; 33 Medema (bib29) 2013; 15 Ginestier, Hur, Charafe-Jauffret, Monville, Dutcher, Brown, Jacquemier, Viens, Kleer, Liu (bib12) 2007; 1 Coussens, Davy, Brown, Foster, Andrews, Nagata, Allsopp (bib8) 2010; 107 Huang, Trinh, Aljoufi, Broxmeyer (bib16) 2018; 4 Ponti, Costa, Zaffaroni, Pratesi, Petrangolini, Coradini, Pilotti, Pierotti, Daidone (bib39) 2005; 65 Wend, Holland, Ziebold, Birchmeier (bib44) 2010; 21 Xiang (10.1016/j.celrep.2021.109757_bib45) 2019; 141 Shay (10.1016/j.celrep.2021.109757_bib42) 2010; 584 Meurette (10.1016/j.celrep.2021.109757_bib30) 2018; 34 Wend (10.1016/j.celrep.2021.109757_bib44) 2010; 21 El-Badawy (10.1016/j.celrep.2021.109757_bib10) 2018; 7 Gay-Bellile (10.1016/j.celrep.2021.109757_bib11) 2017; 8 Aubert (10.1016/j.celrep.2021.109757_bib1) 2008; 88 Zhang (10.1016/j.celrep.2021.109757_bib50) 2016; 7 Medema (10.1016/j.celrep.2021.109757_bib29) 2013; 15 Lan (10.1016/j.celrep.2021.109757_bib20) 2018; 115 Semenza (10.1016/j.celrep.2021.109757_bib40) 2016; 1863 Dontu (10.1016/j.celrep.2021.109757_bib9) 2003; 17 Zhang (10.1016/j.celrep.2021.109757_bib47) 2008; 105 Samanta (10.1016/j.celrep.2021.109757_bib52) 2014; 111 Yatabe (10.1016/j.celrep.2021.109757_bib46) 2004; 23 Zhang (10.1016/j.celrep.2021.109757_bib49) 2016; 113 Mizukoshi (10.1016/j.celrep.2021.109757_bib33) 2019; 20 Conley (10.1016/j.celrep.2021.109757_bib7) 2012; 109 Harris (10.1016/j.celrep.2021.109757_bib15) 2002; 2 Oskarsson (10.1016/j.celrep.2021.109757_bib36) 2014; 14 Hannen (10.1016/j.celrep.2021.109757_bib14) 2018; 592 Shay (10.1016/j.celrep.2021.109757_bib41) 1997; 33 Coussens (10.1016/j.celrep.2021.109757_bib8) 2010; 107 Noh (10.1016/j.celrep.2021.109757_bib35) 2012; 122 Mathieu (10.1016/j.celrep.2021.109757_bib28) 2011; 71 Mitchell (10.1016/j.celrep.2021.109757_bib32) 2010; 17 Campisi (10.1016/j.celrep.2021.109757_bib4) 2013; 75 Lu (10.1016/j.celrep.2021.109757_bib25) 2018; 78 Manzo (10.1016/j.celrep.2021.109757_bib27) 2019; 7 Pece (10.1016/j.celrep.2021.109757_bib38) 2019; 42 Pece (10.1016/j.celrep.2021.109757_bib37) 2010; 140 Gomez (10.1016/j.celrep.2021.109757_bib13) 2016; 16 Cochrane (10.1016/j.celrep.2021.109757_bib6) 2015; 7 Leis (10.1016/j.celrep.2021.109757_bib21) 2012; 31 Ginestier (10.1016/j.celrep.2021.109757_bib12) 2007; 1 Lu (10.1016/j.celrep.2021.109757_bib24) 2017; 18 Mimeault (10.1016/j.celrep.2021.109757_bib31) 2013; 17 Barthel (10.1016/j.celrep.2021.109757_bib2) 2017; 49 Lin (10.1016/j.celrep.2021.109757_bib22) 2010; 70 Ponti (10.1016/j.celrep.2021.109757_bib39) 2005; 65 Huang (10.1016/j.celrep.2021.109757_bib16) 2018; 4 Jiang (10.1016/j.celrep.2021.109757_bib17) 1997; 272 Nishi (10.1016/j.celrep.2021.109757_bib34) 2004; 24 Semenza (10.1016/j.celrep.2021.109757_bib51) 1996; 271 Zhang (10.1016/j.celrep.2021.109757_bib48) 2016; 7 Kumar (10.1016/j.celrep.2021.109757_bib18) 2012; 31 Song (10.1016/j.celrep.2021.109757_bib43) 2021; 31 Malta (10.1016/j.celrep.2021.109757_bib26) 2018; 173 Ben-Porath (10.1016/j.celrep.2021.109757_bib3) 2008; 40 Charafe-Jauffret (10.1016/j.celrep.2021.109757_bib5) 2009; 69 Lai (10.1016/j.celrep.2021.109757_bib19) 2018; 128 Lu (10.1016/j.celrep.2021.109757_bib23) 2015; 112 |
References_xml | – volume: 7 start-page: 64527 year: 2016 end-page: 64542 ident: bib50 article-title: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells publication-title: Oncotarget – volume: 21 start-page: 855 year: 2010 end-page: 863 ident: bib44 article-title: Wnt signaling in stem and cancer stem cells publication-title: Semin. Cell Dev. Biol. – volume: 140 start-page: 62 year: 2010 end-page: 73 ident: bib37 article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content publication-title: Cell – volume: 40 start-page: 499 year: 2008 end-page: 507 ident: bib3 article-title: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors publication-title: Nat. Genet. – volume: 31 start-page: 233 year: 2021 end-page: 246 ident: bib43 article-title: HIF-1α-mediated telomerase reverse transcriptase activation inducing autophagy through mammalian target of rapamycin promotes papillary thyroid carcinoma progression during hypoxia stress publication-title: Thyroid – volume: 14 start-page: 306 year: 2014 end-page: 321 ident: bib36 article-title: Metastatic stem cells: sources, niches, and vital pathways publication-title: Cell Stem Cell – volume: 20 start-page: 1823 year: 2019 ident: bib33 article-title: Telomerase-targeted cancer immunotherapy publication-title: Int. J. Mol. Sci. – volume: 272 start-page: 19253 year: 1997 end-page: 19260 ident: bib17 article-title: Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension publication-title: J. Biol. Chem. – volume: 271 start-page: 32529 year: 1996 end-page: 32537 ident: bib51 article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1 publication-title: J. Biol. Chem. – volume: 65 start-page: 5506 year: 2005 end-page: 5511 ident: bib39 article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties publication-title: Cancer Res. – volume: 112 start-page: E4600 year: 2015 end-page: E4609 ident: bib23 article-title: Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 4640 year: 2011 end-page: 4652 ident: bib28 article-title: HIF induces human embryonic stem cell markers in cancer cells publication-title: Cancer Res. – volume: 7 start-page: 1554 year: 2015 end-page: 1585 ident: bib6 article-title: Hedgehog signaling in the maintenance of cancer stem cells publication-title: Cancers (Basel) – volume: 141 start-page: 175 year: 2019 end-page: 212 ident: bib45 article-title: Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy publication-title: Adv. Cancer Res. – volume: 17 start-page: 513 year: 2010 end-page: 518 ident: bib32 article-title: Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA publication-title: Nat. Struct. Mol. Biol. – volume: 107 start-page: 13842 year: 2010 end-page: 13847 ident: bib8 article-title: RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1α as critical for telomerase function in murine embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 69 start-page: 1302 year: 2009 end-page: 1313 ident: bib5 article-title: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature publication-title: Cancer Res. – volume: 128 start-page: 625 year: 2018 end-page: 643 ident: bib19 article-title: HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis publication-title: J. Clin. Invest. – volume: 34 start-page: 536 year: 2018 end-page: 548 ident: bib30 article-title: Notch signaling in the tumor microenvironment publication-title: Cancer Cell – volume: 15 start-page: 338 year: 2013 end-page: 344 ident: bib29 article-title: Cancer stem cells: the challenges ahead publication-title: Nat. Cell Biol. – volume: 105 start-page: 19579 year: 2008 end-page: 19586 ident: bib47 article-title: Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth publication-title: Proc. Natl. Acad. Sci. USA – volume: 7 start-page: 60519 year: 2016 end-page: 60534 ident: bib48 article-title: USP9X destabilizes pVHL and promotes cell proliferation publication-title: Oncotarget – volume: 1863 start-page: 382 year: 2016 end-page: 391 ident: bib40 article-title: The hypoxic tumor microenvironment: A driving force for breast cancer progression publication-title: Biochim. Biophys. Acta – volume: 31 start-page: 1354 year: 2012 end-page: 1365 ident: bib21 article-title: Sox2 expression in breast tumours and activation in breast cancer stem cells publication-title: Oncogene – volume: 584 start-page: 3819 year: 2010 end-page: 3825 ident: bib42 article-title: Telomeres and telomerase in normal and cancer stem cells publication-title: FEBS Lett. – volume: 173 start-page: 338 year: 2018 end-page: 354.e15 ident: bib26 article-title: Machine learning identifies stemness features associated with oncogenic dedifferentiation publication-title: Cell – volume: 592 start-page: 2023 year: 2018 end-page: 2031 ident: bib14 article-title: Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis publication-title: FEBS Lett. – volume: 1 start-page: 555 year: 2007 end-page: 567 ident: bib12 article-title: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome publication-title: Cell Stem Cell – volume: 7 start-page: 20 year: 2019 ident: bib27 article-title: Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view publication-title: Front. Cell Dev. Biol. – volume: 2 start-page: 38 year: 2002 end-page: 47 ident: bib15 article-title: Hypoxia--a key regulatory factor in tumour growth publication-title: Nat. Rev. Cancer – volume: 49 start-page: 349 year: 2017 end-page: 357 ident: bib2 article-title: Systematic analysis of telomere length and somatic alterations in 31 cancer types publication-title: Nat. Genet. – volume: 113 start-page: E2047 year: 2016 end-page: E2056 ident: bib49 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m publication-title: Proc. Natl. Acad. Sci. USA – volume: 111 start-page: E5429 year: 2014 end-page: E5438 ident: bib52 article-title: Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells publication-title: Proc. Natl. Acad. Sci. USA – volume: 42 start-page: 352 year: 2019 end-page: 362 ident: bib38 article-title: Identification and clinical validation of a multigene assay that interrogates the biology of cancer stem cells and predicts metastasis in breast cancer: A retrospective consecutive study publication-title: EBioMedicine – volume: 33 start-page: 787 year: 1997 end-page: 791 ident: bib41 article-title: A survey of telomerase activity in human cancer publication-title: Eur. J. Cancer – volume: 4 start-page: 149 year: 2018 end-page: 157 ident: bib16 article-title: Hypoxia signaling pathway in stem cell regulation: good and evil publication-title: Curr. Stem Cell Rep. – volume: 78 start-page: 4191 year: 2018 end-page: 4202 ident: bib25 article-title: Reciprocal regulation of DUSP9 and DUSP16 expression by HIF1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment publication-title: Cancer Res. – volume: 109 start-page: 2784 year: 2012 end-page: 2789 ident: bib7 article-title: Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia publication-title: Proc. Natl. Acad. Sci. USA – volume: 70 start-page: 9444 year: 2010 end-page: 9452 ident: bib22 article-title: Tumor-initiating function of nucleostemin-enriched mammary tumor cells publication-title: Cancer Res. – volume: 122 start-page: 4077 year: 2012 end-page: 4093 ident: bib35 article-title: Nanog signaling in cancer promotes stem-like phenotype and immune evasion publication-title: J. Clin. Invest. – volume: 23 start-page: 3708 year: 2004 end-page: 3715 ident: bib46 article-title: HIF-1-mediated activation of telomerase in cervical cancer cells publication-title: Oncogene – volume: 17 start-page: 30 year: 2013 end-page: 54 ident: bib31 article-title: Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells publication-title: J. Cell. Mol. Med. – volume: 31 start-page: 4898 year: 2012 end-page: 4911 ident: bib18 article-title: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation publication-title: Oncogene – volume: 75 start-page: 685 year: 2013 end-page: 705 ident: bib4 article-title: Aging, cellular senescence, and cancer publication-title: Annu. Rev. Physiol. – volume: 16 start-page: 2432 year: 2016 end-page: 2440 ident: bib13 article-title: Telomerase as a cancer target. Development of new molecules publication-title: Curr. Top. Med. Chem. – volume: 7 start-page: bio034181 year: 2018 ident: bib10 article-title: Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells publication-title: Biol. Open – volume: 24 start-page: 6076 year: 2004 end-page: 6083 ident: bib34 article-title: Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT) publication-title: Mol. Cell. Biol. – volume: 17 start-page: 1253 year: 2003 end-page: 1270 ident: bib9 article-title: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells publication-title: Genes Dev. – volume: 115 start-page: E9640 year: 2018 end-page: E9648 ident: bib20 article-title: Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 1946 year: 2017 end-page: 1957 ident: bib24 article-title: Chemotherapy-induced Ca publication-title: Cell Rep. – volume: 88 start-page: 557 year: 2008 end-page: 579 ident: bib1 article-title: Telomeres and aging publication-title: Physiol. Rev. – volume: 8 start-page: 77540 year: 2017 end-page: 77551 ident: bib11 article-title: promoter status and gene copy number gains: effect on publication-title: Oncotarget – volume: 140 start-page: 62 year: 2010 ident: 10.1016/j.celrep.2021.109757_bib37 article-title: Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content publication-title: Cell doi: 10.1016/j.cell.2009.12.007 – volume: 113 start-page: E2047 year: 2016 ident: 10.1016/j.celrep.2021.109757_bib49 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1602883113 – volume: 71 start-page: 4640 year: 2011 ident: 10.1016/j.celrep.2021.109757_bib28 article-title: HIF induces human embryonic stem cell markers in cancer cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-3320 – volume: 2 start-page: 38 year: 2002 ident: 10.1016/j.celrep.2021.109757_bib15 article-title: Hypoxia--a key regulatory factor in tumour growth publication-title: Nat. Rev. Cancer doi: 10.1038/nrc704 – volume: 272 start-page: 19253 year: 1997 ident: 10.1016/j.celrep.2021.109757_bib17 article-title: Transactivation and inhibitory domains of hypoxia-inducible factor 1α. Modulation of transcriptional activity by oxygen tension publication-title: J. Biol. Chem. doi: 10.1074/jbc.272.31.19253 – volume: 105 start-page: 19579 year: 2008 ident: 10.1016/j.celrep.2021.109757_bib47 article-title: Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0809763105 – volume: 271 start-page: 32529 year: 1996 ident: 10.1016/j.celrep.2021.109757_bib51 article-title: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.271.51.32529 – volume: 70 start-page: 9444 year: 2010 ident: 10.1016/j.celrep.2021.109757_bib22 article-title: Tumor-initiating function of nucleostemin-enriched mammary tumor cells publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-2159 – volume: 7 start-page: bio034181 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib10 article-title: Telomerase reverse transcriptase coordinates with the epithelial-to-mesenchymal transition through a feedback loop to define properties of breast cancer stem cells publication-title: Biol. Open doi: 10.1242/bio.034181 – volume: 141 start-page: 175 year: 2019 ident: 10.1016/j.celrep.2021.109757_bib45 article-title: Hypoxia-inducible factors promote breast cancer stem cell specification and maintenance in response to hypoxia or cytotoxic chemotherapy publication-title: Adv. Cancer Res. doi: 10.1016/bs.acr.2018.11.001 – volume: 31 start-page: 233 year: 2021 ident: 10.1016/j.celrep.2021.109757_bib43 article-title: HIF-1α-mediated telomerase reverse transcriptase activation inducing autophagy through mammalian target of rapamycin promotes papillary thyroid carcinoma progression during hypoxia stress publication-title: Thyroid doi: 10.1089/thy.2020.0023 – volume: 1863 start-page: 382 year: 2016 ident: 10.1016/j.celrep.2021.109757_bib40 article-title: The hypoxic tumor microenvironment: A driving force for breast cancer progression publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbamcr.2015.05.036 – volume: 24 start-page: 6076 year: 2004 ident: 10.1016/j.celrep.2021.109757_bib34 article-title: Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT) publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.24.13.6076-6083.2004 – volume: 584 start-page: 3819 year: 2010 ident: 10.1016/j.celrep.2021.109757_bib42 article-title: Telomeres and telomerase in normal and cancer stem cells publication-title: FEBS Lett. doi: 10.1016/j.febslet.2010.05.026 – volume: 7 start-page: 60519 year: 2016 ident: 10.1016/j.celrep.2021.109757_bib48 article-title: USP9X destabilizes pVHL and promotes cell proliferation publication-title: Oncotarget doi: 10.18632/oncotarget.11139 – volume: 65 start-page: 5506 year: 2005 ident: 10.1016/j.celrep.2021.109757_bib39 article-title: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0626 – volume: 128 start-page: 625 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib19 article-title: HIF-1α promotes autophagic proteolysis of Dicer and enhances tumor metastasis publication-title: J. Clin. Invest. doi: 10.1172/JCI89212 – volume: 31 start-page: 4898 year: 2012 ident: 10.1016/j.celrep.2021.109757_bib18 article-title: Acquired cancer stem cell phenotypes through Oct4-mediated dedifferentiation publication-title: Oncogene doi: 10.1038/onc.2011.656 – volume: 40 start-page: 499 year: 2008 ident: 10.1016/j.celrep.2021.109757_bib3 article-title: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors publication-title: Nat. Genet. doi: 10.1038/ng.127 – volume: 17 start-page: 1253 year: 2003 ident: 10.1016/j.celrep.2021.109757_bib9 article-title: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells publication-title: Genes Dev. doi: 10.1101/gad.1061803 – volume: 42 start-page: 352 year: 2019 ident: 10.1016/j.celrep.2021.109757_bib38 article-title: Identification and clinical validation of a multigene assay that interrogates the biology of cancer stem cells and predicts metastasis in breast cancer: A retrospective consecutive study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.02.036 – volume: 115 start-page: E9640 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib20 article-title: Hypoxia-inducible factor 1-dependent expression of adenosine receptor 2B promotes breast cancer stem cell enrichment publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1809695115 – volume: 111 start-page: E5429 year: 2014 ident: 10.1016/j.celrep.2021.109757_bib52 article-title: Hypoxia-inducible factors are required for chemotherapy resistance of breast cancer stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1421438111 – volume: 17 start-page: 30 year: 2013 ident: 10.1016/j.celrep.2021.109757_bib31 article-title: Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells publication-title: J. Cell. Mol. Med. doi: 10.1111/jcmm.12004 – volume: 592 start-page: 2023 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib14 article-title: Essential roles of telomerase reverse transcriptase hTERT in cancer stemness and metastasis publication-title: FEBS Lett. doi: 10.1002/1873-3468.13084 – volume: 14 start-page: 306 year: 2014 ident: 10.1016/j.celrep.2021.109757_bib36 article-title: Metastatic stem cells: sources, niches, and vital pathways publication-title: Cell Stem Cell doi: 10.1016/j.stem.2014.02.002 – volume: 109 start-page: 2784 year: 2012 ident: 10.1016/j.celrep.2021.109757_bib7 article-title: Antiangiogenic agents increase breast cancer stem cells via the generation of tumor hypoxia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1018866109 – volume: 34 start-page: 536 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib30 article-title: Notch signaling in the tumor microenvironment publication-title: Cancer Cell doi: 10.1016/j.ccell.2018.07.009 – volume: 8 start-page: 77540 year: 2017 ident: 10.1016/j.celrep.2021.109757_bib11 article-title: TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer publication-title: Oncotarget doi: 10.18632/oncotarget.20560 – volume: 7 start-page: 20 year: 2019 ident: 10.1016/j.celrep.2021.109757_bib27 article-title: Similarities between embryo development and cancer process suggest new strategies for research and therapy of tumors: a new point of view publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2019.00020 – volume: 18 start-page: 1946 year: 2017 ident: 10.1016/j.celrep.2021.109757_bib24 article-title: Chemotherapy-induced Ca2+ release stimulates breast cancer stem cell enrichment publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.02.001 – volume: 7 start-page: 64527 year: 2016 ident: 10.1016/j.celrep.2021.109757_bib50 article-title: Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.11743 – volume: 31 start-page: 1354 year: 2012 ident: 10.1016/j.celrep.2021.109757_bib21 article-title: Sox2 expression in breast tumours and activation in breast cancer stem cells publication-title: Oncogene doi: 10.1038/onc.2011.338 – volume: 122 start-page: 4077 year: 2012 ident: 10.1016/j.celrep.2021.109757_bib35 article-title: Nanog signaling in cancer promotes stem-like phenotype and immune evasion publication-title: J. Clin. Invest. doi: 10.1172/JCI64057 – volume: 173 start-page: 338 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib26 article-title: Machine learning identifies stemness features associated with oncogenic dedifferentiation publication-title: Cell doi: 10.1016/j.cell.2018.03.034 – volume: 33 start-page: 787 year: 1997 ident: 10.1016/j.celrep.2021.109757_bib41 article-title: A survey of telomerase activity in human cancer publication-title: Eur. J. Cancer doi: 10.1016/S0959-8049(97)00062-2 – volume: 17 start-page: 513 year: 2010 ident: 10.1016/j.celrep.2021.109757_bib32 article-title: Structural basis for telomerase catalytic subunit TERT binding to RNA template and telomeric DNA publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.1777 – volume: 7 start-page: 1554 year: 2015 ident: 10.1016/j.celrep.2021.109757_bib6 article-title: Hedgehog signaling in the maintenance of cancer stem cells publication-title: Cancers (Basel) doi: 10.3390/cancers7030851 – volume: 4 start-page: 149 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib16 article-title: Hypoxia signaling pathway in stem cell regulation: good and evil publication-title: Curr. Stem Cell Rep. doi: 10.1007/s40778-018-0127-7 – volume: 112 start-page: E4600 year: 2015 ident: 10.1016/j.celrep.2021.109757_bib23 article-title: Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1513433112 – volume: 49 start-page: 349 year: 2017 ident: 10.1016/j.celrep.2021.109757_bib2 article-title: Systematic analysis of telomere length and somatic alterations in 31 cancer types publication-title: Nat. Genet. doi: 10.1038/ng.3781 – volume: 20 start-page: 1823 year: 2019 ident: 10.1016/j.celrep.2021.109757_bib33 article-title: Telomerase-targeted cancer immunotherapy publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20081823 – volume: 78 start-page: 4191 year: 2018 ident: 10.1016/j.celrep.2021.109757_bib25 article-title: Reciprocal regulation of DUSP9 and DUSP16 expression by HIF1 controls ERK and p38 MAP kinase activity and mediates chemotherapy-induced breast cancer stem cell enrichment publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-18-0270 – volume: 75 start-page: 685 year: 2013 ident: 10.1016/j.celrep.2021.109757_bib4 article-title: Aging, cellular senescence, and cancer publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-030212-183653 – volume: 107 start-page: 13842 year: 2010 ident: 10.1016/j.celrep.2021.109757_bib8 article-title: RNAi screen for telomerase reverse transcriptase transcriptional regulators identifies HIF1α as critical for telomerase function in murine embryonic stem cells publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0913834107 – volume: 21 start-page: 855 year: 2010 ident: 10.1016/j.celrep.2021.109757_bib44 article-title: Wnt signaling in stem and cancer stem cells publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2010.09.004 – volume: 88 start-page: 557 year: 2008 ident: 10.1016/j.celrep.2021.109757_bib1 article-title: Telomeres and aging publication-title: Physiol. Rev. doi: 10.1152/physrev.00026.2007 – volume: 23 start-page: 3708 year: 2004 ident: 10.1016/j.celrep.2021.109757_bib46 article-title: HIF-1-mediated activation of telomerase in cervical cancer cells publication-title: Oncogene doi: 10.1038/sj.onc.1207460 – volume: 15 start-page: 338 year: 2013 ident: 10.1016/j.celrep.2021.109757_bib29 article-title: Cancer stem cells: the challenges ahead publication-title: Nat. Cell Biol. doi: 10.1038/ncb2717 – volume: 16 start-page: 2432 year: 2016 ident: 10.1016/j.celrep.2021.109757_bib13 article-title: Telomerase as a cancer target. Development of new molecules publication-title: Curr. Top. Med. Chem. doi: 10.2174/1568026616666160212122425 – volume: 69 start-page: 1302 year: 2009 ident: 10.1016/j.celrep.2021.109757_bib5 article-title: Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-2741 – volume: 1 start-page: 555 year: 2007 ident: 10.1016/j.celrep.2021.109757_bib12 article-title: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome publication-title: Cell Stem Cell doi: 10.1016/j.stem.2007.08.014 |
SSID | ssj0000601194 |
Score | 2.4759576 |
Snippet | Breast cancer stem cells (BCSCs) play essential roles in tumor formation, drug resistance, relapse, and metastasis. NANOG is a protein required for stem cell... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 109757 |
SubjectTerms | aldehyde dehydrogenase Breast Neoplasms - metabolism Breast Neoplasms - pathology Cell Hypoxia - physiology Gene Expression Regulation, Neoplastic - genetics Humans hypoxia Hypoxia-Inducible Factor 1, alpha Subunit - metabolism mammosphere Nanog Homeobox Protein - metabolism Neoplasm Recurrence, Local - metabolism Neoplasm Recurrence, Local - pathology Neoplastic Stem Cells - metabolism pluripotency factor proteasome Telomerase - metabolism telomere tumor-initiating cells ubiquitination |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOglJOlrmwcT6FXUliXZPiYhm00h20sCuQlZluiG4A273pL8-8xY9rI9hL3kasbWMBppvrFG3zD2M9VBWZkn3CG45VILy60oK64cwnEr6qzu-pDdTPXkTv6-V_cbrb6oJizSA0fD_dKIQHwREPjKIHPtbUbXU4T0GMlsEW_1YszbSKbiHkxcZnSkLATVbAmZD_fmuuIu5x8XnugqRdqROFJ02ohLHX3_f-HpLfjZhaHxHtvt8SOcRb332QffHLCPsaPky2fmJ9djngJuY4vVrF3C9Gz65wrsEiy4Od1h-EdJNiBSBcSxt4Du46GleDXsHjBr4O_L0_x55qCiivUWHHnGAojyGehH__ILuxtf3l5MeN9JgTtEZC0vKiUcGk7JXFZFoZ1UtQ6Yqema8I0onAyJskH7svIhJHWtrXdai4DxPMvK7CvbaeaN_85Ak1iq6qKsUlnTOWOJ-XjuM58kTjo7YtlgR-N6mnHqdvFohnqyBxOtb8j6Jlp_xPj6radIs7FF_pymaC1LJNndA3Qd07uO2eY6I5YPE2x6vBFxBH5qtmX408EfDC5HMr1t_Hy1NN0OiAMmKPMtOspayUyqktoI_3gP5Q_ZJ1KISldEccR22sXKHyM-aquTbim8ArJpCAM priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZpSqGX0vS5aRJU6FXF1sv2IYSkdLspZHvJQm5ClqV2w2Kntrdk_31m_NgSaAj0aDOWzGg08w0azUfIp1gHZWUSMQfglknNLbM8y5lyAMctL0TR8ZBdzPVsIb9fqasdMnK2Dgps_pnaIZ_Uol59vv29OYENf_y3Vsv5Ve2x-ySPu56MKnlCnkJsSpDT4GIA_L1vxh5neNTMOdZycZmM9-keGOhevOra-t8LWw_B0i48TV-SFwOupKe9IeyRHV--Is96psnNa-Jn51MWU3Bv9XrZNnR-Ov_xjdqGWuoqvNvwB5NvCgiWAr69pGBWnrYYx0avQpcl_bW5qW6XjuZYyd5ShxZTU2wFTfEAoHlDFtOvl19mbGBYYA6QWsvSXHEnciQglnmaaidVoQNkcLpA3MNTJ0OkbNA-y30IUVFo653WPECcFyITb8luWZX-PaEaxWJVpFkeywLPHzPI0xMvfBQ56eyEiFGPxg3tx5EFY2XGOrNr02vfoPZNr_0JYduvbvr2G4_In-ESbWWxeXb3oqp_mmEvGg2g1qcBcikZZKK9FXjjiUsP4MimcTwhybjAZsAhPb6AoZaPTP9xtAcD2xRVb0tfrRvTeUaYMAKZd72hbH9SSJUhvfD-f8_7gTzHJ6xj4ekB2W3rtT8EsNTmR5393wGf6Q46 priority: 102 providerName: Scholars Portal |
Title | HIF-1 recruits NANOG as a coactivator for TERT gene transcription in hypoxic breast cancer stem cells |
URI | https://dx.doi.org/10.1016/j.celrep.2021.109757 https://www.ncbi.nlm.nih.gov/pubmed/34592152 https://www.proquest.com/docview/2578759407 https://doaj.org/article/6923e8f5594f476ea3b6fc24e190a811 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalUOjL2NZuy34UDfoqYkuyIj-2ZVlWaPbQFvImZFnaPIodHGe0_33vZDu0D6Owl0DMOXLO57vv5LvvCDlNVcisnCXMAbhlUnHLLM8LljmA45aXooxzyK6WanErL1fZao9cjL0wWFY5-P7ep0dvPRyZDtqcrqtqes0hd4HoBClM5CnDvF1IHZv4Vue7fRbkG0njPESUZ3jC2EEXy7ycv2s9ElfyNNI5Ypx6EqEikf-zQPUvIBoD0vw1eTUgSXrWX-wbsufrt-Sgny35cET84secpRT-XLutug1dni1_fqd2Qy11DXYz_MV0mwJmpYBobygYkqcdRq7Rj9Cqpr8f1s195WiBtesddWgjLUXyZ4pb_ptjcjv_dnOxYMNMBeYAm3VMFxl3osCRw7LQWjmZlSpAzqZKRDpcOxmSzAbl88KHkJSlst4pxQNEdiFy8Y7s103tPxCqUCzNSp0XqSzxjWMOmfnMC58kTjo7IWLUo3ED4TjOvbgzY2XZH9Nr36D2Ta_9CWG7s9Y94cYL8ud4i3aySJcdDzTtLzPYi1EAY70OkD3JIGfKW4E9Tlx6gENWp-mEzMYbbJ5ZH_xU9cLyX0d7MPBgoupt7ZvtxkRfCAsmIPO-N5TdRQqZ5ThQ-ON_r_uJHOI3rFzh-jPZ79qt_wLwqCtO4rbCSXwK4PNK6kcbOwta |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqIgSXim-2fBkJjtYmjuMkBw4tsOzSdjmwlfZmHMehqapklWSB_V39g51xkhU9oEpIvSbe2HqezLzZjN8Q8s6XeahF5DED5JYJyTXTPElZaICOa54FmetDdjKX01PxdRkud8jlcBYGyyp739_5dOet-yvjHs3xqijG3znkLhCdIIVxOmVeX1l5ZDe_IW9rPsw-wSa_53zyefFxyvrWAswARWlZnIbcBCl23hVpHEsjwkzmkLrIDAM-j43IvVDn0iapzXMvy6S2RkqeQ4ALAlRgAr9_B9hHhN5gtjzc_rGDAie-a8CIC2S4wuHInqsrM_aitqiUyX2nH4mB8a-Q6DoHXIuM_2K-LgJOHpC9nrrSgw6dh2THlo_I3a6Z5eYxsdPZhPkU0KzXRdvQ-cH82xeqG6qpqfD4xC_M7ymQZAoUekHBci1tMVQOjosWJT3brKo_haEpFsu31KBR1hTVpil-Y2iekNNbQfop2S2r0j4nVOIwP8ziJPVFhp84E5sGkQ2s5xlh9IgEA47K9Arn2GjjQg2lbOeqQ18h-qpDf0TY9lerTuHjhvGHuEXbsajP7S5U9U_VG6iSwJttnEO6JnIRSasDPFTFhQX-pWPfH5Fo2GB1zdzhUcUN078d7EGBJ0DodWmrdaOc84UJPRjzrDOU7SIDESbYwXj_v-d9Q-5NFyfH6ng2P3pB7uMdLJvh8Uuy29Zr-wq4WZu-du8CJT9u--W7Ave1RlU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HIF-1+recruits+NANOG+as+a+coactivator+for+TERT+gene+transcription+in+hypoxic+breast+cancer+stem+cells&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Lu%2C+Haiquan&rft.au=Lyu%2C+Yajing&rft.au=Tran%2C+Linh&rft.au=Lan%2C+Jie&rft.date=2021-09-28&rft.pub=Elsevier+Inc&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=36&rft.issue=13&rft_id=info:doi/10.1016%2Fj.celrep.2021.109757&rft.externalDocID=S2211124721012110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |