A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process
In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of...
Saved in:
Published in | Scientific reports Vol. 12; no. 1; pp. 9924 - 21 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.06.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications. |
---|---|
AbstractList | In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications. In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications.In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications. Abstract In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of driving training. The fundamental inspiration behind the DTBO design is the learning process to drive in the driving school and the training of the driving instructor. DTBO is mathematically modeled in three phases: (1) training by the driving instructor, (2) patterning of students from instructor skills, and (3) practice. The performance of DTBO in optimization is evaluated on a set of 53 standard objective functions of unimodal, high-dimensional multimodal, fixed-dimensional multimodal, and IEEE CEC2017 test functions types. The optimization results show that DTBO has been able to provide appropriate solutions to optimization problems by maintaining a proper balance between exploration and exploitation. The performance quality of DTBO is compared with the results of 11 well-known algorithms. The simulation results show that DTBO performs better compared to 11 competitor algorithms and is more efficient in optimization applications. |
ArticleNumber | 9924 |
Author | Trojovský, Pavel Trojovská, Eva Dehghani, Mohammad |
Author_xml | – sequence: 1 givenname: Mohammad surname: Dehghani fullname: Dehghani, Mohammad organization: Department of Mathematics, Faculty of Science, University of Hradec Králové – sequence: 2 givenname: Eva surname: Trojovská fullname: Trojovská, Eva organization: Department of Mathematics, Faculty of Science, University of Hradec Králové – sequence: 3 givenname: Pavel surname: Trojovský fullname: Trojovský, Pavel email: pavel.trojovsky@uhk.cz organization: Department of Mathematics, Faculty of Science, University of Hradec Králové |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35705720$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQtVARLUv_AAdkiUsvAX_GyQWpqvioVIkLnC3HGe96ldiLnbSCG_-83k0pbQ_1xWPPe88zfvMaHYUYAKG3lHyghDcfs6CybSrCWEUFY7JSL9AJI0JWjDN29CA-Rqc5b0lZkrWCtq_QMZeKSMXICfp7jgPc4M08mlB1JkOPR5jMBubk8-QtNsM6Jj9tRuxiwjkO1z6scdxNfvR_zORjwLsUuwHGjEs8bQDvZXB0OPtxHhZIOfXJH6hTMj7sg0KzkPMb9NKZIcPp3b5CP798_nHxrbr6_vXy4vyqslKQqWpUS5ntOyqcMj103FHKZVO3jlpLOmGBt6bv246DUrZnjtUAdSeVopQ55fgKXS66fTRbvUt-NOm3jsbrw0VMa21S6XgA7ZSwrhfENL0QLe-61tUWems6ZkBSUbQ-LVq7uRtLAkLpangk-jgT_Eav47VuGSFN8W-Fzu4EUvw1Q5706LOFYTAB4pw1q5UqHlHJC_T9E-g2zimUr9qjasXqmsuCevewovtS_jldAGwB2BRzTuDuIZTo_UTpZaJ0mSh9mCitCql5QrJ-Oji6d3F4nsoXai7vhDWk_2U_w7oFavzjbw |
CitedBy_id | crossref_primary_10_32604_cmc_2024_053189 crossref_primary_10_3390_en16114355 crossref_primary_10_3390_en16248057 crossref_primary_10_3390_pr11051502 crossref_primary_10_1038_s41598_024_72109_4 crossref_primary_10_3390_biomimetics8020149 crossref_primary_10_1016_j_jer_2024_05_008 crossref_primary_10_3390_biomimetics8080619 crossref_primary_10_3390_math12121863 crossref_primary_10_1016_j_compeleceng_2024_109279 crossref_primary_10_21923_jesd_1176741 crossref_primary_10_1016_j_rico_2023_100306 crossref_primary_10_1109_ACCESS_2023_3283422 crossref_primary_10_1016_j_renene_2023_119333 crossref_primary_10_1016_j_rico_2022_100187 crossref_primary_10_3390_biomimetics9010008 crossref_primary_10_1007_s11227_024_06709_2 crossref_primary_10_1016_j_advengsoft_2024_103696 crossref_primary_10_1108_MEQ_02_2024_0061 crossref_primary_10_32604_cmc_2023_034695 crossref_primary_10_1038_s41598_024_69365_9 crossref_primary_10_1109_ACCESS_2022_3197745 crossref_primary_10_3390_biomimetics8050396 crossref_primary_10_3390_math11153297 crossref_primary_10_1007_s44196_023_00320_8 crossref_primary_10_3390_math10244734 crossref_primary_10_1016_j_bspc_2024_106987 crossref_primary_10_3390_math10244812 crossref_primary_10_1007_s00521_024_09928_z crossref_primary_10_1016_j_rser_2023_113521 crossref_primary_10_1080_21642583_2024_2385310 crossref_primary_10_1177_0309524X221150443 crossref_primary_10_1038_s41598_023_37537_8 crossref_primary_10_1108_K_08_2023_1516 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1007_s11042_023_16882_w crossref_primary_10_1016_j_eswa_2023_122335 crossref_primary_10_3390_biomimetics8060470 crossref_primary_10_3390_math11102340 crossref_primary_10_1007_s11276_023_03525_z crossref_primary_10_1016_j_est_2023_109974 crossref_primary_10_1080_17445760_2024_2350010 crossref_primary_10_1016_j_rineng_2024_103419 crossref_primary_10_3390_biomimetics7040204 crossref_primary_10_1007_s00202_023_02171_0 crossref_primary_10_3390_biomimetics8010121 crossref_primary_10_3390_math11051273 crossref_primary_10_1007_s11042_023_16784_x crossref_primary_10_1038_s41598_025_88080_7 crossref_primary_10_3389_fmech_2022_1126450 crossref_primary_10_3390_biomimetics8060508 crossref_primary_10_3390_biomimetics8060507 crossref_primary_10_1016_j_epsr_2024_111395 crossref_primary_10_3390_biomimetics8050386 crossref_primary_10_3390_biomimetics9020065 crossref_primary_10_1038_s41598_024_54910_3 crossref_primary_10_17780_ksujes_1365209 crossref_primary_10_3390_app15063144 crossref_primary_10_1038_s41598_023_46847_w crossref_primary_10_1016_j_compbiomed_2023_107389 crossref_primary_10_3390_fractalfract7040315 crossref_primary_10_1016_j_swevo_2024_101733 crossref_primary_10_1007_s13369_024_08825_w crossref_primary_10_1016_j_knosys_2023_111257 crossref_primary_10_3390_biomimetics8020162 crossref_primary_10_1016_j_epsr_2023_109400 crossref_primary_10_1016_j_asej_2024_102883 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1038_s41598_024_60821_0 crossref_primary_10_1109_ACCESS_2024_3455550 crossref_primary_10_1016_j_surfin_2025_106005 crossref_primary_10_1155_2024_8871266 crossref_primary_10_1016_j_knosys_2023_110940 crossref_primary_10_1016_j_est_2025_115782 crossref_primary_10_1080_1448837X_2024_2309428 crossref_primary_10_3390_biomimetics8020239 crossref_primary_10_53982_ajerd_2024_0702_01_j crossref_primary_10_1109_ACCESS_2023_3277202 crossref_primary_10_1109_ACCESS_2024_3376629 crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1007_s11760_023_02656_2 crossref_primary_10_1016_j_rineng_2025_104241 crossref_primary_10_32604_cmes_2023_025908 crossref_primary_10_1007_s10586_023_04221_5 crossref_primary_10_3390_math13071042 crossref_primary_10_1016_j_ref_2024_100573 crossref_primary_10_4108_eetpht_10_5506 crossref_primary_10_1109_ACCESS_2022_3208700 crossref_primary_10_1007_s10586_024_04877_7 |
Cites_doi | 10.1016/j.cie.2021.107408 10.1016/j.asoc.2017.11.043 10.1007/s00521-015-1870-7 10.1007/s10115-018-1253-3 10.1016/j.eswa.2021.116026 10.1002/int.22342 10.3390/math9212832 10.1023/A:1022602019183 10.1111/coin.12397 10.1016/j.knosys.2019.105190 10.1016/j.knosys.2021.107625 10.1016/j.asoc.2018.07.033 10.1109/4235.585893 10.1109/TEVC.2003.814902 10.1038/s41598-017-18940-4 10.1016/j.ins.2009.03.004 10.1023/A:1008202821328 10.3390/app10175791 10.1016/j.advengsoft.2016.01.008 10.1115/1.2919393 10.1007/s11227-021-03626-6 10.1016/j.eswa.2021.116158 10.1016/j.compstruc.2012.07.010 10.3390/s22030855 10.1016/j.advengsoft.2013.12.007 10.1126/science.220.4598.671 10.1109/4235.771163 10.3390/app10186173 10.1016/j.engappai.2020.103541 10.1016/j.engappai.2019.08.025 10.1007/978-3-642-04944-6_14 10.1007/s10489-017-0903-6 10.1016/j.cad.2010.12.015 10.1016/j.eswa.2020.113377 10.1002/int.22535 10.1109/59.317674 10.1109/ACCESS.2019.2918406 10.1142/S0219622020500546 10.1007/s11227-021-04015-9 10.1109/ICNN.1995.488968 10.1007/978-3-540-72950-1_77 10.1038/s41598-018-37186-2 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-022-14225-7 |
DatabaseName | Open Access Journals from Springer Nature CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 21 |
ExternalDocumentID | oai_doaj_org_article_f74cfd40a8d4493bb9f6cedcab2ae514 PMC9200810 35705720 10_1038_s41598_022_14225_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Univerzita Hradec Králové grantid: 2104/2022-2023 funderid: http://dx.doi.org/10.13039/100018512 – fundername: ; grantid: 2104/2022-2023 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-87912cdb14f7adeb3f1135869f1cc0b4ce39add9b3e77cd2f26ee6b577112f7f3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:31:55 EDT 2025 Thu Aug 21 13:53:15 EDT 2025 Fri Jul 11 08:47:28 EDT 2025 Wed Aug 13 08:09:52 EDT 2025 Mon Jul 21 05:58:19 EDT 2025 Tue Jul 01 04:16:39 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Fri Feb 21 02:38:55 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-87912cdb14f7adeb3f1135869f1cc0b4ce39add9b3e77cd2f26ee6b577112f7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-022-14225-7 |
PMID | 35705720 |
PQID | 2676726635 |
PQPubID | 2041939 |
PageCount | 21 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f74cfd40a8d4493bb9f6cedcab2ae514 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9200810 proquest_miscellaneous_2677570153 proquest_journals_2676726635 pubmed_primary_35705720 crossref_primary_10_1038_s41598_022_14225_7 crossref_citationtrail_10_1038_s41598_022_14225_7 springer_journals_10_1038_s41598_022_14225_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-15 |
PublicationDateYYYYMMDD | 2022-06-15 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Rao, Savsani, Vakharia (CR38) 2011; 43 Dehghani (CR32) 2020; 10 Kannan, Kramer (CR56) 1994; 116 Mousavirad, Ebrahimpour-Komleh (CR40) 2017; 47 Zaman, Gharehchopogh (CR46) 2021; Early Access Gharehchopogh (CR50) 2022; Early Access Wolpert, Macready (CR6) 1997; 1 Dehghani, Mardaneh, Guerrero, Malik, Kumar (CR35) 2020; 13 Ray, Liew (CR1) 2003; 7 Abdollahzadeh, Gharehchopogh (CR42) 2021; Early Access Zeidabadi, Dehghani (CR36) 2022; 15 Rashedi, Nezamabadi-Pour, Saryazdi (CR27) 2009; 179 Abualigah, Elaziz, Sumari, Geem, Gandomi (CR12) 2022; 191 Mirjalili, Mirjalili, Lewis (CR18) 2016; 69 Gharehchopogh, Abdollahzadeh (CR48) 2021; Early Access Faramarzi, Heidarinejad, Mirjalili, Gandomi (CR15) 2020; 152 CR7 CR9 Dorigo, Stützle (CR10) 2019 Eskandar, Sadollah, Bahreininejad, Hamdi (CR28) 2012; 110 Goldanloo, Gharehchopogh (CR51) 2022; 78 Mohmmadzadeh, Gharehchopogh (CR52) 2021; 37 Sergeyev, Kvasov, Mukhametzhanov (CR3) 2018; 8 Moghdani, Salimifard (CR34) 2018; 64 Iba (CR4) 1994; 9 Ghafori, Gharehchopogh (CR22) 2022; Early Access Mohmmadzadeh, Gharehchopogh (CR49) 2021; 34 Abdollahzadeh, Gharehchopogh, Mirjalili (CR20) 2021; 158 Wilcoxon (CR55) 1992 Coufal, Hubálovský, Hubálovská, Balogh (CR17) 2021; 9 Trojovský, Dehghani (CR16) 2022; 22 Mirjalili, Mirjalili, Hatamlou (CR29) 2016; 27 Jiang, Wu, Zhu, Zhang (CR14) 2022; 188 Wang, Li (CR5) 2019; 9 Dehghani (CR41) 2020; 10 Faramarzi, Heidarinejad, Stephens, Mirjalili (CR33) 2020; 191 CR54 Wei, Huang, Wang, Han, Li (CR31) 2019; 7 Kaveh, Zolghadr (CR37) 2016; 6 Yao, Liu, Lin (CR53) 1999; 3 Storn, Price (CR25) 1997; 11 Kaur, Awasthi, Sangal, Dhiman (CR11) 2020; 90 Shayanfar, Gharehchopogh (CR21) 2018; 71 Yang (CR8) 2009 Gharehchopogh (CR23) 2022; Early Access Gharehchopogh, Farnad, Alizadeh (CR47) 2021; Early Access Goldberg, Holland (CR24) 1988; 3 Moosavi, Bardsiri (CR39) 2019; 86 Kirkpatrick, Gelatt, Vecchi (CR26) 1983; 220 Abdollahzadeh, Gharehchopogh, Mirjalili (CR19) 2021; 36 Tahani, Babayan (CR30) 2019; 60 Benyamin, Farhad, Saeid (CR43) 2021; 36 Mohmmadzadeh, Gharehchopogh (CR44) 2021; 77 Mirjalili, Lewis (CR13) 2016; 95 Kaidi, Khishe, Mohammadi (CR2) 2022; 235 Mohmmadzadeh, Gharehchopogh (CR45) 2021; 20 H Mohmmadzadeh (14225_CR52) 2021; 37 S Ghafori (14225_CR22) 2022; Early Access DE Goldberg (14225_CR24) 1988; 3 H Shayanfar (14225_CR21) 2018; 71 H Mohmmadzadeh (14225_CR44) 2021; 77 S Kaur (14225_CR11) 2020; 90 W Kaidi (14225_CR2) 2022; 235 B Abdollahzadeh (14225_CR42) 2021; Early Access Z Wei (14225_CR31) 2019; 7 P Trojovský (14225_CR16) 2022; 22 B Abdollahzadeh (14225_CR20) 2021; 158 X Yao (14225_CR53) 1999; 3 M Dorigo (14225_CR10) 2019 J-S Wang (14225_CR5) 2019; 9 DH Wolpert (14225_CR6) 1997; 1 RV Rao (14225_CR38) 2011; 43 M Tahani (14225_CR30) 2019; 60 X-S Yang (14225_CR8) 2009 MJ Goldanloo (14225_CR51) 2022; 78 SHS Moosavi (14225_CR39) 2019; 86 K Iba (14225_CR4) 1994; 9 S Mirjalili (14225_CR29) 2016; 27 FS Gharehchopogh (14225_CR23) 2022; Early Access A Benyamin (14225_CR43) 2021; 36 Y Jiang (14225_CR14) 2022; 188 14225_CR54 F Wilcoxon (14225_CR55) 1992 FA Zeidabadi (14225_CR36) 2022; 15 YD Sergeyev (14225_CR3) 2018; 8 H Mohmmadzadeh (14225_CR45) 2021; 20 FS Gharehchopogh (14225_CR47) 2021; Early Access P Coufal (14225_CR17) 2021; 9 B Kannan (14225_CR56) 1994; 116 A Faramarzi (14225_CR33) 2020; 191 S Kirkpatrick (14225_CR26) 1983; 220 E Rashedi (14225_CR27) 2009; 179 R Moghdani (14225_CR34) 2018; 64 L Abualigah (14225_CR12) 2022; 191 M Dehghani (14225_CR41) 2020; 10 S Mirjalili (14225_CR13) 2016; 95 FS Gharehchopogh (14225_CR50) 2022; Early Access T Ray (14225_CR1) 2003; 7 FS Gharehchopogh (14225_CR48) 2021; Early Access H Mohmmadzadeh (14225_CR49) 2021; 34 SJ Mousavirad (14225_CR40) 2017; 47 14225_CR9 R Storn (14225_CR25) 1997; 11 14225_CR7 A Kaveh (14225_CR37) 2016; 6 M Dehghani (14225_CR35) 2020; 13 H Eskandar (14225_CR28) 2012; 110 B Abdollahzadeh (14225_CR19) 2021; 36 M Dehghani (14225_CR32) 2020; 10 S Mirjalili (14225_CR18) 2016; 69 A Faramarzi (14225_CR15) 2020; 152 HRR Zaman (14225_CR46) 2021; Early Access |
References_xml | – volume: 158 year: 2021 ident: CR20 article-title: African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 64 start-page: 161 year: 2018 end-page: 185 ident: CR34 article-title: Volleyball premier league algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 27 start-page: 495 year: 2016 end-page: 513 ident: CR29 article-title: Multi-verse optimizer: A nature-inspired algorithm for global optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: Early Access start-page: 1 year: 2021 end-page: 35 ident: CR46 article-title: An improved particle swarm optimization with backtracking search optimization algorithm for solving continuous optimization problems publication-title: Eng. Comput. – volume: 60 start-page: 1001 year: 2019 end-page: 1038 ident: CR30 article-title: Flow regime algorithm (FRA): A physics-based meta-heuristics algorithm publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1253-3 – volume: 188 year: 2022 ident: CR14 article-title: Orca predation algorithm: A novel bio-inspired algorithm for global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116026 – volume: 36 start-page: 1270 year: 2021 end-page: 1303 ident: CR43 article-title: Discrete farmland fertility optimization algorithm with metropolis acceptance criterion for traveling salesman problems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22342 – volume: 9 start-page: 2832 year: 2021 ident: CR17 article-title: Snow leopard optimization algorithm: A new nature-based optimization algorithm for solving optimization problems publication-title: Mathematics doi: 10.3390/math9212832 – volume: 3 start-page: 95 year: 1988 end-page: 99 ident: CR24 article-title: Genetic algorithms and machine learning publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – ident: CR54 – volume: 37 start-page: 176 year: 2021 end-page: 209 ident: CR52 article-title: A novel hybrid whale optimization algorithm with flower pollination algorithm for feature selection: Case study email spam detection publication-title: Comput. Intell. doi: 10.1111/coin.12397 – volume: 191 year: 2020 ident: CR33 article-title: Equilibrium optimizer: A novel optimization algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 235 year: 2022 ident: CR2 article-title: Dynamic levy flight chimp optimization publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107625 – volume: Early Access year: 2021 ident: CR47 article-title: A modified farmland fertility algorithm for solving constrained engineering problems publication-title: Concurr. Comput. Pract. Exp. – volume: 71 start-page: 728 year: 2018 end-page: 746 ident: CR21 article-title: Farmland fertility: A new metaheuristic algorithm for solving continuous optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.033 – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: CR6 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: CR1 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: CR3 article-title: On the efficiency of nature-inspired metaheuristics in expensive global optimization with limited budget publication-title: Sci. Rep. doi: 10.1038/s41598-017-18940-4 – volume: 179 start-page: 2232 year: 2009 end-page: 2248 ident: CR27 article-title: Gsa: A gravitational search algorithm publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – ident: CR9 – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: CR25 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 10 start-page: 5791 year: 2020 ident: CR41 article-title: A new doctor and patient optimization algorithm: An application to energy commitment problem publication-title: Appl. Sci. doi: 10.3390/app10175791 – volume: 9 start-page: 1 year: 2019 end-page: 21 ident: CR5 article-title: An improved grey wolf optimizer based on differential evolution and elimination mechanism publication-title: Sci. Rep. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: CR13 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 116 start-page: 405 year: 1994 end-page: 411 ident: CR56 article-title: An augmented lagrange multiplier based method for mixed integer discrete continuous optimization and its applications to mechanical design publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – start-page: 311 year: 2019 end-page: 351 ident: CR10 publication-title: Handbook of Metaheuristics, Chap. Ant Colony Optimization: Overview and Recent Advances – volume: 77 start-page: 9102 year: 2021 end-page: 9144 ident: CR44 article-title: An efficient binary chaotic symbiotic organisms search algorithm approaches for feature selection problems publication-title: J. Supercomput. doi: 10.1007/s11227-021-03626-6 – volume: 34 year: 2021 ident: CR49 article-title: A multi-agent system based for solving high-dimensional optimization problems: A case study on email spam detection publication-title: Int. J. Commun. Syst. – volume: 191 year: 2022 ident: CR12 article-title: Reptile search algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: Early Access start-page: 1 year: 2021 end-page: 19 ident: CR42 article-title: A multi-objective optimization algorithm for feature selection problems publication-title: Eng. Comput. – volume: 110 start-page: 151 year: 2012 end-page: 166 ident: CR28 article-title: Water cycle algorithm-a novel metaheuristic optimization method for solving constrained engineering optimization problems publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – volume: Early Access start-page: 1 year: 2022 end-page: 26 ident: CR50 article-title: An improved tunicate swarm algorithm with best-random mutation strategy for global optimization problems publication-title: J. Bionic Eng. – volume: Early Access start-page: 1 year: 2022 end-page: 22 ident: CR22 article-title: Advances in spotted hyena optimizer: A comprehensive survey publication-title: Arch. Comput. Methods Eng. – volume: 22 start-page: 855 year: 2022 ident: CR16 article-title: Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications publication-title: Sensors doi: 10.3390/s22030855 – volume: 69 start-page: 46 year: 2016 end-page: 61 ident: CR18 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: Early Access start-page: 1 year: 2022 end-page: 24 ident: CR23 article-title: Advances in tree seed algorithm: A comprehensive survey publication-title: Arch. Comput. Methods Eng. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: CR26 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: CR53 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 10 start-page: 6173 year: 2020 ident: CR32 article-title: A spring search algorithm applied to engineering optimization problems publication-title: Appl. Sci. doi: 10.3390/app10186173 – volume: 90 year: 2020 ident: CR11 article-title: Tunicate swarm algorithm: A new bio-inspired based metaheuristic paradigm for global optimization publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 86 start-page: 165 year: 2019 end-page: 181 ident: CR39 article-title: Poor and rich optimization algorithm: A new human-based and multi populations algorithm publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: Early Access start-page: 1 year: 2021 end-page: 25 ident: CR48 article-title: An efficient harris hawk optimization algorithm for solving the travelling salesman problem publication-title: Cluster Comput. – start-page: 169 year: 2009 end-page: 178 ident: CR8 article-title: Firefly algorithms for multimodal optimization publication-title: Stochastic Algorithms: Foundations and Applications. SAGA 2009 doi: 10.1007/978-3-642-04944-6_14 – volume: 47 start-page: 850 year: 2017 end-page: 887 ident: CR40 article-title: Human mental search: A new population-based metaheuristic optimization algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-017-0903-6 – volume: 6 start-page: 469 year: 2016 end-page: 492 ident: CR37 article-title: A novel meta-heuristic algorithm: Tug of war optimization publication-title: Iran Univ. Sci. Technol. – volume: 13 start-page: 514 year: 2020 end-page: 523 ident: CR35 article-title: Football game based optimization: An application to solve energy commitment problem publication-title: Int. J. Intell. Eng. Syst – volume: 43 start-page: 469 year: 2011 end-page: 492 ident: CR38 article-title: Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – start-page: 196 year: 1992 end-page: 202 ident: CR55 publication-title: Break throughs in Statistics, chap. Individual Comparisons by Ranking Methods – volume: 152 year: 2020 ident: CR15 article-title: Marine predators algorithm: A nature-inspired metaheuristic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – ident: CR7 – volume: 15 start-page: 273 year: 2022 end-page: 281 ident: CR36 article-title: Poa: Puzzle optimization algorithm publication-title: Int. J. Intell. Eng. Syst. – volume: 36 start-page: 5887 year: 2021 end-page: 5958 ident: CR19 article-title: Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – volume: 9 start-page: 685 year: 1994 end-page: 692 ident: CR4 article-title: Reactive power optimization by genetic algorithm publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.317674 – volume: 7 start-page: 66084 year: 2019 end-page: 66109 ident: CR31 article-title: Nuclear reaction optimization: A novel and powerful physics-based algorithm for global optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – volume: 20 start-page: 469 year: 2021 end-page: 515 ident: CR45 article-title: Feature selection with binary symbiotic organisms search algorithm for email spam detection publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622020500546 – volume: 78 start-page: 3998 year: 2022 end-page: 4031 ident: CR51 article-title: A hybrid obl-based firefly algorithm with symbiotic organisms search algorithm for solving continuous optimization problems publication-title: J. Supercomput. doi: 10.1007/s11227-021-04015-9 – volume: 158 year: 2021 ident: 14225_CR20 publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107408 – volume: 7 start-page: 386 year: 2003 ident: 14225_CR1 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – volume: 3 start-page: 82 year: 1999 ident: 14225_CR53 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 188 year: 2022 ident: 14225_CR14 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116026 – start-page: 196 volume-title: Break throughs in Statistics, chap. Individual Comparisons by Ranking Methods year: 1992 ident: 14225_CR55 – volume: Early Access start-page: 1 year: 2021 ident: 14225_CR48 publication-title: Cluster Comput. – volume: Early Access start-page: 1 year: 2021 ident: 14225_CR46 publication-title: Eng. Comput. – volume: 179 start-page: 2232 year: 2009 ident: 14225_CR27 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.03.004 – start-page: 311 volume-title: Handbook of Metaheuristics, Chap. Ant Colony Optimization: Overview and Recent Advances year: 2019 ident: 14225_CR10 – volume: 235 year: 2022 ident: 14225_CR2 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2021.107625 – volume: 64 start-page: 161 year: 2018 ident: 14225_CR34 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.11.043 – volume: 20 start-page: 469 year: 2021 ident: 14225_CR45 publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622020500546 – volume: 27 start-page: 495 year: 2016 ident: 14225_CR29 publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1870-7 – volume: 60 start-page: 1001 year: 2019 ident: 14225_CR30 publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-018-1253-3 – volume: 69 start-page: 46 year: 2016 ident: 14225_CR18 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: Early Access start-page: 1 year: 2022 ident: 14225_CR23 publication-title: Arch. Comput. Methods Eng. – volume: 86 start-page: 165 year: 2019 ident: 14225_CR39 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.08.025 – volume: Early Access start-page: 1 year: 2022 ident: 14225_CR50 publication-title: J. Bionic Eng. – volume: 110 start-page: 151 year: 2012 ident: 14225_CR28 publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2012.07.010 – ident: 14225_CR7 doi: 10.1109/ICNN.1995.488968 – volume: 71 start-page: 728 year: 2018 ident: 14225_CR21 publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.033 – ident: 14225_CR9 doi: 10.1007/978-3-540-72950-1_77 – volume: 95 start-page: 51 year: 2016 ident: 14225_CR13 publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 9 start-page: 1 year: 2019 ident: 14225_CR5 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – volume: 15 start-page: 273 year: 2022 ident: 14225_CR36 publication-title: Int. J. Intell. Eng. Syst. – volume: Early Access start-page: 1 year: 2021 ident: 14225_CR42 publication-title: Eng. Comput. – volume: 7 start-page: 66084 year: 2019 ident: 14225_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2918406 – volume: 6 start-page: 469 year: 2016 ident: 14225_CR37 publication-title: Iran Univ. Sci. Technol. – volume: 220 start-page: 671 year: 1983 ident: 14225_CR26 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 78 start-page: 3998 year: 2022 ident: 14225_CR51 publication-title: J. Supercomput. doi: 10.1007/s11227-021-04015-9 – volume: 191 year: 2022 ident: 14225_CR12 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.116158 – volume: Early Access year: 2021 ident: 14225_CR47 publication-title: Concurr. Comput. Pract. Exp. – volume: 90 year: 2020 ident: 14225_CR11 publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.103541 – volume: 9 start-page: 685 year: 1994 ident: 14225_CR4 publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.317674 – volume: 22 start-page: 855 year: 2022 ident: 14225_CR16 publication-title: Sensors doi: 10.3390/s22030855 – volume: 13 start-page: 514 year: 2020 ident: 14225_CR35 publication-title: Int. J. Intell. Eng. Syst – volume: Early Access start-page: 1 year: 2022 ident: 14225_CR22 publication-title: Arch. Comput. Methods Eng. – volume: 77 start-page: 9102 year: 2021 ident: 14225_CR44 publication-title: J. Supercomput. doi: 10.1007/s11227-021-03626-6 – volume: 36 start-page: 5887 year: 2021 ident: 14225_CR19 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22535 – volume: 191 year: 2020 ident: 14225_CR33 publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2019.105190 – volume: 47 start-page: 850 year: 2017 ident: 14225_CR40 publication-title: Appl. Intell. doi: 10.1007/s10489-017-0903-6 – volume: 3 start-page: 95 year: 1988 ident: 14225_CR24 publication-title: Mach. Learn. doi: 10.1023/A:1022602019183 – volume: 11 start-page: 341 year: 1997 ident: 14225_CR25 publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 9 start-page: 2832 year: 2021 ident: 14225_CR17 publication-title: Mathematics doi: 10.3390/math9212832 – start-page: 169 volume-title: Stochastic Algorithms: Foundations and Applications. SAGA 2009 year: 2009 ident: 14225_CR8 doi: 10.1007/978-3-642-04944-6_14 – volume: 43 start-page: 469 year: 2011 ident: 14225_CR38 publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2010.12.015 – volume: 1 start-page: 67 year: 1997 ident: 14225_CR6 publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – ident: 14225_CR54 – volume: 36 start-page: 1270 year: 2021 ident: 14225_CR43 publication-title: Int. J. Intell. Syst. doi: 10.1002/int.22342 – volume: 116 start-page: 405 year: 1994 ident: 14225_CR56 publication-title: J. Mech. Des. doi: 10.1115/1.2919393 – volume: 34 year: 2021 ident: 14225_CR49 publication-title: Int. J. Commun. Syst. – volume: 152 year: 2020 ident: 14225_CR15 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113377 – volume: 37 start-page: 176 year: 2021 ident: 14225_CR52 publication-title: Comput. Intell. doi: 10.1111/coin.12397 – volume: 10 start-page: 6173 year: 2020 ident: 14225_CR32 publication-title: Appl. Sci. doi: 10.3390/app10186173 – volume: 10 start-page: 5791 year: 2020 ident: 14225_CR41 publication-title: Appl. Sci. doi: 10.3390/app10175791 – volume: 8 start-page: 1 year: 2018 ident: 14225_CR3 publication-title: Sci. Rep. doi: 10.1038/s41598-017-18940-4 |
SSID | ssj0000529419 |
Score | 2.604343 |
Snippet | In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human activity of... Abstract In this paper, a new stochastic optimization algorithm is introduced, called Driving Training-Based Optimization (DTBO), which mimics the human... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 9924 |
SubjectTerms | 639/166 639/705 Algorithms Alternation learning Automobile Driving Computer Simulation Humanities and Social Sciences Humans Learning multidisciplinary Optimization Problem Solving Science Science (multidisciplinary) Training |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYlUOilNOlr8ygq9NYuWb1Wq2NSGkKhPTWQm5C0Um2Id4O9PvTYf57Rw27c56U325LMMDPSfKPHNwi96QDX-0b62rVG1jwQUxsuIFURTWsgHbAhxA39T5_byyv-8Vpc3yv1Fe-EZXrgrLjTILkLPW9M13OumLUqtM73zlhqvEglrCnEvHvJVGb1pooTVV7JNKw7XUGkiq_JIPeK2x6iljuRKBH2_w5l_npZ8qcT0xSILp6gxwVB4rMs-T564IcD9DDXlPz2FH0_w4CUcaq9V8cY1eOFn8zMrzMnMzY3X8flfJotMOBVDK4XtxTwCEvHorzJxKXKzArDZwCIOP4NHgNezRel2lf81i_naeimygS-zY8OnqGriw9f3l_Wpc5C7QCvTbAgKkJdbwkP0vSQXQdCmOhaFYhzjeXOMwXLoLLMS-l6GsC8vrVCSgBrQQb2HO0N4-BfImycYR4QCGi455T7LtINOkshLfHKqaZCZKNz7QoJeZTyRqfDcNbpbCcNdtLJTlpW6O12zG2m4Phr7_Noym3PSJ-dfgCn0sWp9L-cqkLHG0fQZU6vNI3cdjQitAq93jbDbIxHLGbw4zr1kUICxGIVepH9ZisJgwYhKehA7njUjqi7LcN8lhi_VbylQmDku43v_RDrz6o4_B-qOEKPaJw0sVyTOEZ703LtTwCHTfZVmnJ3EX8ysA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJvAgozEDaJNYjuOT2hBrFZIcGKl3izbsbeVtklp0gNH_jkzjptVeeytqe3I8bw-z9gzhLxtANf7Qvrc1UbmPJQmN1zAVkUUtYHtgA0BHfpfv9XnF_zLQiySw21Ixyr3OjEq6rZ36CM_qTCzWIX28cPmR45VozC6mkpo3CZ3MHUZcrVcyNnHglEsXqp0V6ZgzckA9grvlMEODJ0fIpcH9iim7f8X1vz7yOQfcdNojs4ekPsJR9LTifAPyS3fPSJ3p8qSPx-TX6cU8DKNFfhytFQtXfvRLP1uysxMzdUlfN24XFNArRQYEB0LtAcFsk43M2mqNTNQ-A0wkeJraB_osFqnml_41G5Xcei-1gTdTFcPnpCLs8_fP53nqdpC7gC1jaAWVVm51pY8SNPCHjuUJRNNrULpXGG580yBMlSWeSldWwUgsq-tkBIgW5CBPSVHXd_554QaZ5gHHAIr3PKK-waTDjoLJBReOVVkpNyvuXYpFTnO8krHkDhr9EQnDXTSkU5aZuTdPGYzJeK4sfdHJOXcE5Noxz_67aVOMqmD5C60vDBNy7li1qpQOyCxsZXxACQzcrxnBJ0ke9DXfJiRN3MzyCQGWkzn-13sI4UEoMUy8mzim3kmDBqErGAN5AFHHUz1sKVbLWPeb4VnVUoY-X7Pe9fT-v9SvLj5K16SexWKA5ZjEsfkaNzu_CvAWaN9HYXpN6ALKFA priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVKKyQuiO8GCjISN4hIbCeOjwuiqlaCC1TqzbIdu7tSN6l2sweO_eedcZxFCwWJWxLb0cgztt_YnjeEvGsA1_tC-tzVRuYilCY3ogJXpSpqA-6ADQE39L9-q8_OxfyiujggbIqFiZf2I6VlnKan22EfN7DQYDAYuE64a1Hl8h45Qqp2sO2j2Wz-fb7bWcGzK1GqFCFT8OaOxnurUCTrvwth_nlR8rfT0rgInT4iDxN6pLNR3sfkwHdPyP0xn-TPp-RmRgEl05h3L8f1qaUrP5iF3458zNRcXfbr5bBYUcCqFMwOtxNoD9PGKsVj0pRhZkPhGcAhxd_QPtDNcpUyfeFbu17GplOGCXo9Bhw8I-enX358PstTjoXcAVYbYDJUJXOtLUWQpgXPOpQlr5pahdK5wgrnuYIpUFnupXQtC6BaX9tKSgBqQQb-nBx2feePCTXOcA_oA3q4FUz4BqkGnWXgknjlVJGRcupz7RIBOUp5peNBOG_0qCcNetJRT1pm5P2uzfVIv_HP2p9QlbuaSJ0dP_TrS51MSQcpXGhFYZpWCMWtVaF2oGJjmfEAHzNyMhmCTuN5oxny2jFEZxl5uyuGkYjHK6bz_TbWkZUEeMUz8mK0m50kHAoqyaAP5J5F7Ym6X9ItF5HtW-ENlRJafphs75dYf--Kl_9X_RV5wHB4YFKm6oQcDuutfw1oa7Bv0vC6BaOaJ2M priority: 102 providerName: Springer Nature |
Title | A new human-based metaheuristic algorithm for solving optimization problems on the base of simulation of driving training process |
URI | https://link.springer.com/article/10.1038/s41598-022-14225-7 https://www.ncbi.nlm.nih.gov/pubmed/35705720 https://www.proquest.com/docview/2676726635 https://www.proquest.com/docview/2677570153 https://pubmed.ncbi.nlm.nih.gov/PMC9200810 https://doaj.org/article/f74cfd40a8d4493bb9f6cedcab2ae514 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bixMxFA57QfBFvDu6lgi-6Wgnk5lMHkS6ZZelsIuohb6FJJNsC-3MOp2C--g_9ySTqVSr4FPbSVLCuSTfSeacD6HXBeB6M2Qm1rlkMbWJjCXNIFTJhrmEcEBZ6w70L6_yiymdzLLZAerpjoIA13tDO8cnNW2W775_u_0IDv-hSxkv3q9hE3KJYhBWuRONLGaH6Bh2JuYYDS4D3O9qfRNOEx5yZ_YP3dmffBn_fdjzz1cof7tH9dvT-X10L-BKPOoM4QE6MNVDdKdjmrx9hH6MMOBn7Bn5YrdzlXhlWjk3m65SM5bL67pZtPMVBhSLwSDdQQOuYUFZhUxNHLhn1hi-A2zE7m9wbfF6sQocYO5X2Sz80J57At90qQiP0fT87Ov4Ig7sC7EGFNfCMskTokuVUMtkCTG3TZI0K3JuE62HimqTclgcuUoNY7okFpRucpUxBhDOMps-QUdVXZlnCEstUwO4BCRcUkJN4YoQakUgWDFc82GEkl7mQofS5G6WS-GvyNNCdHoSoCfh9SRYhN5sx9x0hTn-2fvUqXLb0xXV9g_q5loEHxWWUW1LOpRFSSlPleI216BiqYg0ACwjdNIbgugNVRBX8Y443BahV9tm8FF38SIrU298H5YxAF5phJ52drOdSQoNGSMgA7ZjUTtT3W2pFnNfB5y7d1cSGPm2t71f0_q7KJ7_X_cX6C5x7uHomrITdNQ2G_MScFirBuiQzdgAHY9Gky8T-Dw9u_r0GZ6O8_HAn20MvPv9BIVrNYU |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4iaxE4cHxAqj2pLH6dW2ptxHLu7UjdZdrNCPfKH-I3MOI9qefTW22ZtR87MeOYb2zNDyOsccL2NhA1NpkXIXaxDzVNwVdIo0-AOFM7hhv7RcTY65V_H6XiD_OpjYfBaZa8TvaIua4N75DsJZhZL0D5-mH8PsWoUnq72JTRasTiwFz_AZVu-3_8M_H2TJHtfTj6Nwq6qQGgAnTSw_GWcmLKIuRO6BF_SxTFL80y62Jio4MYyCYteFswKYcrEwcfYrEiFAGjihGPw3hvkJhjeCJ09MRbDng6emvFYdrE5Ect3lmAfMYYNPD7cbElDsWb_fJmAf2Hbv69o_nFO683f3j1yt8OtdLcVtPtkw1YPyK22kuXFQ_JzlwI-p77iX4iWsaQz2-iJXbWZoKk-PwNqNpMZBZRMQeBxI4PWoLBmXSQo7WrbLCn8BlhK8TW0dnQ5nXU1xvCpXEz90L62BZ23oQ6PyOm18OEx2azqyj4hVBvNLOAeoHDJE25zTHJoChCZ1Eojo4DEPc2V6VKf4yzPlT-CZ7lq-aSAT8rzSYmAvB3GzNvEH1f2_oisHHpi0m7_R704U50OUE5w40oe6bzkXLKikC4zwGJdJNoCcA3Idi8IqtMkS3Up9wF5NTSDDsCDHV3ZeuX7iFQAsGMB2WrlZpgJg4ZUJEADsSZRa1Ndb6mmE59nXOLdmBhGvutl73Ja_yfF06u_4iW5PTo5OlSH-8cHz8idBJcGloJKt8lms1jZ54DxmuKFX1iUfLvulfwbLFxmfw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN8UBhgJniBqPpw4eUBoY6s2BtWEmLQ3z3HstdLalKYV2iP_Fn8dd4mTqXzsbW9NbUfO3fn8u7PvDuB1irje-MJ4OlHC4zZQnuIxmiqxnyg0B3JryaH_ZZTsH_NPJ_HJBvxqY2HoWmWrE2tFXZSafOSDkDKLhbQ_Dqy7FnG0O_ww_-5RBSk6aW3LaTQicmgufqD5Vr0_2EVevwnD4d63j_ueqzDgaUQqS1QFWRDqIg-4FapAu9IGQRSnSWYDrf2caxNlqACyPDJC6CK0-GEmyWMhEKZYYSN87w3YFGQV9WBzZ2909LXz8NAZGg8yF6njR-mgwt2SItrQ_iPXS-yJtd2wLhrwL6T794XNP05t681weBfuOBTLthuxuwcbZnYfbjZ1LS8ewM9thmid1fX_PNonCzY1SzU2qyYvNFPnZ0jP5XjKEDMzFH9ya7AS1dfUxYUyV-mmYvgbQSqj17DSsmoydRXH6KlYTOqhbaULNm8CHx7C8bVw4hH0ZuXMPAGmtIoMoiCkcMFDblJKeahzFKDYZDrz-xC0NJfaJUKnWZ7L-kA-SmXDJ4l8kjWfpOjD227MvEkDcmXvHWJl15NSeNd_lIsz6TSCtIJrW3BfpQXnWZTnmU00sljloTIIY_uw1QqCdHqlkperoA-vumbUCHTMo2amXNV9RCwQ5kV9eNzITTeTCBtiESINxJpErU11vWU2GddZxzO6KRPgyHet7F1O6_-keHr1V7yEW7iK5eeD0eEzuB3SyqC6UPEW9JaLlXmOgG-Zv3Ari8HpdS_m39oZbBo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+human-based+metaheuristic+algorithm+for+solving+optimization+problems+on+the+base+of+simulation+of+driving+training+process&rft.jtitle=Scientific+reports&rft.au=Dehghani%2C+Mohammad&rft.au=Trojovsk%C3%A1%2C+Eva&rft.au=Trojovsk%C3%BD%2C+Pavel&rft.date=2022-06-15&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-022-14225-7&rft.externalDocID=10_1038_s41598_022_14225_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |