Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis

ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) a...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 2733 - 18
Main Authors Asada, Shuhei, Goyama, Susumu, Inoue, Daichi, Shikata, Shiori, Takeda, Reina, Fukushima, Tsuyoshi, Yonezawa, Taishi, Fujino, Takeshi, Hayashi, Yasutaka, Kawabata, Kimihito Cojin, Fukuyama, Tomofusa, Tanaka, Yosuke, Yokoyama, Akihiko, Yamazaki, Satoshi, Kozuka-Hata, Hiroko, Oyama, Masaaki, Kojima, Shinya, Kawazu, Masahito, Mano, Hiroyuki, Kitamura, Toshio
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 16.07.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8.
AbstractList ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms. ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8.
ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces monoubiquitination of mutant ASXL1, which in turn enhances BAP1 activity to potentiate myeloid transformation via HOXA clusters and IRF8.
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces leukaemogenesis remain unclear. In this study, we report mutually reinforcing effects between a C-terminally truncated form of mutant ASXL1 (ASXL1-MT) and BAP1 in promoting myeloid leukaemogenesis. BAP1 expression results in increased monoubiquitination of ASXL1-MT, which in turn increases the catalytic function of BAP1. This hyperactive ASXL1-MT/BAP1 complex promotes aberrant myeloid differentiation of haematopoietic progenitor cells and accelerates RUNX1-ETO-driven leukaemogenesis. Mechanistically, this complex induces upregulation of posterior HOXA genes and IRF8 through removal of H2AK119 ubiquitination. Importantly, BAP1 depletion inhibits posterior HOXA gene expression and leukaemogenicity of ASXL1-MT-expressing myeloid leukemia cells. Furthermore, BAP1 is also required for the growth of MLL-fusion leukemia cells with posterior HOXA gene dysregulation. These data indicate that BAP1, which has long been considered a tumor suppressor, in fact plays tumor-promoting roles in myeloid neoplasms.
ArticleNumber 2733
Author Hayashi, Yasutaka
Kitamura, Toshio
Mano, Hiroyuki
Asada, Shuhei
Tanaka, Yosuke
Fukushima, Tsuyoshi
Goyama, Susumu
Kojima, Shinya
Kozuka-Hata, Hiroko
Oyama, Masaaki
Fujino, Takeshi
Yokoyama, Akihiko
Kawazu, Masahito
Fukuyama, Tomofusa
Takeda, Reina
Yamazaki, Satoshi
Shikata, Shiori
Kawabata, Kimihito Cojin
Inoue, Daichi
Yonezawa, Taishi
Author_xml – sequence: 1
  givenname: Shuhei
  surname: Asada
  fullname: Asada, Shuhei
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 2
  givenname: Susumu
  surname: Goyama
  fullname: Goyama, Susumu
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 3
  givenname: Daichi
  surname: Inoue
  fullname: Inoue, Daichi
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center
– sequence: 4
  givenname: Shiori
  surname: Shikata
  fullname: Shikata, Shiori
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 5
  givenname: Reina
  surname: Takeda
  fullname: Takeda, Reina
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 6
  givenname: Tsuyoshi
  surname: Fukushima
  fullname: Fukushima, Tsuyoshi
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 7
  givenname: Taishi
  surname: Yonezawa
  fullname: Yonezawa, Taishi
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 8
  givenname: Takeshi
  surname: Fujino
  fullname: Fujino, Takeshi
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 9
  givenname: Yasutaka
  surname: Hayashi
  fullname: Hayashi, Yasutaka
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 10
  givenname: Kimihito Cojin
  surname: Kawabata
  fullname: Kawabata, Kimihito Cojin
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Department of Hematology/Oncology, Weill Cornell Medical College
– sequence: 11
  givenname: Tomofusa
  surname: Fukuyama
  fullname: Fukuyama, Tomofusa
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 12
  givenname: Yosuke
  surname: Tanaka
  fullname: Tanaka, Yosuke
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
– sequence: 13
  givenname: Akihiko
  surname: Yokoyama
  fullname: Yokoyama, Akihiko
  organization: National Cancer Center Tsuruoka Metabolomics Laboratory
– sequence: 14
  givenname: Satoshi
  surname: Yamazaki
  fullname: Yamazaki, Satoshi
  organization: Division of Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo
– sequence: 15
  givenname: Hiroko
  surname: Kozuka-Hata
  fullname: Kozuka-Hata, Hiroko
  organization: Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo
– sequence: 16
  givenname: Masaaki
  surname: Oyama
  fullname: Oyama, Masaaki
  organization: Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo
– sequence: 17
  givenname: Shinya
  surname: Kojima
  fullname: Kojima, Shinya
  organization: Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo
– sequence: 18
  givenname: Masahito
  orcidid: 0000-0003-4146-3629
  surname: Kawazu
  fullname: Kawazu, Masahito
  organization: Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo
– sequence: 19
  givenname: Hiroyuki
  surname: Mano
  fullname: Mano, Hiroyuki
  organization: Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, National Cancer Center Research Institute
– sequence: 20
  givenname: Toshio
  surname: Kitamura
  fullname: Kitamura, Toshio
  email: kitamura@ims.u-tokyo.ac.jp
  organization: Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30013160$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARfdAfYIEisWETuH7G2SANpUClQSABEjvLsW-mHpJ4sB1Q_57MTCltF_XGln1ets9xcTCGEYviGYFXBJh6nTjhsq6AqAoEKFE1j4ojCpxUpKbs4Nb6sDhNaQ3zYA1RnD8pDhkAYUTCUfHu05TNmMvF1x9LUtoQNhhNxlT-8fmyfLv4Qsocyk0MQ8hYDlfYB-_KHqefBoewwhGTT0-Lx53pE55ezyfF9_fn384-VsvPHy7OFsvKCg65UsIp2zQdZ9g5B5wa6lzTMmUcd60FKThSToUzgqmuJRawVkCpdaQBKRU7KS72ui6Ytd5EP5h4pYPxercR4kqbmL3tUbeCWw6Wzh6GG9Iq21nSdLIxvGUS6lnrzV5rM7UDOotjjqa_I3r3ZPSXehV-awlcAd8KvLwWiOHXhCnrwSeLfW9GDFPSFGoiJOc7rxf3oOswxXF-qi0KaiWFYDPq-e1EN1H-fdYMoHuAjSGliN0NhIDelkLvS6HnUuhdKXQzk9Q9kvXZZB-2t_L9w1S2p6bZZ1xh_B_7AdZfV-rJtw
CitedBy_id crossref_primary_10_1038_s41598_019_44496_6
crossref_primary_10_1016_j_anndiagpath_2024_152413
crossref_primary_10_1016_j_exphem_2021_07_003
crossref_primary_10_1016_j_blre_2022_100971
crossref_primary_10_1038_s41418_020_00709_4
crossref_primary_10_1158_2643_3230_BCD_23_0235
crossref_primary_10_1016_j_celrep_2021_109576
crossref_primary_10_1038_s41467_021_22053_y
crossref_primary_10_1038_s41408_023_00876_w
crossref_primary_10_1186_s12920_024_02039_7
crossref_primary_10_1038_s44161_024_00579_w
crossref_primary_10_1007_s00109_020_01944_5
crossref_primary_10_1172_jci_insight_167744
crossref_primary_10_1111_cas_15094
crossref_primary_10_1038_s41388_022_02240_x
crossref_primary_10_1016_j_celrep_2024_114536
crossref_primary_10_1126_science_adl4492
crossref_primary_10_1097_MOH_0000000000000596
crossref_primary_10_1007_s00018_019_03084_7
crossref_primary_10_1038_s41401_020_0441_3
crossref_primary_10_1016_j_clml_2025_03_007
crossref_primary_10_3324_haematol_2019_235150
crossref_primary_10_1007_s40778_020_00168_0
crossref_primary_10_1038_s41417_022_00441_w
crossref_primary_10_1038_s41375_019_0617_3
crossref_primary_10_1038_s41467_020_19722_9
crossref_primary_10_1007_s12185_019_02600_6
crossref_primary_10_1186_s40164_020_00161_7
crossref_primary_10_1002_jcla_24388
crossref_primary_10_1038_s41467_022_29142_6
crossref_primary_10_1152_physrev_00004_2022
crossref_primary_10_1200_PO_20_00423
crossref_primary_10_1080_10428194_2023_2277672
crossref_primary_10_1172_JCI163964
crossref_primary_10_1016_j_jbc_2025_108333
crossref_primary_10_1016_j_jmb_2021_167242
crossref_primary_10_1016_j_trsl_2022_11_004
crossref_primary_10_1172_JCI180065
crossref_primary_10_1007_s12185_018_2563_7
crossref_primary_10_4103_egjp_egjp_11_24
crossref_primary_10_1016_j_blre_2022_100996
crossref_primary_10_1038_s41375_021_01121_8
crossref_primary_10_1055_s_0043_1770768
crossref_primary_10_3390_cancers13050984
crossref_primary_10_1016_j_molcel_2019_03_018
crossref_primary_10_1038_s12276_023_00979_1
crossref_primary_10_1038_s41375_022_01792_x
crossref_primary_10_3389_fmolb_2021_657150
crossref_primary_10_1038_s41420_023_01590_z
crossref_primary_10_1002_ijc_35125
crossref_primary_10_1101_gad_349368_122
crossref_primary_10_3390_ph17060664
crossref_primary_10_3390_cells9081901
crossref_primary_10_1242_dmm_035790
crossref_primary_10_1016_j_canlet_2021_06_019
crossref_primary_10_1101_cshperspect_a034876
crossref_primary_10_1101_gr_261016_120
crossref_primary_10_3390_ijms21217837
crossref_primary_10_1016_j_exphem_2022_09_003
crossref_primary_10_1007_s13238_020_00754_2
crossref_primary_10_62347_OEGE2648
crossref_primary_10_3390_cancers15133292
crossref_primary_10_1016_j_blre_2023_101072
crossref_primary_10_1080_08880018_2021_1901808
crossref_primary_10_3390_ijms25105119
crossref_primary_10_1016_j_semcancer_2021_03_025
crossref_primary_10_1186_s40364_021_00320_w
crossref_primary_10_1038_s43018_021_00199_4
crossref_primary_10_1038_s41598_018_33881_2
crossref_primary_10_1038_s42003_024_06689_2
crossref_primary_10_1042_BCJ20190622
crossref_primary_10_1007_s12015_024_10737_z
crossref_primary_10_1186_s13045_019_0789_3
crossref_primary_10_1186_s13045_022_01336_x
crossref_primary_10_3389_fonc_2022_834681
crossref_primary_10_1111_bjh_16361
crossref_primary_10_1038_s41431_022_01083_0
crossref_primary_10_1111_febs_16268
crossref_primary_10_1007_s12185_023_03586_y
crossref_primary_10_1111_jcmm_14093
crossref_primary_10_18632_oncotarget_27270
crossref_primary_10_3390_cancers13153753
crossref_primary_10_1016_j_it_2020_02_004
crossref_primary_10_1038_s41598_023_29017_w
crossref_primary_10_15252_emmm_202115631
crossref_primary_10_1016_j_exphem_2020_01_002
crossref_primary_10_1016_j_leukres_2022_107001
crossref_primary_10_1016_j_drup_2020_100703
crossref_primary_10_1590_1678_4685_gmb_2019_0328
Cites_doi 10.1038/ng1180
10.1126/science.1192632
10.1056/NEJMoa1408617
10.1016/j.stem.2015.09.017
10.1111/j.1365-2141.2010.08381.x
10.1038/nature19348
10.1016/j.ccr.2012.06.032
10.1016/j.exphem.2015.11.011
10.1038/ng.855
10.1038/ng.910
10.1038/nm1443
10.1038/ncomms10292
10.1074/jbc.M109.046755
10.1056/NEJMoa1409405
10.1016/j.cell.2014.05.004
10.1007/978-981-10-3233-2_11
10.1038/ng.1009
10.1016/S0301-472X(03)00260-1
10.1084/jem.20131141
10.1016/j.molcel.2014.03.002
10.1111/cas.13168
10.1038/onc.2016.416
10.1080/03007995.2016.1276896
10.1172/JCI70739
10.1038/nature08966
10.1038/leu.2014.301
10.1016/j.exphem.2015.05.012
10.1016/j.exphem.2016.04.009
10.1016/j.cell.2014.09.014
10.1182/blood.V99.1.15
10.1126/science.1221711
10.1080/10245332.2015.1106815
10.1182/blood-2009-04-216606
10.1247/csf.07035
10.1038/leu.2015.90
10.1016/j.ccr.2011.06.001
10.1038/nmeth.3047
10.1126/science.1194472
10.1038/leu.2012.262
10.1038/ncomms8307
10.1126/science.1256337
10.1182/blood-2011-12-397091
10.1038/nm.3947
10.1182/blood-2007-01-068346
10.1182/blood-2012-06-437863
10.1172/JCI25546
10.1182/blood-2004-03-1002
10.1182/blood-2013-05-500272
10.1038/sj.emboj.7601824
10.1038/leu.2010.20
10.1186/1479-5876-10-179
10.1038/emboj.2013.38
10.1038/leu.2014.4
10.1056/NEJMoa1013343
10.1038/leu.2015.275
10.1038/bjc.2013.281
10.1182/blood-2003-05-1762
10.1182/blood-2007-09-113597
10.1182/blood-2014-04-571018
10.1038/nm.3733
10.1073/pnas.0506580102
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-05085-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
Publicly Available Content Database
MEDLINE - Academic



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 18
ExternalDocumentID oai_doaj_org_article_b54c40c22a2a4a1b8cfc19f69a4b3607
PMC6048047
30013160
10_1038_s41467_018_05085_9
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c540t-85d8c99f43efdd042a2dd9b38ad4dbc0654e2425da538fb1c0e78022cd1906683
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:26 EDT 2025
Thu Aug 21 18:16:41 EDT 2025
Thu Aug 07 15:07:38 EDT 2025
Wed Aug 13 08:05:27 EDT 2025
Mon Jul 21 05:45:05 EDT 2025
Tue Jul 01 02:21:14 EDT 2025
Thu Apr 24 23:11:31 EDT 2025
Fri Feb 21 02:39:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c540t-85d8c99f43efdd042a2dd9b38ad4dbc0654e2425da538fb1c0e78022cd1906683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4146-3629
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-05085-9
PMID 30013160
PQID 2070786553
PQPubID 546298
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_b54c40c22a2a4a1b8cfc19f69a4b3607
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6048047
proquest_miscellaneous_2071564407
proquest_journals_2070786553
pubmed_primary_30013160
crossref_primary_10_1038_s41467_018_05085_9
crossref_citationtrail_10_1038_s41467_018_05085_9
springer_journals_10_1038_s41467_018_05085_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-07-16
PublicationDateYYYYMMDD 2018-07-16
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-16
  day: 16
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DeyALoss of the tumor suppressor BAP1 causes myeloid transformationScience2012337154115462012Sci...337.1541D10.1126/science.12217112287850052010021:CAS:528:DC%2BC38XhtlGrtbfF
BoultwoodJFrequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemiaLeukemia2010241062106510.1038/leu.2010.20201824611:CAS:528:DC%2BC3cXlvVOitL0%3D
FaresICord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewalScience2014345150915122014Sci...345.1509F10.1126/science.12563372523710243723351:CAS:528:DC%2BC2cXhsFCjtrzN
KrauthMTHigh number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcomeLeukemia2014281449145810.1038/leu.2014.4244021641:CAS:528:DC%2BC2cXhsl2htr0%3D
Abdel-WahabOASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repressionCancer Cell20122218019310.1016/j.ccr.2012.06.0322289784934225111:CAS:528:DC%2BC38XhtF2nsbjJ
YanMA previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesisNat. Med.20061294594910.1038/nm1443168920371:CAS:528:DC%2BD28Xnsl2iurw%3D
BachCLeukemogenic transformation by HOXA cluster genesBlood20101152910291810.1182/blood-2009-04-216606201302391:CAS:528:DC%2BC3cXkvFKhsrg%3D
JaiswalSAge-related clonal hematopoiesis associated with adverse outcomesN. Engl. J. Med.20143712488249810.1056/NEJMoa14086172542683743066691:CAS:528:DC%2BC2MXhvFSqsbo%3D
SchnittgerSASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcomeLeukemia201327829110.1038/leu.2012.262230188651:CAS:528:DC%2BC3sXntVCitA%3D%3D
BottMThe nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesotheliomaNat. Genet.20114366867210.1038/ng.8552164299146430981:CAS:528:DC%2BC3MXntV2rsLg%3D
GuoHMaOSpeckNAFriedmanADRunx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesisBlood20121194408441810.1182/blood-2011-12-3970912245142033623591:CAS:528:DC%2BC38Xnt1Gktrg%3D
LaFaveLMLoss of BAP1 function leads to EZH2-dependent transformationNat. Med.2015211344134910.1038/nm.39472643736646364691:CAS:528:DC%2BC2MXhs1Wls7fP
MachidaYJMachidaYVashishtAAWohlschlegelJADuttaAThe deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1J. Biol. Chem.2009284341793418810.1074/jbc.M109.0467551981555527971881:CAS:528:DC%2BD1MXhsVymu7bE
LeberbauerCDifferent steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitorsBlood2005105859410.1182/blood-2004-03-1002153586201:CAS:528:DC%2BD2MXis1GktQ%3D%3D
InoueDSETBP1 mutations drive leukemic transformation in ASXL1-mutated MDSLeukemia20152984785710.1038/leu.2014.301253069011:CAS:528:DC%2BC2cXhvVGksLfL
MulloyJCThe AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cellsBlood200299152310.1182/blood.V99.1.15117561471:CAS:528:DC%2BD38XivFyquw%3D%3D
LinYZhengYWangZCWangSYPrognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysisHematology20162145446110.1080/10245332.2015.1106815270777631:CAS:528:DC%2BC28XhtlSmsbnF
GenoveseGClonal hematopoiesis and blood-cancer risk inferred from blood DNA sequenceN. Engl. J. Med.20143712477248710.1056/NEJMoa14094052542683842900211:CAS:528:DC%2BC2MXhsVKrtLg%3D
SanjanaNEShalemOZhangFImproved vectors and genome-wide libraries for CRISPR screeningNat. Methods20141178378410.1038/nmeth.30472507590344862451:CAS:528:DC%2BC2cXhslelsLjK
BalasubramaniACancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complexNat. Commun.2015610.1038/ncomms83072609577245572971:CAS:528:DC%2BC2MXhtF2kt7nP
MazumdarCLeukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiationCell Stem Cell20151767568810.1016/j.stem.2015.09.0172660738046718311:CAS:528:DC%2BC2MXhslWhsrjI
FaberJHOXA9 is required for survival in human MLL-rearranged acute leukemiasBlood20091132375238510.1182/blood-2007-09-1135971905669326562671:CAS:528:DC%2BD1MXjsFKhuro%3D
BejarRClinical effect of point mutations in myelodysplastic syndromesN. Engl. J. Med.20113642496250610.1056/NEJMoa10133432171464831590421:CAS:528:DC%2BC3MXosVeis7s%3D
KurotakiDEssential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiationBlood20131211839184910.1182/blood-2012-06-4378632331957035918031:CAS:528:DC%2BC3sXksVGqtbY%3D
Alvarez Argote, J. & Dasanu, C. A. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr. Med. Res. Opin. 1–7, https://doi.org/10.1080/03007995.2016.1276896 (2017).
KimuraHHayashi-TakanakaYGotoYTakizawaNNozakiNThe organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodiesCell Struct. Funct.200833617310.1247/csf.07035182276201:CAS:528:DC%2BD1MXhsVyhs77I
MulloyJCMaintaining the self-renewal and differentiation potential of human CD34+hematopoietic cells using a single genetic elementBlood20031024369437610.1182/blood-2003-05-1762129469951:CAS:528:DC%2BD3sXpslGrs7c%3D
SanchezRZhouMMThe PHD finger: a versatile epigenome readerTrends Biochem. Sci.2011363643722151416831301141:CAS:528:DC%2BC3MXotl2jurY%3D
Gelsi-BoyerVASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemiaBr. J. Haematol.201015136537510.1111/j.1365-2141.2010.08381.x208801161:CAS:528:DC%2BC3cXhs1aisL%2FM
OhyashikiKEVI1 expression associated with a 3q26 anomaly in a leukemia cell line derived from the blast crisis of chronic myeloid leukemiaLeukemia199482169217378080061:STN:280:DyaK2M7gs1yjtQ%3D%3D
InoueDTruncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levelsExp. Hematol.20164417217610.1016/j.exphem.2015.11.011267003261:CAS:528:DC%2BC28XitlCgu78%3De171
LinSMulloyJCGoyamaSRUNX1-ETO LeukemiaAdv. Exp. Med. Biol.201796215117310.1007/978-981-10-3233-2_11282996571:CAS:528:DC%2BC1cXhtV2ktbfE
KranendijkMIDH2 mutations in patients with D-2-hydroxyglutaric aciduriaScience20103303362010Sci...330..336K10.1126/science.1192632208472351:CAS:528:DC%2BC3cXht1Ois7fK
FeinbergMWThe Kruppel-like factor KLF4 is a critical regulator of monocyte differentiationEMBO J.2007264138414810.1038/sj.emboj.76018241776286922306681:CAS:528:DC%2BD2sXhtVKiu77F
DorranceAMMll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterationsJ. Clin. Invest.20061162707271610.1172/JCI255461698100715644281:CAS:528:DC%2BD28XhtVKgu7vO
InoueDMyelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutationsJ. Clin. Invest.20131234627464010.1172/JCI707392421648338098011:CAS:528:DC%2BC3sXhslKksLfO
MicolJBFrequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocationsBlood20141241445144910.1182/blood-2014-04-5710182497336141487661:CAS:528:DC%2BC2cXhsFOksbvF
GoyamaSKitamuraTEpigenetics in normal and malignant hematopoiesis: an overview and update 2017Cancer Sci.201710855356210.1111/cas.131682810003054066071:CAS:528:DC%2BC2sXmtlSntrg%3D
SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S10.1073/pnas.0506580102161995171:CAS:528:DC%2BD2MXht1ShtrnO
Watanabe-OkochiNAML1 mutations induced MDS and MDS/AML in a mouse BMT modelBlood20081114297430810.1182/blood-2007-01-068346181925041:CAS:528:DC%2BD1cXkvFeisbg%3D
PlattRJCRISPR-Cas9 knockin mice for genome editing and cancer modelingCell201415944045510.1016/j.cell.2014.09.0142526333042654751:CAS:528:DC%2BC2cXhs1agsbbE
ChallenGADnmt3a is essential for hematopoietic stem cell differentiationNat. Genet.201144233110.1038/ng.10092213869336379521:CAS:528:DC%2BC3MXhsFGktbnL
HarbourJWFrequent mutation of BAP1 in metastasizing uveal melanomasScience2010330141014132010Sci...330.1410H10.1126/science.11944722105159530873801:CAS:528:DC%2BC3cXhsVyrsbbI
KitamuraTRetrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomicsExp. Hematol.2003311007101410.1016/S0301-472X(03)00260-11458536220016221:CAS:528:DC%2BD3sXosVyksbk%3D
Moran-CrusioKTet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformationCancer Cell201120112410.1016/j.ccr.2011.06.0012172320031940391:CAS:528:DC%2BC3MXoslCms7w%3D
ChenCWArmstrongSATargeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyondExp. Hematol.20154367368410.1016/j.exphem.2015.05.0122611850345406101:CAS:528:DC%2BC2MXhtlCit7zP
GoyamaSProtease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemiaOncogene2017362589259810.1038/onc.2016.416278196711:CAS:528:DC%2BC28Xhsl2gtbzI
BlackledgeNPVariant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formationCell20141571445145910.1016/j.cell.2014.05.0042485697040484641:CAS:528:DC%2BC2cXoslyitLk%3D
ChretienMLTrim33/Tif1gamma is involved in late stages of granulomonopoiesis in miceExp. Hematol.20164472773910.1016/j.exphem.2016.04.009271303751:CAS:528:DC%2BC28XhtV2gurfJe726
ScheuermannJCHistone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUBNature20104652432472010Natur.465..243S10.1038/nature089662043645931821231:CAS:528:DC%2BC3cXlsVyhs7o%3D
CarboneMBAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITsJ. Transl. Med.20121010.1186/1479-5876-10-1792293533334933151:CAS:528:DC%2BC38XhvVShsr7M
InoueDNishimuraKKozuka-HataHOyamaMKitamuraTThe stability of epigenetic factor ASXL1 is regulated through ubiquitination and USP7-mediated deubiquitinationLeukemia2015292257226010.1038/leu.2015.90258365871:CAS:528:DC%2BC2MXotVChtLs%3
G Genovese (5085_CR10) 2014; 371
T Kitamura (5085_CR61) 2003; 31
D Inoue (5085_CR19) 2015; 29
R Bejar (5085_CR3) 2011; 364
K Ohyashiki (5085_CR55) 1994; 8
S Jaiswal (5085_CR11) 2014; 371
H Kimura (5085_CR63) 2008; 33
RJ Platt (5085_CR40) 2014; 159
J Faber (5085_CR50) 2009; 113
VK Mootha (5085_CR36) 2003; 34
LM LaFave (5085_CR48) 2015; 21
D Inoue (5085_CR20) 2016; 44
S Goyama (5085_CR6) 2017; 108
Y Lin (5085_CR7) 2016; 21
JW Harbour (5085_CR44) 2010; 330
DD Sahtoe (5085_CR15) 2016; 7
CW Chen (5085_CR42) 2015; 43
JC Scheuermann (5085_CR14) 2010; 465
ML Chretien (5085_CR25) 2016; 44
MT Krauth (5085_CR29) 2014; 28
H Guo (5085_CR26) 2012; 119
N Watanabe-Okochi (5085_CR53) 2008; 111
K Moran-Crusio (5085_CR52) 2011; 20
D Inoue (5085_CR17) 2013; 123
J Boultwood (5085_CR4) 2010; 24
D Inoue (5085_CR22) 2015; 29
YJ Machida (5085_CR59) 2009; 284
NP Blackledge (5085_CR24) 2014; 157
A Balasubramani (5085_CR21) 2015; 6
JC Mulloy (5085_CR32) 2003; 102
J Wang (5085_CR12) 2014; 123
C Bach (5085_CR41) 2010; 115
S Goyama (5085_CR54) 2017; 36
S Schnittger (5085_CR8) 2013; 27
M Xie (5085_CR9) 2014; 20
NE Sanjana (5085_CR62) 2014; 11
O Abdel-Wahab (5085_CR16) 2012; 22
N Mashtalir (5085_CR23) 2014; 54
5085_CR1
T Wiesner (5085_CR45) 2011; 43
A Subramanian (5085_CR35) 2005; 102
AM Dorrance (5085_CR49) 2006; 116
C Mazumdar (5085_CR27) 2015; 17
JC Mulloy (5085_CR33) 2002; 99
X Zhang (5085_CR60) 2013; 32
M Yan (5085_CR31) 2006; 12
M Bott (5085_CR43) 2011; 43
JB Micol (5085_CR30) 2014; 124
M Carbone (5085_CR47) 2012; 10
M Katoh (5085_CR2) 2013; 109
MW Feinberg (5085_CR38) 2007; 26
O Abdel-Wahab (5085_CR18) 2013; 210
A Olsson (5085_CR37) 2016; 537
M Kranendijk (5085_CR56) 2010; 330
S Lin (5085_CR28) 2017; 962
A Dey (5085_CR46) 2012; 337
R Sanchez (5085_CR13) 2011; 36
GA Challen (5085_CR51) 2011; 44
S Goyama (5085_CR34) 2016; 30
V Gelsi-Boyer (5085_CR5) 2010; 151
C Leberbauer (5085_CR57) 2005; 105
D Kurotaki (5085_CR39) 2013; 121
I Fares (5085_CR58) 2014; 345
References_xml – reference: PlattRJCRISPR-Cas9 knockin mice for genome editing and cancer modelingCell201415944045510.1016/j.cell.2014.09.0142526333042654751:CAS:528:DC%2BC2cXhs1agsbbE
– reference: InoueDSETBP1 mutations drive leukemic transformation in ASXL1-mutated MDSLeukemia20152984785710.1038/leu.2014.301253069011:CAS:528:DC%2BC2cXhvVGksLfL
– reference: GenoveseGClonal hematopoiesis and blood-cancer risk inferred from blood DNA sequenceN. Engl. J. Med.20143712477248710.1056/NEJMoa14094052542683842900211:CAS:528:DC%2BC2MXhsVKrtLg%3D
– reference: LinSMulloyJCGoyamaSRUNX1-ETO LeukemiaAdv. Exp. Med. Biol.201796215117310.1007/978-981-10-3233-2_11282996571:CAS:528:DC%2BC1cXhtV2ktbfE
– reference: GoyamaSProtease-activated receptor-1 inhibits proliferation but enhances leukemia stem cell activity in acute myeloid leukemiaOncogene2017362589259810.1038/onc.2016.416278196711:CAS:528:DC%2BC28Xhsl2gtbzI
– reference: MulloyJCMaintaining the self-renewal and differentiation potential of human CD34+hematopoietic cells using a single genetic elementBlood20031024369437610.1182/blood-2003-05-1762129469951:CAS:528:DC%2BD3sXpslGrs7c%3D
– reference: GoyamaSKitamuraTEpigenetics in normal and malignant hematopoiesis: an overview and update 2017Cancer Sci.201710855356210.1111/cas.131682810003054066071:CAS:528:DC%2BC2sXmtlSntrg%3D
– reference: KranendijkMIDH2 mutations in patients with D-2-hydroxyglutaric aciduriaScience20103303362010Sci...330..336K10.1126/science.1192632208472351:CAS:528:DC%2BC3cXht1Ois7fK
– reference: BoultwoodJFrequent mutation of the polycomb-associated gene ASXL1 in the myelodysplastic syndromes and in acute myeloid leukemiaLeukemia2010241062106510.1038/leu.2010.20201824611:CAS:528:DC%2BC3cXlvVOitL0%3D
– reference: BottMThe nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesotheliomaNat. Genet.20114366867210.1038/ng.8552164299146430981:CAS:528:DC%2BC3MXntV2rsLg%3D
– reference: XieMAge-related mutations associated with clonal hematopoietic expansion and malignanciesNat. Med.2014201472147810.1038/nm.37332532680443138721:CAS:528:DC%2BC2cXhslOisrvI
– reference: BachCLeukemogenic transformation by HOXA cluster genesBlood20101152910291810.1182/blood-2009-04-216606201302391:CAS:528:DC%2BC3cXkvFKhsrg%3D
– reference: Watanabe-OkochiNAML1 mutations induced MDS and MDS/AML in a mouse BMT modelBlood20081114297430810.1182/blood-2007-01-068346181925041:CAS:528:DC%2BD1cXkvFeisbg%3D
– reference: Gelsi-BoyerVASXL1 mutation is associated with poor prognosis and acute transformation in chronic myelomonocytic leukaemiaBr. J. Haematol.201015136537510.1111/j.1365-2141.2010.08381.x208801161:CAS:528:DC%2BC3cXhs1aisL%2FM
– reference: KrauthMTHigh number of additional genetic lesions in acute myeloid leukemia with t(8;21)/RUNX1-RUNX1T1: frequency and impact on clinical outcomeLeukemia2014281449145810.1038/leu.2014.4244021641:CAS:528:DC%2BC2cXhsl2htr0%3D
– reference: KimuraHHayashi-TakanakaYGotoYTakizawaNNozakiNThe organization of histone H3 modifications as revealed by a panel of specific monoclonal antibodiesCell Struct. Funct.200833617310.1247/csf.07035182276201:CAS:528:DC%2BD1MXhsVyhs77I
– reference: OlssonASingle-cell analysis of mixed-lineage states leading to a binary cell fate choiceNature20165376987022016Natur.537..698O10.1038/nature193482758003551616941:CAS:528:DC%2BC28XhsVKisbzF
– reference: BlackledgeNPVariant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formationCell20141571445145910.1016/j.cell.2014.05.0042485697040484641:CAS:528:DC%2BC2cXoslyitLk%3D
– reference: ChenCWArmstrongSATargeting DOT1L and HOX gene expression in MLL-rearranged leukemia and beyondExp. Hematol.20154367368410.1016/j.exphem.2015.05.0122611850345406101:CAS:528:DC%2BC2MXhtlCit7zP
– reference: SanchezRZhouMMThe PHD finger: a versatile epigenome readerTrends Biochem. Sci.2011363643722151416831301141:CAS:528:DC%2BC3MXotl2jurY%3D
– reference: KurotakiDEssential role of the IRF8-KLF4 transcription factor cascade in murine monocyte differentiationBlood20131211839184910.1182/blood-2012-06-4378632331957035918031:CAS:528:DC%2BC3sXksVGqtbY%3D
– reference: MoothaVKPGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetesNat. Genet.20033426727310.1038/ng1180128084571:CAS:528:DC%2BD3sXkvFSrs7o%3D
– reference: OhyashikiKEVI1 expression associated with a 3q26 anomaly in a leukemia cell line derived from the blast crisis of chronic myeloid leukemiaLeukemia199482169217378080061:STN:280:DyaK2M7gs1yjtQ%3D%3D
– reference: FeinbergMWThe Kruppel-like factor KLF4 is a critical regulator of monocyte differentiationEMBO J.2007264138414810.1038/sj.emboj.76018241776286922306681:CAS:528:DC%2BD2sXhtVKiu77F
– reference: ScheuermannJCHistone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUBNature20104652432472010Natur.465..243S10.1038/nature089662043645931821231:CAS:528:DC%2BC3cXlsVyhs7o%3D
– reference: JaiswalSAge-related clonal hematopoiesis associated with adverse outcomesN. Engl. J. Med.20143712488249810.1056/NEJMoa14086172542683743066691:CAS:528:DC%2BC2MXhvFSqsbo%3D
– reference: InoueDMyelodysplastic syndromes are induced by histone methylation-altering ASXL1 mutationsJ. Clin. Invest.20131234627464010.1172/JCI707392421648338098011:CAS:528:DC%2BC3sXhslKksLfO
– reference: GuoHMaOSpeckNAFriedmanADRunx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesisBlood20121194408441810.1182/blood-2011-12-3970912245142033623591:CAS:528:DC%2BC38Xnt1Gktrg%3D
– reference: MazumdarCLeukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiationCell Stem Cell20151767568810.1016/j.stem.2015.09.0172660738046718311:CAS:528:DC%2BC2MXhslWhsrjI
– reference: SubramanianAGene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profilesProc. Natl Acad. Sci. USA200510215545155502005PNAS..10215545S10.1073/pnas.0506580102161995171:CAS:528:DC%2BD2MXht1ShtrnO
– reference: MashtalirNAutodeubiquitination protects the tumor suppressor BAP1 from cytoplasmic sequestration mediated by the atypical ubiquitin ligase UBE2OMol. Cell20145439240610.1016/j.molcel.2014.03.002247039501:CAS:528:DC%2BC2cXls1entrs%3D
– reference: ChretienMLTrim33/Tif1gamma is involved in late stages of granulomonopoiesis in miceExp. Hematol.20164472773910.1016/j.exphem.2016.04.009271303751:CAS:528:DC%2BC28XhtV2gurfJe726
– reference: DeyALoss of the tumor suppressor BAP1 causes myeloid transformationScience2012337154115462012Sci...337.1541D10.1126/science.12217112287850052010021:CAS:528:DC%2BC38XhtlGrtbfF
– reference: Moran-CrusioKTet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformationCancer Cell201120112410.1016/j.ccr.2011.06.0012172320031940391:CAS:528:DC%2BC3MXoslCms7w%3D
– reference: BalasubramaniACancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1-BAP1 complexNat. Commun.2015610.1038/ncomms83072609577245572971:CAS:528:DC%2BC2MXhtF2kt7nP
– reference: FaresICord blood expansion. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewalScience2014345150915122014Sci...345.1509F10.1126/science.12563372523710243723351:CAS:528:DC%2BC2cXhsFCjtrzN
– reference: MachidaYJMachidaYVashishtAAWohlschlegelJADuttaAThe deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1J. Biol. Chem.2009284341793418810.1074/jbc.M109.0467551981555527971881:CAS:528:DC%2BD1MXhsVymu7bE
– reference: SanjanaNEShalemOZhangFImproved vectors and genome-wide libraries for CRISPR screeningNat. Methods20141178378410.1038/nmeth.30472507590344862451:CAS:528:DC%2BC2cXhslelsLjK
– reference: MulloyJCThe AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cellsBlood200299152310.1182/blood.V99.1.15117561471:CAS:528:DC%2BD38XivFyquw%3D%3D
– reference: YanMA previously unidentified alternatively spliced isoform of t(8;21) transcript promotes leukemogenesisNat. Med.20061294594910.1038/nm1443168920371:CAS:528:DC%2BD28Xnsl2iurw%3D
– reference: DorranceAMMll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterationsJ. Clin. Invest.20061162707271610.1172/JCI255461698100715644281:CAS:528:DC%2BD28XhtVKgu7vO
– reference: MicolJBFrequent ASXL2 mutations in acute myeloid leukemia patients with t(8;21)/RUNX1-RUNX1T1 chromosomal translocationsBlood20141241445144910.1182/blood-2014-04-5710182497336141487661:CAS:528:DC%2BC2cXhsFOksbvF
– reference: SchnittgerSASXL1 exon 12 mutations are frequent in AML with intermediate risk karyotype and are independently associated with an adverse outcomeLeukemia201327829110.1038/leu.2012.262230188651:CAS:528:DC%2BC3sXntVCitA%3D%3D
– reference: Abdel-WahabOASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repressionCancer Cell20122218019310.1016/j.ccr.2012.06.0322289784934225111:CAS:528:DC%2BC38XhtF2nsbjJ
– reference: ZhangXFine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6EMBO J.201332996100710.1038/emboj.2013.382345515336162861:CAS:528:DC%2BC3sXjtlamtbc%3D
– reference: KitamuraTRetrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomicsExp. Hematol.2003311007101410.1016/S0301-472X(03)00260-11458536220016221:CAS:528:DC%2BD3sXosVyksbk%3D
– reference: Alvarez Argote, J. & Dasanu, C. A. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr. Med. Res. Opin. 1–7, https://doi.org/10.1080/03007995.2016.1276896 (2017).
– reference: KatohMFunctional and cancer genomics of ASXL family membersBr. J. Cancer201310929930610.1038/bjc.2013.2812373602837214061:CAS:528:DC%2BC3sXhtFOit7jL
– reference: BejarRClinical effect of point mutations in myelodysplastic syndromesN. Engl. J. Med.20113642496250610.1056/NEJMoa10133432171464831590421:CAS:528:DC%2BC3MXosVeis7s%3D
– reference: GoyamaSUBASH3B/Sts-1-CBL axis regulates myeloid proliferation in human preleukemia induced by AML1-ETOLeukemia20163072873910.1038/leu.2015.275264496611:CAS:528:DC%2BC2MXhvFKhtrjM
– reference: CarboneMBAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITsJ. Transl. Med.20121010.1186/1479-5876-10-1792293533334933151:CAS:528:DC%2BC38XhvVShsr7M
– reference: Abdel-WahabODeletion of Asxl1 results in myelodysplasia and severe developmental defects in vivoJ. Exp. Med.20132102641265910.1084/jem.201311412421814038329371:CAS:528:DC%2BC3sXhvVKjsbfK
– reference: WiesnerTGermline mutations in BAP1 predispose to melanocytic tumorsNat. Genet.2011431018102110.1038/ng.9102187400333284031:CAS:528:DC%2BC3MXhtV2gtLjI
– reference: LaFaveLMLoss of BAP1 function leads to EZH2-dependent transformationNat. Med.2015211344134910.1038/nm.39472643736646364691:CAS:528:DC%2BC2MXhs1Wls7fP
– reference: InoueDTruncation mutants of ASXL1 observed in myeloid malignancies are expressed at detectable protein levelsExp. Hematol.20164417217610.1016/j.exphem.2015.11.011267003261:CAS:528:DC%2BC28XitlCgu78%3De171
– reference: HarbourJWFrequent mutation of BAP1 in metastasizing uveal melanomasScience2010330141014132010Sci...330.1410H10.1126/science.11944722105159530873801:CAS:528:DC%2BC3cXhsVyrsbbI
– reference: WangJLoss of Asxl1 leads to myelodysplastic syndrome-like disease in miceBlood201412354155310.1182/blood-2013-05-5002722425592039010671:CAS:528:DC%2BC2cXisFagt70%3D
– reference: ChallenGADnmt3a is essential for hematopoietic stem cell differentiationNat. Genet.201144233110.1038/ng.10092213869336379521:CAS:528:DC%2BC3MXhsFGktbnL
– reference: SahtoeDDvan DijkWJEkkebusROvaaHSixmaTKBAP1/ASXL1 recruitment and activation for H2A deubiquitinationNat. Commun.201672016NatCo...710292S10.1038/ncomms102922673923647298291:CAS:528:DC%2BC28XltFOrug%3D%3D
– reference: FaberJHOXA9 is required for survival in human MLL-rearranged acute leukemiasBlood20091132375238510.1182/blood-2007-09-1135971905669326562671:CAS:528:DC%2BD1MXjsFKhuro%3D
– reference: InoueDNishimuraKKozuka-HataHOyamaMKitamuraTThe stability of epigenetic factor ASXL1 is regulated through ubiquitination and USP7-mediated deubiquitinationLeukemia2015292257226010.1038/leu.2015.90258365871:CAS:528:DC%2BC2MXotVChtLs%3D
– reference: LinYZhengYWangZCWangSYPrognostic significance of ASXL1 mutations in myelodysplastic syndromes and chronic myelomonocytic leukemia: a meta-analysisHematology20162145446110.1080/10245332.2015.1106815270777631:CAS:528:DC%2BC28XhtlSmsbnF
– reference: LeberbauerCDifferent steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitorsBlood2005105859410.1182/blood-2004-03-1002153586201:CAS:528:DC%2BD2MXis1GktQ%3D%3D
– volume: 34
  start-page: 267
  year: 2003
  ident: 5085_CR36
  publication-title: Nat. Genet.
  doi: 10.1038/ng1180
– volume: 330
  start-page: 336
  year: 2010
  ident: 5085_CR56
  publication-title: Science
  doi: 10.1126/science.1192632
– volume: 8
  start-page: 2169
  year: 1994
  ident: 5085_CR55
  publication-title: Leukemia
– volume: 371
  start-page: 2488
  year: 2014
  ident: 5085_CR11
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1408617
– volume: 17
  start-page: 675
  year: 2015
  ident: 5085_CR27
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2015.09.017
– volume: 151
  start-page: 365
  year: 2010
  ident: 5085_CR5
  publication-title: Br. J. Haematol.
  doi: 10.1111/j.1365-2141.2010.08381.x
– volume: 537
  start-page: 698
  year: 2016
  ident: 5085_CR37
  publication-title: Nature
  doi: 10.1038/nature19348
– volume: 22
  start-page: 180
  year: 2012
  ident: 5085_CR16
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.06.032
– volume: 44
  start-page: 172
  year: 2016
  ident: 5085_CR20
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2015.11.011
– volume: 43
  start-page: 668
  year: 2011
  ident: 5085_CR43
  publication-title: Nat. Genet.
  doi: 10.1038/ng.855
– volume: 43
  start-page: 1018
  year: 2011
  ident: 5085_CR45
  publication-title: Nat. Genet.
  doi: 10.1038/ng.910
– volume: 12
  start-page: 945
  year: 2006
  ident: 5085_CR31
  publication-title: Nat. Med.
  doi: 10.1038/nm1443
– volume: 7
  year: 2016
  ident: 5085_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10292
– volume: 284
  start-page: 34179
  year: 2009
  ident: 5085_CR59
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.046755
– volume: 371
  start-page: 2477
  year: 2014
  ident: 5085_CR10
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1409405
– volume: 157
  start-page: 1445
  year: 2014
  ident: 5085_CR24
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.004
– volume: 962
  start-page: 151
  year: 2017
  ident: 5085_CR28
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-981-10-3233-2_11
– volume: 44
  start-page: 23
  year: 2011
  ident: 5085_CR51
  publication-title: Nat. Genet.
  doi: 10.1038/ng.1009
– volume: 31
  start-page: 1007
  year: 2003
  ident: 5085_CR61
  publication-title: Exp. Hematol.
  doi: 10.1016/S0301-472X(03)00260-1
– volume: 210
  start-page: 2641
  year: 2013
  ident: 5085_CR18
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131141
– volume: 54
  start-page: 392
  year: 2014
  ident: 5085_CR23
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.002
– volume: 108
  start-page: 553
  year: 2017
  ident: 5085_CR6
  publication-title: Cancer Sci.
  doi: 10.1111/cas.13168
– volume: 36
  start-page: 2589
  year: 2017
  ident: 5085_CR54
  publication-title: Oncogene
  doi: 10.1038/onc.2016.416
– ident: 5085_CR1
  doi: 10.1080/03007995.2016.1276896
– volume: 123
  start-page: 4627
  year: 2013
  ident: 5085_CR17
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI70739
– volume: 465
  start-page: 243
  year: 2010
  ident: 5085_CR14
  publication-title: Nature
  doi: 10.1038/nature08966
– volume: 29
  start-page: 847
  year: 2015
  ident: 5085_CR19
  publication-title: Leukemia
  doi: 10.1038/leu.2014.301
– volume: 43
  start-page: 673
  year: 2015
  ident: 5085_CR42
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2015.05.012
– volume: 44
  start-page: 727
  year: 2016
  ident: 5085_CR25
  publication-title: Exp. Hematol.
  doi: 10.1016/j.exphem.2016.04.009
– volume: 159
  start-page: 440
  year: 2014
  ident: 5085_CR40
  publication-title: Cell
  doi: 10.1016/j.cell.2014.09.014
– volume: 99
  start-page: 15
  year: 2002
  ident: 5085_CR33
  publication-title: Blood
  doi: 10.1182/blood.V99.1.15
– volume: 337
  start-page: 1541
  year: 2012
  ident: 5085_CR46
  publication-title: Science
  doi: 10.1126/science.1221711
– volume: 21
  start-page: 454
  year: 2016
  ident: 5085_CR7
  publication-title: Hematology
  doi: 10.1080/10245332.2015.1106815
– volume: 115
  start-page: 2910
  year: 2010
  ident: 5085_CR41
  publication-title: Blood
  doi: 10.1182/blood-2009-04-216606
– volume: 33
  start-page: 61
  year: 2008
  ident: 5085_CR63
  publication-title: Cell Struct. Funct.
  doi: 10.1247/csf.07035
– volume: 29
  start-page: 2257
  year: 2015
  ident: 5085_CR22
  publication-title: Leukemia
  doi: 10.1038/leu.2015.90
– volume: 20
  start-page: 11
  year: 2011
  ident: 5085_CR52
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.06.001
– volume: 11
  start-page: 783
  year: 2014
  ident: 5085_CR62
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3047
– volume: 330
  start-page: 1410
  year: 2010
  ident: 5085_CR44
  publication-title: Science
  doi: 10.1126/science.1194472
– volume: 27
  start-page: 82
  year: 2013
  ident: 5085_CR8
  publication-title: Leukemia
  doi: 10.1038/leu.2012.262
– volume: 6
  year: 2015
  ident: 5085_CR21
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8307
– volume: 345
  start-page: 1509
  year: 2014
  ident: 5085_CR58
  publication-title: Science
  doi: 10.1126/science.1256337
– volume: 119
  start-page: 4408
  year: 2012
  ident: 5085_CR26
  publication-title: Blood
  doi: 10.1182/blood-2011-12-397091
– volume: 21
  start-page: 1344
  year: 2015
  ident: 5085_CR48
  publication-title: Nat. Med.
  doi: 10.1038/nm.3947
– volume: 111
  start-page: 4297
  year: 2008
  ident: 5085_CR53
  publication-title: Blood
  doi: 10.1182/blood-2007-01-068346
– volume: 121
  start-page: 1839
  year: 2013
  ident: 5085_CR39
  publication-title: Blood
  doi: 10.1182/blood-2012-06-437863
– volume: 116
  start-page: 2707
  year: 2006
  ident: 5085_CR49
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI25546
– volume: 105
  start-page: 85
  year: 2005
  ident: 5085_CR57
  publication-title: Blood
  doi: 10.1182/blood-2004-03-1002
– volume: 123
  start-page: 541
  year: 2014
  ident: 5085_CR12
  publication-title: Blood
  doi: 10.1182/blood-2013-05-500272
– volume: 26
  start-page: 4138
  year: 2007
  ident: 5085_CR38
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7601824
– volume: 24
  start-page: 1062
  year: 2010
  ident: 5085_CR4
  publication-title: Leukemia
  doi: 10.1038/leu.2010.20
– volume: 36
  start-page: 364
  year: 2011
  ident: 5085_CR13
  publication-title: Trends Biochem. Sci.
– volume: 10
  year: 2012
  ident: 5085_CR47
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-10-179
– volume: 32
  start-page: 996
  year: 2013
  ident: 5085_CR60
  publication-title: EMBO J.
  doi: 10.1038/emboj.2013.38
– volume: 28
  start-page: 1449
  year: 2014
  ident: 5085_CR29
  publication-title: Leukemia
  doi: 10.1038/leu.2014.4
– volume: 364
  start-page: 2496
  year: 2011
  ident: 5085_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1013343
– volume: 30
  start-page: 728
  year: 2016
  ident: 5085_CR34
  publication-title: Leukemia
  doi: 10.1038/leu.2015.275
– volume: 109
  start-page: 299
  year: 2013
  ident: 5085_CR2
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2013.281
– volume: 102
  start-page: 4369
  year: 2003
  ident: 5085_CR32
  publication-title: Blood
  doi: 10.1182/blood-2003-05-1762
– volume: 113
  start-page: 2375
  year: 2009
  ident: 5085_CR50
  publication-title: Blood
  doi: 10.1182/blood-2007-09-113597
– volume: 124
  start-page: 1445
  year: 2014
  ident: 5085_CR30
  publication-title: Blood
  doi: 10.1182/blood-2014-04-571018
– volume: 20
  start-page: 1472
  year: 2014
  ident: 5085_CR9
  publication-title: Nat. Med.
  doi: 10.1038/nm.3733
– volume: 102
  start-page: 15545
  year: 2005
  ident: 5085_CR35
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0506580102
SSID ssj0000391844
Score 2.5498068
Snippet ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces...
ASXL1 mutations occur frequently in myeloid neoplasms and are associated with poor prognosis. However, the mechanisms by which mutant ASXL1 induces...
ASXL1 gene is often mutated in myeloid malignancies. Here, the authors show that mutant ASXL1 and BAP1 are in a positive feedback loop such that BAP1 induces...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2733
SubjectTerms 13/31
14/19
38/109
38/91
45/15
49/88
631/208/176
631/67/1990/283
64/60
82/29
82/58
Animals
Bone Marrow - metabolism
Bone Marrow - pathology
Bone Marrow Transplantation
Carcinogenesis - genetics
Carcinogenesis - metabolism
Carcinogenesis - pathology
Catalysis
Cells (biology)
Core Binding Factor Alpha 2 Subunit - genetics
Core Binding Factor Alpha 2 Subunit - metabolism
CRISPR-Cas Systems
Female
Gene Editing
Gene expression
Gene Expression Regulation, Leukemic
HEK293 Cells
HeLa Cells
Homeodomain Proteins - genetics
Homeodomain Proteins - metabolism
HOXA gene
Humanities and Social Sciences
Humans
Interferon Regulatory Factors - genetics
Interferon Regulatory Factors - metabolism
Leukemia
Leukemia, Myeloid - genetics
Leukemia, Myeloid - metabolism
Leukemia, Myeloid - mortality
Leukemia, Myeloid - pathology
Male
Mice
Mice, Inbred C57BL
multidisciplinary
Mutation
Myeloid leukemia
Neoplasia
Neoplasms
Progenitor cells
Repressor Proteins - genetics
Repressor Proteins - metabolism
Runx1 protein
RUNX1 Translocation Partner 1 Protein - genetics
RUNX1 Translocation Partner 1 Protein - metabolism
Science
Science (multidisciplinary)
Signal Transduction
Stem cells
Survival Analysis
Tumor suppressor genes
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Tumors
Ubiquitin Thiolesterase - genetics
Ubiquitin Thiolesterase - metabolism
Ubiquitination
Whole-Body Irradiation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmJKS9oAFjhMHkSXuDiDh2HPuxsCE0jQlpQ-qb5U9W0SbV2j7w3-Nz0o6Ojb1MylPiWKfz3fnOvvsdQh-kdtIbWeVWSJ2zwEwuCBxz1HVgZTBcazjQv_rKL2_Y52E1fNTqC3LCOnjgjnGnpmKWFbYsdamZJkbYYIkMXGpmKO_qyOOe9yiYSjaYyhi6sL5KpqDidMaSTSiIyIsKMu7l2k6UAPv_5GU-TZb87cY0bUQXr9BW70HiQUf5Nnrhmx202fWUvN9FH68W0BgYD74NvxBs23YKsMl-huHEFZ8Nrgmet3iasvA8ntz7cTtyeOwXd9pP2lswfaPZa3Rz8en7-WXet0rIbXS55rmonLBSBkZ9cC4qoi6dk4YK7ZgzFipIPQQXTkcDFwyxha-hyNa66BBwLuge2mjaxu8jXFtBhfAmho48eldeUM8cpZSH-ESPIENkyTZlexxxaGcxVuk-mwrVsVpFVqvEaiUzdLz6Z9qhaDw7-gxWYzUSELDTiygXqpcL9S-5yNDhci1Vr5YzVSZwI15VNEPvV5-jQsEtiW58u0hjAECHwRRvuqVfUUITPBEvMlSvCcUaqetfmtGPBNrNoXifxTlPluLzi6y_s-Lgf7DiLXpZJrmvc8IP0cb858IfRVdqbt4lrXkAEPMXjQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBhHx2nHsE9oCS4UoQoJKe7P8LCu28bbZPfTf43GyqZZHpZwSx7Ln5fF4_A1Cr6R20htZl1ZIXbLATCkIhDmaJrBJMFxrCOgff-VHJ-zzvJ4PAbduSKvc2sRsqF20ECOHSEhazXhd03er8xKqRsHp6lBC4ya6RdJKAyldYvZpjLEA-rlgbLgrU1HxtmPZMlRElFUNefdyZz3KsP3_8jX_Tpn849w0L0eze-ju4Efiac_4--iGbx-g231lycuH6MPxBsoD4-n3-ReCbYwrAE_2HYa4Kz6cfiN4HfEq5-J5fHbpl3Hh8NJvfml_Fk_BAC66R-hk9vHH-6NyKJhQ2uR4rUtRO2GlDIz64FxSRz1xThoqtGPOWLhH6mGL4XQyc8EQW_kGrtpal9yCRD76GO21sfVPEW6soEJ4kzaQPPlYXlDPHKWUh_Qkv6BAZEs2ZQc0cShqsVT5VJsK1ZNaJVKrTGolC_R6_GfVY2lc2_oQuDG2BBzs_CJenKpBrZSpmWWVnaSZaqaJETZYIgOXmhnKq6ZAB1teqkE5O3UlSgV6OX5OagVnJbr1cZPbAIwOgy6e9KwfR0IzSBGvCtTsCMXOUHe_tIufGbqbwxV-lvp8sxWfq2H9nxT718_iGbozyRLdlIQfoL31xcY_T67S2rzI-vAbR5EOvQ
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-1RfBF_Ha1SgTfdHGzyWaTx61aymFFqIV7C_lsD6-7R-_uof-9meyHnFZB2KfdSchOZpLJZOY3CL2V2klvZJVbIXXOAjO5IODmqOvAymC41uDQP_3KT87ZbF7N91A55sKkoP0EaZmW6TE67MOaJZUuiMiLCgLm5R10AFDtUbYPmmZ2Nps8K4B5LhgbMmQKKm5pvLMLJbD-2yzMPwMlf7stTZvQ8QN0f7AecdOP9yHa8-0jdLevJ3nzGH063UJRYNyczb8QbLtuBZDJfo3B24qPmm8Ebzq8ShF4Hl_d-GW3cHjptz-0v-ouYNlbrJ-g8-PP3z-e5EOZhNxGc2uTi8oJK2Vg1AfnohLq0jlpqNCOOWMhe9TDwcLpuLgFQ2zha0iwtS4aA5wL-hTtt13rnyNcW0GF8CYeG3m0rLygnjlKKQ_xidZAhsjINmUHDHEoZbFU6S6bCtWzWkVWq8RqJTP0bmqz6hE0_kl9BLMxUQL6dXrRXV-oQRqUqZhlhS3jn2qmiRE2WCIDl5oZyos6Q4fjXKpBJdeqTMBGvKpoht5Mn6MywQ2Jbn23TTQAnsOgi2f91E8joQmaiBcZqneEYmeou1_axWUC7OaQuM9in-9H8fk1rL-z4sX_kb9E98ok4XVO-CHa31xv_atoMG3M60FDfgIQJw3u
  priority: 102
  providerName: Springer Nature
Title Mutant ASXL1 cooperates with BAP1 to promote myeloid leukaemogenesis
URI https://link.springer.com/article/10.1038/s41467-018-05085-9
https://www.ncbi.nlm.nih.gov/pubmed/30013160
https://www.proquest.com/docview/2070786553
https://www.proquest.com/docview/2071564407
https://pubmed.ncbi.nlm.nih.gov/PMC6048047
https://doaj.org/article/b54c40c22a2a4a1b8cfc19f69a4b3607
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Zj9MwELb2EBIviJvAUhmJNwgksePjAaG0bFlVdLViqdQ3y1eWim6y9JDov8d2kqJC4QkpSiTbsezxjD1je74B4CWXhlvF81gzLmNcYhWz1G9zUFrirFRESr-hPz4nZxM8mubTA9CFO2oJuNxr2vl4UpPF_M2P75v3TuDfNS7j7O0SB3FPUhYnub9Mzw_BsVuZqI9oMG7V_TAzI-4MGtz6zuz_dWd9CjD--3TPP69Q_naOGpan4V1wp9UrYdEwwj1wYKv74FYTaXLzAHwYr324YFhcTj-lUNeukx4jYgn9PizsFxcpXNXwJtzNs_B6Y-f1zMC5XX-T9rq-8hPibPkQTIanXwZncRtAIdZOEVvFLDdMc15iZEtjnHjKzBiuEJMGG6W9X6n1JoeRbtorVaoTS73rrTZOTSCEoUfgqKor-wRAqhlizCpnUBKnc1mGLDYIIVK6x-kJEUg7sgndoov7IBdzEU65ERMNqYUjtQikFjwCr7b_3DTYGv8s3fejsS3pcbFDQr24Eq2YCZVjjROduZ5KLFPFdKlTXhIusUIkoRE46cZSdLwmsgB5RPIcReDFNtuJmT87kZWt16GMh9XBvorHzdBvW4ICaBFJIkB3mGKnqbs51exrgPIm3qUfuzpfd-zzq1l_J8XT_0GKZ-B2Fviexik5AUerxdo-dwrWSvXAIZ1S92bDjz1wXBSjy5H79k_PLz671AEZ9MLWRS9I10_oCCXf
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDeBAUaCJ4hIYsexHxDqGKVj7YTEJvXN-CujomvK2gr1n-JvxOd8TOVjb5PylDiWfT7fnc93v0PohVBWOC3y2HChYlpSHfMU3BxFUdKs1EwpcOiPDtngmH4a5-Mt9KvNhYGwylYmBkFtKwM-cvCEeG3G8py8m_-IoWoU3K62JTRqtjhw65_-yLZ4u7_n1_dllvU_HL0fxE1Vgdh462QZ89xyI0RJiSut9TyrMmuFJlxZarWBZEsHdrhVXhaUOjWJKyAf1VivOxnjxPd7BV2lxGtyyEzvf-x8OoC2ziltcnMSwt8saJBEScrjJIc4f7Gh_0KZgH_Ztn-HaP5xTxvUX_8WutnYrbhXM9pttOVmd9C1upLl-i7aG62gHDHufRkPU2yqag5gzW6Bwc-Ld3ufU7ys8DzE_jl8unbTamLx1K2-K3danYDAnSzuoeNLIeV9tD2rZu4hwoXhhHOn_YGVeZvOceKoJYSw0j_eDolQ2pJNmga9HIpoTGW4RSdc1qSWntQykFqKCL3q_pnX2B0Xtt6F1ehaAu52eFGdnchmG0udU0MTk_mZKqpSzU1pUlEyoagmLCkitNOupWyEwUKes26Ennef_TaGuxk1c9UqtAHYHgpdPKiXvhsJCaBILIlQscEUG0Pd_DKbfAtQ4QwgA6jv83XLPufD-j8pHl08i2fo-uBoNJTD_cODx-hGFri7iFO2g7aXZyv3xJtpS_007A2Mvl72ZvwNLFdLxQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdGJxAviG8KA4wETxAtiR3HfkCopas2tlUVMKlvnr8yKrqmrK1Q_zX-OnxO0ql87G1SnhLHss935_Pd-XcIvRbKCqdFFhkuVEQLqiOegJsjzwuaFpopBQ794wHbP6GfRtloC_1q7sJAWmWjE4OitqUBHzl4QvxuxrKM7BZ1WsSw1_8w-xFBBSmItDblNCoWOXSrn_74Nn9_0PNr_SZN-3tfP-5HdYWByHhLZRHxzHIjREGJK6z1_KtSa4UmXFlqtYGLlw5scqu8Xih0YmKXw91UY_0-yhgnvt8baDuHU1ELbXf3BsPPaw8PYK9zSuubOjHhu3Ma9FKc8CjOIOtfbOyGoWjAvyzdvxM2_4jahs2wfxfdqa1Y3KnY7h7actP76GZV13L1APWOl1CcGHe-jI4SbMpyBtDNbo7B64u7nWGCFyWehUxAh89XblKOLZ645XflzsszUL_j-UN0ci3EfIRa03LqniCcG044d9ofX5m38BwnjlpCCCv8462SNkoasklTY5lDSY2JDDF1wmVFaulJLQOppWijt-t_ZhWSx5Wtu7Aa65aAwh1elBdnshZqqTNqaGxSP1NFVaK5KUwiCiYU1YTFeRvtNGspa9Uwl5eM3Eav1p-9UEOkRk1duQxtAMSHQhePq6Vfj4QEiCQWt1G-wRQbQ938Mh1_C8DhDAAEqO_zXcM-l8P6PymeXj2Ll-iWF0R5dDA4fIZup4G58yhhO6i1uFi6595mW-gXtXBgdHrd8vgbYNBRVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mutant+ASXL1+cooperates+with+BAP1+to+promote+myeloid+leukaemogenesis&rft.jtitle=Nature+communications&rft.au=Shuhei+Asada&rft.au=Susumu+Goyama&rft.au=Daichi+Inoue&rft.au=Shiori+Shikata&rft.date=2018-07-16&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=18&rft_id=info:doi/10.1038%2Fs41467-018-05085-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b54c40c22a2a4a1b8cfc19f69a4b3607
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon