Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) a...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 2733 - 18 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
16.07.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ASXL1
mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior
HOXA
genes and
IRF8
through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior
HOXA
gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior
HOXA
gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.
ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8. |
---|---|
AbstractList | ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8. ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. |
ArticleNumber | 2733 |
Author | Hayashi, Yasutaka Kitamura, Toshio Mano, Hiroyuki Asada, Shuhei Tanaka, Yosuke Fukushima, Tsuyoshi Goyama, Susumu Kojima, Shinya Kozuka-Hata, Hiroko Oyama, Masaaki Fujino, Takeshi Yokoyama, Akihiko Kawazu, Masahito Fukuyama, Tomofusa Takeda, Reina Yamazaki, Satoshi Shikata, Shiori Kawabata, Kimihito Cojin Inoue, Daichi Yonezawa, Taishi |
Author_xml | – sequence: 1 givenname: Shuhei surname: Asada fullname: Asada, Shuhei organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 2 givenname: Susumu surname: Goyama fullname: Goyama, Susumu organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 3 givenname: Daichi surname: Inoue fullname: Inoue, Daichi organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center – sequence: 4 givenname: Shiori surname: Shikata fullname: Shikata, Shiori organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 5 givenname: Reina surname: Takeda fullname: Takeda, Reina organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 6 givenname: Tsuyoshi surname: Fukushima fullname: Fukushima, Tsuyoshi organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 7 givenname: Taishi surname: Yonezawa fullname: Yonezawa, Taishi organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 8 givenname: Takeshi surname: Fujino fullname: Fujino, Takeshi organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 9 givenname: Yasutaka surname: Hayashi fullname: Hayashi, Yasutaka organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 10 givenname: Kimihito Cojin surname: Kawabata fullname: Kawabata, Kimihito Cojin organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Department of Hematology/Oncology, Weill Cornell Medical College – sequence: 11 givenname: Tomofusa surname: Fukuyama fullname: Fukuyama, Tomofusa organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 12 givenname: Yosuke surname: Tanaka fullname: Tanaka, Yosuke organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo – sequence: 13 givenname: Akihiko surname: Yokoyama fullname: Yokoyama, Akihiko organization: National Cancer Center Tsuruoka Metabolomics Laboratory – sequence: 14 givenname: Satoshi surname: Yamazaki fullname: Yamazaki, Satoshi organization: Division of Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo – sequence: 15 givenname: Hiroko surname: Kozuka-Hata fullname: Kozuka-Hata, Hiroko organization: Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo – sequence: 16 givenname: Masaaki surname: Oyama fullname: Oyama, Masaaki organization: Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo – sequence: 17 givenname: Shinya surname: Kojima fullname: Kojima, Shinya organization: Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo – sequence: 18 givenname: Masahito orcidid: 0000-0003-4146-3629 surname: Kawazu fullname: Kawazu, Masahito organization: Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo – sequence: 19 givenname: Hiroyuki surname: Mano fullname: Mano, Hiroyuki organization: Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, National Cancer Center Research Institute – sequence: 20 givenname: Toshio surname: Kitamura fullname: Kitamura, Toshio email: kitamura@ims.u-tokyo.ac.jp organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30013160$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARfdAfYIEisWETuH7G2SANpUClQSABEjvLsW-mHpJ4sB1Q_57MTCltF_XGln1ets9xcTCGEYviGYFXBJh6nTjhsq6AqAoEKFE1j4ojCpxUpKbs4Nb6sDhNaQ3zYA1RnD8pDhkAYUTCUfHu05TNmMvF1x9LUtoQNhhNxlT-8fmyfLv4Qsocyk0MQ8hYDlfYB-_KHqefBoewwhGTT0-Lx53pE55ezyfF9_fn384-VsvPHy7OFsvKCg65UsIp2zQdZ9g5B5wa6lzTMmUcd60FKThSToUzgqmuJRawVkCpdaQBKRU7KS72ui6Ytd5EP5h4pYPxercR4kqbmL3tUbeCWw6Wzh6GG9Iq21nSdLIxvGUS6lnrzV5rM7UDOotjjqa_I3r3ZPSXehV-awlcAd8KvLwWiOHXhCnrwSeLfW9GDFPSFGoiJOc7rxf3oOswxXF-qi0KaiWFYDPq-e1EN1H-fdYMoHuAjSGliN0NhIDelkLvS6HnUuhdKXQzk9Q9kvXZZB-2t_L9w1S2p6bZZ1xh_B_7AdZfV-rJtw |
CitedBy_id | crossref_primary_10_1038_s41598_019_44496_6 crossref_primary_10_1016_j_anndiagpath_2024_152413 crossref_primary_10_1016_j_exphem_2021_07_003 crossref_primary_10_1016_j_blre_2022_100971 crossref_primary_10_1038_s41418_020_00709_4 crossref_primary_10_1158_2643_3230_BCD_23_0235 crossref_primary_10_1016_j_celrep_2021_109576 crossref_primary_10_1038_s41467_021_22053_y crossref_primary_10_1038_s41408_023_00876_w crossref_primary_10_1186_s12920_024_02039_7 crossref_primary_10_1038_s44161_024_00579_w crossref_primary_10_1007_s00109_020_01944_5 crossref_primary_10_1172_jci_insight_167744 crossref_primary_10_1111_cas_15094 crossref_primary_10_1038_s41388_022_02240_x crossref_primary_10_1016_j_celrep_2024_114536 crossref_primary_10_1126_science_adl4492 crossref_primary_10_1097_MOH_0000000000000596 crossref_primary_10_1007_s00018_019_03084_7 crossref_primary_10_1038_s41401_020_0441_3 crossref_primary_10_1016_j_clml_2025_03_007 crossref_primary_10_3324_haematol_2019_235150 crossref_primary_10_1007_s40778_020_00168_0 crossref_primary_10_1038_s41417_022_00441_w crossref_primary_10_1038_s41375_019_0617_3 crossref_primary_10_1038_s41467_020_19722_9 crossref_primary_10_1007_s12185_019_02600_6 crossref_primary_10_1186_s40164_020_00161_7 crossref_primary_10_1002_jcla_24388 crossref_primary_10_1038_s41467_022_29142_6 crossref_primary_10_1152_physrev_00004_2022 crossref_primary_10_1200_PO_20_00423 crossref_primary_10_1080_10428194_2023_2277672 crossref_primary_10_1172_JCI163964 crossref_primary_10_1016_j_jbc_2025_108333 crossref_primary_10_1016_j_jmb_2021_167242 crossref_primary_10_1016_j_trsl_2022_11_004 crossref_primary_10_1172_JCI180065 crossref_primary_10_1007_s12185_018_2563_7 crossref_primary_10_4103_egjp_egjp_11_24 crossref_primary_10_1016_j_blre_2022_100996 crossref_primary_10_1038_s41375_021_01121_8 crossref_primary_10_1055_s_0043_1770768 crossref_primary_10_3390_cancers13050984 crossref_primary_10_1016_j_molcel_2019_03_018 crossref_primary_10_1038_s12276_023_00979_1 crossref_primary_10_1038_s41375_022_01792_x crossref_primary_10_3389_fmolb_2021_657150 crossref_primary_10_1038_s41420_023_01590_z crossref_primary_10_1002_ijc_35125 crossref_primary_10_1101_gad_349368_122 crossref_primary_10_3390_ph17060664 crossref_primary_10_3390_cells9081901 crossref_primary_10_1242_dmm_035790 crossref_primary_10_1016_j_canlet_2021_06_019 crossref_primary_10_1101_cshperspect_a034876 crossref_primary_10_1101_gr_261016_120 crossref_primary_10_3390_ijms21217837 crossref_primary_10_1016_j_exphem_2022_09_003 crossref_primary_10_1007_s13238_020_00754_2 crossref_primary_10_62347_OEGE2648 crossref_primary_10_3390_cancers15133292 crossref_primary_10_1016_j_blre_2023_101072 crossref_primary_10_1080_08880018_2021_1901808 crossref_primary_10_3390_ijms25105119 crossref_primary_10_1016_j_semcancer_2021_03_025 crossref_primary_10_1186_s40364_021_00320_w crossref_primary_10_1038_s43018_021_00199_4 crossref_primary_10_1038_s41598_018_33881_2 crossref_primary_10_1038_s42003_024_06689_2 crossref_primary_10_1042_BCJ20190622 crossref_primary_10_1007_s12015_024_10737_z crossref_primary_10_1186_s13045_019_0789_3 crossref_primary_10_1186_s13045_022_01336_x crossref_primary_10_3389_fonc_2022_834681 crossref_primary_10_1111_bjh_16361 crossref_primary_10_1038_s41431_022_01083_0 crossref_primary_10_1111_febs_16268 crossref_primary_10_1007_s12185_023_03586_y crossref_primary_10_1111_jcmm_14093 crossref_primary_10_18632_oncotarget_27270 crossref_primary_10_3390_cancers13153753 crossref_primary_10_1016_j_it_2020_02_004 crossref_primary_10_1038_s41598_023_29017_w crossref_primary_10_15252_emmm_202115631 crossref_primary_10_1016_j_exphem_2020_01_002 crossref_primary_10_1016_j_leukres_2022_107001 crossref_primary_10_1016_j_drup_2020_100703 crossref_primary_10_1590_1678_4685_gmb_2019_0328 |
Cites_doi | 10.1038/ng1180 10.1126/science.1192632 10.1056/NEJMoa1408617 10.1016/j.stem.2015.09.017 10.1111/j.1365-2141.2010.08381.x 10.1038/nature19348 10.1016/j.ccr.2012.06.032 10.1016/j.exphem.2015.11.011 10.1038/ng.855 10.1038/ng.910 10.1038/nm1443 10.1038/ncomms10292 10.1074/jbc.M109.046755 10.1056/NEJMoa1409405 10.1016/j.cell.2014.05.004 10.1007/978-981-10-3233-2_11 10.1038/ng.1009 10.1016/S0301-472X(03)00260-1 10.1084/jem.20131141 10.1016/j.molcel.2014.03.002 10.1111/cas.13168 10.1038/onc.2016.416 10.1080/03007995.2016.1276896 10.1172/JCI70739 10.1038/nature08966 10.1038/leu.2014.301 10.1016/j.exphem.2015.05.012 10.1016/j.exphem.2016.04.009 10.1016/j.cell.2014.09.014 10.1182/blood.V99.1.15 10.1126/science.1221711 10.1080/10245332.2015.1106815 10.1182/blood-2009-04-216606 10.1247/csf.07035 10.1038/leu.2015.90 10.1016/j.ccr.2011.06.001 10.1038/nmeth.3047 10.1126/science.1194472 10.1038/leu.2012.262 10.1038/ncomms8307 10.1126/science.1256337 10.1182/blood-2011-12-397091 10.1038/nm.3947 10.1182/blood-2007-01-068346 10.1182/blood-2012-06-437863 10.1172/JCI25546 10.1182/blood-2004-03-1002 10.1182/blood-2013-05-500272 10.1038/sj.emboj.7601824 10.1038/leu.2010.20 10.1186/1479-5876-10-179 10.1038/emboj.2013.38 10.1038/leu.2014.4 10.1056/NEJMoa1013343 10.1038/leu.2015.275 10.1038/bjc.2013.281 10.1182/blood-2003-05-1762 10.1182/blood-2007-09-113597 10.1182/blood-2014-04-571018 10.1038/nm.3733 10.1073/pnas.0506580102 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-05085-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 18 |
ExternalDocumentID | oai_doaj_org_article_b54c40c22a2a4a1b8cfc19f69a4b3607 PMC6048047 30013160 10_1038_s41467_018_05085_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c540t-85d8c99f43efdd042a2dd9b38ad4dbc0654e2425da538fb1c0e78022cd1906683 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:26 EDT 2025 Thu Aug 21 18:16:41 EDT 2025 Thu Aug 07 15:07:38 EDT 2025 Wed Aug 13 08:05:27 EDT 2025 Mon Jul 21 05:45:05 EDT 2025 Tue Jul 01 02:21:14 EDT 2025 Thu Apr 24 23:11:31 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c540t-85d8c99f43efdd042a2dd9b38ad4dbc0654e2425da538fb1c0e78022cd1906683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4146-3629 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-05085-9 |
PMID | 30013160 |
PQID | 2070786553 |
PQPubID | 546298 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b54c40c22a2a4a1b8cfc19f69a4b3607 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048047 proquest_miscellaneous_2071564407 proquest_journals_2070786553 pubmed_primary_30013160 crossref_primary_10_1038_s41467_018_05085_9 crossref_citationtrail_10_1038_s41467_018_05085_9 springer_journals_10_1038_s41467_018_05085_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-07-16 |
PublicationDateYYYYMMDD | 2018-07-16 |
PublicationDate_xml | – month: 07 year: 2018 text: 2018-07-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DeyALoss of the tumor suppressor BAP1 causes myeloid transformationScience2012337154115462012Sci...337.1541D10.1126/science.12217112287850052010021:CAS:528:DC%2BC38XhtlGrtbfF BoultwoodJFrequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemiaLeukemia2010241062106510.1038/leu.2010.20201824611:CAS:528:DC%2BC3cXlvVOitL0%3D FaresICord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewalScience2014345150915122014Sci...345.1509F10.1126/science.12563372523710243723351:CAS:528:DC%2BC2cXhsFCjtrzN KrauthMTHigh number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcomeLeukemia2014281449145810.1038/leu.2014.4244021641:CAS:528:DC%2BC2cXhsl2htr0%3D Abdel-WahabOASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repressionCancer Cell20122218019310.1016/j.ccr.2012.06.0322289784934225111:CAS:528:DC%2BC38XhtF2nsbjJ YanMA previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesisNat. Med.20061294594910.1038/nm1443168920371:CAS:528:DC%2BD28Xnsl2iurw%3D BachCLeukemogenic transformation by HOXA cluster genesBlood20101152910291810.1182/blood-2009-04-216606201302391:CAS:528:DC%2BC3cXkvFKhsrg%3D JaiswalSAge-related clonal hematopoiesis associated with adverse outcomesN. Engl. J. Med.20143712488249810.1056/NEJMoa14086172542683743066691:CAS:528:DC%2BC2MXhvFSqsbo%3D SchnittgerSASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcomeLeukemia201327829110.1038/leu.2012.262230188651:CAS:528:DC%2BC3sXntVCitA%3D%3D BottMThe nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesotheliomaNat. Genet.20114366867210.1038/ng.8552164299146430981:CAS:528:DC%2BC3MXntV2rsLg%3D GuoHMaOSpeckNAFriedmanADRunx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesisBlood20121194408441810.1182/blood-2011-12-3970912245142033623591:CAS:528:DC%2BC38Xnt1Gktrg%3D LaFaveLMLoss of BAP1 function leads to EZH2-dependent transformationNat. Med.2015211344134910.1038/nm.39472643736646364691:CAS:528:DC%2BC2MXhs1Wls7fP MachidaYJMachidaYVashishtAAWohlschlegelJADuttaAThe deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1J. Biol. Chem.2009284341793418810.1074/jbc.M109.0467551981555527971881:CAS:528:DC%2BD1MXhsVymu7bE LeberbauerCDifferent steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitorsBlood2005105859410.1182/blood-2004-03-1002153586201:CAS:528:DC%2BD2MXis1GktQ%3D%3D InoueDSETBP1 mutations drive leukemic transformation in ASXL1-mutated MDSLeukemia20152984785710.1038/leu.2014.301253069011:CAS:528:DC%2BC2cXhvVGksLfL MulloyJCThe AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cellsBlood200299152310.1182/blood.V99.1.15117561471:CAS:528:DC%2BD38XivFyquw%3D%3D LinYZhengYWangZCWangSYPrognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysisHematology20162145446110.1080/10245332.2015.1106815270777631:CAS:528:DC%2BC28XhtlSmsbnF GenoveseGClonal hematopoiesis and blood-cancer risk inferred from blood DNA sequenceN. Engl. J. Med.20143712477248710.1056/NEJMoa14094052542683842900211:CAS:528:DC%2BC2MXhsVKrtLg%3D SanjanaNEShalemOZhangFImproved vectors and genome-wide libraries for CRISPR screeningNat. Methods20141178378410.1038/nmeth.30472507590344862451:CAS:528:DC%2BC2cXhslelsLjK BalasubramaniACancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complexNat. Commun.2015610.1038/ncomms83072609577245572971:CAS:528:DC%2BC2MXhtF2kt7nP MazumdarCLeukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiationCell Stem Cell20151767568810.1016/j.stem.2015.09.0172660738046718311:CAS:528:DC%2BC2MXhslWhsrjI FaberJHOXA9 is required for survival in human MLL-rearranged acute leukemiasBlood20091132375238510.1182/blood-2007-09-1135971905669326562671:CAS:528:DC%2BD1MXjsFKhuro%3D BejarRClinical effect of point mutations in myelodysplastic syndromesN. Engl. J. Med.20113642496250610.1056/NEJMoa10133432171464831590421:CAS:528:DC%2BC3MXosVeis7s%3D KurotakiDEssential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiationBlood20131211839184910.1182/blood-2012-06-4378632331957035918031:CAS:528:DC%2BC3sXksVGqtbY%3D Alvarez Argote, J. & Dasanu, C. A. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr. Med. Res. Opin. 1–7, https://doi.org/10.1080/03007995.2016.1276896 (2017). KimuraHHayashi-TakanakaYGotoYTakizawaNNozakiNThe organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodiesCell Struct. Funct.200833617310.1247/csf.07035182276201:CAS:528:DC%2BD1MXhsVyhs77I MulloyJCMaintaining the self-renewal and differentiation potential of human CD34+hematopoietic cells using a single genetic elementBlood20031024369437610.1182/blood-2003-05-1762129469951:CAS:528:DC%2BD3sXpslGrs7c%3D SanchezRZhouMMThe PHD finger: a versatile epigenome readerTrends Biochem. Sci.2011363643722151416831301141:CAS:528:DC%2BC3MXotl2jurY%3D Gelsi-BoyerVASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemiaBr. J. Haematol.201015136537510.1111/j.1365-2141.2010.08381.x208801161:CAS:528:DC%2BC3cXhs1aisL%2FM OhyashikiKEVI1 expression associated with a 3q26 anomaly in a leukemia cell line derived from the blast crisis of chronic myeloid leukemiaLeukemia199482169217378080061:STN:280:DyaK2M7gs1yjtQ%3D%3D InoueDTruncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levelsExp. Hematol.20164417217610.1016/j.exphem.2015.11.011267003261:CAS:528:DC%2BC28XitlCgu78%3De171 LinSMulloyJCGoyamaSRUNX1-ETO LeukemiaAdv. Exp. Med. Biol.201796215117310.1007/978-981-10-3233-2_11282996571:CAS:528:DC%2BC1cXhtV2ktbfE KranendijkMIDH2 mutations in patients with D-2-hydroxyglutaric aciduriaScience20103303362010Sci...330..336K10.1126/science.1192632208472351:CAS:528:DC%2BC3cXht1Ois7fK FeinbergMWThe Kruppel-like factor KLF4 is a critical regulator of monocyte differentiationEMBO J.2007264138414810.1038/sj.emboj.76018241776286922306681:CAS:528:DC%2BD2sXhtVKiu77F DorranceAMMll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterationsJ. Clin. Invest.20061162707271610.1172/JCI255461698100715644281:CAS:528:DC%2BD28XhtVKgu7vO InoueDMyelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutationsJ. Clin. Invest.20131234627464010.1172/JCI707392421648338098011:CAS:528:DC%2BC3sXhslKksLfO MicolJBFrequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocationsBlood20141241445144910.1182/blood-2014-04-5710182497336141487661:CAS:528:DC%2BC2cXhsFOksbvF GoyamaSKitamuraTEpigenetics in normal and malignant hematopoiesis: an overview and update 2017Cancer Sci.201710855356210.1111/cas.131682810003054066071:CAS:528:DC%2BC2sXmtlSntrg%3D SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S10.1073/pnas.0506580102161995171:CAS:528:DC%2BD2MXht1ShtrnO Watanabe-OkochiNAML1 mutations induced MDS and MDS/AML in a mouse BMT modelBlood20081114297430810.1182/blood-2007-01-068346181925041:CAS:528:DC%2BD1cXkvFeisbg%3D PlattRJCRISPR-Cas9 knockin mice for genome editing and cancer modelingCell201415944045510.1016/j.cell.2014.09.0142526333042654751:CAS:528:DC%2BC2cXhs1agsbbE ChallenGADnmt3a is essential for hematopoietic stem cell differentiationNat. Genet.201144233110.1038/ng.10092213869336379521:CAS:528:DC%2BC3MXhsFGktbnL HarbourJWFrequent mutation of BAP1 in metastasizing uveal melanomasScience2010330141014132010Sci...330.1410H10.1126/science.11944722105159530873801:CAS:528:DC%2BC3cXhsVyrsbbI KitamuraTRetrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomicsExp. Hematol.2003311007101410.1016/S0301-472X(03)00260-11458536220016221:CAS:528:DC%2BD3sXosVyksbk%3D Moran-CrusioKTet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformationCancer Cell201120112410.1016/j.ccr.2011.06.0012172320031940391:CAS:528:DC%2BC3MXoslCms7w%3D ChenCWArmstrongSATargeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyondExp. Hematol.20154367368410.1016/j.exphem.2015.05.0122611850345406101:CAS:528:DC%2BC2MXhtlCit7zP GoyamaSProtease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemiaOncogene2017362589259810.1038/onc.2016.416278196711:CAS:528:DC%2BC28Xhsl2gtbzI BlackledgeNPVariant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formationCell20141571445145910.1016/j.cell.2014.05.0042485697040484641:CAS:528:DC%2BC2cXoslyitLk%3D ChretienMLTrim33/Tif1gamma is involved in late stages of granulomonopoiesis in miceExp. Hematol.20164472773910.1016/j.exphem.2016.04.009271303751:CAS:528:DC%2BC28XhtV2gurfJe726 ScheuermannJCHistone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUBNature20104652432472010Natur.465..243S10.1038/nature089662043645931821231:CAS:528:DC%2BC3cXlsVyhs7o%3D CarboneMBAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITsJ. Transl. Med.20121010.1186/1479-5876-10-1792293533334933151:CAS:528:DC%2BC38XhvVShsr7M InoueDNishimuraKKozuka-HataHOyamaMKitamuraTThe stability of epigenetic factor ASXL1 is regulated through ubiquitination and USP7-mediated deubiquitinationLeukemia2015292257226010.1038/leu.2015.90258365871:CAS:528:DC%2BC2MXotVChtLs%3 G Genovese (5085_CR10) 2014; 371 T Kitamura (5085_CR61) 2003; 31 D Inoue (5085_CR19) 2015; 29 R Bejar (5085_CR3) 2011; 364 K Ohyashiki (5085_CR55) 1994; 8 S Jaiswal (5085_CR11) 2014; 371 H Kimura (5085_CR63) 2008; 33 RJ Platt (5085_CR40) 2014; 159 J Faber (5085_CR50) 2009; 113 VK Mootha (5085_CR36) 2003; 34 LM LaFave (5085_CR48) 2015; 21 D Inoue (5085_CR20) 2016; 44 S Goyama (5085_CR6) 2017; 108 Y Lin (5085_CR7) 2016; 21 JW Harbour (5085_CR44) 2010; 330 DD Sahtoe (5085_CR15) 2016; 7 CW Chen (5085_CR42) 2015; 43 JC Scheuermann (5085_CR14) 2010; 465 ML Chretien (5085_CR25) 2016; 44 MT Krauth (5085_CR29) 2014; 28 H Guo (5085_CR26) 2012; 119 N Watanabe-Okochi (5085_CR53) 2008; 111 K Moran-Crusio (5085_CR52) 2011; 20 D Inoue (5085_CR17) 2013; 123 J Boultwood (5085_CR4) 2010; 24 D Inoue (5085_CR22) 2015; 29 YJ Machida (5085_CR59) 2009; 284 NP Blackledge (5085_CR24) 2014; 157 A Balasubramani (5085_CR21) 2015; 6 JC Mulloy (5085_CR32) 2003; 102 J Wang (5085_CR12) 2014; 123 C Bach (5085_CR41) 2010; 115 S Goyama (5085_CR54) 2017; 36 S Schnittger (5085_CR8) 2013; 27 M Xie (5085_CR9) 2014; 20 NE Sanjana (5085_CR62) 2014; 11 O Abdel-Wahab (5085_CR16) 2012; 22 N Mashtalir (5085_CR23) 2014; 54 5085_CR1 T Wiesner (5085_CR45) 2011; 43 A Subramanian (5085_CR35) 2005; 102 AM Dorrance (5085_CR49) 2006; 116 C Mazumdar (5085_CR27) 2015; 17 JC Mulloy (5085_CR33) 2002; 99 X Zhang (5085_CR60) 2013; 32 M Yan (5085_CR31) 2006; 12 M Bott (5085_CR43) 2011; 43 JB Micol (5085_CR30) 2014; 124 M Carbone (5085_CR47) 2012; 10 M Katoh (5085_CR2) 2013; 109 MW Feinberg (5085_CR38) 2007; 26 O Abdel-Wahab (5085_CR18) 2013; 210 A Olsson (5085_CR37) 2016; 537 M Kranendijk (5085_CR56) 2010; 330 S Lin (5085_CR28) 2017; 962 A Dey (5085_CR46) 2012; 337 R Sanchez (5085_CR13) 2011; 36 GA Challen (5085_CR51) 2011; 44 S Goyama (5085_CR34) 2016; 30 V Gelsi-Boyer (5085_CR5) 2010; 151 C Leberbauer (5085_CR57) 2005; 105 D Kurotaki (5085_CR39) 2013; 121 I Fares (5085_CR58) 2014; 345 |
References_xml | – reference: PlattRJCRISPR-Cas9 knockin mice for genome editing and cancer modelingCell201415944045510.1016/j.cell.2014.09.0142526333042654751:CAS:528:DC%2BC2cXhs1agsbbE – reference: InoueDSETBP1 mutations drive leukemic transformation in ASXL1-mutated MDSLeukemia20152984785710.1038/leu.2014.301253069011:CAS:528:DC%2BC2cXhvVGksLfL – reference: GenoveseGClonal hematopoiesis and blood-cancer risk inferred from blood DNA sequenceN. Engl. J. Med.20143712477248710.1056/NEJMoa14094052542683842900211:CAS:528:DC%2BC2MXhsVKrtLg%3D – reference: LinSMulloyJCGoyamaSRUNX1-ETO LeukemiaAdv. Exp. Med. Biol.201796215117310.1007/978-981-10-3233-2_11282996571:CAS:528:DC%2BC1cXhtV2ktbfE – reference: GoyamaSProtease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemiaOncogene2017362589259810.1038/onc.2016.416278196711:CAS:528:DC%2BC28Xhsl2gtbzI – reference: MulloyJCMaintaining the self-renewal and differentiation potential of human CD34+hematopoietic cells using a single genetic elementBlood20031024369437610.1182/blood-2003-05-1762129469951:CAS:528:DC%2BD3sXpslGrs7c%3D – reference: GoyamaSKitamuraTEpigenetics in normal and malignant hematopoiesis: an overview and update 2017Cancer Sci.201710855356210.1111/cas.131682810003054066071:CAS:528:DC%2BC2sXmtlSntrg%3D – reference: KranendijkMIDH2 mutations in patients with D-2-hydroxyglutaric aciduriaScience20103303362010Sci...330..336K10.1126/science.1192632208472351:CAS:528:DC%2BC3cXht1Ois7fK – reference: BoultwoodJFrequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemiaLeukemia2010241062106510.1038/leu.2010.20201824611:CAS:528:DC%2BC3cXlvVOitL0%3D – reference: BottMThe nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesotheliomaNat. Genet.20114366867210.1038/ng.8552164299146430981:CAS:528:DC%2BC3MXntV2rsLg%3D – reference: XieMAge-related mutations associated with clonal hematopoietic expansion and malignanciesNat. Med.2014201472147810.1038/nm.37332532680443138721:CAS:528:DC%2BC2cXhslOisrvI – reference: BachCLeukemogenic transformation by HOXA cluster genesBlood20101152910291810.1182/blood-2009-04-216606201302391:CAS:528:DC%2BC3cXkvFKhsrg%3D – reference: Watanabe-OkochiNAML1 mutations induced MDS and MDS/AML in a mouse BMT modelBlood20081114297430810.1182/blood-2007-01-068346181925041:CAS:528:DC%2BD1cXkvFeisbg%3D – reference: Gelsi-BoyerVASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemiaBr. J. Haematol.201015136537510.1111/j.1365-2141.2010.08381.x208801161:CAS:528:DC%2BC3cXhs1aisL%2FM – reference: KrauthMTHigh number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcomeLeukemia2014281449145810.1038/leu.2014.4244021641:CAS:528:DC%2BC2cXhsl2htr0%3D – reference: KimuraHHayashi-TakanakaYGotoYTakizawaNNozakiNThe organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodiesCell Struct. Funct.200833617310.1247/csf.07035182276201:CAS:528:DC%2BD1MXhsVyhs77I – reference: OlssonASingle-cell analysis of mixed-lineage states leading to a binary cell fate choiceNature20165376987022016Natur.537..698O10.1038/nature193482758003551616941:CAS:528:DC%2BC28XhsVKisbzF – reference: BlackledgeNPVariant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formationCell20141571445145910.1016/j.cell.2014.05.0042485697040484641:CAS:528:DC%2BC2cXoslyitLk%3D – reference: ChenCWArmstrongSATargeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyondExp. Hematol.20154367368410.1016/j.exphem.2015.05.0122611850345406101:CAS:528:DC%2BC2MXhtlCit7zP – reference: SanchezRZhouMMThe PHD finger: a versatile epigenome readerTrends Biochem. Sci.2011363643722151416831301141:CAS:528:DC%2BC3MXotl2jurY%3D – reference: KurotakiDEssential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiationBlood20131211839184910.1182/blood-2012-06-4378632331957035918031:CAS:528:DC%2BC3sXksVGqtbY%3D – reference: MoothaVKPGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetesNat. Genet.20033426727310.1038/ng1180128084571:CAS:528:DC%2BD3sXkvFSrs7o%3D – reference: OhyashikiKEVI1 expression associated with a 3q26 anomaly in a leukemia cell line derived from the blast crisis of chronic myeloid leukemiaLeukemia199482169217378080061:STN:280:DyaK2M7gs1yjtQ%3D%3D – reference: FeinbergMWThe Kruppel-like factor KLF4 is a critical regulator of monocyte differentiationEMBO J.2007264138414810.1038/sj.emboj.76018241776286922306681:CAS:528:DC%2BD2sXhtVKiu77F – reference: ScheuermannJCHistone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUBNature20104652432472010Natur.465..243S10.1038/nature089662043645931821231:CAS:528:DC%2BC3cXlsVyhs7o%3D – reference: JaiswalSAge-related clonal hematopoiesis associated with adverse outcomesN. Engl. J. Med.20143712488249810.1056/NEJMoa14086172542683743066691:CAS:528:DC%2BC2MXhvFSqsbo%3D – reference: InoueDMyelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutationsJ. Clin. Invest.20131234627464010.1172/JCI707392421648338098011:CAS:528:DC%2BC3sXhslKksLfO – reference: GuoHMaOSpeckNAFriedmanADRunx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesisBlood20121194408441810.1182/blood-2011-12-3970912245142033623591:CAS:528:DC%2BC38Xnt1Gktrg%3D – reference: MazumdarCLeukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiationCell Stem Cell20151767568810.1016/j.stem.2015.09.0172660738046718311:CAS:528:DC%2BC2MXhslWhsrjI – reference: SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S10.1073/pnas.0506580102161995171:CAS:528:DC%2BD2MXht1ShtrnO – reference: MashtalirNAutodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2OMol. Cell20145439240610.1016/j.molcel.2014.03.002247039501:CAS:528:DC%2BC2cXls1entrs%3D – reference: ChretienMLTrim33/Tif1gamma is involved in late stages of granulomonopoiesis in miceExp. Hematol.20164472773910.1016/j.exphem.2016.04.009271303751:CAS:528:DC%2BC28XhtV2gurfJe726 – reference: DeyALoss of the tumor suppressor BAP1 causes myeloid transformationScience2012337154115462012Sci...337.1541D10.1126/science.12217112287850052010021:CAS:528:DC%2BC38XhtlGrtbfF – reference: Moran-CrusioKTet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformationCancer Cell201120112410.1016/j.ccr.2011.06.0012172320031940391:CAS:528:DC%2BC3MXoslCms7w%3D – reference: BalasubramaniACancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complexNat. Commun.2015610.1038/ncomms83072609577245572971:CAS:528:DC%2BC2MXhtF2kt7nP – reference: FaresICord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewalScience2014345150915122014Sci...345.1509F10.1126/science.12563372523710243723351:CAS:528:DC%2BC2cXhsFCjtrzN – reference: MachidaYJMachidaYVashishtAAWohlschlegelJADuttaAThe deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1J. Biol. Chem.2009284341793418810.1074/jbc.M109.0467551981555527971881:CAS:528:DC%2BD1MXhsVymu7bE – reference: SanjanaNEShalemOZhangFImproved vectors and genome-wide libraries for CRISPR screeningNat. Methods20141178378410.1038/nmeth.30472507590344862451:CAS:528:DC%2BC2cXhslelsLjK – reference: MulloyJCThe AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cellsBlood200299152310.1182/blood.V99.1.15117561471:CAS:528:DC%2BD38XivFyquw%3D%3D – reference: YanMA previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesisNat. Med.20061294594910.1038/nm1443168920371:CAS:528:DC%2BD28Xnsl2iurw%3D – reference: DorranceAMMll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterationsJ. Clin. Invest.20061162707271610.1172/JCI255461698100715644281:CAS:528:DC%2BD28XhtVKgu7vO – reference: MicolJBFrequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocationsBlood20141241445144910.1182/blood-2014-04-5710182497336141487661:CAS:528:DC%2BC2cXhsFOksbvF – reference: SchnittgerSASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcomeLeukemia201327829110.1038/leu.2012.262230188651:CAS:528:DC%2BC3sXntVCitA%3D%3D – reference: Abdel-WahabOASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repressionCancer Cell20122218019310.1016/j.ccr.2012.06.0322289784934225111:CAS:528:DC%2BC38XhtF2nsbjJ – reference: ZhangXFine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6EMBO J.201332996100710.1038/emboj.2013.382345515336162861:CAS:528:DC%2BC3sXjtlamtbc%3D – reference: KitamuraTRetrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomicsExp. Hematol.2003311007101410.1016/S0301-472X(03)00260-11458536220016221:CAS:528:DC%2BD3sXosVyksbk%3D – reference: Alvarez Argote, J. & Dasanu, C. A. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr. Med. Res. Opin. 1–7, https://doi.org/10.1080/03007995.2016.1276896 (2017). – reference: KatohMFunctional and cancer genomics of ASXL family membersBr. J. Cancer201310929930610.1038/bjc.2013.2812373602837214061:CAS:528:DC%2BC3sXhtFOit7jL – reference: BejarRClinical effect of point mutations in myelodysplastic syndromesN. Engl. J. Med.20113642496250610.1056/NEJMoa10133432171464831590421:CAS:528:DC%2BC3MXosVeis7s%3D – reference: GoyamaSUBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETOLeukemia20163072873910.1038/leu.2015.275264496611:CAS:528:DC%2BC2MXhvFKhtrjM – reference: CarboneMBAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITsJ. Transl. Med.20121010.1186/1479-5876-10-1792293533334933151:CAS:528:DC%2BC38XhvVShsr7M – reference: Abdel-WahabODeletion of Asxl1 results in myelodysplasia and severe developmental defects in vivoJ. Exp. Med.20132102641265910.1084/jem.201311412421814038329371:CAS:528:DC%2BC3sXhvVKjsbfK – reference: WiesnerTGermline mutations in BAP1 predispose to melanocytic tumorsNat. Genet.2011431018102110.1038/ng.9102187400333284031:CAS:528:DC%2BC3MXhtV2gtLjI – reference: LaFaveLMLoss of BAP1 function leads to EZH2-dependent transformationNat. Med.2015211344134910.1038/nm.39472643736646364691:CAS:528:DC%2BC2MXhs1Wls7fP – reference: InoueDTruncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levelsExp. Hematol.20164417217610.1016/j.exphem.2015.11.011267003261:CAS:528:DC%2BC28XitlCgu78%3De171 – reference: HarbourJWFrequent mutation of BAP1 in metastasizing uveal melanomasScience2010330141014132010Sci...330.1410H10.1126/science.11944722105159530873801:CAS:528:DC%2BC3cXhsVyrsbbI – reference: WangJLoss of Asxl1 leads to myelodysplastic syndrome-like disease in miceBlood201412354155310.1182/blood-2013-05-5002722425592039010671:CAS:528:DC%2BC2cXisFagt70%3D – reference: ChallenGADnmt3a is essential for hematopoietic stem cell differentiationNat. Genet.201144233110.1038/ng.10092213869336379521:CAS:528:DC%2BC3MXhsFGktbnL – reference: SahtoeDDvan DijkWJEkkebusROvaaHSixmaTKBAP1/ASXL1 recruitment and activation for H2A deubiquitinationNat. Commun.201672016NatCo...710292S10.1038/ncomms102922673923647298291:CAS:528:DC%2BC28XltFOrug%3D%3D – reference: FaberJHOXA9 is required for survival in human MLL-rearranged acute leukemiasBlood20091132375238510.1182/blood-2007-09-1135971905669326562671:CAS:528:DC%2BD1MXjsFKhuro%3D – reference: InoueDNishimuraKKozuka-HataHOyamaMKitamuraTThe stability of epigenetic factor ASXL1 is regulated through ubiquitination and USP7-mediated deubiquitinationLeukemia2015292257226010.1038/leu.2015.90258365871:CAS:528:DC%2BC2MXotVChtLs%3D – reference: LinYZhengYWangZCWangSYPrognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysisHematology20162145446110.1080/10245332.2015.1106815270777631:CAS:528:DC%2BC28XhtlSmsbnF – reference: LeberbauerCDifferent steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitorsBlood2005105859410.1182/blood-2004-03-1002153586201:CAS:528:DC%2BD2MXis1GktQ%3D%3D – volume: 34 start-page: 267 year: 2003 ident: 5085_CR36 publication-title: Nat. Genet. doi: 10.1038/ng1180 – volume: 330 start-page: 336 year: 2010 ident: 5085_CR56 publication-title: Science doi: 10.1126/science.1192632 – volume: 8 start-page: 2169 year: 1994 ident: 5085_CR55 publication-title: Leukemia – volume: 371 start-page: 2488 year: 2014 ident: 5085_CR11 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1408617 – volume: 17 start-page: 675 year: 2015 ident: 5085_CR27 publication-title: Cell Stem Cell doi: 10.1016/j.stem.2015.09.017 – volume: 151 start-page: 365 year: 2010 ident: 5085_CR5 publication-title: Br. J. Haematol. doi: 10.1111/j.1365-2141.2010.08381.x – volume: 537 start-page: 698 year: 2016 ident: 5085_CR37 publication-title: Nature doi: 10.1038/nature19348 – volume: 22 start-page: 180 year: 2012 ident: 5085_CR16 publication-title: Cancer Cell doi: 10.1016/j.ccr.2012.06.032 – volume: 44 start-page: 172 year: 2016 ident: 5085_CR20 publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2015.11.011 – volume: 43 start-page: 668 year: 2011 ident: 5085_CR43 publication-title: Nat. Genet. doi: 10.1038/ng.855 – volume: 43 start-page: 1018 year: 2011 ident: 5085_CR45 publication-title: Nat. Genet. doi: 10.1038/ng.910 – volume: 12 start-page: 945 year: 2006 ident: 5085_CR31 publication-title: Nat. Med. doi: 10.1038/nm1443 – volume: 7 year: 2016 ident: 5085_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms10292 – volume: 284 start-page: 34179 year: 2009 ident: 5085_CR59 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.046755 – volume: 371 start-page: 2477 year: 2014 ident: 5085_CR10 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1409405 – volume: 157 start-page: 1445 year: 2014 ident: 5085_CR24 publication-title: Cell doi: 10.1016/j.cell.2014.05.004 – volume: 962 start-page: 151 year: 2017 ident: 5085_CR28 publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-981-10-3233-2_11 – volume: 44 start-page: 23 year: 2011 ident: 5085_CR51 publication-title: Nat. Genet. doi: 10.1038/ng.1009 – volume: 31 start-page: 1007 year: 2003 ident: 5085_CR61 publication-title: Exp. Hematol. doi: 10.1016/S0301-472X(03)00260-1 – volume: 210 start-page: 2641 year: 2013 ident: 5085_CR18 publication-title: J. Exp. Med. doi: 10.1084/jem.20131141 – volume: 54 start-page: 392 year: 2014 ident: 5085_CR23 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.002 – volume: 108 start-page: 553 year: 2017 ident: 5085_CR6 publication-title: Cancer Sci. doi: 10.1111/cas.13168 – volume: 36 start-page: 2589 year: 2017 ident: 5085_CR54 publication-title: Oncogene doi: 10.1038/onc.2016.416 – ident: 5085_CR1 doi: 10.1080/03007995.2016.1276896 – volume: 123 start-page: 4627 year: 2013 ident: 5085_CR17 publication-title: J. Clin. Invest. doi: 10.1172/JCI70739 – volume: 465 start-page: 243 year: 2010 ident: 5085_CR14 publication-title: Nature doi: 10.1038/nature08966 – volume: 29 start-page: 847 year: 2015 ident: 5085_CR19 publication-title: Leukemia doi: 10.1038/leu.2014.301 – volume: 43 start-page: 673 year: 2015 ident: 5085_CR42 publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2015.05.012 – volume: 44 start-page: 727 year: 2016 ident: 5085_CR25 publication-title: Exp. Hematol. doi: 10.1016/j.exphem.2016.04.009 – volume: 159 start-page: 440 year: 2014 ident: 5085_CR40 publication-title: Cell doi: 10.1016/j.cell.2014.09.014 – volume: 99 start-page: 15 year: 2002 ident: 5085_CR33 publication-title: Blood doi: 10.1182/blood.V99.1.15 – volume: 337 start-page: 1541 year: 2012 ident: 5085_CR46 publication-title: Science doi: 10.1126/science.1221711 – volume: 21 start-page: 454 year: 2016 ident: 5085_CR7 publication-title: Hematology doi: 10.1080/10245332.2015.1106815 – volume: 115 start-page: 2910 year: 2010 ident: 5085_CR41 publication-title: Blood doi: 10.1182/blood-2009-04-216606 – volume: 33 start-page: 61 year: 2008 ident: 5085_CR63 publication-title: Cell Struct. Funct. doi: 10.1247/csf.07035 – volume: 29 start-page: 2257 year: 2015 ident: 5085_CR22 publication-title: Leukemia doi: 10.1038/leu.2015.90 – volume: 20 start-page: 11 year: 2011 ident: 5085_CR52 publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.06.001 – volume: 11 start-page: 783 year: 2014 ident: 5085_CR62 publication-title: Nat. Methods doi: 10.1038/nmeth.3047 – volume: 330 start-page: 1410 year: 2010 ident: 5085_CR44 publication-title: Science doi: 10.1126/science.1194472 – volume: 27 start-page: 82 year: 2013 ident: 5085_CR8 publication-title: Leukemia doi: 10.1038/leu.2012.262 – volume: 6 year: 2015 ident: 5085_CR21 publication-title: Nat. Commun. doi: 10.1038/ncomms8307 – volume: 345 start-page: 1509 year: 2014 ident: 5085_CR58 publication-title: Science doi: 10.1126/science.1256337 – volume: 119 start-page: 4408 year: 2012 ident: 5085_CR26 publication-title: Blood doi: 10.1182/blood-2011-12-397091 – volume: 21 start-page: 1344 year: 2015 ident: 5085_CR48 publication-title: Nat. Med. doi: 10.1038/nm.3947 – volume: 111 start-page: 4297 year: 2008 ident: 5085_CR53 publication-title: Blood doi: 10.1182/blood-2007-01-068346 – volume: 121 start-page: 1839 year: 2013 ident: 5085_CR39 publication-title: Blood doi: 10.1182/blood-2012-06-437863 – volume: 116 start-page: 2707 year: 2006 ident: 5085_CR49 publication-title: J. Clin. Invest. doi: 10.1172/JCI25546 – volume: 105 start-page: 85 year: 2005 ident: 5085_CR57 publication-title: Blood doi: 10.1182/blood-2004-03-1002 – volume: 123 start-page: 541 year: 2014 ident: 5085_CR12 publication-title: Blood doi: 10.1182/blood-2013-05-500272 – volume: 26 start-page: 4138 year: 2007 ident: 5085_CR38 publication-title: EMBO J. doi: 10.1038/sj.emboj.7601824 – volume: 24 start-page: 1062 year: 2010 ident: 5085_CR4 publication-title: Leukemia doi: 10.1038/leu.2010.20 – volume: 36 start-page: 364 year: 2011 ident: 5085_CR13 publication-title: Trends Biochem. Sci. – volume: 10 year: 2012 ident: 5085_CR47 publication-title: J. Transl. Med. doi: 10.1186/1479-5876-10-179 – volume: 32 start-page: 996 year: 2013 ident: 5085_CR60 publication-title: EMBO J. doi: 10.1038/emboj.2013.38 – volume: 28 start-page: 1449 year: 2014 ident: 5085_CR29 publication-title: Leukemia doi: 10.1038/leu.2014.4 – volume: 364 start-page: 2496 year: 2011 ident: 5085_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1013343 – volume: 30 start-page: 728 year: 2016 ident: 5085_CR34 publication-title: Leukemia doi: 10.1038/leu.2015.275 – volume: 109 start-page: 299 year: 2013 ident: 5085_CR2 publication-title: Br. J. Cancer doi: 10.1038/bjc.2013.281 – volume: 102 start-page: 4369 year: 2003 ident: 5085_CR32 publication-title: Blood doi: 10.1182/blood-2003-05-1762 – volume: 113 start-page: 2375 year: 2009 ident: 5085_CR50 publication-title: Blood doi: 10.1182/blood-2007-09-113597 – volume: 124 start-page: 1445 year: 2014 ident: 5085_CR30 publication-title: Blood doi: 10.1182/blood-2014-04-571018 – volume: 20 start-page: 1472 year: 2014 ident: 5085_CR9 publication-title: Nat. Med. doi: 10.1038/nm.3733 – volume: 102 start-page: 15545 year: 2005 ident: 5085_CR35 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0506580102 |
SSID | ssj0000391844 |
Score | 2.5498068 |
Snippet | ASXL1
mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces... ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces... ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2733 |
SubjectTerms | 13/31 14/19 38/109 38/91 45/15 49/88 631/208/176 631/67/1990/283 64/60 82/29 82/58 Animals Bone Marrow - metabolism Bone Marrow - pathology Bone Marrow Transplantation Carcinogenesis - genetics Carcinogenesis - metabolism Carcinogenesis - pathology Catalysis Cells (biology) Core Binding Factor Alpha 2 Subunit - genetics Core Binding Factor Alpha 2 Subunit - metabolism CRISPR-Cas Systems Female Gene Editing Gene expression Gene Expression Regulation, Leukemic HEK293 Cells HeLa Cells Homeodomain Proteins - genetics Homeodomain Proteins - metabolism HOXA gene Humanities and Social Sciences Humans Interferon Regulatory Factors - genetics Interferon Regulatory Factors - metabolism Leukemia Leukemia, Myeloid - genetics Leukemia, Myeloid - metabolism Leukemia, Myeloid - mortality Leukemia, Myeloid - pathology Male Mice Mice, Inbred C57BL multidisciplinary Mutation Myeloid leukemia Neoplasia Neoplasms Progenitor cells Repressor Proteins - genetics Repressor Proteins - metabolism Runx1 protein RUNX1 Translocation Partner 1 Protein - genetics RUNX1 Translocation Partner 1 Protein - metabolism Science Science (multidisciplinary) Signal Transduction Stem cells Survival Analysis Tumor suppressor genes Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism Tumors Ubiquitin Thiolesterase - genetics Ubiquitin Thiolesterase - metabolism Ubiquitination Whole-Body Irradiation |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmJKS9oAFjhMHkSXuDiDh2HPuxsCE0jQlpQ-qb5U9W0SbV2j7w3-Nz0o6Ojb1MylPiWKfz3fnOvvsdQh-kdtIbWeVWSJ2zwEwuCBxz1HVgZTBcazjQv_rKL2_Y52E1fNTqC3LCOnjgjnGnpmKWFbYsdamZJkbYYIkMXGpmKO_qyOOe9yiYSjaYyhi6sL5KpqDidMaSTSiIyIsKMu7l2k6UAPv_5GU-TZb87cY0bUQXr9BW70HiQUf5Nnrhmx202fWUvN9FH68W0BgYD74NvxBs23YKsMl-huHEFZ8Nrgmet3iasvA8ntz7cTtyeOwXd9pP2lswfaPZa3Rz8en7-WXet0rIbXS55rmonLBSBkZ9cC4qoi6dk4YK7ZgzFipIPQQXTkcDFwyxha-hyNa66BBwLuge2mjaxu8jXFtBhfAmho48eldeUM8cpZSH-ESPIENkyTZlexxxaGcxVuk-mwrVsVpFVqvEaiUzdLz6Z9qhaDw7-gxWYzUSELDTiygXqpcL9S-5yNDhci1Vr5YzVSZwI15VNEPvV5-jQsEtiW58u0hjAECHwRRvuqVfUUITPBEvMlSvCcUaqetfmtGPBNrNoXifxTlPluLzi6y_s-Lgf7DiLXpZJrmvc8IP0cb858IfRVdqbt4lrXkAEPMXjQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBhHx2nHsE9oCS4UoQoJKe7P8LCu28bbZPfTf43GyqZZHpZwSx7Ln5fF4_A1Cr6R20htZl1ZIXbLATCkIhDmaJrBJMFxrCOgff-VHJ-zzvJ4PAbduSKvc2sRsqF20ECOHSEhazXhd03er8xKqRsHp6lBC4ya6RdJKAyldYvZpjLEA-rlgbLgrU1HxtmPZMlRElFUNefdyZz3KsP3_8jX_Tpn849w0L0eze-ju4Efiac_4--iGbx-g231lycuH6MPxBsoD4-n3-ReCbYwrAE_2HYa4Kz6cfiN4HfEq5-J5fHbpl3Hh8NJvfml_Fk_BAC66R-hk9vHH-6NyKJhQ2uR4rUtRO2GlDIz64FxSRz1xThoqtGPOWLhH6mGL4XQyc8EQW_kGrtpal9yCRD76GO21sfVPEW6soEJ4kzaQPPlYXlDPHKWUh_Qkv6BAZEs2ZQc0cShqsVT5VJsK1ZNaJVKrTGolC_R6_GfVY2lc2_oQuDG2BBzs_CJenKpBrZSpmWWVnaSZaqaJETZYIgOXmhnKq6ZAB1teqkE5O3UlSgV6OX5OagVnJbr1cZPbAIwOgy6e9KwfR0IzSBGvCtTsCMXOUHe_tIufGbqbwxV-lvp8sxWfq2H9nxT718_iGbozyRLdlIQfoL31xcY_T67S2rzI-vAbR5EOvQ priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfBF_Ha1SgTfdHGzyWaTx61aymFFqIV7C_lsD6-7R-_uof-9meyHnFZB2KfdSchOZpLJZOY3CL2V2klvZJVbIXXOAjO5IODmqOvAymC41uDQP_3KT87ZbF7N91A55sKkoP0EaZmW6TE67MOaJZUuiMiLCgLm5R10AFDtUbYPmmZ2Nps8K4B5LhgbMmQKKm5pvLMLJbD-2yzMPwMlf7stTZvQ8QN0f7AecdOP9yHa8-0jdLevJ3nzGH063UJRYNyczb8QbLtuBZDJfo3B24qPmm8Ebzq8ShF4Hl_d-GW3cHjptz-0v-ouYNlbrJ-g8-PP3z-e5EOZhNxGc2uTi8oJK2Vg1AfnohLq0jlpqNCOOWMhe9TDwcLpuLgFQ2zha0iwtS4aA5wL-hTtt13rnyNcW0GF8CYeG3m0rLygnjlKKQ_xidZAhsjINmUHDHEoZbFU6S6bCtWzWkVWq8RqJTP0bmqz6hE0_kl9BLMxUQL6dXrRXV-oQRqUqZhlhS3jn2qmiRE2WCIDl5oZyos6Q4fjXKpBJdeqTMBGvKpoht5Mn6MywQ2Jbn23TTQAnsOgi2f91E8joQmaiBcZqneEYmeou1_axWUC7OaQuM9in-9H8fk1rL-z4sX_kb9E98ok4XVO-CHa31xv_atoMG3M60FDfgIQJw3u priority: 102 providerName: Springer Nature |
Title | Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis |
URI | https://link.springer.com/article/10.1038/s41467-018-05085-9 https://www.ncbi.nlm.nih.gov/pubmed/30013160 https://www.proquest.com/docview/2070786553 https://www.proquest.com/docview/2071564407 https://pubmed.ncbi.nlm.nih.gov/PMC6048047 https://doaj.org/article/b54c40c22a2a4a1b8cfc19f69a4b3607 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELb2EBIviJvAUhmJNwgksePjAaG0bFlVdLViqdQ3y1eWim6y9JDov8d2kqJC4QkpSiTbsezxjD1je74B4CWXhlvF81gzLmNcYhWz1G9zUFrirFRESr-hPz4nZxM8mubTA9CFO2oJuNxr2vl4UpPF_M2P75v3TuDfNS7j7O0SB3FPUhYnub9Mzw_BsVuZqI9oMG7V_TAzI-4MGtz6zuz_dWd9CjD--3TPP69Q_naOGpan4V1wp9UrYdEwwj1wYKv74FYTaXLzAHwYr324YFhcTj-lUNeukx4jYgn9PizsFxcpXNXwJtzNs_B6Y-f1zMC5XX-T9rq-8hPibPkQTIanXwZncRtAIdZOEVvFLDdMc15iZEtjnHjKzBiuEJMGG6W9X6n1JoeRbtorVaoTS73rrTZOTSCEoUfgqKor-wRAqhlizCpnUBKnc1mGLDYIIVK6x-kJEUg7sgndoov7IBdzEU65ERMNqYUjtQikFjwCr7b_3DTYGv8s3fejsS3pcbFDQr24Eq2YCZVjjROduZ5KLFPFdKlTXhIusUIkoRE46cZSdLwmsgB5RPIcReDFNtuJmT87kZWt16GMh9XBvorHzdBvW4ICaBFJIkB3mGKnqbs51exrgPIm3qUfuzpfd-zzq1l_J8XT_0GKZ-B2Fviexik5AUerxdo-dwrWSvXAIZ1S92bDjz1wXBSjy5H79k_PLz671AEZ9MLWRS9I10_oCCXf |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDeBAUaCJ4hIYsexHxDqGKVj7YTEJvXN-CujomvK2gr1n-JvxOd8TOVjb5PylDiWfT7fnc93v0PohVBWOC3y2HChYlpSHfMU3BxFUdKs1EwpcOiPDtngmH4a5-Mt9KvNhYGwylYmBkFtKwM-cvCEeG3G8py8m_-IoWoU3K62JTRqtjhw65_-yLZ4u7_n1_dllvU_HL0fxE1Vgdh462QZ89xyI0RJiSut9TyrMmuFJlxZarWBZEsHdrhVXhaUOjWJKyAf1VivOxnjxPd7BV2lxGtyyEzvf-x8OoC2ziltcnMSwt8saJBEScrjJIc4f7Gh_0KZgH_Ztn-HaP5xTxvUX_8WutnYrbhXM9pttOVmd9C1upLl-i7aG62gHDHufRkPU2yqag5gzW6Bwc-Ld3ufU7ys8DzE_jl8unbTamLx1K2-K3danYDAnSzuoeNLIeV9tD2rZu4hwoXhhHOn_YGVeZvOceKoJYSw0j_eDolQ2pJNmga9HIpoTGW4RSdc1qSWntQykFqKCL3q_pnX2B0Xtt6F1ehaAu52eFGdnchmG0udU0MTk_mZKqpSzU1pUlEyoagmLCkitNOupWyEwUKes26Ennef_TaGuxk1c9UqtAHYHgpdPKiXvhsJCaBILIlQscEUG0Pd_DKbfAtQ4QwgA6jv83XLPufD-j8pHl08i2fo-uBoNJTD_cODx-hGFri7iFO2g7aXZyv3xJtpS_007A2Mvl72ZvwNLFdLxQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8KA4wETxAtiR3HfkCopas2tlUVMKlvnr8yKrqmrK1Q_zX-OnxO0ql87G1SnhLHss935_Pd-XcIvRbKCqdFFhkuVEQLqiOegJsjzwuaFpopBQ794wHbP6GfRtloC_1q7sJAWmWjE4OitqUBHzl4QvxuxrKM7BZ1WsSw1_8w-xFBBSmItDblNCoWOXSrn_74Nn9_0PNr_SZN-3tfP-5HdYWByHhLZRHxzHIjREGJK6z1_KtSa4UmXFlqtYGLlw5scqu8Xih0YmKXw91UY_0-yhgnvt8baDuHU1ELbXf3BsPPaw8PYK9zSuubOjHhu3Ma9FKc8CjOIOtfbOyGoWjAvyzdvxM2_4jahs2wfxfdqa1Y3KnY7h7actP76GZV13L1APWOl1CcGHe-jI4SbMpyBtDNbo7B64u7nWGCFyWehUxAh89XblKOLZ645XflzsszUL_j-UN0ci3EfIRa03LqniCcG044d9ofX5m38BwnjlpCCCv8462SNkoasklTY5lDSY2JDDF1wmVFaulJLQOppWijt-t_ZhWSx5Wtu7Aa65aAwh1elBdnshZqqTNqaGxSP1NFVaK5KUwiCiYU1YTFeRvtNGspa9Uwl5eM3Eav1p-9UEOkRk1duQxtAMSHQhePq6Vfj4QEiCQWt1G-wRQbQ938Mh1_C8DhDAAEqO_zXcM-l8P6PymeXj2Ll-iWF0R5dDA4fIZup4G58yhhO6i1uFi6595mW-gXtXBgdHrd8vgbYNBRVw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutant+ASXL1+cooperates+with+BAP1+to+promote+myeloid+leukaemogenesis&rft.jtitle=Nature+communications&rft.au=Shuhei+Asada&rft.au=Susumu+Goyama&rft.au=Daichi+Inoue&rft.au=Shiori+Shikata&rft.date=2018-07-16&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41467-018-05085-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b54c40c22a2a4a1b8cfc19f69a4b3607 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |